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Abstract 

In this paper, we apply the notion of SS-open set in topological spaces to introduce and investigate the concept 

of contra SS-continuous which is a subclass of the class of contra semi continuous functions. 

Keywords: SS-closed, contra SS-continuous, contra SS –closed and strongly contra SS –closed. 

 

1. Introduction 

In 1966, Dontchev [3], introduced the notion of contra continuity and established some results about 

S-closedness and strongly S-closedness. Subsequently, Dontchev and Noiri [4], introduced and studied contra 

semi continuity and gave several properties about these functions. Later Jafari and Noiri [5], investigated contra 

α- continuous and contra pre-continuous. Recently authors introduced SS-open set for topological spaces where 

SS-continuity had been investigated. For a subset A of X, 𝐶𝑙(𝐴)  and 𝐼𝑛𝑡(𝐴) represent the closure and interior 

respectively. A subset 𝐴 of X is called semi-open[9](α-open[11], pre-open [10], regular open [17]) set if 

𝐴 ⊆ 𝐶𝑙𝐼𝑛𝑡(𝐴), 𝐴 ⊆ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴),𝐴 ⊆ 𝐼𝑛𝑡𝐶𝑙(𝐴), 𝐴 = 𝐼𝑛𝑡𝐶𝑙(𝐴),The complement of semi-open(α-open, pre-open, 

regular open) set is called semi-closed (α- closed, pre- closed, regular closed)set. A subset 𝐴 of topological 

space (𝑋, 𝜏) is called θ-open set [16] if for each 𝑥 ∈ 𝐴, there is an open set U such that 𝑥 ∈ 𝑈 ⊆ 𝐶𝑙(𝑈) ⊆ 𝐴. 

A subset 𝐴 is called semi regular [2] if it is both semi-open and semi-closed. The main purpose of this paper is 

to introduce the notion of contra SS-continuous functions and obtained some its properties. Also, we defined and 

studied the concept of contra SS-closed and strongly SS-closed. 

 

2. Preliminaries 

The following definitions and results are needed . 

Definition 2.1 . A topological space 𝑋 is called: 

1) locally indiscrete [3], if every open set in 𝑋 is closed. 

2) extremally disconnected [6], if the closure of every open subset of 𝑋 is open or the interior of every closed 

subset of 𝑋 is closed. 

3) semi-   [1], If for every two distinct points x, y in X, there exist two semi open sets, one containing x but 

not y and the another containing y but not x. 

Lemma 2.2[1]. A space X is semi-  , if and only if, the singleton {𝑥} is semi-closed for any point 𝑥 ∈ 𝑋. 

Definition 2.3.A function 𝑓: 𝑋 ⟶ 𝑌 is called:  

1) Contra continuous [3], if the inverse image of every open set in Y is closed set in X. 

2) Semi-continuous [9] (resp., contra semi continuous [4]) if the inverse image of every open set in Y is 

semi-open (resp., semi-closed) set in X. 
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3) Perfectly continuous [15] (SR-continuous [12], RC-continuous [12]) if the pre image of every open set 

in Y is clopen (semi regular, regular closed) set in X. 

4) pre-closed [5], if the image of every closed set in X is pre-closed set in Y. 

Theorem 2.4[1]. For any spaces X and Y. if 𝐴 ⊆ 𝑋 and𝐵 ⊆ 𝑌, then  

1)  𝐼𝑛𝑡   (𝐴  𝐵) =  𝐼𝑛𝑡 (𝐴)   𝐼𝑛𝑡 (𝐵) 

2)  𝐶𝑙   (𝐴  𝐵) =  𝐶𝑙 (𝐴)   𝐶𝑙 (𝐵) 

The following definitions and results are from [7]. 

Definition 2.5 A semi-open subset A of a space X is called SS-open if for each𝑥 ∈ 𝐴, there exist semi-closed F 

such that 𝑥 ∈ 𝐹 ⊆ 𝐴.  

The complement of SS-open set in X is called SS-closed set in X.  

Proposition 2.6. Let {𝐴𝛼: 𝛼 ∈ 𝛥} be collection of SS-closed sets in topological space X, then ⋂{𝐴𝛼: 𝛼 ∈ 𝛥} is 

SS-closed. 

Proposition 2.7. Let X be topological space and 𝐴, 𝐵 ⊆ 𝑋. If 𝐴 ∈ 𝑆𝑆𝑂(𝑋) and 𝐵 is both α −open and 

semi-closed, then 𝐴 ∩ 𝐵 ∈ 𝑆𝑆𝑂(𝑋) 

Proposition 2.8. Let (𝑌, 𝜏 ) be an subspace of (𝑋, 𝜏)and 𝐴 ⊆ 𝑌, then the following properties are true: 

1)  If 𝐴 ∈ 𝑆𝑆𝑂(𝑌, 𝜏 ) and Y is semi-regular, then 𝐴 ∈ 𝑆𝑆𝑂(𝑋, 𝜏). 

2) If 𝐴 ∈ 𝑆𝑆𝑂(𝑋, 𝜏) and 𝑌is 𝛼-open, then 𝐴 ∈ 𝑆𝑆𝑂(𝑌, 𝜏 ). 

Proposition 2.9. If (𝑋, 𝜏) is a semi-   space, then 𝑆𝑆𝑂(𝑋, 𝜏) = 𝑆𝑂(𝑋, 𝜏). 

Definition 2.10. A function 𝑓: 𝑋 ⟶ 𝑌 is called SS-continuous at a point x ∈ X, if for each an open set V of Y 

containing f(x), there exist an SS-open set U of X containing x such that 𝑓(𝑈) ⊆ 𝑉. 

Proposition 2.11. For a function 𝑓: 𝑋 ⟶ 𝑌, the following statements are equivalent:  

1) 𝑓 is SS-continuous, 

2) The inverse image of every open set in Y is an SS-open set in X, 

3) The inverse image of every closed set in Y is an SS-closed set in X. 

Definition 2.12 [8]. A function 𝑓: 𝑋 → 𝑌 is called weakly SS-continuous. If for each 𝑥 ∈ 𝑋 and each open set 

H in Y containing 𝑓(𝑥), there is an SS-open set G containing x such that 𝑓(𝐺) ⊆ 𝐶𝑙(𝐻). 

 

3. Contra 𝐒𝐒-continuous function 

Definition 3.1. A function 𝑓:𝑋 ⟶ 𝑌 is called contra SS-continuous if 𝑓− (𝑈) is SS-closed in X for each open 

set U in Y. 

Theorem 3.2 for a function 𝑓: 𝑋 ⟶ 𝑌 the following conditions are equivalent. 

1) 𝑓 is contra SS-continuous. 

2) The inverse image of every closed set in Y is SS-open set in X. 

3) For each𝑥 ∈ 𝑋, and each closed subset F of Y containing 𝑓(𝑥), there is SS-open U containing x such 

that𝑓(𝑈) ⊆ 𝐹. 

Proof.(1)⟹(2). Let F be closed subset of Y, then 𝑌 − 𝐹 is an open set in Y. since𝑓 is contra SS-continuous, 

then 𝑓− (𝑌 − 𝐹) = 𝑋 − 𝑓− (𝐹) is SS-closed set in X. Hence 𝑓− (𝐹) is SS-open set in X. 
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(2)⟹(3). Let F be closed subset of Y containing 𝑓(𝑥), then by (2)𝑓− (𝐹) is SS-open set in X containing x. 

since𝑓(𝑓− (𝐹)) ⊆ 𝐹. Take U=𝑓− (𝐹). Hence𝑓(𝑈) ⊆ 𝐹. 

(3)⟹(1). Let 𝑥 ∈ 𝑋 and let H be an open set in Y, therefore 𝑌 − 𝐻 is closed subset of Y containing𝑓(𝑥). Then 

by (3) there exist SS-open set U containing x such that 𝑓(𝑈) ⊆ 𝑌 − 𝐻 implies that 𝑈 ⊆ 𝑓− (𝑌 − 𝐻) = 𝑋 −

𝑓− (𝐻). Hence 𝑓− (𝐻) is SS-closed set in X. 

Remark 3.3. Every contra SS-continuous is contra semi continuous. 

But the converse is not true as showing in the following example, 

Example 3.4.Let 𝑋 = {𝑎, 𝑏, 𝑐}with the topologies𝜏={𝜙,X,{𝑐}} and 𝜎={ 𝜙,X, {a}, {b}, {a,b}}. If 𝑓: (𝑋, 𝜏) ⟶

(𝑋, 𝜎) defined by 𝑓(𝑎) = 𝑓(𝑏) = 𝑏 and 𝑓(𝑐) = 𝑐. Then f is contra semi continuous but it is not contra 

SS-continuous because 𝑓− ({𝑏}) = {𝑎, 𝑏} which is not SS-closed set in(𝑋, 𝜏). 

Proposition 3.5. Let 𝑓: 𝑋 ⟶ 𝑌 be a semi continuous function, then𝑓 is contra semi continuous if and only if it 

is contra SS-continuous. 

Proof: sufficiently, obvious. 

Necessity, let F be a closed subset of Y. Since𝑓 is both contra semi continuous and semi continuous, then 

𝑓− (𝐻) is semi clopen subset of X, so it is SS-open. Therefore 𝑓 is contra SS-continuous. 

Proposition 3.6. If 𝑓: 𝑋 ⟶ 𝑌  is contra semi continuous and X is semi   -space, then 𝑓  is contra 

SS-continuous. 

Proof. Let F be an open subset of Y. Since𝑓 is contra semi continuous, then 𝑓− (𝐹) is a semi-closed subset of 

X. Thus 𝑋 − 𝑓− (𝐹) is semi-open in X and since X is semi   -space, then by Proposition 2.9,  𝑋 − 𝑓− (𝐹) 

is SS-open. Therefore,𝑓− (𝐹)is SS-closed and hence𝑓 is contra SS-continuous. 

 

Corollary 3.7. A function 𝑓: 𝑋 ⟶ 𝑌 is contra SS-continuous if it is one of the following: 

1) 𝑓 is strongly continuous  

2) 𝑓 is perfectly continuous 

3) 𝑓 is RC-continuous 

4) 𝑓 is SR-continuous 

Proof. Straightforward. 

Proposition 3.8. If a function 𝑓: 𝑋 ⟶ 𝑌 is contra SS-continuous, then 𝑓 is weakly SS-continuous. 

Proof: let V be an open subset of Y, then 𝐶𝑙(𝑉) is closed set in Y. Since 𝑓 is contra SS-continuous, then by 

Theorem 3.2,𝑓− (𝐶𝑙(𝑉)) is SS-open in X and since𝑓(𝑓− (𝐶𝑙(𝑉))) ⊆ 𝐶𝑙(𝑉). Take U= 𝑓− (𝐶𝑙(𝑉)), therefore 

𝑓(𝑈) ⊆  𝐶𝑙(𝑉). Hence 𝑓 is weakly SS-continuous. 

 

The converse of the above proposition is not true as it is shown in the next example.  

Example 3.9. Let𝑋 = {𝑎, 𝑏, 𝑐}and let= {𝜙, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}},𝜎 = {𝜙, 𝑋, {𝑎}} be two topologies on 𝑋. 

Then the function 𝑓: (𝑋, 𝜏) → (𝑋, 𝜎) defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑓(𝑐) = 𝑐 is weakly SS-continuousbut it is 

not contra SS-continuous because 𝑓− ({𝑎}) is not SS-closed. 

 

Proposition 3.10. Let 𝑓: 𝑋 → 𝑌  be any function and 𝑌  be extremally disconnected, then 𝑓  is contra 

SS-continuous if and only if the inverse image of each clopen subset of Y is SS-open subset of X. 

Proof: sufficiently, straightforward. 

Necessity, suppose the inverse image of clopen subset in 𝑌 is SS-open. Let 𝐹 be a closed subset of 𝑌 
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containing𝑓(𝑥). Since 𝑋 is extremally disconnected then 𝐼𝑛𝑡(𝐹) is clopen set in Y. So by hypothesis, 

𝑓− (𝐼𝑛𝑡(𝐻) is SS-open set in X.                                                        Since 

𝑓(𝑓-1
(𝐼𝑛𝑡(𝐹))) ⊆ 𝐼𝑛𝑡(𝐹). Take 𝑈 = 𝑓-1(𝐼𝑛𝑡(𝐹)) then 𝑓(𝑈)  ⊆ 𝐼𝑛𝑡(𝐹)  ⊆ 𝐹 .Therefore by Theorem 3.2.,𝑓is 

contra SS-continuous. 

 

Clearly that contra SS-continuity and SS-continuity are independent  

Proposition 3.11. If a function 𝑓: 𝑋 → 𝑌  is contra SS-continuous and Y is regular space then 𝑓  is 

SS-continuous. 

Proof: let V be an open set in Y containing 𝑓(𝑥) for∈ 𝑋. Since Y is regular, then there is an open set W in Y such 

that𝑓(𝑥) ∈ 𝑊 ⊆ 𝐶𝑙(𝑊) ⊆ 𝑉. Since 𝑓 is contra SS-continuous then by Theorem 3.2, there is an SS-open set U in 

X containing x such that𝑓(𝑈) ⊆ 𝐶𝑙(𝑊) ⊆ 𝑉. Hence 𝑓 is SS-continuous. 

Corollary 3.12. If a function 𝑓: (𝑋, 𝜏) → (𝑅, 𝜏𝑈) is contra SS-continuous, then 𝑓 is SS-continuous. 

Proposition 3.13. If a function 𝑓: 𝑋 → 𝑌  is SS-continuous and Y is locally indiscrete, then 𝑓  is contra 

SS-continuous. 

Proof. Straightforward. 

Definition 3.14. A topological space (𝑋, 𝜏) is called SCC-space if every SS-closed subset of 𝑋 is closed. 

Example 3.15. Let 𝑋 = {𝑎, 𝑏, 𝑐} with 𝜏 = {𝜙, {𝑎}, {𝑏, 𝑐}} then clearly (𝑋, 𝜏) is SCC-space. 

Proposition 3.16. Let 𝑓: 𝑋 → 𝑌be surjective, pre-closed and contra SS-continuous. If X is SCC-space, then Y is 

extremally disconnected. 

Proof. let V be an open set in Y, then U= 𝑓− (𝑉) is SS-closed subset of X. But X is SCC-space, then U is closed 

in X. f is pre-closed, then 𝑓(𝑈) = 𝑉 is pre-closed in Y which implies that 𝐶𝑙(𝑉) = 𝐶𝑙(𝐼𝑛𝑡(𝑉)) ⊆ 𝑉. And so 

𝑐𝑙(𝑉) is an open set in Y. Hence Y is extremally disconnected . 

Proposition 3.17. If a function 𝑓: 𝑋 → 𝑌 is contra SS-continuous, then for any subset A of X,𝑓(𝑆𝑆 − 𝑖𝑛𝑡(𝐴)) ⊆

𝐶𝑙(𝑓(𝐴)) 

Proof. let 𝐴 ⊆ 𝑋, then 𝐶𝑙(𝑓(𝐴))is closed subset of Y. since𝑓 is contra SS-continuous, then 𝑓− (𝐶𝑙(𝑓(𝐴)))is 

SS-open set in X. Therefore, 𝑆𝑆 − 𝐼𝑛𝑡𝑓
− (𝐶𝑙(𝑓(𝐴))) = 𝑓− (𝐶𝑙(𝑓(𝐴))) . Since 

𝐴 ⊆ 𝑓− (𝑓(𝐴)) ⊆ 𝑓− (𝐶𝑙(𝑓(𝐴)))  implies that 𝑆𝑆 − 𝑖𝑛𝑡(𝐴) ⊆ 𝑆𝑆 − 𝐼𝑛𝑡𝑓
− (𝐶𝑙(𝑓(𝐴))) = 𝑓− (𝐶𝑙(𝑓(𝐴))) . 

Hence 𝑓(𝑆𝑆 − 𝐼𝑛𝑡(𝐴)) ⊆ 𝐶𝑙(𝑓(𝐴)). 

Definition 3.18.A topological space (𝑋, 𝜏) is called SS-locally indiscrete if every SS-open subset of X is closed. 

Example 3.19. let X={a,b,c} with topology 𝜏={𝜙,X,{a},{b,c}}, then (𝑋, 𝜏) is SS-locally indiscrete. 

Proposition 3.20. If a function 𝑓: 𝑋 → 𝑌 is contra SS-continuous and X is SS-locally indiscrete space, then 𝑓is 

continuous. 

Proof. let F be any closed subset of Y. Since𝑓 is contra SS-continuous, then 𝑓− (𝐹) is an SS-open subset of X. 

But X is SS-locally indiscrete, then 𝑓− (𝐹) is closed. Hence 𝑓 is continuous. 

Proposition 3.21. If 𝑓: 𝑋 → 𝑌 is contra SS-continuous, then 𝑆𝑆 − 𝐶𝑙(𝑓
− (𝑉)) ⊆ 𝑓− (𝐶𝑙𝜃(𝑉)). 

Proof. if 𝑥 ∉ 𝑓− (𝐶𝑙𝜃(𝑉)) implies that 𝑓(𝑥) ∉ 𝐶𝑙𝜃(𝑉), then there is an open set G containing 𝑓(𝑥) such that 

𝐶𝑙(𝐺) ∩ 𝑉 = 𝜙. Since 𝑓 is contra SS-continuous, then there is an SS-open set U such that 𝑓(𝑈) ⊆ 𝐶𝑙(𝐺) and 

hence 𝑈 ∩ 𝑓− (𝑉) = 𝜙. This shows that 𝑥 ∉ 𝑆𝑆 − 𝐶𝑙(𝑓
− (𝑉)). 

Proposition 3.22.If a function 𝑓: 𝑋 → 𝑌 is contra SS-continuous and U is α-open and semi closed subset of X 

then 𝑓|𝑈: 𝑈 ⟶ 𝑌 is contra SS-continuous. 

Proof. let H be a closed set in Y. Since 𝑓 is contra SS-continuous, then by Theorem 3.2. 𝑓− (𝐻) is SS-open set 

in X and since U is α-open and semi-closed subset of X, then by Proposition2.7,(𝑓|𝑈)− (𝐻) = 𝑓− (𝐻)⋂𝑈 is 

SS-open in X. by Proposition2.8(2), (𝑓|𝑈)− (𝐻)  is SS-open set in U. This shows that 𝑓|𝑈  is contra 
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SS-continuous. 

Proposition 3.23. A function 𝑓: 𝑋 → 𝑌 is contra SS-continuous if for each𝑥 ∈ 𝑋, there exist semi regular set A 

of X containing x such that 𝑓|𝐴: 𝐴 ⟶ 𝑌 is contra SS-continuous 

Proof. let 𝑥 ∈ 𝑋, then there exist semi regular set A of X containing x. let F be closed subset of Y containing 

𝑓(𝑥), then by Theorem 3.2, there exist SS-open set U in X containing x such that (𝑓|𝐴)(𝑈) ⊆ 𝐹. Since A is semi 

regular set in X, by Proposition2.8(1),U is an SS-open set in X and hence𝑓(𝑈) ⊆ 𝐹 . Thus 𝑓  is contra 

SS-continuous. 

Proposition 3.24. let𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 be any two functions then  

1) 𝑔  𝑓: 𝑋 ⟶ 𝑍 is contra SS-continuous if 𝑓 is SS-continuous and 𝑔 is contra continuous. 

2) 𝑔  𝑓: 𝑋 ⟶ 𝑍 is contra SS-continuous if 𝑓 is contra SS-continuous and 𝑔 is continuous  

Proof.(𝟏)Let H be an open set in Z. since 𝑔 is contra continuous, then 𝑔− (𝐻) is closed subset of Y and since 

𝑓 is SS-continuous, then by Proposition 2.11, 𝑓− (𝑔− (𝐻)) = (𝑔  𝑓)− (𝐻) is SS-closed. Hence 𝑔  𝑓  is 

contra SS-continuous. 

(2) Similar to (1). 

Definition 3.25. A function 𝑓: 𝑋 ⟶ 𝑌 is called SS-irresolute if 𝑓− (𝑈) is SS-open in X for each SS-open set 

U in Y. 

Example 3.26. Let X={a,b,c} with topology 𝜏={𝜙,X,{𝑐}} and 𝜎={𝜙,X,{𝑎}} then clearly 𝑓: (𝑋, 𝜏) ⟶ (𝑋, 𝜎) 

defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐 and 𝑓(𝑐) = 𝑏is SS-irresolute function. 

Proposition 3.27. If𝑓: 𝑋 → 𝑌is SS-irresolute and 𝑔: 𝑌 → 𝑍is contra SS-continuous, then 𝑔  𝑓: 𝑋 ⟶ 𝑍 is contra 

SS-continuous.  

Proof. Let F be closed subset of Z. since 𝑔 is contra SS-continuous, then 𝑔− (𝐹) is an SS-open set in Y and 

since 𝑓is SS-irresolute, thus𝑓− (𝑔− (𝐹)) = (𝑔  𝑓)− (𝐹) is an SS-open subset of X. Hence 𝑔  𝑓 is contra 

SS-continuous. 

Proposition 3.28. If a function 𝑓: 𝑋 → ∏ 𝑌𝛼𝛼∈∆  is contra SS-continuous then 𝑃𝛼  𝑓: 𝑋 → 𝑌𝛼  is contra 

SS-continuous for each α in the index set ∆ where 𝑃𝛼 :∏ 𝑌𝛼𝛼∈∆ → 𝑌𝛼  is projection map from ∏ 𝑌𝛼𝛼∈∆  onto𝑌𝛼 . 

Proof. let 𝐻𝛼  be an closed set in 𝑌𝛼for each α ∈ ∆ since 𝑃𝛼 is continuous function then 𝑃𝛼
− (𝐻𝛼) is an 

closed set in ∏ 𝑌𝛼𝛼∈∆  for each α but 𝑓 is contra SS-continuous, then we have( 𝑃𝛼  𝑓)
− (𝐻𝛼) = 𝑓

-1
(𝑃𝛼
− (𝐻𝛼)) 

is SS-open for each α ∈ ∆ . therefore by Theorem 3.2, we have 𝑃𝛼  𝑓 is contra  SS-continuous function. 

Proposition 3.29. If 𝑓𝑖: 𝑋𝑖 ⟶ 𝑌𝑖  is contra SS –continuous for i=1,2. Let 𝑓: 𝑋  𝑋2 ⟶ 𝑌  𝑌2 be a function 

defined as follows 𝑓(𝑥 , 𝑥2) = (𝑓 (𝑥 ), 𝑓2(𝑥2))then 𝑓 is contra SS –continuous. 

Proof.  let 𝑈  𝑈2 ⊆ 𝑌  𝑌2where 𝑈𝑖 is an open set in Y for i=1,2. Then 𝑓− (𝑈𝑖)is SS –closed subset of Xi, 

since fi  is contra SS –continuous for i=1,2. Therefore 𝑓− (𝑈  𝑈2) = 𝑓
− (𝑈 )  𝑓

− (𝑈2) is SS –closed 

subset of 𝑋  𝑋2. Hence 𝑓 contra SS –continuous. 

Proposition 3.30.Let ℎ: 𝑋 → 𝑋  𝑋2  be a contra SS –continuous function defined as follows: ℎ(𝑥) =

(ℎ (𝑥), ℎ2(𝑥)) then ℎ𝑖: 𝑋 ⟶ 𝑋𝑖 is contra SS –continuous for i=1,2. 

Proof. let U  be an open set in X . Then 𝑈  𝑋2 is an open set in 𝑋  𝑋2 and then ℎ 
− (𝑈 ) = ℎ

− (𝑈  

𝑋2) is SS –closed set in X. hence h : X ⟶ X is contra SS –continuous. Similarly for ℎ𝑖 for i=2. 

Proposition 3.31. Let 𝑓: 𝑋 → 𝑌be any function. If 𝑔: 𝑋 → 𝑋  𝑌 defined by 𝑔(𝑥) = (𝑥, 𝑓(𝑥)) is a contra SS 

–continuous, then 𝑓 is contra SS –continuous. 

Proof. Let F be closed subset of Y, then 𝑋  𝐹 is closed subset ofX  Y. Since 𝑔 is a contra SS –continuous, 

then 𝑔− (𝑋  𝐹 ) = 𝑓− (𝐹) is an SS –open subset of X. Hence 𝑓 is contra SS –continuous. 
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4. Functions with contra SS –closed and strongly contra SS –closed graphs 

Definition 4.1. The graph 𝐺(𝑓)of the function 𝑓:𝑋 → 𝑌 is said to be contra SS –closed if for each(𝑥, 𝑦) ∈

(𝑋  𝑌) − 𝐺(𝑓), there exist an SS –open set U containing x and a closed set V in Y containing y such that(𝑈  

𝑉) ∩ 𝐺(𝑓) = 𝜙. 

Proposition 4.2. The graph 𝐺(𝑓)of the function 𝑓:𝑋 → 𝑌 is contra SS–closed if for each(𝑥, 𝑦) ∈ (𝑋  𝑌) −

𝐺(𝑓), there exist an SS –open set U containing x and a closed set V in Y containing y such that𝑓(𝑈) ∩ 𝑉 = 𝜙. 

Proof. Follows from the definition. 

Theorem 4.3. If a function 𝑓: 𝑋 → 𝑌 is contra SS –continuous and Y is Urysohn then 𝐺(𝑓) is contra SS –closed. 

Proof. Let(𝑥, 𝑦) ∈ (𝑋  𝑌) − 𝐺(𝑓). Then𝑦 ≠ 𝑓(𝑥) and since Y is Urysohn, there exist two open sets A and B in 

Y such that 𝐶𝑙(𝐴) ∩ 𝐶𝑙(𝐵) = 𝜙. Since 𝑓  is contra SS –continuous, then there exist an SS –open set U 

containing x such that 𝑓(𝑈) ⊆ 𝐶𝑙(𝐴) implies that 𝑓(𝑈) ∩ 𝐶𝑙(𝐵) = 𝜙. Therefore by Proposition 4.2,𝐺(𝑓) is 

contra SS –closed. 

Theorem 4.4. If a function 𝑓: 𝑋 → 𝑌 is SS –continuous and Y is   -space, then 𝐺(𝑓) is contra SS –closed. 

Proof. Let (𝑥, 𝑦) ∈ (𝑋  𝑌) − 𝐺(𝑓). Then 𝑦 ≠ 𝑓(𝑥) and since Y is   -space, there exists an open set H in Y 

such that 𝑓(𝑥) ∈ 𝐻, 𝑦 ∉ 𝐻. Since 𝑓 is SS –continuous, then there exists an SS –open set U containing x such 

that 𝑓(𝑈) ⊆ 𝐻 which implies that 𝑓(𝑈) ∩ (𝑌 − 𝐻) = 𝜙 where 𝑌 − 𝐻 is a closed set in Y containing y. Hence 

by Proposition 4.2, we obtain that 𝐺(𝑓) is contra SS –closed. 

Definition 4.5. The graph 𝐺(𝑓)of the function 𝑓:𝑋 → 𝑌 is strongly contra SS–continuous if for each(𝑥, 𝑦) ∈

(𝑋  𝑌) − 𝐺(𝑓), there exist an SS –open set U containing x and a regular closed set V in Y containing y such 

that(𝑈  𝑉) ∩ 𝐺(𝑓) = 𝜙. 

Proposition 4.6.The graph 𝐺(𝑓)of the function 𝑓: 𝑋 → 𝑌 is strongly contra SS –continuous if for each(𝑥, 𝑦) ∈

(𝑋  𝑌) − 𝐺(𝑓), there exist an SS –open set U containing x and a regular closed set V in Y containing y such 

that𝑓(𝑈) ∩ 𝑉 = 𝜙. 

Proof. Follows from the definition. 

Theorem 4.7. If a function 𝑓: 𝑋 → 𝑌 is contra SS –continuous and Y is Urysohn, then 𝐺(𝑓) is strongly SS 

–closed in 𝑋  𝑌. 

Proof. Let(𝑥, 𝑦) ∈ (𝑋  𝑌) − 𝐺(𝑓). Then𝑦 ≠ 𝑓(𝑥) and since Y is Urysohn, there exist two open sets A and B in 

Y such that 𝐶𝑙(𝐴) ∩ 𝐶𝑙(𝐵) = 𝜙. Since 𝑓  is contra SS –continuous, then there exist an SS –open set U 

containing x such that 𝑓(𝑈) ⊆ 𝐶𝑙(𝐴)  implies that 𝑓(𝑈) ∩ 𝐶𝑙(𝑖𝑛𝑡(𝐵)) = 𝑓(𝑈) ∩ 𝐶𝑙(𝐵) = 𝜙 where 

𝐶𝑙(𝑖𝑛𝑡(𝐵))is regular closed in Y. Hence by Proposition 4.6, 𝐺(𝑓) strongly SS –closed in 𝑋  𝑌. 
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