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Abstract 

The problem under investigation is to determine the flow-field variables that is the total head which is the sum 

total of Elevation head, velocity head  and pressure head instantaneous distributions as a function of distance 

through the nozzle up to “steady-state” solution that is, when the result approach the stage where the flow-field 

variables are not materially changing any more. The finite difference method is used to arrive at the results. 

Effects of temperature and density on velocity and pressure are analyzed with the help of a graph and table. It is 

found that the total head loss needed to accelerate the fluid through the constriction/the nozzle throat causes fluid 

velocity to increase. 

Keywords: Quasi-one-dimensional flow, Head loss, Incompressible flow, Steady state flow. 

Nomenclature 

Symbol      Quantity 

 ...................  Acceleration of fluid element 

 ...................  The extend of a region (Area) 

 ..................  Coefficient of contraction 

 .................  Control volume 

...................  Diameter of pipe 

 ..................  Resultant forces acting on fluid mass 

 ..................  Surface forces 

 ...................  Acceleration due to gravity 

 .............  Unit vectors along the  and -axes 

...................  Loss coefficient 

 ....................  Length of the pipe (model) 

 ..................  Mass of the fluid element 

 ...................  Unit vector along normal to a streamline 

 ...................  Fluid Pressure 

 .................  Rate of mass flow 

 .................  Reynolds’s number 

 ...........  Components of velocity along  respectively 

 ...................  Mean velocity of flow 

Greek Symbols 

  .................  Kinetic viscosity of fluid 

 ...................  Laplace operator 

 ...................  Summation
 

 ...................  Normal stress 

 ...................  Shearing stress 

 ...................  Angle subtended by the curved part 

 ...................  Normal force due to weight 

 ...................  Angle of convergence 

 ...................  Density 

1. Introduction 

Although the area of the nozzle changes as a function of distance along the nozzle,  and therefore in reality the 

flow field is two-dimensional (the flow varies in the two-dimensional  space), we make the assumption that the 

flow properties vary only with ; this is tantamount to assuming uniform flow properties across any given cross 

section. Such flow is defined as quasi-one-dimensional flow 

Pipe system components are encountered in many engineering and domestic applications, so fitting them up in a 

certain way that ensures all forces resulting may be balanced and hence absorbed within the supporting 
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structures without damage to them, that is, structure like for example a wall. Although, in practice turbulent flow 

conditions prevail in majority of engineering applications, differential-analytical studies of laminar flow in pipe 

are restricted to low Reynolds’s number. A classically investigated problem in dynamics of a fluid is that in the 

circular straight pipe lying in any orientation that is Poiseuille-Hagen problem Gaerde (1990) 

Simplifications of geometry and boundary condition by employing suitable assumption are usually considered in 

any model, however, in experiments and applications next to laminar flow, (with low Reynolds’s numbers) 

velocity changes causes considerable forces on the parts of the pipe Beek (1985)who gives a method of 

procedure for calculating the magnitude and direction of this force. 

Analysis of this simplified problem provides sound basis for comparison of analytical methods for example, 

finite difference method and the differential methods, and the possibility of gaining physical insight into related 

problems of practical importance. Both analytic and experimental studies have been carried out in particular for 

laminar and steady-state flow. A wide range of analytical investigation of this type of problem has been 

presented with different model of studies by authors such as Douglas et al. (1995) and comparison research on 

the problem was presented by Triton (1985) 

A review of the literature on confined flow in various geometrics with different types of boundary conditions as 

well as a section on analysis was presented by Beek (1985). A comprehensive review concerning laminar flow in 

enclosed channels had earlier been presented by Roy and Daugherty, (1986) 

In past, differential calculus studies were restricted to laminar flow, due to the difficulties on analysis and 

interpretation of the complex functions such as Navier-Stokes equations that define the general condition of flow 

motion  by Munson et al. (1998) and the suitable boundary conditions that simplifies the situation. 

Consequently, a number of authors have attempted to model a number of these inviscid flows and the assumption 

of smooth channel sides. 

There are many authors in this category like Manohar (1982), Douglas et al. (1995). This type of model 

simplifications resulted in better understanding and capability to transferring the knowledge gained into any 

shape of geometry of the problem under consideration. 

Properties of flow at the pipe system components have been carried out extensively by Munson et al. (1998) and 

O’Neil et al. (1986) have adopted the streamline co-ordinate system in analysis of flow at this part of pipe 

system components to investigate variation of pressure and velocity distributions 

In other areas of fluid analysis such as application of the theory of work-energy relationship, some writes 

especially in the field of physical sciences have considered fluid flow as stream of particles that can be 

considered for analysis independently and hence generalizing for the entire flow Gaerde (1990). Though this 

assumption of using particle theory on flow analysis has some weakness that is going to be highlighted later, it 

has been justified by Munson et al. (1998), by stating that; 

“Fluid flow can be treated approximately as particle flow. The work done on a particle by all forces acting on it 

is equal to the change in the kinetic energy of the particle which is basically Bernoulli’s equation” 

Improvements in analytical techniques based on sound initial condition, extension to three dimensional 

calculations, additional work on laminar flow in various types of channels, for example cracks, analysis of pipe 

boundary functions as well as experimental validation of these techniques is considered as a landmark in analysis 

of flow of this type. The previous studies used the finite difference technique to exact solutions of fluid 

properties for example force. This method of finite difference technique and differential analysis gives accurate 

and reliable results and hence we have adopted them in our analysis. 

In process of fluid passing through a pipe, the necessary conditions for pressure are to be provided to support the 

motion of fluid hence in our study there is an analysis of pressure at all sections required to support the desired 

flow. In addition pressure across each section will be obtained. 

2.0 Formulation of the problem 

We consider the steady, compressible, isentropic flow through a convergent-divergent nozzle as sketched in 

Fig.2.1. The flow at the inlet to the nozzle comes from a reservoir where the pressure and temperature are 

denoted by , and , respectively. The cross-sectional are of the reservoir is large (theoretically, ), and 

hence velocity is very small ). Thus,  and  are the stagnation values, or total pressure and total 

temperature, respectively. The flow expands isentropic ally to supersonic speeds at the nozzle exit, where the exit 

pressure, temperature, velocity, and Mach number are denoted by  and  respectively. The flow is 

locally subsonic in the convergent section of the nozzle, sonic at the throat (minimum area), and supersonic at the 

divergent section. The sonic flow  at the throat means that the local velocity at this location is equal to the 

local speed of sound. Using an asterisk to denote sonic flow values, we have at the throat . Similarly, 

the sonic flow values of pressure and temperature are denoted by  and , respectively. The area of the sonic 
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throat is denoted by . We assume that at the given section, where the cross-sectional area is A, the flow 

properties are uniform across the section. Hence, although the area of the nozzle changes as a function of distance 

along the nozzle,  and therefore in reality the flow field is two-dimensional (the flow varies in the 

two-dimensional  space), we make the assumption that the flow properties vary only with ; this is tantamount 

to assuming uniform flow properties across any given cross section. Such flow is defined as 

quasi-one-dimensional flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The geometry of the problem and the flow configuration with the coordinate system. 

 

The governing continuity, momentum and energy equations for this quasi one-dimensional, steady, isentropic 

flow can be expressed, respectively, as  

Continuity:                     (2.1) 

Momentum:              (2.2) 

Energy:                    (2.3) 

Where subscripts 1 & 2 denote different locations along the nozzle. 

In addition, we have the perfect gas equation of state, 

                       (2.4) 
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As well as the relation for a calorically perfect gas, 

                       (2.5) 

Equation (2.1) to (2.5) can be solved analytically for the flow through the nozzle. Some results are as follows. The 

Mach number variation through the nozzle is governed exclusively by the area ratio  

Through the relation 

            (2.6) 

where  = ratio of specific heats . For air at standard conditions, . for a nozzle where A is specific as 

a function of x, the Eq.(2.6) allows the (implicit)  calculation of M as a function of x. the variation of pressure, 

density and temperature as a function of Mach number ( and hence as a function of / ,thus x) is given 

respectively by  

       (2.7) 

       (2.8) 

        (2.9) 

The governing equations for unsteady, quasi-one dimensional flows are: 

Continuity equation 

          (2.10) 

Momentum equation 

                    (2.11) 

Energy equation 

                 (2.12) 

The reason for obtaining the energy equation in the form of Eq. (2.12) is that, for a calorically perfect gas, it 

leads directly to a form of the energy   equation in terms of temperature T. for our solution of the 

quasi-one-dimensional nozzle flow of a calorically perfect gas, this is fundamental variable, and therefore it is 

convenient to deal with it as the primary dependent variable in the energy equation. 

For a calorically perfect gas 

  

Hence 

            (2.13) 

The pressure can be eliminated from these equations by using the equation of state 
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                  (2.14) 

Along with its derivative 

                (2.15) 

With this, we expand Eq. (2.10) and rewrite Eqs.( 2.11) and (2.13), respectively, as  

Continuity:            (2.16) 

Momentum:            (2.17) 

Energy:           (2.18) 

2.1 The Finite difference technique 

Here, we are interested in replacing a partial derivative with a suitable algebraic difference quotient, i.e., a finite 

difference. Most common finite difference representations of derivatives are based on Taylor’s series expansions. 

For example, if denotes the  component of velocity at point , then the velocity  at point 

 can be expressed in terms of a Taylor series expanded about point ,  as follows 

         (2.19) 

Equation (2.14) is mathematically an exact expression for if (1) the number of terms is infinite and the series 

converges and /or (2) . 

From there we pursue the finite –difference representations of derivatives. Solving Eq. (2.14) for , we 

obtain 

        (2.20) 

 

 

 

In Eq. (2.20) the actual partial derivative evaluated at point is given on the left side. The first term on the 

right side, namely , is a finite difference representation of the partial derivative. The remaining 

terms on the right side constitute the truncation error. That is, if we wish to approximate the partial derivative with 

the above algebraic finite-difference quotient, 

                  (2.21) 

Then the truncation error in Eq. (2.20) tells us what is being neglected in this approximation. In Eq. (2.20), the 

lowest-order term in the truncation error involves  to the first power; hence, the finite-difference expression in 

Eq. (2.16) is called first-order-accurate. We can more formally write Eq. (2.20) as 

                (2.22) 

In Eq. (2.22), the symbol    is a formal mathematical notation which represents “terms of order .” 
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Equation (2.22) is a more precise notation than Eq. (2.21), which involves the “approximately equal” notation. 

Also referring to Fig.3.6, note that the finite-difference expression in Eq. (2.22) uses information to the right of the 

grid point ; that is, it uses   as well as . No information to the left of  is used. As a result, the 

finite difference in Eq. (2.22) is called a forward difference. For this reason, we now identify the 

first-order-accurate difference representation for the derivative  expressed by Eq. (2.22) as a 

first-order-forward difference, repeated below 

          

Let us now write a Taylor series expansion for , expanded about . 

   

or 

       (2.23) 

Solving for  we obtain 

                (2.24) 

The information used in forming the finite-difference quotient in Eq. (2.24) comes from the left of the grid 

point ; that is, it uses   as well as . No information to the right of  is used. As a result, the finite 

difference in Eq. (2.19) is called a rearward (or backward) difference. 

In this  applications, first-order accuracy is sufficient.  

2.2 The Mac Cormack’s Method 

The precise and appropriate technique (algorithm) for numerical solution by the finite-difference approach in this 

research work is Mac Cormack’s method. This technique is an explicit finite- difference technique which is 

second-order-accurate in both space and time.For the purpose of illustration, let us address the solution of the 

Euler equations itemized (2.25) to (2.28) below 

        (2.25) 

          (2.26) 

         (2.27) 

        (2.28) 

Here we will address time-marching solution using Mac Cormack’s technique. We will assume the flow field at 

each grid point is known at time , and we proceed to calculate the flow field variables at the same grid points at 

time  first, consider the density at the grid point ( ) at time  in Mac Cormack’s method, this is 

obtained from 
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                 (2.29) 

where  is a representative mean value of between time   and . In this method unlike 

the other methods, the value of  in Eq. (2.29) is calculated so as to preserve second-order accuracy 

without the need to calculate values of the second time derivative  , which is the term which involves 

a lot of algebra. With Mac Cormack’s technique, this algebra is circumvented.                                               

Similar relation are written for the other flow-field variables 

                      (2.30) 

                       (2.31) 

                     (2.32) 

Let us illustrate by using the calculation of density as an example. Return to Eq. (2.29). The average time 

derivative, , is obtained from the predictor-corrector philosophy as follows. 

Predictor step: In the continuity equation (2.25), replace the spatial on the right-hand side with forward 

differences. 

          (2.33) 

In Eq. (2.33), all flow variables at time  are known values; i.e., the right-hand side is known. Now, obtain a 

predicted value of density, , from the first two terms of a Taylor series, as follows 

               (2.34) 

In Eq. (2.34),  is known, and  is known number from Eq. (2.33); hence  is readily obtained. 

The value of  is only a predicted value of the density; it is only first-order-accurate since Eq. (2.34) 

contains only the first-order terms in the Taylor series. 

In a similar fashion, predicted values for  and  can be obtained, i.e, 

               (2.35) 

               (2.36) 

               (2.37) 

In Eq. (2.34) to (2.37), numbers for the time derivatives on the right-hand side are obtained from Eqs. (2.26) to 

(2.28) respectively with forward differences used for the spatial derivatives, similar to those shown in Eq. (2.33) 

for the continuity equation. 

Corrector step: In the corrector step, we first obtain a predicted value of the time derivative at time , 

, by substituting the predicted values of  and  into the right side of the continuity equation, 

replacing the spatial derivatives with rearward differences. 
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  (2.38) 

 

The average value of the time derivative of density which appears in Eq. (2.30) is obtained from the arithmetic 

mean of  , obtained from Eq. (2.24), and   , obtained from Eq. (2.38). 

              (2.39) 

 

 

This allows us to obtain the final, “corrected” value of density at time  from Eq.(2.29), repeated below: 

                 (2.40) 

The predictor-corrector sequence described above yields the value of density at grid point  at the time , 

as illustrated in Fig. 2.3 This sequence is repeated at all grid points to obtain the density throughout the flow field 

at time . To calculate  and  at time  the same technique is used, starting with Eqs. (2.30) to 

(2.32), and utilizing the momentum and energy equations in the form of Eqs. (2.26) to (2.28) to obtain the average 

time derivatives via the predictor-corrector sequence, using forward differences on the predictor and rearward 

differences on the corrector. 

Mac Cormack’s technique as described above, because a two-step predictor-corrector sequence is used with 

forward differences on the predictor and with rearward differences on the corrector, is a second-order-accurate 

method. Unlike other methods, Mac Cormack’s method does not require the second order derivatives and therefore 

much easier to apply, because there is no need to evaluate the second order derivatives. 

 

3. Methodology 

3.1 Solution of the problem by Finite Difference expressions using Mac Cormack’s Method 

We now proceed to the next echelon, namely, the setting up of the finite-difference expressions using 

Mac-Cormack’s explicit technique for the numerical solution of Eqs. (2.25), (2.26), and (2.28). To implement a 

finite-difference solution, we divide the x-axis along the nozzle into a number of discrete grid points.  In Fig.2.1, 

the first grid point, labeled point 1, is assumed to be in the reservoir. The points are evenly distributed along the 

 axis, with  denoting the spacing between the grid points. The last point namely, that at the nozzle exit, is 

denoted by N; we have a total number of N grid points distributed along the axis. Point  is simply an arbitrary 

grid point, with points  and  as the adjacent points. Since the Mac-Cormack’s technique is a 

predictor-corrector method and in the time marching approach, the flow-field variables at time , we use the 

difference equations to solve explicitly for the variables at time . 

First, consider the predictor step. To reduce the complexity of the notation, we will drop the use of the prime to 

denote a dimensionless variable. In what follows, all variables are the non-dimensional variables, denoted earlier 

by the prime notation. Analogous to Eq. (2.17), from Eq. (2.20) we have 

          (3.1) 

From Eq.(2.26), we have 

           (3.2) 

from Eq. 

(2.33) 

from Eq. 

(2.38) 
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From Eq. (2.28), we have  

          (3.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Grid point distribution along the nozzle 

 

Analogous to Eqs.(2.40) to (2.43), we obtain predicted values of and   denoted by the barred quantities, 

from 

                  (3.4) 

                 (3.5) 

                 (3.6) 

In Eqs. (3.4) to (3.6)  ,  , and  are known values at time . Numbers for the time derivatives in Eqs. 

(3.4) to (3.6) are supplied directly by Eqs.(3.1) to (3.3). 

Moving to the corrector step, we return to Eqs. (2.6), (2.8), and (3.0) and replace the spatial derivatives with 

rearward differences, using the predicted (barred) quantities. Analogous to Eq. (2.33) we have from Eq. (2.6), 

      (3.7) 

From Eq. (2.8), we have  

        (3.8) 

From Eq. (3.0), we have  
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        (3.9) 

Analogous to Eq. (2.33), the average time derivatives are given by  

               (3.10) 

               (3.11) 

               (3.12) 

Finally analogous to Eqs. (2.35) to (2.38), we have the corrected values of the flow-field variables at the time 

 

                 (3.13) 

                 (3.14) 

                 (3.15) 

3.1.1 Boundary Conditions 

 We note that grid points 1 and N represent the two boundary points on the  axis. Point 1 is essentially in the 

reservoir; it represents an inflow boundary, with flow coming from the reservoir and entering the nozzle. In 

contrast, point N is an outflow boundary, with flow leaving the nozzle at the exit. 

Subsonic inflow boundary (point 1):  Here we must allow one variable to float; we choose the velocity  , 

because on a physical basis we know the mass flow through the nozzle must be allowed to adjust to the proper 

steady state, allowing  to float makes the most sense as part of this adjustment. The value of  changes with 

time and is calculated from the information provided by the flow-field solution over the internal points. (The 

internal points are those not on a boundary, I.e., points 2 through  in Fig.3.3). We use linear extrapolation 

from points 2 and 3 to calculate . Here, the slope of the linear extrapolation line is determined from the points 2 

and 3 as  

 

Using this slope to find  by linear extrapolation, we have 

 

  Or                  (3.16) 

 

All other flow-field variables are specified. Since point 1 is viewed as essentially the reservoir, we stipulate the 

density and temperature at the point 1 to be their respective stagnation values, and , respectively. These are 
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held fixed, independent of time.  

Hence, in terms of the non-dimensional variables, we have 

           

        Fixed, independent of time                   (3.17) 

 

Supersonic outflow boundary (point N):  Here, we must allow all flow-field variables to float. We again choose 

touse linear extrapolation based on the flow-field values at the internal points. Specifically, we have, for the 

non-dimensional variables  

            (3.18a) 

            (3.18b) 

            (3.18c) 

3.1.2 Nozzle Shape and Initial Conditions 

 The nozzle shape, , is specified and held fixed, independent of time. For the case illustrated in this 

section, we choose a parabolic area distribution given by 

                (3.19) 

Note that  is the throat of the nozzle, that the convergent section occurs for  and that the 

divergent section occurs for  this nozzle shape is drawn to scale in Fig.2. 

To start the time-marching calculations, we must stipulate initial conditions for  and  as a function of  ; 

that is, we must set up values of   and  at time   In theory, these initial conditions can be purely 

arbitrary. In practice, there are.  

In the present problem, we know that  and  decrease and  increase as the flow expands through the 

nozzle. Hence, we choose initial conditions that qualitatively behave in the same fashion.  

For simplicity, let us assume linear variations of the flow-field variables, as a function of .  

For the present case, we assume the following values at time   

                               (3.20a) 

             Initial conditions at      (3.20b) 

            (3.20c) 

3.3.3 Numerical Results 

The first step is to feed the nozzle shape and the initial conditions into the program. These are given by the Eq. 

(3.19) and (3.20); the resulting numbers are tabulated in the Table 1. The values of and  given in this table 

are for  

Calculations associated with grid point . We will choose , which is the grid point at the throat of the 

nozzle  from the initial data given in the Table 1  

Defining a non-dimensional pressure as the local static pressure divided by the reservoir pressure  the 

equation of state is given by  

  

Where  and  are non-dimensional values.  Thus, at grid point  we have 

  

It remains to calculate the flow-field variables at the boundary points. At the subsonic inflow boundary                        
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0 5.590 1.000 0.100 1.000 

0.1 5.312 0.969 0.207 0.977 

0.2 4.718 0.937 0.311 0.954 

0.3 4.168 0.906 0.412 0.931 

0.4 3.662 0.874 0.511 0.907 

0.5 3.200 0.843 0.607 0.884 

0.6 2.782 0.811 0.700 0.861 

0.7 2.408 0.780 0.790 0.838 

0.8 2.078 0.748 0.877 0.815 

0.9 1.792 0.717 0.962 0.792 

1.0 1.550 0.685 1.043 0.769 

1.1 1.352 0.654 1.122 0.745 

1.2 1.198 0.622 1.197 0.722 

1.3 1.088 0.591 1.268 0.699 

1.4 1.022 0.560 1.337 0.676 

1.5 1.000 0.528 1.402 0.653 

1.6 1.022 0.497 1.463 0.630 

1.7 1.088 0.465 1.521 0.607 

1.8 1.198 0.434 1.575 0.583 

1.9 1.352 0.402 1.625 0.560 

2.0 1.550 0.371 1.671 0.537 

2.1 1.792 0.339 1.713 0.514 

2.2 2.078 0.308 1.750 0.491 

2.3 2.408 0.276 1.783 0.468 

2.4 2.782 0.245 1.811 0.445 

2.5 3.200 0.214 1.834 0.422 

2.6 3.662 0.182 1.852 0.398 

2.7 4.168 0.151 1.864 0.375 

2.8 4.718 0.119 1.870 0.352 

2.9 5.312 0.088 1.870 0.329 

3.0 5.950 0.056 1.864 0.306 

 

Table 1: Nozzle shape and initial conditions 

 

(  is calculated by linear extrapolation from grid points 2 and 3. At the end of the corrector step, from a 

calculation identical to that given above, the values of   and  at time  are  and 

 

Thus, from Eq. (3.20), we have 

   

At the supersonic outflow boundary (  all the flow-field variables are calculated by linear extrapolation 

from Eqs. (3.24a) to (3.24c). at the end of the corrector step, from a calculation identical to that given above, 

 ,   and  when these values are 

inserted into Eqs. (3.46a) to (3.46c), we have    

  

        

       

With this, we have completed the calculation of all the flow-field variables at all the grid points after the first time 

step, i.e., at    

At this stage, the steady state (for all practical purposes) has been achieved and simply stops the calculation after a 

prescribed number of time steps. Look at the results, and see if they have approached the stage where the flow-field 

variables are not materially changing any more.   

Comparing the flow-field results obtained (Table 2) after one step with the same quantities at the previous time, 
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we see that the flow-field variables have changed. For example, the non-dimensional density at the throat (where 

) has changed from 0.528 to 0.531, a 0.57 percent change over one time step. This is natural behavior of the 

time marching solution i.e., the flow-field variables change from one time step to the next. However, in the 

approach toward the steady-state solution, at larger values of time ( after a large number of time steps), the changes 

in the flow-field variables from one time step  to the next becomes smaller and approach zero in the limit of large 

time.  

 

I       

1 0.000 5.950 1.000 0.111 1.000 1.000 

2 0.100 5.312 0.955 0.212 0.972 0.928 

3 0.200 4.718 0.927 0.312 0.950 0.881 

4 0.300 4.168 0.900 0.411 0.929 0.836 

5 0.400 3.662 0.872 0.508 0.908 0.791 

6 0.500 3.200 0.844 0.603 0.886 0.748 

7 0.600 2.782 0.817 0.695 0.865 0.706 

8 0.700 2.408 0.789 0.784 0.843 0.665 

9 0.800 2.078 0.760 0.870 0.822 0.625 

10 0.900 1.792 0.731 0.954 0.800 0.585 

11 1.000 1.550 0.701 1.035 0.778 0.545 

12 1.100 1.352 0.670 1.113 0.755 0.506 

13 1.200 1.198 0.637 1.188 0.731 0.466 

14 1.300 1.088 0.603 1.260 0.707 0.426 

15 1.400 1.022 0.567 1.328 0.682 0.387 

16 1.500 1.000 0.531 1.394 0.656 0.349 

17 1.600 1.022 0.494 1.455 0.631 0.312 

18 1.700 1.088 0.459 1.514 0.605 0.278 

19 1.800 1.198 0.425 1.568 0.581 0.247 

20 1.900 1.352 0.392 1.619 0.556 0.218 

21 2.000 1.550 0.361 1.666 0.533 0.192 

22 2.100 1.792 0.330 1.709 0.510 0.168 

23 2.200 2.078 0.301 1.748 0.487 0.146 

24 2.300 2.408 0.271 1.782 0.465 0.126 

25 2.400 2.782 0.242 1.813 0.443 0.107 

26 2.500 3.200 0.213 1.838 0.421 0.090 

27 2.600 3.662 0.184 1.858 0.398 0.073 

28 2.700 4.168 0.154 1.874 0.376 0.058 

29 2.800 4.718 0.125 1.884 0.354 0.044 

30 2.900 5.312 0.095 1.890 0.332 0.032 

31 3.000 5.950 0.066 1.895 0.309 0.020 

Table 2.Flow-field variables after the first time step    

 

4.0 Summary and Conclusions 

The general conclusions we have made in this research study and also suggest areas for further research which 

have showed up during this research study. 

4.1 Conclusions 

In the foregoing sections we have showed that pressure for fully developed pipe flow is determined by a balance 

between the two forces: 

I. Temperature 

II. Density 

a) From the graph plotted for the pressure and velocity across the nozzle length, it is clear that pressure 

decrease/head loss (needed to accelerate the fluid through the constriction/the nozzle throat at grid point 

where ) causes fluid velocity to increase. 
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Figure 1: Variation of the velocity and pressure across the nozzle 

 

The time-wise variations of the flow-field variables provided by Fig. 1, which shows the variation of  and  at 

the nozzle throat plotted versus the number of time steps. 

b) In analysis, the problem can be simplified by use of suitable symmetries of geometry. This mathematical 

problem can be simplified by taking suitable boundary conditions that are well considered and chosen 

before application. 

c) In this work, we demystified the mathematical jargon in the generalized mathematical formulae in textbooks 

by applying to the situation considered. Hence, we believe this can enhance understanding of such physical 

science as fluid mechanics and thus motivate many to appreciate, develop interest in studying it. 

 

4.2 Recommendations for further study  

In this project, we have assumed that the cross-section is uniform throughout, but any geometrical shape can be 

decided for inquest of varying the type of model to be either tapering or to contain orifices at any part of its 

entire length.  

This can be done in some way such as: 

(i.) The type of pipe may be tapering at the conical section of the model and let fluid enter from either ends. 

(ii.) The model may be considered to have a feeder pipe to discharge into or drain the main pipe at any part of 

the entire length. 

(iii.) Since the model assumes the pipe is flowing full, consideration should be done for partly full through an 

inclined or vertical pipe. 
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