
Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.13, 2013 

 

9 

              Comparisons of Linear Goal Programming Algorithms                                                 

                                                      U.C. Orumie
1
 , D.W Ebong

2 

                              
1
Department of  Mathematics/Statistics, University of Port-Harcourt, Nigeria. 

              
2
Department of  Mathematics/Statistics, University of Port-Harcourt, Nigeria 

                                  amakaorumie@yahoo.com & daniel.ebong@uniport.edu.ng                                                 

ABSTRACT:  

Lack of an efficient algorithm capable of reaching a compromised solution within a reasonable time is a major 

setback in the use of goal programming. Orumie and Ebong newly developed an alternative method of solving 

goal programming problem utilizing modified simplex procedures. This algorithm is compared in terms of 

accuracy and time requirements with existing algorithms by Lee and by Ignizio. Computational times for 10 goal 

programming models of various sizes are presented. Number of iteration per problem, total entries per problems 

is used as benchmark for the comparisons. The new method by Orumie and Ebong (2011) have better  

computational times in all the problem solution and proved the best since there is a reduction in computational 

time in all the problems solved.  

Keywords: Goal Programming, Lee’s modified simplex, Ignizio’s Sequential, Orumie and Ebong method 

 

1. INTRODUCTION 

Goal programming (GP) technique was initially developed by Charnes and Cooper (1961) for linear system in 

which conflicting goals were included as constraints. Their goal programming models are restricted to only those 

utilizing a single objective priority. The model is thus; 

. )...2,1(,)(min 1 mibddxathatsuchddpzlexi iiijijii ==-++= +-+-
. Further development took 

place by Ijiri (1965)  who  defined a preemptive priority levels to handle goals in their order of importance. The 

objective function represents the sum of disutilities for a particular program, and it is this weighted sum which is 

minimized to give the optimal solution. Lee (1972) and Ignizio (1976) brought the technique into common usage 

as an operational research tool. Goal programming quickly rose to become the most popular technique within the 

field of multi-criteria decision making (MCDM). This led to large number of applications being reported in the 

literature from the mid-1970 onwards.  

Ignizio (1978) described Lee (1972) and Ignizio (1976) approaches as a significant improvement over 

the sequential simplex technique, since it requires fewer pivots (in general) and eliminates the need for the 

construction of new constraints at each sequence. Authur and Ravindran (1978) described Lee (1972) as the 

widely used goal programming algorithm  whereas Schniederjans and kwaks (1982) echoed that Lee (1972) and 

Ignizio (1976) are the most commonly used goal programming solution methods, , but that both methods require 

columns in the simplex tableau for positive and negative deviational variables. Both methods require separate 

objective function rows for each priority level, all of which add immensely to the computational time of their 

solution method.  Ignizio (1976) developed a GP solution approach known as multiphase (linear) GP method that 
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represents a significant improvement over the sequential simplex technique but still maintains the need for the 

construction of new constraints for the accomplished priority level of the deviation variables for each lower level 

priority model. At the first stage of this procedure, the only goals included in the LP model are the first-priority 

goals, and the simplex method is applied in the usual way. If the resulting optimal solution is unique, we adopt it 

immediately without considering any additional goals.  However, if there are multiple optimal solutions with the 

same optimal value of Z (call it Z*), move to the second stage and add the second-priority goals to the model. 

Apply the simplex method again, if there exist multiple optimal solutions, repeat the same process for any lower 

priority goals. It is an efficient method but, there is a construction of new constraint at each sequence. Authur 

and Ravindran (1978) presented an efficient algorithm for solving linear goal programming problems utilizing 

the hierarchical structure of pre-emptive models using partitioning and elimination procedures that starts by 

considering only those constraints affecting required structural constraints and the first priority goals. Should 

multiple optimal solutions exist for this model, constraints affecting the next priority are added, and the new 

model solved. Hwang et al (1980) described this method as being an efficient solution method. But 

Schniederjans and kwaks (1982) stated that Arthur and Ravindran computational procedure are limited to 

problems that have priorities and /or do not have conflicting goal constraints that lose variables via the variable 

elimination process. They stated that conflicting goal constraints that are later added to an already optimized 

tableau (as described in their procedure) without an iterative adjustment run the risk of violating the original G.P. 

problem.  Ignizio (1982) developed another procedure for solving GPP that reduced tableau element with the use 

of the condensed simplex tableau alongside with the concept of column dropping and reflected p -space to 

reduce storage. He utilized fully the positive deviational variables in the basis. But, Schniederjans and Kwak 

(1983) reported that, Ignizio (1982) algorithm requires more computational element manipulation than the 

Schniederjans and Kwak algorithm, and also fails to provide useful information that is commonly found in more 

popular G.P. algorithms, such as that of Lee (1972). Schniederjans and kwaks (1982) provided a new computing 

procedure for goal programming problems based on Baumol's simplex method. Olson (1984) stated that the 

algorithm was found to be very fast when it identified an optimal solution. He however, pointed out that the 

procedure does not follow a path of guaranteed solution improvement. If the solution contains a large proportion 

of negative deviational variables, this method may require extra computational effort, whereas in models where 

an unsatisfied goal was in the final solution, cycling often occurred when the positive (non-optimal) solution 

basis was sacrificed in an attempt to improve satisfaction of the unsatisfied goal.  But According to Ignizio 
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(1983), the fact that there is no evidence that the Baumol method for Linear Programming is more efficient than 

the usual forms of the simplex method  disqualifies their claim.   Olson (1984) compared four goal 

programming methods (Schniederjans and kwaks (1982), Lee (1972), Authur and Ravindran (1978), and Olson 

(1984)). He also presented a revised simplex algorithm (RSM) for solving LGP problem that utilizes 

Schiederjans and Kwaks (1982) dual simplex rules applied for the calculation of new tableau elements, and  took 

advantage of quick initial performance until a feasible basic solution was obtained, and reversion to conventional 

zj- cj evaluation was utilized from that point on. In his result tests, he summarized that the dual simplex method 

appears to have superior computational times for models with a large proportion of positive deviational variables 

in the solution, whereas the revised simplex algorithm appears more consistent in time and accuracy for general 

goal programming models. He summarized that the Lee algorithm proved accurate in models tested, although 

extra iterations were required in some models, whereas the Arthur and Ravindran code was not tampered with 

other than to increase dimensions owing to unfamiliarity with the specific program. The Schniederjans and 

Kwak has computational efficiency over the revised simplex for models involving solutions with a high 

proportion of positive deviational variables in the solution as described by the author. 

 Ignizio (1985) developed a multidimensional dual simplex algorithm for solving GP problems (MDD). 

As first shown by Ignizio, a lexicographic GP has a dual similar to that of a linear programme. The main 

difference is that the right hand sides of the dual are multi-dimensional and lexicographically ranked. This result 

obviously follows from the fact that the objective rows in the primal are lexicographically ranked (Tamiz et al 

(1995)). However, having noted that the multi-dimensional dual is a linear programming problem with multiple 

and prioritized right-hand sides, each model in the series is identical to the previous, with the exceptions that: the 

right-hand side changes and certain of the constraints will be dropped dependent upon the solution obtained to 

the previous linear programmes; all non-binding dual constraints correspond to primal variables that are: (a) non-

basic in the optimal solution for the k
th

 primal achievement vector (b) associated with negative shadow prices in 

the optimal tableau are removed(see Ignizio (1985). But Crowder and Sposito (1987) disqualified the algorithm.  

They argued that removal of non-binding constraints in the dual problem after one has obtained the optimum for 

the dual problem associated with priority level i, coincides with the removal of non-basic variables in the LGP 

primal at priority level i. This implies that pre-emptive priority structures are not maintained while solving MDD 

problem, otherwise incorrect solution will be obtained. They supported their argument by solving a problem as 

shown in Ignizio (1982)  (pp. 408-410).Solving the LGP problem using SLGP yields a0
1
= (0,1,2), x1

0
= 6, x2

0 
= 0. 
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However, if one solves the multidimensional-dual problem, changing right-hand sides and removing slack rows 

at each priority level as outlined by Ignizio (1985), one obtains the incorrect solution: a0
1
 =(0,1,0),  x1

0
= 4, x2

0 
= 

0. 

Shim and Chun (1991) presented used Resource Planning and Management Systems (RPMS) network 

approach to the goal programming (GP) problem as an alternative method. In RPMS-based GP, deviational 

variables are represented by resource nodes. But Ogryczak (2001) disqualifies his work. He argued that RPM 

defers from GP formation due to the use of negative weight and additional regularization of the min max 

aggregation.  

Tamiz et al (1995) reviewed current literature on the branch of multi-criteria decision modeling known 

as GP. They summarized that out of 355 papers mentioned by Romero (1991), 226 used utilizing the concept of 

lexicographic GP which require the pre emptive ordering of priority levels. 

Yu and Li (1996) proposed a solution algorithm for linear goal programming problems. This method 

starts by introducing artificial variables to the model and using the two phase method or big-m method. 

According to him, this method uses a smaller number of variables in computation and is efficient in solving 

lexicographic problem, but produces entirely different and wrong results if the problem is weighted. 

Calvete and Mateo (1998), presented a lexicographic optimization of multi objective  

generalized network flow (LGNF) problem based on the underlying ideas of primal dual 

algorithms for the minimum cost generalized network flow (MGNF) problem. The algorithm is efficient in 

reaching optimality condition, but tedious in labeling process because of several nodes, arcs, paths which result 

in multiple solutions. 

Baykasoglu et.al (1999) used multiple objective tabu search (TS) algorithm to solve linear GP models. 

The danger is that the algorithm may recycle old solutions and become trapped in a loop as indicated by the 

author, which implies that it does not handle all kinds of goal functions and constraints.  

Kasana (2003) developed an alternative algorithm for solving LLGPP called grouping algorithm that 

considers all goals and real constraints together as one group with the objective function being the sum of all the 

unwanted deviations, and solves a sequence of LP sub problems, each using the optimal solution of the previous 

sub problems. This algorithm is being dominated by the partitioning method as indicated by the author. He 

indicated that it is good and performs well only if a large number of goals are satisfied. In other word, if an 

unsatisfied goal is in the final tableau, it is inefficient. It utilized sequential method. 
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       This study compares four approaches to the solution of general linear goal programming models. The three 

approaches considered are Lee (1972) modified simplex goal programming, Ignizio’s sequential goal 

programmings and the new alternative method of solving goal programming by Orumie and Ebong (2011). 

In section two, the four algorithms will be presented, followed by their comparisons in section three. 

Computational result is presented in section four .Section five includes summary of result and conclusion in 

section six.             

  2. THE TWO MOST POPULAR ALGORITHM FOR LINEAR GOAL PROGRAMMING 

WITH IGNIZIO(1982) AND THE NEW ALGORITHM BY ORUMIE AND EBONG(2011). 

Consider the linear Goal programming model as defined in Nabendu and Manish (2012); 

Find nixi ,...,2,1: =  

Minimize å --++
+

m

i

iiiii dwdwp )(                                                                       (2.0) 

S.t 

       å =-+
+-

n

j

iiijij bddxa                                                                              (2.1) 

where  

x  F                                                                                                                           (2.2) 

 

0,, ³
-+

iij ddx
   

                                                                                                   (2.3) 

and  
0* =

-+

ii dd                                                                                                    (2.4) 

for 
nj ,..,2,1=  ,     mi ,..,2,1=   

Then the existing methods are summarized below; 

  

 2.1  The Orumie and Ebong(2011)method 

Consider the Goal programming model in equation (2.0-2.4) above; the table (2.1) below represents the 

initial tableau of the above problem. Let  be the i
th

 priority level and pir ,i=1,2,..,L ,the row corresponding to the 

pi, then; 

step (1) Set i=1, 

step (2)The entering variable is the variable with the highest >0, pir}. If ties a ij in p1r, the variable with 

max {min ratio of 
j

i

c

b
} will enter, where cj is the column corresponding to the ties in aij .If  ties p1, variable 
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with highest  will enter. If ties exist in ,the variable  with  the highest minimum ratio ( *
i

i

s

b
) will enter the 

basis. Where 
*

is  is the supposed pivot  column corresponding to the ties in wi. Avoid 0 and negative .  

Step (3) Leaving variable is the variable with the minimum ratio of (
p

i

c

b
)Where cp is the Pivot  column resulting 

from (2). If ties exist in the ratio ,the variable with the smaller right hand side leaves. 

Step ( 4 ) Perform normal gauss Jordan operation to update the new tableau. 

Step (5) if  deviations corresponding to pi=0 in basic, go to step (6) otherwise go to step  7. If  ≤0 j Є pir  go 

to step (6), If >0 Є pir, but  ≤0Є pi=i+1 ,corresponding to the pivot column  ,go to step  (6). 

Step (6) Set i=i+1,go to step  (2) ,if i≤L ,otherwise go to (7). 

Step (7) Optimality occurs when;   

       ( ) all            

      ( ) when           

       ( ) when , but cannot be achieved further..                        

       ( ) when     

The optimal solution is the  vector of ( ) in the last iteration. 

 

TABLE  2.1:  Initial table of the new algorithm  

Var in 

basis with 

pi 

   X1          X2     …    Xn     d1
(v)

    d2
(v)

  .  .  .dk
(v)

     Solution value  

bi 

 

 a11        a12.       …       a1n      c11
(v)

    c11
(v) 

.  .  . c1k
(v)

 b1 

  a12     a22        …       a2n    c21
(v)

     c22
(v)

 .  . .c2k
(v)

 b2 

 .            .                 .         .         .                . 

.            .                  .        .          .               . 

.            .                  .       .          .                . 

. 

. 

. 

 am1     am2    …           amn         cm1
(v)

  cm2
(v)

. . . mk
(v)

 bm 

Where cj
(v)

 is the coefficient of dj
(v)

=

þ
ý
ü

î
í
ì

+=-

-=

)()(1

)()(1

vif

vif

 

2.2                  LEE MODIFIED SIMPLEX ALGORITHM OF 1972  

Multiphase algorithms are more efficient as they approach the entire goal programming problem as a 

single model and do not require the additional “constraints” as in sequential during solution.  
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Consider the general Goal programming model in equation (2.0-2.4) above, the Table (2.2) below 

represents the initial tableau of the algorithm below. 

   STEPS 

     2.2            Lee(1972) modified simplex method 

The table below 2.2 represents the initial tableau of the above algorithm. 

 STEPS 

 Consider, the goal programming in equation (2.0)-(2.4) above, the steps are as follow; 

1. Examine cj  – zj values in the p1-row first. If all cj – zj ≥ 0 at the highest priority levels in the same column, 

then the optimal solution is obtained, otherwise it is not optimal. If the target value of each goal in xb column is 

zero, the solution is optimal. 

2. To determine the variable to enter into the new solution mix, start examining (cj-zj) row of highest priority 

(p1) and select the largest negative value. Otherwise, move to the next higher priority (p2) and select the largest 

negative value break ties arbitrarily. 

3. Apply usual procedure to calculate the minimum ratio to choose the variable to leave the current solution mix. 

4. Any negative value in the (cj-zj) row which has negative (cj-zj) value under a lower priority row is ignored. 

 

1.  In the p1-row examine cj-zj values first. If all cj-zj ≥ 0 at the highest priority levels in the same column, 

then the optimal solution is obtained, otherwise it is not optimal. The solution is optimal if the target value of 

each goal in xb column is zero. 

2.  To determine the variable to enter into the basis, start examining (cj-zj) row of highest priority (p1) and 

select the highest negative value. Otherwise, move to the next higher priority (p2) and select the highest negative 

value. Ties are broken arbitrarily. 

3.  To calculate the minimum ratio to determine the leaving variable, apply usual simplex procedure. 

4.  Ignore any negative value in the (cj-zj) row which has negative (cj-zj) value under a lower priority row 

ignored. 
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TABLE 2.2 Innitial Table of  Lee’s Modified Simplex Method for Problem In Equation (2.0-2.4) 

                              Cj                                C11        C12.  .  .C1n   C1n+1     .   .               .             C1k 

Cβ Var in 

basis 

Solution value 

b=Xb 

X1           X2 …   Xn    d1
-     

d2 
-
.     . .dk

-
.      .d1

+
 d2

+
 .     . dk

+ 
MinRatio 

  b1  a11        a12.  .  .      a1n     1      0 .  .  .  0       -1     .  .  .   0  

  b2  a12      a22.   .   .   a2n     0    1 .  .   .     0         0  -1 . .    . 0  

     . 

      . 

 .                        .                    .                                                            .                 

.                    .                             

.                          .                    .                                               

 

  bm am1         am2           amn      0     0        1        0    0        -1        

   Pk  Pk1          pk2   ... pkn    pkn+1  .           .           .                           pkk  

 cj-zj .          .                .                           .                  .  

   P2  P21         p22       _   p2n    p2n+1                                                      p2k  

    P1  P11      p12    _ _ _  p1n_ p1n+1        .                        .                    pmk  

       

2.3                  IGNIZIO MODIFIED SIMPLEX ALGORITHM (1976) 

Consider the general Goal programming model in equation (2.0-2.4) above, the Table (2.3) below 

represents the initial tableau of the  algorithm below. 

  THE ALGORITHM 

 Step 1: Set k = 1 (where k is used to represent the priority level under consideration and K is the total of these).  

subject to all the constraints. 

Step 3:   Examine c1-z1 values in the p1-row first. If all c1-z1 ≥ 0 at the highest priority levels in the same column, 

then the optimal solution is obtained, otherwise it is not optimal. If the target value of each goal in xb column is 

zero, the solution is optimal. 

Step 4:  To determine the variable to enter into the basis, start examining (c1-z1) row of p1 and select the largest 

negative value. Break ties arbitrarily. Otherwise, go to step 7. 

Step 5:  Apply usual procedure to calculate the minimum ratio to choose the variable to leave the basis.  

Step 6:  perform Gauss Jordan’s operation as usual. Let the optimal solution to this problem be given as a1*, 

where: a1* is the optimal value of pk. 

Step 7: Set k=k + 1. i.e., establish the equivalent, single objective model for the next priority level (pk=2 ).  If k 

³K, go to Step 8. This model is given by: min pk+1 subject to all the constraints, given the p1 value. 

 Step8: The solution associated with the last augmented objective solved, is the optimal vector for the original 

goal programming.  

This algorithm requires the addition of the satisfied priority row to the exiting constraints before 

considering the next priority.  
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TABLE 2.3: Innitial Table of  Lee’s Modified Simplex Method for Problem In Equation (2.0-2.4) 

                                               Cj                             C11        C12.  .  .C1n   C1n+1     .   .  .         C1k 

Cβ Var in 

basis 

Solution value 

b=Xb 

X1           X2 …   Xn    d1
-     

d2 
-
.     . .dk

-
.      .d1

+
 d2

+
 .     . dk

+ 
MinRatio 

  b1  a11        a12.  .  .      a1n     1      0 .  .  .  0       -1     .  .  .   0  

  b2  a12      a22.   .   .   a2n     0    1 .  .   .     0         0  -1 . .    . 0  

     . 

      . 

 .                        .                    .                                                            .                          

.                    .                             

.                          .                    .                                               

 

  bm am1         am2           amn      0     0        1        0    0        -1        

 cj-zj  Pk  Pk1          pk2   ... pkn    pkn+1  .           .           .                           pkk  

 

2.4 IGNIZIO (1982) CONDENSED SIMPLEX AND COLUMN DROPPING METHOD (see Igizio 

(1983)). 

 Given a goal programming model in equation (2.0)-(2.4) above, the solution procedure is similar to that of 

Ignizio (1976), but just that the negative deviational variables are fully maintained as the basis variables and 

there are interchanges of entering and living variables, together with dropping of satisfied columns (i.e. check 

marks are placed above the columns which are no longer eligible for entry into the basis).  The interior matrix 

under the positive deviation variables is always the negative of that which appears under the negative deviation 

variables (di
-
s). Since this relationship exists for every tableau, there is no need of including the positive 

deviational  variables columns.  

THE ALGORITHM 

 Step 1: Set k = 1 (where k is used to represent the priority level under consideration and K is the total of these) 

subject to all the constraints. 

Step 3:   Examine ck-zk values in the pk-row first. If all ck-zk £ 0 k" , then the optimal solution is obtained, 

otherwise it is not optimal. If the target value of each goal in xb column is zero, the solution is optimal, go to step 

8. 

Step 4:  To determine the variable to enter into the new basis, start examining (c1-z1) row of p1 and select the 

largest negative value. Break ties arbitrarily. Otherwise, go to step 7. 

Step 5:  Apply usual procedure to calculate the minimum ratio to choose the variable to leave the current 

solution mix.  

Step 6: Interchange the variables and perform Gauss Jordan operation as usual except for the pivot column that 

falls under the positive deviation variables. This will always be the negative of that which appears under the 
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negative deviation variables (di
-
s) columns.  Let the optimal solution to this problem be given as a1*, where: a1* 

is the optimal value of pk. 

Step 7: Set k=k + 1. i.e., establish the equivalent, single objective model for the next priority level (pk=2 ). If k 

³K, go to step 8. This model is given by: 

 min pk+1                       .          .          .                                            (5) 

subject to all the constraints, given the p1 = a1*            .    .        .  ( 2.6).  

Place check marks above the columns which are no longer eligible for entry into the basis and go to step 4.  

 Step8: The solution associated with the last augmented objective solved, is the optimal vector for the original 

goal programming.  

TABLE 2.4 Innitial Table of  Lee’s Modified Simplex Method for Problem In Equation (2.0-2.4)                                                

Cβ Var in basis Solution value b=Xb X1           X2 …   Xn    d1
-     

d2 
-
.     . .dk

-
.      .

 

 d1
- 

b1  a11        a12.  .  .      a1n     1      0 .  .  .  0        

 d2
-
 b2  a12      a22.   .   .   a2n     0    1 .  .   .     0        

    . 

      . 

   . 

      . 

 .                        .                    .                                                            

.                          .                    .                            

.                          .                    .                                              

 dm
-
 bm am1         am2           amn      0     0        1           

 cj-zj  Pk  Pk1          pk2   ... pkn    pkn+1  .           .          .      

 

3.  COMPARISON OF THE NEW ALGORITHMS WITH THE EXISTING ONES. 

       3.0  INTRODUCTION 

Ten problems from standard published papers and texts of various sizes and complexities were solved 

to and also used to compare Orumie and Ebong(2011) new algorithm with already existing and most popular 

approaches by Lee(1972), Ignizio(1976) and Ignizio(1982). The models varied widely in the number of 

constraints, decision variables, deviational variables and pre-emptive priority levels and weights.  

The number of iteration, rows and columns (total entries) are reasonable surrogate for the actual time. 

This surrogate is useful when comparing various algorithms within the same general class of algorithms for 

which the time per iteration can be expected to be about the same among the algorithms. The comparison is 

based on the number of rows per iteration, number of columns per iteration, number of deviational variables, 

table entries, rows, columns dispensed by the new method, number of iteration, number of table entries per 

problem, and percentage of the deviational variable columns, rows, and table entries, dispensed by the new 

method.  These factors above and the result summary of the solved problems are presented in Table 4.1 below. 

 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.13, 2013 

 

19 

TABLE   4.1. RESULT SUMMARY OF THE TEN SOLVED PROBLEMS 

Source No of 

columns 

L    I     C  

I2 

No of rows 

on the 

average 

L     I     C    

I2      

No of 

iterations 

L     I     C      

I2 

No of table 

entries per 

problem 

   L      I      C        

I2 

No of 

dev. 

Var 

Dev. Var  

dispensed by 

C 

% Dev. Var  

dispensed 

No of rows 

dropped by 

C in  

L    I    I2 

No of  

columns 

dropped by C 

in  

L    I     I2 

Ingnizio(1982) 15 15  11 

10 

11   8     5     

8 

5      5    5       

5 

825  600  250     

400      

10 4 40 6    2    2 4    4     1 

Crowder&sposito 

(1987) 

11  11   7   

7 

10   6     4     

6 

3      3   3        

3 

330   198  84    

126 

8 4 50 6    2    2 4    4     nil 

Cohon (1978) 9     9    7   

7 

6     5     4     

5 

2      2   2        

2 

108     90   56     

70 

4 2 50 2    1     1 2    2     nil 

Hana (2006) 11  11   7   

7 

12    6   4      

6 

5      5   5        

5 

660   330  

140   210 

8 4 50 8    2    2 4    4     nil 

Guptal(2009) 9    9    7    

7 

6      5    4     

5 

2      2   2        

2 

108     90    

56     70 

4 2 50 2    1     1 2    2     nil 

Schniederjan& 

Kwak(1982) 

11 11   9    

7 

11    7    5     

7 

3      3   3       

3 

363   231  

135   147 

6 2 33 6    2    2 2    2     -2 

Rifai (1996) 9    9     6   

6 

11    4    3     

4 

4      4   4       

4 

396   144  72    

96 

6 2 33 8    1     1 2    2    nil 

Baykasoglu et al 

(1999) 

10  10  7   

7 

10    6    4     

6 

3      3   3       

3 

300   180  84     

126 

6 3 50 6    2    2 3    3    nil 

Ogryczak (2001) 11  11  8   

7 

12    7   4      

7 

4      4   4       

4 

528   308  

128  196 

8 3 38 8    3    3 3    3    -1 

Olson(1984) 9    9    6    

6 

7     5     3     

5 

2      2   2       

2 

126   90     36    

60 

4 3 75 4    2    2 3   3     nil 
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TABLE   4.1. CONTINUES  

No of row % 

dropped by C in  

L      I    I2  

Table entries 

dropped by  C in 

 L         I          I2 

% Table entries 

dropped by  C in 

L                 I         

I1 

Dev. Var  

dispensed by I2 

% Dev. Var  

dispensed by I2 

Total number of entries 

dispensed by I with its% 

Total number of entries 

dispensed byI2 with its % 

55  25   25  550   350  150 66.67      58.33      

37.5 

5 50 225,          27% 425               52% 

60   33  33 225   114   42 68.18      57.58      

19.04 

4 50 132,            40 204               62 

33   20   20 24      34    14 22.22      37.79       

20        

2 50 18,               17 38                  33 

67   33   33    500   190   70 75.76      57.58      

33.33 

4 50 330,             50 450                68 

33   20   20 20     34     14 18.52      37.78      

20 

2 50 18,               17 38                  35 

55   28  28 228   96     12 62.81      41.56      

8.16          

3 50 132,             36 216                60 

73   25   25 342   72     24 86.36      50.00       

25 

3 50 252 ,            64 300                76 

60  33   33    216   96     42 72            53.33     

33.33 

3 50 120,             40 174                58 

67  42   42 400   180    68 75.76      58.44      

34.69 

4 50 220 ,           42 332                63 

57  57   57 90     54       24 71.43      60.00       

43.33 

2 50 36 ,             29 66                  53 

 

4.     COMPUTATIONAL RESULT 

The standard problems were solved using the Orumie and Ebong (2011) method and the most widely 

existing ones by Lee (1972) and Ignizio (1976), including Ignizio (1982),  as summarized in table 4.1 below. 

In the first problem, the maximum number of elements needed to be computed for all the  iterations in the 

proposed method was 250.  If the same problem were solved using the  simplex method presented by Lee, it 

would require a maximum 825 elements. If the same problem were solved using Ignizio (1976) and Ignizio 

(1982) methods, they would require a maximum of 600 and 400 elements respectively as shown in column 5 of 

the same table. On the same question, the current algorithm required eleven columns and five rows per table, 

while Lee and Ignizios required 15 columns, 11 rows, 15 columns, 8 rows and 10 columns, 8 rows respectively. 

The current method eliminated 40% of the deviational variable columns on the table unlike Lee (1972) and 

Ignizio (1976) that utilized full deviational variables columns. But Ignizio (1982) method eliminated 50% of the 

deviational variable columns on the same question. The current method also dispensed 55% rows in Lee and 

25% rows in both, Ignizio 1976 and 1982 respectively. It also dropped total 67%, 58%, 38% entries on Lee, 

Ignizio (1976) and Ignizio (1982) respectively. 

In problem 2, the maximum number of elements needed on the average to be computed for all the iterations in 

the proposed method was 84. If the same problem were solved using the simplex method presented by Lee, it 

would require a maximum 330 elements. If the same problem were solved using Ignizio (1976) and Ignizio 

(1982), it would require a maximum of 198 and 126 elements respectively. The current algorithm required 7 

columns and 4 rows per table, while Lee required 11columns, 10 rows. Both Ignizio (1976) and Ignizio (1982) 

require 11 columns, 6 rows and 7 columns, 6 rows respectively. Both Ignizio (1982) and the current method 

dispensed 50% of the deviational variable columns on the table unlike Lee and Ignizio that utilized full 

deviational variables columns. The current method also dispensed 60% rows in Lee and 33% rows in both, 

Ignizio 1976 and 1982 respectively. It also dropped total 68%, 58%, 19% entries on Lee, Ignizio(1976) and 

Ignizio(1982) respectively. 
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Also in problem 3, the maximum number of elements needed to be computed for all the iterations in the 

proposed method was 56. If the same problem were solved using the simplex method presented by Lee, it would 

require a maximum 108 elements whereas both Ignizio (1976) and Ignizio(1982) would require a maximum of 

90 and 70 elements respectively to solve the same problem. The current algorithm required 7 columns and 4 

rows per table, while Lee required required 9 columns, 6 rows. Both Ignizio(1976) and Ignizio(1982) would 

reqire 9 columns, 5 rows and 7 columns, 5 rows respectively. Both Ignizio(1982) and the current method 

eliminated 50% of the deviational variable columns on the table unlike Lee and Ignizio that utilized full 

deviational variables columns. The current method also dispensed 33% rows in Lee and 20% rows in both, 

Ignizio 1976 and 1982 respectively. It also dropped total 22%, 38%, 20% entries on Lee, Ignizio (1976) and 

Ignizio (1982) respectively. 

In problem 4, the maximum number of elements needed to be computed for all the  

iterations in the proposed method was 140. If the same problem were solved using the  

simplex method presented by Lee, it would require a maximum of 660 elements. If the same problem were 

solved using Ignizio (1976) and Ignizio (1982), they would require a maximum of 330 and 210 elements 

respectively. In  the same question, the current algorithm required 7 columns and 4 rows  per table, Lee  required 

11columns ,12 rows and both Ignizio (1976) and Ignizio (1982) would require  11columns ,6 rows and 7columns 

,6 rows  respectively to solve the same problem. Both Ignizio (1982) and the current method eliminated 50% of 

the deviational variable columns on the table unlike Lee and Ignizio that utilized full deviational variables 

columns. The current method also dispensed 67% rows in Lee and 33% rows in both, Ignizio 1976 and 1982 

respectively. It also dropped total 76%, 58%, 33% entries on Lee, Ignizio (1976) and Ignizio (1982) respectively. 

Furthermore, in problem 5, the maximum number of elements needed to be computed for all the 

iterations in the proposed method was 56. If the same problem were solved using the simplex method presented 

by Lee, it would require a maximum of 108 elements. If the same problem were solved using. If the same 

problem were solved using Ignizio (1976) and Ignizio (1982), it would require a maximum of 90 and 70 

elements respectively. The current algorithm required 7 columns and 4 rows per table, while Lee required 

9columns, 6 rows. Both Ignizio (1976) and Ignizio (1982) require 9 columns, 5 rows and 7 columns, 5 rows 

respectively. Both Ignizio (1982) and the current method dispensed 50% of the deviational variable columns on 

the table unlike Lee and Ignizio that utilized full deviational variables columns. The current method also 

dispensed 33% rows in Lee and 20% rows in both, Ignizio 1976 and 1982 respectively. It also dropped total 

19%, 38%, 20% entries on Lee, Ignizio (1976) and Ignizio (1982) respectively. 

In problem 6, the maximum number of elements needed to be computed for all the  

iterations in the proposed method was 135. If the same problem were solved using the  

simplex method presented by Lee, it would require a maximum of 363 elements, whereas if the same problem 

were solved using both Ignizio (1976) and Ignizio (1982), they would require a maximum of 231 and 147 

elements respectively. In the same question the current algorithm required 9 columns and 5 rows per table, while 

Lee required 11columns. Both Ignizio (1976) and Ignizio (1982) require 11 columns, 7 rows and 7 columns, 

7rows respectively. Both Ignizio(1982) and the current method dispensed 50% and 33% of the deviational 

variable columns on the table respectively, unlike Lee and Ignizio that utilized full deviational variables 

columns. The current method also dispensed 55% rows in Lee and 28% rows in both, Ignizio 1976 and 1982 

respectively. It also dropped total 63%, 42%, 8% entries on Lee, Ignizio(1976) and Ignizio (1982) respectively. 

In the problem 7, the maximum number of elements needed to be computed for all the iterations in the 

proposed method was 72. If the same problem were solved using the simplex method presented by Lee, it would 

require a maximum 396 elements. If the same problem were solved using Ignizio (1976) and (1982) , they would 

require a maximum of 144 and 96 elements respectively. In the same question, the current algorithm required 6 

columns and 3 rows per table, while Lee required 9 columns, 11 rows. Both Ignizio (1976) and Ignizio (1982) 

would require  9 columns ,4 rows and 6columns , 4 rows  respectively to solve the same problem. Both 

Ignizio(1982) and the current method dispensed 50% and 33% of the deviational variable columns on the table 

respectively, unlike Lee and Ignizio that utilized full deviational variables columns. The current method also 

dispensed 73% rows in Lee and 25% rows in both, Ignizio 1976 and 1982 respectively. It also dropped total 

86%, 50%, 25% entries on Lee, Ignizio (1976) and Ignizio (1982) respectively. 

In problem 8, the maximum number of elements needed to be computed for all the  

iterations in the proposed method was 84. If the same problem were solved using the simplex method presented 

by Lee, it would require a maximum of 300 elements. If the same problem were solved using Ignizio's method of 

(1976) and (1982), they would require a maximum of 180 and 126 elements respectively. In the same question 

the current algorithm required 7 columns and 4 rows per table, while Lee required 10 columns, 10 rows. Both 

Ignizio(1976) and Ignizio(1982) require 10 columns, 6 rows and 7 columns, 6 rows respectively. Both 
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Ignizio(1982) and the current method dispensed 50% of the deviational variable columns on the table, unlike Lee 

and Ignizio that utilized full deviational variables columns. The current method also dispensed 60% rows in Lee 

and 33% rows in both, Ignizio 1976 and 1982 respectively. It also dropped total 72%, 53%, 33% entries on Lee, 

Ignizio (1976) and Ignizio (1982) respectively. 

In problem 9, the maximum number of elements needed to be computed for all the iterations in the 

proposed method was 128. If the same problem were solved using the simplex method presented by Lee, it 

would require a maximum of 528 elements. If the same problem were solved using Ignizio (1976) and (1982), 

they would require a maximum of 308 and 196 elements respectively. The current algorithm required 8 columns 

and 4 rows per table, while Lee required 11columns, 12 rows. Ignizio (1976) and Ignizio (1982) require 11 

columns, 7 rows and 7 columns, 7 rows respectively.  Both Ignizio (1982) and the current method dispensed 

50% and 38% of the deviational variable columns on the table, unlike Lee and Ignizio (1976) that utilized full 

deviational variables columns. The current method also dispensed 67% rows in Lee and 42% rows in both, 

Ignizio 1976 and 1982 respectively. It also dropped total 76%, 58%, 35% entries on Lee, Ignizio (1976) and 

Ignizio (1982) respectively. 

Finally in problem10, the maximum number of elements needed to be computed for  

all the iterations in the proposed method gave 36. If the same problem were solved using the simplex method 

presented by Lee, it would require a maximum of 126 elements. If the same problem were solved using Ignizio 

(1976) and Ignizio (1982), they would require a maximum of 144 and 60 elements respectively. The current 

algorithm required 6 columns and 3 rows per table, while Lee required 9 columns, 7 rows. Both Ignizio (1976) 

and (1982) would require 9 columns, 5 rows and 6 columns, 5 rows respectively.  

Both Ignizio (1982) and the current method dispensed 50% and 75% of the deviational variable 

columns on the table, unlike Lee and Ignizio (1976) that utilized full deviational variables columns. The current 

method also dispensed 57% rows in Lee and 57% rows in both, Ignizio 1976 and 1982 respectively. It also 

dropped total 71%, 75%, 43% entries on Lee, Ignizio (1976) and Ignizio (1982) respectively. 

  

          5.                     SUMMARY 

Problems from standard published papers and texts were solved by both the proposed method and the 

existing methods to test their computational efficiency. The Orumie and Ebong(2011)  method has 

computational advantages over both Lee's full simplex method and Ignizio methods although they are, all 

accurate in reaching optimality. In all the tested examples, all the methods have the same number of iteration. 

However Ignizio (1976) and Lee's utilized full deviational variable columns, unlike Ignizio (1982) that 

maintained only 50% deviational variable columns. Furthermore Lee (1972) and Ignizio (1976) require the same 

number of column per iteration as shown in column 2 of table 4.1, but different number of rows. 

Column 7, 14 and 15 of table 4.1 shows that it is only Orumie and Ebong (2011) algorithm and Ignizio (1982) 

that dispensed some of the deviational variable columns. Average percentage of deviational variables (d) 

columns dropped by Orumie and Ebong (2011) method in Lee (1972) and Ignizio (1976) is 47.6% with standard 

deviation 12.7% as shown on column 11 of the same table. Average percentage of deviational variables (d) 

columns dropped by Ignizio (1982) in Lee (1972) and Ignizio (1976)= 50% with standard deviation 0.00 as 

shown on column 15 of table 4.1.  

Column 3 of table 4.1 shows that it is only the Orumie and Ebong(2011) algorithm that dispensed the highest 

rows. 

Average percentage row dropped by Orumie and Ebong(2011) method in Lee is 56% with standard deviation 

13.43% as shown on column 11 of table 4.1. Average percentage row dropped by the current method in Ignizio 

is 31.6% with standard deviation 11.20 %( see also column 11). Average % row dropped by the current method 

in Ignizio (1982) is 31.60% with standard deviation 11.20%.  

Column 5 of the same table shows that the Orumie and Ebong(2011) algorithm requires the least entries 

per table followed by Ignizio (1982), and Ignizio (1976). Lee has the highest entries per table.  

Average percentage of entries dispensed by the Orumie and Ebong(2011) method per problem in Lee is 62% 

with the best case = 86.4%, worst case =18.5% and standard dev. =22.8%.  Average % of entries dispensed by 

the Orumie and Ebong(2011) method per problem in Ignizio (1976) is 51% with the best case = 60%, worst case 

=37.78% and standard dev. =10%. Average percentage of entries dispensed by Orumie and Ebong(2011) method 

per problem in Ignizio (1982) is 27.44% with the best case = 43.33%, worst case = 8.16% and standard dev. = 

10.72%.(see column 13 of table 4.1). Average percentage entries dispensed by Ignizio per problem in Lee is 36% 

with the best case = 64%, worst case =17% and standard dev. =15%. Average percentage entries dispensed by 

Ignizio (1982) per problem in Lee is 56% with the best case = 76%, worst case =33% and standard dev. =14% 

(see column 16 and 17 of table 4.1).   
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6            CONCLUSION 

The Orumie and Ebong(2011) method has computational advantages over Lee’s and Ignizio’s methods 

since it yields a substantial reduction in the number of tableau elements computations in all the problems solved. 

It also eliminates on the average 56%, 31.6%, 31.6% rows on Lee’s method, Ignizio (1976), Ignizio (1982) 

method respectively, and eliminates on the average 62%, 51%, 27.44% of total entries in on Lee’s method, 

Ignizio (1976), Ignizio (1982) method respectively per problem as shown in Table 4.1 and, thus saves storage 

space. The Orumie and Ebong(2011) method eliminates on the average 47.5% deviational variables columns in 

both Lee (1972) and Ignizio (1976) method, but on the average utilize the same number of deviational variable 

columns with Ignizio (1982) method. Column 10 of table 4.1 above shows that Ignizi (1982) utilizes lesser 

deviational variable columns per problem than the Orumie and Ebong(2011) algorithm when the problem has 

more or all of the deviational variables in the objective function to be negative. 

 

5.3 mRECOMMENDATION 

It is recommended that the Orumie and Ebong(2011) method should be used since it reduces 

computational time of solving a problem. 

 

5.4   AREA FOR FURTHER RESEARCH 

Further research should be carried out on the modification of the Orumie and Ebong(2011) to be able to 

solve other types of GPP such as integer, zero-one goal programming, and quadratic goal programming. 

                                           

REFERENCES 

Aouni, B. & O. Kettani, (2001), Goal programming model: A glorious history                   and promising future. 

European Journal Of operation of operational research 133,225-231. 

Arthur J. L. & A. Ravindran, (1978), An efficient goal programming algorithm using constraint partitioning 

and variable elimination. Management Science. 24, 867-86. 

Calvete. H. I. & P. M. Mateo (1998): Lexicographic Optimisation in Generalised Network  

Flow Problems. Journal of the Operational Research Society, Vol. 49, No. 5, pp. 519-529. 

Charnes .A. & W. W.  Cooper (1961): Management Models and the Industrial        Applications of Linear 

Programming, Vols. 1 and 2. John Wiley, New York. 

Cohon ,T.L(1978) Multi objective Programming, Academic press, New York. 
Hannan, E. L(1985): An assessment of criticism of goal programming, computer and operation research 

12(6),525-541. 

Ignizio, J. P. (1967): Adaptive antenna array study, Boeing Company, RWA-5557. 

Ignizio, J.P (1982) Linear programming in Single and Multiple Objective System. Prentice  Hall,USA,page 408-

410. 

Ignizio J. P (1985): An algorithm for solving the linear goal-programming problem by solving its dual. Journal 

of operational Research Society. 36, 507-5 15. 

Kasana ,H.S (2003):Grouping Algorithm For Linear Goal Programming Problems. Asia  

Pacific Journal Of Operational Research;20,191-220. 

Lee, S. M. (1972): Goal Programming for Decision Analysis. Auer Bach, Philadelphia. 

Lee, S. M. and E. R.Clayton (1972): A goal programming model for academic resource allocation. 

Management Science, Vol.18, No.8, pp.395-408. 

Ogryczak, W. (2001), Comments on Romero C, Tamiz M and Jones DF (1998); Goal Programming, 

Compromise Programming and Reference Point Method Formulations: Linkages and Utility 

Interpretations, The Journal of the Operational Research Society, Vol. 52, No. 8, pp. 960-962. 

Olson D. L. (1984): Revised simplex method of solving linear goal programming problem. Journal of the 

Operational Research Society Vol. 35, No. 4(1984) pp 347-354. 

Schniederjans M. J. & N. K. Kwak (1982): An alternative solution method for goal programming problems: a 

tutorial. /. Operational Research Society. 33, 247-251. 

Scniederjans M.J (1995) Goal programming methodology and applications. Kluwerpublishers, Boston. 

 Yu  P.L  &  L.  H    L
1
  (1996),   An efficient method of solving Linear Goal Programming  

Problems. Journal of Optimization theory and applications vol.90,No. 2,pp465-467. 



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/journals/   The IISTE 

editorial team promises to the review and publish all the qualified submissions in a 

fast manner. All the journals articles are available online to the readers all over the 

world without financial, legal, or technical barriers other than those inseparable from 

gaining access to the internet itself. Printed version of the journals is also available 

upon request of readers and authors.  

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Recent conferences:  http://www.iiste.org/conference/ 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/

