Some Fixed Point Result in Metric Spaces for Rational Expression

Sarla Chouhan ${ }^{1}$, Ankur Tiwari ${ }^{2}$, Manoj Solanki ${ }^{3}$
${ }^{1 \& 2}$ Department of Mathematics,B.U.I.T Bhopal-462026,India
E-mail:chouhan.sarla@yahoo.com
${ }^{2}$ Department of Mathematics, Sadhu Vasvani College Bhopal

Abstract

: In the present paper we establish some fixed point theorems in complete metric space taking rational expression. Our Result Generalize the result of many authors.

Key words: Fixed point, common fixed point, rational expressions

2. Introduction

In this paper some extension of well known Banach contraction theorem [1] has obtained in terms of a new symmetric rational expression. This celebrated principle has been generalized by many authors viz. Chu \& Diaz[3] Sehgal[13], Holmes[8], Reich[12], Hardy and Rogers[7], Wong[15], Iseki[9], Sharma and Rajput[14], Gupta and Dass[6], Jaggi[10], Chatterjee[2], Fisher[5], Kannan[11], Ciric[4] and others.

In this Paper we shall establish some unique fixed point and common fixed point theorems, through new symmetric rational expressions.

3. Main Result

Theorem 3.1 Let T be a continuous self map, defined on a complete metric space X. Further, T satisfies the following condition;

$$
\begin{aligned}
& \mathrm{d}(\mathrm{Tx}, \mathrm{Ty})<\alpha \max \left\{\frac{\mathrm{d}(\mathrm{x}, \mathrm{~T} x) \mathrm{d}(\mathrm{y}, \mathrm{Ty})+\mathrm{d}(\mathrm{x}, \mathrm{Ty}) \mathrm{d}(\mathrm{y}, \mathrm{Tx})}{\mathrm{d}(\mathrm{x}, \mathrm{y})}, \frac{\mathrm{d}(\mathrm{x}, \mathrm{Tx}) \mathrm{d}(\mathrm{x}, \mathrm{Ty})+\mathrm{d}(\mathrm{y}, \mathrm{dy}) \mathrm{d}(\mathrm{y}, \mathrm{Tx})}{\mathrm{d}(\mathrm{x}, \mathrm{y})}\right\} \\
& +\gamma[\mathrm{d}(\mathrm{x}, \mathrm{Tx})+\mathrm{d}(\mathrm{y}, \mathrm{Ty})]+\delta[\mathrm{d}(\mathrm{y}, \mathrm{Tx})+\mathrm{d}(\mathrm{x}, \mathrm{Ty})]+\eta \mathrm{q}(\mathrm{x}, \mathrm{y}) \\
& \quad(3.1 .1)
\end{aligned}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$ and for some $\alpha, \gamma, \delta, \eta \in[0,1)$ with $(2 \alpha+2 \gamma+2 \delta+\eta<1)$.
Then T has unique fixed point in X .
Proof: Let x_{0} be an arbitrary point in X and we define a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ by means of iterates of T by setting
$T_{x_{0}}^{n}=x_{n}$, where n is a positive integer. If $\mathrm{x}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}+1}$ for some n , then x_{n} is a fixed point of T .
Taking $\mathrm{x}_{\mathrm{n}} \neq \mathrm{x}_{\mathrm{n}+1}$, for all n
Now
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}\right)$
$\leq \alpha \max \left\{\frac{d\left(x_{n}, T x_{n}\right) d\left(x_{n-1}, T x_{n-1}\right)+d\left(x_{n}, T x_{n-1}\right) d\left(x_{n-1}, T x_{n}\right)}{d\left(x_{n}, x_{n-1}\right)}, \frac{d\left(x_{n}, T x_{n}\right) d\left(x_{n}, T x_{n-1}\right)+d\left(x_{n-1}, T x_{n-1}\right) d\left(x_{n-1}, T x_{n}\right)}{d\left(x_{n}, x_{n-1}\right)}\right\}$

$$
\begin{aligned}
& +\gamma\left[d\left(x_{n}, T x_{n}\right)+d\left(x_{n-1}, T x_{n-1}\right)\right]+\delta\left[d\left(x_{n}, T x_{n-1}\right)+d\left(x_{n-1}, T x_{n}\right)\right]+\eta d\left(x_{n}, x_{n-1}\right) \\
& \leq \alpha \max \left\{\frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n}\right) d\left(x_{n-1}, x_{n+1}\right)}{d\left(x_{n}, x_{n-1}\right)}, \frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n}, x_{n}\right)+d\left(x_{n}, x_{n}\right) d\left(x_{n-1}, x_{n+1}\right)}{d\left(x_{n}, x_{n-1}\right)}\right\} \\
& +\gamma\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)\right]+\delta\left[d\left(x_{n}, x_{n}\right)+d\left(x_{n-1}, x_{n+1}\right)\right]+\eta d\left(x_{n}, x_{n-1}\right) \\
& \leq \alpha \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n+1}\right),\right\}+\gamma\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)\right]+\delta\left[d\left(x_{n-1}, x_{n+1}\right)\right] \\
& +\eta d\left(x_{n}, x_{n-1}\right)
\end{aligned}
$$

Case I.

If $d\left(x_{n}, x_{n+1}\right)>d\left(x_{n-1}, x_{n+1}\right)$
Then

$$
\begin{aligned}
& \mathrm{d}\left(x_{n}, x_{n+1}\right) \leq(\alpha+\gamma+\delta) \mathrm{d}\left(x_{n}, x_{n+1}\right)+(\alpha+\gamma+\delta+\eta) \mathrm{d}\left(x_{n-1}, x_{n}\right) \\
& \therefore d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\alpha+\gamma+\delta+\eta}{1-\alpha-\gamma-\delta}\right) \mathrm{d}\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

\qquad
\qquad

$$
\left[\frac{\alpha+\gamma+\delta+\eta}{1-\alpha-\gamma-\delta}\right]^{n} d\left(x_{0}, x_{1}\right)
$$

By the triangle inequality, we have for $\mathrm{m}>\mathrm{n}$

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{m-1}, x_{m}\right) \\
& \leq\left(\mathrm{p}^{\mathrm{n}}+\mathrm{p}^{\mathrm{n}+1}+\cdots \mathrm{p}^{\mathrm{m}-1}\right) d\left(x_{0}, T x_{0}\right)
\end{aligned}
$$

Where, $\mathrm{p}=\left[\frac{\alpha+\gamma+\delta+\eta}{1-\alpha-\gamma-\delta}\right]<1, \quad$ Since $\quad 2 \alpha+2 \gamma+2 \delta+\eta<1$.

Case II

If $d\left(x_{n-1}, x_{n}\right)>d\left(x_{n}, x_{n+1}\right)$
$d\left(x_{n}, x_{n+1}\right) \leq(\alpha+\gamma+\delta) d\left(x_{n-1}, x_{n+1}\right)+(\alpha+\gamma+\delta+\eta) d\left(x_{n-1}, x_{n}\right)$
$d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\alpha+\gamma+\delta+\eta}{1-\alpha-\gamma-\delta}\right) \mathrm{d}\left(x_{n-1}, x_{n}\right)$

$$
\left[\frac{\alpha+\gamma+\delta+\eta}{1-\alpha-\gamma-\delta}\right]^{n} d\left(x_{0}, x_{1}\right)
$$

By the triangle inequality, we have for $\mathrm{m}>\mathrm{n}$

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) \leq & d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots d\left(x_{m-1}, x_{m}\right) \\
& \leq\left(\mathrm{q}^{\mathrm{n}}+\mathrm{q}^{\mathrm{n}+1}+\cdots \mathrm{q}^{\mathrm{m}+1}\right) d\left(x_{0}, T x_{0}\right)
\end{aligned}
$$

Where, $\quad q=\left[\frac{\alpha+\gamma+\delta+\eta}{1-\alpha-\gamma-\delta}\right]<1, \quad 2 \alpha+2 \gamma+2 \delta+\eta<1 . \quad$ Take $\mathrm{k}=\mathrm{p}=\mathrm{q}<1$.
Therefore
$d\left(x_{n}, x_{m}\right) \leq \frac{k^{n}}{1-k} d\left(x_{0}, T x_{0}\right) \rightarrow 0$, as $\mathrm{m}, \mathrm{n} \rightarrow \infty$.
So, $\left\{x_{n}\right\}$ is Cauchy sequence in X , so by completeness of X , there is a point $\mathrm{u} \epsilon \mathrm{X}$ such that $x_{n} \rightarrow 0$, as $\mathrm{m}, \mathrm{n} \rightarrow \infty$.

So, $\left\{x_{n}\right\}$ is Cauchy sequence in X , so by completeness of X , there is a point $\mathrm{u} \in \mathrm{X}$ such that $x_{n} \rightarrow \mathrm{u}$ as $n \rightarrow \infty$.

Further, the continuity of T in X implies.

$$
\begin{aligned}
\mathrm{T}(\mathrm{u}) & =\mathrm{T}\left(\lim _{\mathrm{n} \rightarrow \infty} x_{n}\right)=\lim _{\mathrm{n} \rightarrow \infty} T x_{n} \\
& \left.=\lim _{\mathrm{n} \rightarrow \infty} x_{n+1}\right) \\
& =\mathrm{u} .
\end{aligned}
$$

Therefore, u is a fixed point of T in X.
Now if there is any other $\mathrm{v}(\neq u)$ in X , such that $\mathrm{T}(\mathrm{v})=\mathrm{v}$, then.
$d(u, v)=d(T u, T v)$

$$
\begin{aligned}
& \leq \alpha \max \left\{\frac{d(u, T u) d(v, T v)+d(u, T v) d(v, T u)}{d(u, v)}, \frac{d(u, T u) d(u, T v)+d(v, T v) d(v, T u)}{d(u, v)}\right\}+\gamma[d(u, T u)+d(v, T v)]+ \\
& \\
& \delta[d(u, T v)+d(v, T u)]+\eta d(u, v) . \\
& \leq \\
& \delta\left[d(u, v)+\quad \alpha \max \left\{\frac{d(u, u) d(v, v)+d(u, v) d(v, u)}{d(u, v)}, \frac{d(u, u) d(u, v)+d(v, v) d(v, u)}{d(u, v)}\right\}+\gamma[d(u, u)+d(v, v)]+\right. \\
& \leq \\
& \quad(\alpha(v, u)]+\eta d(u, v)]
\end{aligned}
$$

i.e. $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq(\alpha+2 \delta+\eta) \mathrm{d}(\mathrm{u}, \mathrm{v})$.

Which is a contradiction because $\alpha+2 \delta+\eta<1$.
Hence u is the unique fixed point of T.
Theorem 3.2: Let T be a self map defined on a complete metric space (X, d) such that (3.1.1) holds. If for some positive integer P, T^{p} is continuous, then T has a unique fixed point.

Proof: we define a sequence $\left\{x_{n}\right\}$ as in theorem 1. Clearly it converges to some point $u \in \mathrm{X}$. Therefore its subsequence $\left\{x_{n_{k}}\right\},\left(n_{k}=k_{p}\right)$ also converges to u .

Also,

$$
\begin{aligned}
T^{p} u & =T^{p}\left(\lim _{k \rightarrow \infty} x_{n_{k}}\right) \\
& =\lim _{k \rightarrow \infty}\left(T_{x_{n_{k}}}^{p}\right) \\
& =\lim _{k \rightarrow \infty} x_{n_{k}+1} \\
& =\mathrm{u}
\end{aligned}
$$

Therefore u is a fixed point of T^{p}.
Now, we show that, $\mathrm{Tu}=\mathrm{u}$.
Let m be the smallest positive integer such that
$T^{m} u=u$, but $T^{q} \neq u \quad$ for $\mathrm{q}=1,2 \ldots \mathrm{~m}-1$.
If $m>1$, then by (3.1.1)

$$
\begin{aligned}
d(T u, u)= & d\left(T u, T_{u}^{q}\right)=d\left(T u, T\left(T_{u}^{m-1}\right)\right) \\
\leq & \alpha \max \left\{\frac{d(u, T u) d\left(T_{u}^{m-1}, T_{u}^{m}\right)+d\left(u, T_{u}^{m}\right) d\left(T_{u}^{m-1}, T u\right)}{d\left(u, T_{u}^{m-1}\right)}, \frac{d(u, T u) d\left(u, T_{u}^{m}\right)+d\left(T^{m-1} u, T_{u}^{m}\right) d\left(T_{u}^{m-1}, T u\right)}{d\left(u, T_{u}^{m-1}\right)}\right\}+ \\
& \gamma\left[d(u, T u)+d\left(T_{u}^{m-1}, T_{u}^{m}\right)\right]+\delta\left[d\left(u, T_{u}^{m}\right)+d\left(T_{u}^{m-1}, T u\right)\right]+\eta d\left(u, T_{u}^{m-1}\right) . \\
d(T u, u) \leq & \alpha \max \left\{(d(u, T u)+0),\left(0+d\left(T_{u}^{m-1}, u\right)+d(u, T u)\right)\right\} \\
+ & \gamma\left[d(u, T u)+d\left(T_{u}^{m-1}, T_{u}^{m}\right)\right]+\delta\left[d\left(u, T_{u}^{m}\right)+d\left(T_{u}^{m-1}, T u\right)\right]+\eta d\left(u, T_{u}^{m-1}\right) .
\end{aligned}
$$

[Since by triangle inequality $\mathrm{d}\left(T_{u}^{m-1}, T u\right) \leq d\left(T_{u}^{m-1}, u\right)+d(u, T u)$ and since

$$
\left(d\left(T_{u}^{m-1}, \mathrm{Tu}\right)+\mathrm{d}(\mathrm{u}, \mathrm{Tu}) \geq \mathrm{d}(\mathrm{u}, \mathrm{Tu})\right.
$$

$$
\begin{gathered}
\leq \alpha\left[d\left(T_{u}^{m-1}, u\right)+d(u, T u)\right]+\gamma\left[d(u, T u)+d\left(T_{u}^{m-1}, T_{u}^{m}\right)\right]+\delta\left[d\left(u, T_{u}^{m}\right)+\right. \\
\left.d\left(T_{u}^{m-1}, T u\right)\right]+ \\
\eta d\left(u, T_{u}^{m-1}\right) .
\end{gathered}
$$

$$
\leq \alpha\left[d\left(T_{u}^{m-1}, u\right)+d(u, T u)\right]+\gamma\left[d(u, T u)+d\left(T_{u}^{m-1}, T_{u}^{m}\right)\right]+\delta\left[d\left(u, T_{u}^{m}\right)+\right.
$$

$$
\left.d\left(T_{u}^{m-1}, T u\right)\right]+\quad \quad \eta d\left(u, T_{u}^{m-1}\right)
$$

$$
d(u, T u) \leq(\alpha+\gamma+\delta) \mathrm{d}(\mathrm{u}, \mathrm{Tu})+(\alpha+\gamma+\delta+\eta) \mathrm{d}\left(\mathrm{u}, T_{u}^{m-1}\right)
$$

$$
(1-\alpha-\gamma-\delta) \mathrm{d}(\mathrm{u}, \mathrm{Tu}) \leq(\alpha+\gamma+\delta+\eta) \mathrm{d}\left(\mathrm{u}, T_{u}^{m-1}\right)
$$

Which implies

$$
d(u, T u) \leq \operatorname{kd}\left(\mathrm{u}, T_{u}^{m-1}\right) \quad \text { where } k=\left(\frac{(\alpha+\gamma+\delta+\eta)}{(1-\alpha-\gamma-\delta)}\right)<1
$$

Since,
$2 \alpha+2 \gamma+2 \delta+\eta<1$, thus we write,
$d(u, T u) \leq \mathrm{K}^{\mathrm{m}} d(u, T u), \quad$ Since $\mathrm{K}^{\mathrm{m}}<1$
Therefore
$d(u, T u)<d(u, T u), \quad$ Which contradicts.
Hence $T u=u$ i.e. u is a fixed point of T . The uniqueness of u follows as in theorem 1.
We further generalize the result of theorem 1 , in which T is neither continuous nor satisfies (3.1.1). In what follows T^{m}, for some positive integer m , satisfying the same rational expression and continuous still T has unique fixed point. In fact we prove.

Theorem 3.3.: Let T be a self-map, defined on a complete metric space (X,d) such that for some positive integer m satisfy the condition.(3.3.1)

$$
\begin{gathered}
\mathrm{d}\left(\mathrm{~T}^{\mathrm{m}} \mathrm{x}, \mathrm{~T}^{\mathrm{m}} \mathrm{y}\right) \leq \\
\alpha \max \left\{\frac{d\left(x, T^{m} x\right) d\left(y, T^{m} y\right)+d\left(x, T^{m} y\right) d\left(y, T^{m} y\right)}{d(x, y)}, \frac{d\left(x, T^{m} x\right) d\left(x, T^{m} y\right)+d\left(x, T^{m} y\right) d\left(y, T^{m} x\right)}{d(x, y)}\right\}+ \\
\gamma\left[d\left(x, \mathrm{~T}^{\mathrm{m}} \mathrm{x}\right)+d\left(y, \mathrm{~T}^{\mathrm{m}} \mathrm{y}\right)\right]+\delta\left[d\left(x, \mathrm{~T}^{\mathrm{m}} \mathrm{y}\right)+d\left(y, \mathrm{~T}^{\mathrm{m}} \mathrm{x}\right)\right]+\eta d(x, y)
\end{gathered}
$$

For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$ and for $\alpha, \gamma, \delta, \eta \geq 0$ with $2 \alpha+2 \gamma+2 \delta+\eta<1$ If T^{m} is continuous then T has a unique fixed point.

Proof. By theorem 3.2, we assume that T^{m} has unique fixed point also
$T u=T\left(T^{m} u\right)=T^{m}(T u)$.
Which implies $T u=u$, Further since a fixed point of T is also a fixed point $T^{m} \& T^{m}$ has a unique fixed point u , it follows that u is the unique fixed point of T .

Theorem 3.4 Let T_{1} and T_{2} be two self maps defined on a complete metric space (X,d) satisfying the condition;
$d(T x, T y)<\alpha \max \left\{\frac{d\left(x, T_{1} x\right) d\left(y, T_{2} y\right)+d\left(x, T_{2} y\right) d\left(y, T_{1} x\right)}{d(x, y)}, \frac{d\left(x, T_{1} x\right) d\left(x, T_{2} y\right)+d\left(y, T_{2} y\right) d\left(y, T_{1} x\right)}{d(x, y)}\right\}$
$+\gamma\left[d\left(x, T_{1} x\right)+d\left(y, T_{2} y\right)\right]+\delta\left[d\left(y, T_{2} x\right)+d\left(x, T_{1} y\right)\right]+\eta d(x, y)$.
(3.4.1)
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and for some $\alpha, \gamma, \delta, \eta \geq 0$ and $(2 \alpha+2 \gamma+2 \delta+\eta<1)$ (3.4.2)
$\mathrm{T}_{1}, \mathrm{~T}_{2}$ are continuous on X . (3.4.2)
There exist an $x_{0} \in X$ such that in the sequence $\left\{x_{n}\right\}$ where,
$x_{n}=\left\{\begin{array}{l}T_{1} x_{n-1}, \text { where } n \text { is even } \\ T_{2} x_{n-1}, \text { where } n \text { is odd }\end{array}\right.$
$\mathrm{x}_{\mathrm{n}} \neq \mathrm{x}_{\mathrm{n}+1}$ for all n .
then $\mathrm{T}_{1}, \mathrm{~T}_{2}$ have a unique common fixed point.
Proof: we have
$d\left(x_{2 n}, x_{2 n+1}\right)=d\left(T_{1} X_{2 n}, T_{2} X_{2 n+1}\right)$

$$
\begin{aligned}
& \leq \alpha \max \left\{\begin{array}{l}
\frac{d\left(x_{2 n-1}, T_{1} x_{2 n-1}\right) d\left(x_{2 n}, T_{2} x_{2 n}\right)+d\left(x_{2 n-1}, T_{2} x_{2 n}\right) d\left(x_{2 n}, T_{1} x_{2 n-1}\right)}{d(x, y)}, \\
\frac{d\left(x_{2 n-1}, T_{1} x_{2 n-1}\right) d\left(x_{2 n-1}, T_{2} x_{2 n}\right)+d\left(x_{2 n}, T_{2} y\right) d\left(x_{2 n}, T_{1} x_{2 n-1}\right)}{d\left(x_{2 n-1}, x_{2 n}\right)}
\end{array}\right\} \\
& +\gamma\left[d\left(x_{2 n-1}, T_{1} x_{2 n-1}\right)+d\left(x_{2 n}, T_{2} x_{2 n}\right)\right]+\delta\left[d\left(x_{2 n-1}, T_{2} x_{2 n}\right)+d\left(x_{2 n}, T_{1} x_{2 n-1}\right)\right]+\eta d\left(x_{2 n-1}, x_{2 n}\right) . \\
& \leq \alpha \max \left\{\begin{array}{l}
\frac{d\left(x_{2 n-1}, x_{2 n}\right) d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n-1}, x_{2 n+1}\right) d\left(x_{2 n}, x_{2 n}\right)}{d\left(x_{2 n-1}, x_{2 n}\right)}, \\
\frac{d\left(x_{2 n-1}, x_{2 n}\right) d\left(x_{2 n-1}, x_{2 n+1}\right)+d\left(x_{2 n}, x_{2 n+1}\right) d\left(x_{2 n}, x_{2 n}\right)}{d\left(x_{2 n-1}, x_{2 n}\right)}
\end{array}\right\} \\
& +\gamma\left[d\left(x_{2 n-1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n+1}\right)\right]+\delta\left[d\left(x_{2 n-1}, T_{2} x_{2 n+1}\right)+d\left(x_{2 n}, x_{2 n}\right)\right]+\eta d\left(x_{2 n-1}, x_{2 n}\right) . \\
& \leq \alpha \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}+1}\right)\right\} \\
& +\gamma\left[\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)\right]+\delta\left[\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~T}_{2} \mathrm{x}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}\right)\right]+\eta \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right) . \\
& \leq \alpha \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)\right\} \\
& +\gamma\left[d\left(x_{2 n-1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n+1}\right)\right]+\delta\left[d\left(x_{2 n-1}, T_{2} x_{2 n+1}\right)+d\left(x_{2 n}, x_{2 n}\right)\right]+\eta d\left(x_{2 n-1}, x_{2 n}\right) . \\
& \leq \alpha\left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)\right\} \\
& +\gamma\left[d\left(x_{2 n-1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n+1}\right)\right]+\delta\left[d\left(x_{2 n-1}, T_{2} x_{2 n+1}\right)+0\right]+\eta d\left(x_{2 n-1}, x_{2 n}\right) . \\
& =(\alpha+\gamma+\delta) d\left(x_{2 n+1}, x_{2 n}\right)+(\alpha+\gamma+\delta+\eta) d\left(x_{2 n-1}, x_{2 n}\right)
\end{aligned}
$$

Therefore
$\left.\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right) \leq(\alpha+\gamma+\delta) \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)+(\alpha+\gamma+\delta+\eta) \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)\right)$
which implies.
$\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right) \leq\left(\frac{(\alpha+\gamma+\delta+\eta)}{(1-\alpha-\gamma-\delta)}\right) \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)$
i.e. $d\left(x_{2 n}, x_{2 n+1}\right) \leq k^{2 n} d\left(x_{0}, x_{1}\right)$.

When $\mathrm{k}=\left(\frac{\alpha+\gamma+\delta+\eta}{1-\alpha-\gamma-\delta}\right)<1$
Since $2 \alpha+2 \gamma+2 \delta+\eta<1$
$d\left(x_{2 n+1}, x_{2 n+2}\right) \leq k^{2 n+1} d\left(x_{0}, x_{1}\right)$.
Now it can be easily seen that $\left\{x_{n}\right\}$ is a Cauchy sequence.
Let $x_{n} \rightarrow u$, then the subsequence $\left\{x_{n_{p}}\right\}$ also converges to u for $n_{p}=2 p$.
Now, $\mathrm{T}_{1} \mathrm{~T}_{2}(\mathrm{u})=\mathrm{T}_{1} \mathrm{~T}_{2}\left(\lim _{\mathrm{p} \rightarrow \infty} \mathrm{x}_{\mathrm{n}_{\mathrm{p}}}\right)$

$$
\begin{aligned}
& =\lim _{\mathrm{p} \rightarrow \infty} \mathrm{x}_{\mathrm{n}_{\mathrm{p}}+1} \\
& =\mathrm{u}
\end{aligned}
$$

We now show that $T_{2} u \neq u$

If $T_{2} u \neq u$, then
$\mathrm{d}\left(\mathrm{u}, \mathrm{T}_{2} \mathrm{u}\right)=\mathrm{d}\left(\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{u}, \mathrm{T}_{2} \mathrm{u}\right)$

$$
\begin{aligned}
& \leq \alpha \max \left\{\begin{array}{l}
\frac{\mathrm{d}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{u}\right) \mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{2} \mathrm{u}\right)+\mathrm{d}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{~T}_{2} \mathrm{u}\right) \mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{u}\right)}{\mathrm{d}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{u}\right)}, \\
\frac{\mathrm{d}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{u}\right) \mathrm{d}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{~T}_{2} \mathrm{u}\right)+\mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{2} \mathrm{u}\right) \mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{u}\right)}{\mathrm{d}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{u}\right)}
\end{array}\right\} \\
& +\gamma\left[\mathrm{d}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{u}\right)+\mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{2} \mathrm{u}\right)\right]+\delta\left[\mathrm{d}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{~T}_{2} \mathrm{u}\right)+\mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{u}\right)\right]+\eta \mathrm{d}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{u}\right) .
\end{aligned}
$$

Therefore
$d\left(u, T_{2} u\right) \leq \alpha \max \left\{d\left(u, T_{2} u\right), 0\right\}+\gamma\left[2 d\left(u, T_{2} u\right)\right]+0+\eta d\left(T_{2} u, u\right)$.
Therefore
$\mathrm{d}\left(\mathrm{u}, \mathrm{T}_{2} \mathrm{u}\right) \leq(\alpha+2 \gamma+\eta) \mathrm{d}\left(\mathrm{u}, \mathrm{T}_{2} \mathrm{u}\right)$

$$
<\mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{2} \mathrm{u}\right)
$$

Which is contradiction, since $\alpha+\beta+2 \gamma+2 \delta+\eta<1$
So, $\alpha+2 \gamma+\eta<1$
Hence we have
$\mathrm{T}_{2} \mathrm{u}=\mathrm{u}$
Now
$\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{u}=\mathrm{T}_{1} \mathrm{u}=\mathrm{u}$
Thus u is the common fixed point of T_{1} and T_{2}.
For the uniqueness, if possible let $\mathrm{v} \neq \mathrm{u}, \mathrm{v} \in \mathrm{X}$, such that
$\mathrm{T}_{1} \mathrm{v}=\mathrm{T}_{2} \mathrm{v}=\mathrm{v}$
So $d(u, v)=d\left(T_{1} u, T_{2} v\right)$

$$
\begin{aligned}
& \leq \alpha \max \left\{\begin{array}{l}
\frac{\mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{1} \mathrm{u}\right) \mathrm{d}\left(\mathrm{v}, \mathrm{~T}_{2} \mathrm{v}\right)+\mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{2} \mathrm{u}\right) \mathrm{d}\left(\mathrm{v}, \mathrm{~T}_{1} \mathrm{u}\right)}{\mathrm{d}(\mathrm{u}, \mathrm{v})}, \\
\left.\frac{\mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{1} \mathrm{u}\right) \mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{2} \mathrm{u}\right)+\mathrm{d}\left(\mathrm{v}, \mathrm{~T}_{1} \mathrm{u}\right) \mathrm{d}\left(\mathrm{v}, \mathrm{~T}_{2} \mathrm{v}\right)}{\mathrm{d}(\mathrm{u}, \mathrm{v})}\right\}
\end{array}\right\} \\
& +\gamma\left[\mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{1} \mathrm{u}\right)+\mathrm{d}\left(\mathrm{v}, \mathrm{~T}_{2} \mathrm{v}\right)\right]+\delta\left[\mathrm{d}\left(\mathrm{u}, \mathrm{~T}_{2} \mathrm{u}\right)+\mathrm{d}\left(\mathrm{v}, \mathrm{~T}_{1} \mathrm{u}\right)\right]+\eta \mathrm{d}(\mathrm{u}, \mathrm{v}) \\
& \leq(\alpha+2 \delta+\eta) \mathrm{d}(\mathrm{v}, \mathrm{u})
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \mathrm{d}(\mathrm{u}, \mathrm{v}) \leq(\alpha+2 \delta+\eta) \mathrm{d}(\mathrm{u}, \mathrm{v}) \\
&<\mathrm{d}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

Which is a contradiction, because $\alpha+\beta+2 \gamma+2 \delta+\eta<1$ and so we have $\alpha+2 \delta+\eta<1$.
Hence, we have $u=v$.

This completes the proof of the theorem.

Reference

1. Banach,S. "Surles operation dans les ensembles abstraits etleur application aux equations integrals." Fund. Math., 3, 133-181,(1922).
2. Chatterjee,S.K. "Fixed point theorems" Comptes. Rend. Acad. Bulgare Sci., 25, 727-730, (1972)
3. Chu,S.E. And Diaz, J.B. "Remarks on generalization of Banach contraction principle of contractive mapping." Jr. Math. Arab. Apple. 11, 440-446, (1965).
4. Ciric, L.B. "Generalised contraction and fixed point theorem." Publ. Inst. Math. 12, 2026,(1971).
5. Fisher,B. "A fixed point theorem for compact metric space." Publ. Inst. Math. 25, 193194,(1976).
6. Gupta,S. \& Das,B.K. "An extension of Banach contraction principle through rational expressions." Indian J. Pune Apple. Math., 6, 1455-1458(1975).
7. Hardy G. \& Rogers,T. "A generalization of fixed point theorem of Reich." Canad. Math. Bull. 16, 201-206,(1973).
8. Holmes, R.D. "On Fixed \& periodic points under sets of mappings" Canad. Math. Bull. 12, 813-822,(1969).
9. Iseki, K. "Fixed point Theorem in Banach spaces." Math. Sem. Notes kobe Univ. Vol.2(1), paper No.3,4 pp,(1974).
10. Jaggi,D.S. "Some Unique fixed point theorems." Indian J. Pure and appl. Math. 8(2), 223230,(1977).
11. Kannan "Some results on fixed point theorems." Bull. Cal. Math. Soc. 60, 71-76,(1968).
12. Riech,S "Some remarks concerning contraction mappings." Canad. Math. Bull. 1,121124,(1971).
13. Sehgal, V.M. "On Fixed \& common fixed point theorem in metric space." Cand Math. Bull. 17(2), 257-259, (1974).
14. Sharma PL \& Rajput,SS "Fixed point theorems in Banach space" Vikram Math. Jour. Vol.4,35,(1983).
15. Wong,C.S. "Generalized contractions \& fixed point theorem." Proc. Amer. Math. Soc. 42, 409-417, (1974).
