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Abstract 

In the present paper, we study the polynomial approximation of entire function in Banach space ( ),,( kqpB  

space, Hardy space and Bergman space). The coefficient characterizations of generalized type of entire function 

of slow growth in several complex variables have been obtained in terms of the approximation errors. 

Keyword: Entire function, generalized order, generalized type, approximation error. 

 

 

1.Introduction 
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 max,  be its maximum modulus. 

The growth of  zf  is measured in terms of its order ρ and type τ defined as under  
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for 0 < ρ < ∞. Various workers have given different characterizations for entire function of fast growth 

(ρ = ∞). M. N. Seremeta [6] defined the generalized order and generalized type with the help of 

general functions as follows. 

   Let 
0L  denoted the class of functions h satisfying the following conditions 

(i)  xh  is defined on [a,∞) and is positive, strictly increasing, differentiable and tend to ∞ as x , 

(ii)   
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   for every function  x  such that   x  as x . 

Let Λ denoted the class of function h satisfying condition (i) and  
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for every c > 0, that is, h(x) is slowly increasing. 

   For the entire function  zf  and function   x ,   0Lx  , the generalized order of an entire 

function in the terms of maximum modulus is defined as  
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Further, for   0Lx  ,   01 Lx  ,   0Lx  , generalized type of an entire function f of finite 

generalized order ρ is defined as  
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where 0 < ρ < ∞ is a fixed number. 

   Above relation were obtained under certain conditions which do not hold if   . To overcome 

this difficulty, G. P. Kapoor and Nautiyal [4] defined generalized order );( f  of slow growth with 

the help of general functions as follows 

   Let Ω be the class of functions  xh  satisfying (i) and  

(iv) there exists a   x  and 10 , Kx  and 2K such that  
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   0 < K < ∞. 

Kapoor and Nautiyal [4] showed that class Ω and   are contained in Λ. Further,   and 

they defined the generalized order  f;  for entire function  zf  of slow growth as  
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where  x  either belongs to Ω or to  . 
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   For the entire function, 
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   for an entire function of several complex variables   





0t

t

t zazf , and functions   x , 

  0Lx  , Seremeta [6, Th .1] proved that  

 ])(ln
1

[

)(
suplim

)(ln

)],([ln
suplim

Gda
t

t

R

fRM

tt

k

G

R













 .                       (1.7) 

Further, for   0Lx  ,   01 Lx  ,   0Lx  , Seremeta [6, Th .1] proved that 
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where 0 < ρ < ∞ is a fixed number. 

And let qH   denote the Bergman space of functions  zf  satisfying the condition  
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For q = ∞, let   },sup{ Uzzfff
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. Then qH  and qH   are Banach space for q ≥ 1. In 

analogy with spaces of functions of one variable, we call  qH  and qH   the Hardy and Bergman spaces 

respectively. 
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It is known [1] that B(p, q, k) is a Banach space for p > 0 and 1, kq , otherwise it is a Freachet 

space. Further , we have 

 qqq
q

BHH qq 1),,,
2

( . 

Let }:{ 



mt

t

tm zappP  be the class polynomials of degree at most m and let X denote one of the 

Banach spaces defined. Then we defined error of an entire function f on the region G as  

}:inf{),,()( mXtt
PppfXGfEfE  . 
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β = γ. i.e. for entire functions of slow growth. In this paper we have tried to fill this gap. We define the 

generalized type );( f  of an entire function  zf  having finite generalized order as  
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2. Main Results  

Theorem 2.1:  Let   x , then the entire function  zf  of generalized order ρ, 1 < ρ < ∞, is of 

generalized type τ if and only if  

 
  11

1
]})(ln[{

suplim
)](ln[

)),((ln
suplim


























t

tt

t

t

G

R GdaR

fRM
,                 (2.1) 

provided )1(ln),;( OxdxdF   as x for all τ, 0 < τ < ∞. 

Proof.   Let  








 )](ln[

)),((ln
suplim

R

fRMG

R
. 

We suppose τ < ∞. Then for every ε > 0,   R  

 





RR
R

fRMG  ,
)](ln[

)),((ln
 . 

(or)       }))](ln[{(),(ln 1  RfRMG

 . 

Choose  tRR   to be the unique root of the equation 

]
1

,;[ln
ln 




RF
R

t  .                                       (2.2) 

Then  

]1,
1

;[]))(
1

[(ln )1(11   





 
t

F
t

R .                      (2.3) 

By Cauchy's inequality, 

})})](ln[{(lnexp{

),()(

1  RRt

fRMRGda G

t

tt








 

By using (2.5) and (2.6), we get  

}exp{)( F
t

FtGda tt


  

or 

]}))(
1

{[())(ln(
1

)1(111 














 t
Gda

t

tt  

or  

11

1
]}))(ln([{

)(



















t

tt

t

Gda
. 

Now proceeding to limits, we obtain 

11

1
]}))(ln([{

)(
suplim




















t

tt

t

t Gda
.                       (2.4) 

Inequality (2.4) obviously holds when τ = ∞. 
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From inequality (2.4) and (2.10), we get the required the result.  

   Now we prove 

Theorem 2.2: Let   x , then a necessary and sufficient condition for an entire function 

  ),,( kqpBzf   to be of generalized type τ having finite generalized order ρ, 1 < ρ < ∞ is  

)1(1

1
)}]))()),,((ln(({[

)(
suplim




















t

tt

t

t GdkqpBE
.            (2.11) 

Proof. First we consider the space ),,( kqpB , q = 2, 0 < ρ < ∞ and k ≥ 1. Let ),,()( kqpBzf   be 
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From (2.19) and (2.21), we obtain the required relation  
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From relation (2.19) and (2.21), and the above inequality, we obtain the required relation (2.22). 
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Proof.   Let 





0

)(
t

t

t zazf  be an entire transcendental function having finite generalized order ρ 

and generalized type τ. Since 

0lim 


t
t

t
a                                         (2.28) 

),,()( kqpBzf  , where  qp0  and 1, kq . From relation (1.8), we get 

 qfHEfqqqBE qtqt
1),;());,,2((  .                (2.29) 

where q  is a constant independent of t  and f. In the case of Hardy space H , 

  pfHEfpBE
tt

1),;());,,(( .                  (2.30) 

Since  

)1(1

1
)}]))();(ln(({[

)(
suplim);(




















t

tqt

t

t GdfHE
f  

                         
)1(1

1
)}]))());,,2(((ln(({[

)(
suplim


















t

tt

t

t GdfqqqBE
 

                             .1,  q                                                       (2.31) 

Using estimate (2.30) we prove inequality (2.31) in the case q .  

For the reverse inequality  

,);(  f                                         (2.32) 

we use the relation (2.13), which is valid for mt  , and estimate from above, the generalized type τ 

of an entire transcendental function )(zf  having finite generalized order ρ, as follows. We have  
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Using (2.16), 
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This yields  
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Since 1)(   and by applying the properties of the function α, passing to the limit as t  in 

(2.33), we obtain inequality (2.32). thus we have finally 

 )( .                                             (2.34) 
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This prove Theorem 2.2. 

 

Remark : An analog of Theorem 2.3 for the Bergman space follows from (1.8) for  q1  and 

from Theorem 2.2 for q = ∞. 
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