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Abstract 

Womersley gave a solution for the case of a thin-walled elastic tube, it being assumed that the effect of the 

inertia term in the equations of viscous fluid motion can be neglected. He did not consider the presence of 

particles, to account for the blood cells in the blood, within the viscous flow through the tube (artery). 

In this paper, the corresponding solution for an oscillatory flow and particle suspension in a fluid (blood), to 

account for blood cells, through an elastic tube is obtained. This solution is the frequency equation as it was 

obtained by Womersley but it has a different structure. If the volume fraction particle density �, is removed from 

this solution it collapses to give the same equation as Womersley’s case, without particles. 
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1. Introduction: 

The problem of blood flow and wave propagation in the arterial system has stimulated the interest of 

physiologists and mathematicians for years. Its fundamental importance for present day research can be traced to 

Witzig and later to the works of Womersley [10]. The contributions of Womersley [10] represent the best 

attempt to date in developing a complete, practical, unified theory of arterial blood flow and pressure 

propagation [6]. 

A survey of the published literature on the propagation of waves in the arterial system will show a large variation 

of assumptions on the nature of flow conditions, fluid properties, and types of vessel walls. The analytical 

solutions for pulsatile flow in rigid tubes are therefore based on a combination of different assumptions, just the 

same as those of oscillatory flow through elastic tube. 

 The model used in this paper consists of three phases as against two phases by Womersley. The three phases are 

the fluid phase, particulate phase and the equations of motion of the tube. 

According to Womersley, the simple solution for the oscillatory motion of viscous liquid in a rigid tube, under a 

simple-harmonic pressure gradient, was given by Lambossay who gave the formula for velocity and viscous drag 

solely concerned with the effect of the viscous drag on the frequency response of pressure recording instruments. 

Womersley obtained the same result independently, in a different form and derived the expression for the rate of 

flow. 

For the equations of the elastic tube, we adopt Oslen J.W et al [7] and Womersley [10]. All the assumptions by 

Womersley are adopted and applied in this paper alongside his method of solution. The only variation between 

Womersley and this approach is the introduction of the particulate phase, with �, as the volume fraction particle 

density, so that we now simulate blood properly, with proper consideration to the existence of blood cells, as the 

particles. 

 

2. Methods 

2.1 Assumptions and Nomenclature (�� , ��) denote fluid phase velocities, (�	, �	) denote particulate phase velocities, 
�  and, 
	  are the actual 

densities of the materials constituting fluid and particulate phase respectively, (1 − �)
�   is the fluid phase 

density, �
	 the particulate phase density, P denotes the pressure, � denotes the volume fraction density of the 

particles, � is the particle fluid mixture viscosity and S is the drag coefficient of interaction for the force 

exerted by one phase on the other. Inertia terms of the equations of motion are neglected, diffusivity terms are 

also neglected. � is chosen as constant, and we assume that the pressure wave is harmonic in time having 

frequency n and wave velocity c. 

2.2 Formulation of the Model 

 A porous tapered elastic tube filled with a viscous fluid is considered as a model of a vascular bed in which 

successive branching of the blood cells leads to a rapid decrease in diameter with distance. The porosity of the 

tapered tube is adjusted to simulate the effect of branching 

The motion of the fluid is assumed to be cycisymetric and governed by the Navier-Stokes equations for an 

incompressible fluid, now modified to simulate the effect of particle suspension as follows: 
�(1−�)[
����� + �� ����� + �� ����� ] =  −(1−�)

�	�� +(1−�)[������� + �� ����� + ������� ] + ��(�	 − ��)                      (1) 
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�(1−�)[
����� + �� ����� ] =  −(1−�)

�	�� +(1−�)[������� + �� ����� − ���� + ������� ] + ��(�	 − ��)                          (2) 

With equation of continuity as, ���[(1−�)��]+ ���[(1−�)��]+ (���)��� = 0,                                                                                                        (3) 

where �� � ! �� are the axial and radial components of velocity, P is the pressure and 
� and  are the density 

and viscosity of the fluid respectively. 

The problem of determining the motion of a liquid in an elastic tube when subjected to a pressure – gradient 

which is a periodic function of the time arises in connection with the flow of blood in the larger arteries. The 

equations of motion of the tube from [6] are: ��"��� = �#$#� "%& [����' + &����� ]'(� + )#� [��"��� + *& �+��]                                                                                                  (4) 

��+��� = ,%#�  − -#� .*& �"�/ + +&�0                                                                                                                                                                                                         (5) 

Together with the boundary conditions for the motion of the fluid, ��= 
�+��  �1 2 = 1                �� = �"��  �1 2 = 1                                                                                                                                                (6)  

The particulate phase: The equations of motion of the particles are: 
	�[
��3�� + �	 ��3�� + �	 ��3�� ] = −� �	�� + ��(�� − �	)                                                                                      (7) 
	[

��3�� + �	 ��3�� + �	 ��3�� ] = −� �	�� + ��(�� − �	)                                                                                       (8) 

and their equation of continuity is: ���[��	]+ ���[��	]+ ��3� = 0                                                                                                                             (9) 

With boundary conditions ��= 
�+��  �1 2 = 1                 ��=
�"��  �1 2 = 1                                                                                                                                                 (10) 

 

3. Solution: The expression for the drag coefficient for the present study is selected as, 

� = 45 6$7� 89(:) , where 89(:) = ;<=>?;�=��@A�[5�=�]� + 3� 

Where C is the fluid viscosity, and ‘a’ is the radius of the particle. Relation where 89(:) represents the classical 

Stokes’ drag for small particle Reynolds number, modified to account for the finite particulate fractional volume 

through the function 89(:), obtained by [9]. 

In order to investigate the Pulsatile flow along the axis of the tube, we assume that the pressure wave is harmonic 

in time having frequency n and wave velocity c. We therefore assume that, 

(D, ��,��,�	,�	,)= [E�(F), ��(F), ��(F), �5(F), �5(F)] exp [in (t− �G)]                                                       (11) 

We shall be concerned with the motion in which 

 
��G , ��G , �3G , �3G , H&G  are small, i.e when the wave velocity, c is very large, as compared to �� ,��,�	,   �	, and nR. 

From (11) we can write 

P = E�(r)exp[in(t− �G)]                                                                                     I� = ��(r)exp[in(t− �G)]                                                                                     J�=��(r)exp[in(t− �G)]                                                                                                                                     (12)                                                                    I	 = �5(r)exp[in(t− �G)]                                                                                     J	 = �5(r)exp[in(t− �G)]                                                                                   ����� = ��in exp[in(t− �G)] K��KL = 0 ����� =  − �AG exp[in(t− �G)]                                                                                                                                 (13) �	�� = �	A�� exp[in(t− �G)]                                                     ����� = ��A�� exp[in(t− �G)]                   
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������� = ���A���  exp[in(t− �G)]   ����� = ��M  exp[in(t− �G)]                 �	�� = − 	ANH G exp[in(t− �G)]                                                                                                                            (13 cont.) ����� = ��A�� exp[in(t− �G)]                   ������� = ���A���  exp[in(t− �G)]                  ������� = �AG� exp[in(t− �G)]      ����� = − �G ��in exp[in(t− �G)]                                                                                                  

Neglecting the inertia terms in (1), we can write equation (1) as 
�(1−�)
��� �� = −(1−�)

�	�� +(1−�)[������� + �� ����� + ������� ] + ��(�	 − ��)                                                       (14) 

Now substituting equations (12) and (13) into equation (14) and neglecting the diffusivity terms  
�������  we have, 

Equation (14) simplifies to ���A�'� + �' ��A�' − NH&�" �� = − &�,ANH6G − &��O6(���) [�5 − ��]                                                                                         (15) 

Let P = Q(H")� 5R ⇒ P5 = &�H"                                                                                                                               (16) 

Substituting (16) in (15), we get ���A�'� + �' ��A�' − MP5�� = − &�,ANH6G − &��O6(���) [�5 − ��]                                                                                           (17) 

Similarly in equation (2), neglecting inertia terms, can be written as 

 
�(1−�) �����  =−(1−�)
�	�� +(1−�)[������� + �� ����� − ���� + ������� ] + ��T�	 − ��U                                             (18) 

Now substituting equations (12) and (13) into (18), we get ��M = − �#� �,A�� + "���A��� + "� ��A�� − P�� + �O#�(���) [�5 − ��]                                                                            (19) 

Let 2 = �& ⇒ F = 2Q, therefore equation (18) can be written as ⇒ ���A�'� + �' ��A�' − MP�5�� − �A'� = &6 �,A�' − &��V6(���) [�5 − ��]                                                                                 (20) 

Where  P�5 = &�H"  

For equations (19) and (20), the conservation of mass equation can be written using (12) and (13) and 

simplifying, we get �' �(�A')  �' = NH&�AG                                                                                                                                                     (21)      

Equations (19) and (20) are now the equations of motion of the fluid and equation (21) is the conservation of 

mass equation. 

3.1 Evaluating the particulate phase 

Now neglecting the inertia terms in equation (7), we can write equation (7) as 
	[
��3�� ] = − � �	�� + �	�� + ��(�� − �	)                                                                                                                (22) 

Now substituting (12) and (13) into (22), we have �� = V�A#3NH<V − �&[#3NH<V] �	A�'                                                                                                                                    (23) 

Also equation (8) can similarly be written as 
	 ��3�� = −� �	�� + ��(�� − �	)                                                                                                                          (24) 

Substituting equations (12) and (13) into (24), we get �� = 	ANHG[#3NH<V] + V�A#3NH<V                                                                                                                                         (25) 

The equation of conservation of mass of the particles can be written using (12) and (13) as �' �(��')�' = NH&��G                                                                                                                                                      (26) 

We can now re-arrange the equations of motion of the particles to be written from (23), (25) and (26) to have: �� = V�A#3NH<V − �&>#3NH<V@ �	A�'   

  �� = V�AG[#3NH<V] + 	ANH#3NH<V                                                                                                                                       (27)                       

with the equation of continuity as  
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�' �(��')�' = NH&��G   

Now to solve equations (19) and (20) [i.e. equations of motion of the fluid] 

From equation (23), equation (19) can be written as  ���A�'� + �' ��A�' − �A'� + WM=P5 + &��O6(���)T#3NH<VU − &�V6(���)X �� = &�6& [1 + �V6(���) − �#3NH<V] �	A�'                                    (28) 

Equation (28), can be written as ���A�'� + �' ��A�' − �A'� + M=P5Y5�� = &�6& [1 + �V6(���)(#3NH<V)] �	A�'                                                                                (29)    

where  Y5 = 1 + &��ONZ"A�(���)T#3NH<VU − &�VNZ"A�(���) 
Equation (29) can be written as  ���A�'� + �' ��A�' − �A'� + M=[5�� = &�\6& �	A�'                                                                                                                   (30) 

Where [ = P�Y � ! ] = 1 + �V(���)(#3NH<V) 
Using Bessel function, the solution of equation (30), expressing E� = ^�_C(`2), where k is to be determined. 

Then 
�	A�' = ^�a_�(a2), therefore equation (29) can be written as ���A�'� + �' ��A�' − �A'� + M=[5�� = &�6& ]^�a_�(a2)   With the solution  �� = �G + �� , where �G  � ! ��  are the 

complementary and particular solutions respectively, giving, 

 �� = bAc$(NZd�')c$(NZd�) − �& &�6 efAcA(e')NZd��e�                                                                                                                           (31) 

Similarly equation (20) has the solution, �� = b�c$(NZd�')c$(NZd�) − NH&�fAc$(e')NZd��e�                                                                                                                              (32) 

Now using the approximation, Womersley [10], to equations (31) and (32), where from the equation of 

continuity of the fluid we get the identities, GAG� = NH&d�N�G  

and 
N�H�&ZgfAG�6 = &e�fA6  ⇒ a = NH&gA �⁄G  , so that _C(a2) becomes _C iNH&gA �⁄G 2j = 1 and _�(a2) becomes M_� iH&gA �⁄G 2j = NH&'gA �⁄5G  

Also, we use the approximation  H&gA �⁄G = _C iH&gA �⁄G j = 1  

And H&'gA �⁄5G = _� iH&gA �⁄G j. 

Inserting these approximations in equations (31) and (32) we get �� = bAcA(NZd�')c$(NZd�) − �& &�6 efAcA(e')NZd��e� .  On further simplification we get �� = b�c$(NZd�')c$(NZd�) − N&�HgfA6GNZd�                                                                                                                                     (33) 

Since _C(a2) = _C iH&'gA �⁄G j = 1 and M=[5 − a5 = M=[5 similarly, �� = b�c$(NZd�')c$(NZd�) + gfA#�G-�, after simplification                                                                                                      (34) 

At the inner surface of the tube, i.e. when y=1, equation (33) and (34) become respectively, �� = �5 NH&G k5l�C([) + �5 NH&G gfA#�G-�                                                                                                                          (35) 

Where, l�C([) = 5cA(NZd�)d�NZc$(NZd�) 
And �� = k5 + gfA#�G-�                                                                                                                                           (36) 

The equations of motion of the tube are: - 

 
��"��� = �#$#� "%& [����' + &����� ]'(� + )#� [��"��� + *& �+��]                                                                                                  (37) 

��+��� = 	%#� − )#� [*& �"�� + +&�]                                                                                                                                    (38) 

Together with the boundary conditions for the motion of the liquid, �� = �+��  �1 2 = 1  
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�� = �"��   �1 2 = 1  

If it is now assumed that from (12) and (13) 8 = m�exp [M (1 − q k⁄ )] and  P = r�exp [M (1 − q k⁄ )], where m�  and r�  are arbitrary constants, the boundary 

conditions for �� and ��, using the boundary conditions for the motion of the liquid we have: �+�� = m� inexp[M (1 − q k⁄ )] = ��                                                                                                                        (39) 

But �� = m��exp [M (1 − q k⁄ )] from (39) 

Therefore �� = m�M                                                                                                                                             (40) 

From (36), we can write (37) as M m� = �5 NH&G [k5l�C([) + gfA#�G-�]                                                                                                                           (41) 

Also �" �� = r� inexp[M (1 − q k⁄ )] = ��                                                                                                               (42) 

But from (12), �� = ��exp [M (1 − q k⁄ )], this implies M r� = �� = k5 + gfA#�G-�]  
Therefore M r� = k5 + gfA#�G-�]                                                                                                                               (43) 

From (37) and (40), the equations of the tube become  m� 5 = fA%# − )# [c& i− NHuAG j + vA&�                                                                                                                            (44)  −r� 5 = #�"%#& W− �5 M=[5k5l�C([) + H�&�gG�#�-�X + )# .− H�uAG� + c& i− NHvAG j0,                                                                (45) 

Equations (41), (43), (44) and (45) are four homogeneous equations in the arbitrary constants w, ^�,k5, m� and r�. 

Eliminating them will give a frequency equation, which will determine the wave velocity c, in terms of the 

elastic properties of the tube and the non-dimensional parameter [. The result of the elimination is: 

 x
�kY5 
              1              0                   −M      

M Qx2k5
�Y5 
M Ql�C2k  

            −M                            0 

  1ℎ
 
                0          5 − )#&�                  

NHc{#&G   

−[
�P 5Q5x +  5
�Px5Q2k=
�Y5ℎQ ]        
N#�&H-��A$5%#  

      

        − NHc{#&G             5(1 − )#G�) 

Operating on the rows and columns of equation (46) and neglecting 
H�&�G�d� and continuing operating on rows and 

columns until we get 

||
  x               1g5               �A$5                       0                                1−1                                0-�e            00               − �5 l�CY5

                 �}e                        �*}e                          �*}e                            1 − }e
|| = 0                                                            (47) 

where a = %##�& , � ! L = e)#�G� 

Equation (47) can be written as 

||
x                                  1x                                  l�C             0                       1−2                        0Y5                        00                         ��A$-�e5         −L                  −~L−~L                (a − L)|| = 0                                                                     (48) 

Whose solution is [x(1 − ~5)(1 − l�C)]L5 − .2Y5 + ax(1 − l�C) + l�CY5 ig5 − ~ − ~xj0 L + 2aY5 + l�CY; = 0                    (49) 

This reduces to  

= 0  (46) 
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(1 − ~5)(1 − l�C)L5 − .2 + a(1 − l�C) + l�C i�5 − 2~j0 L + 2a + l�C = 0                                                      (50) 

I.e. when x = 1 and Y5 = 1 in (48), i.e., when � = 0, since  x = �<�V(���)(#3NH<V)  and  Y5 = ��&��VGZ"A�(���)(#3NH<V) − &�V(���)NZ"A� 

Using Womersley [10], the roots of equation (49) are given by (1 − ~5)L = � ± [�5 − (1 − ~5)�]� 5R                                                                                                                (51) 

where  � = W��� <A��*X(���A$) + e5 + *W���A$��� i�<A�jX�A�T���A$-�U(���A$)                                                                                           (52) 

When Y5 = 1 and x = 1, i.e. � = 0 equation (51) reduces to � = .�<A��*0(���A$) + e5 + ~ − �; , which is Womersley’s 

[10] solution for the case without suspension and the same as [6]. 

 

4. Conclusion 

In terms of the notation used in the case of the solid case, 
����A$ = exp(−M�) /]�C9  so that the quantities required 

to compute the roots of equation (49) are already available. When ��C([) is complex, L is always complex and 

the motion is either damped or unstable. 

If we write ((1 − ~5) L 2R )� 5R = � − M� and denote by wC  the velocity for the perfect fluid, then if w�  is the 

wave-velocity, 
wC w�R = � and over a distance of one wavelength the amplitude will be reduced to the ratio exp (−2� � �R )   [6] [10]. Since Womersley’s case without suspension is considered as the first best description 

of blood flow in arteries, we have now further proved that our model is in line with this best description of blood 

flow and the propagation of waves in the arterial system. 
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