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Abstract 

Our main aim of this paper is introduced some new unique common random fixed point theorems of random 

operators in Hilbert Space by considering a sequence of measurable functions satisfying conditions A or B and C. 

Our results are motivated from [3, 5, 6, 7, 8]. 
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1. Introduction and preliminaries: 

In recent years, the study of random fixed points has attracted much attention; some of the recent literatures in 

random fixed point may be noted in [1, 2, 3].  In this paper we construct a sequence of measurable function and 

consider its convergence to the common unique random fixed point of two continuous random operators defined 

on a non- empty closed subset of a separable Hilbert space. For the purpose of obtaining the random fixed point 

of the two continuous random operators. We have introduced a rational inequality and used the parallelogram 

law. 

Throughout this paper, (Ω, Σ) denotes a measurable space consisting of a set  and sigma algebra ⅀ of subset of 

Ω.  � stands for a separable Hilbert space and C is nonempty closed subset of H. 

1.1 Definition: A function f: Ω → 	  is said to be measurable if 
��(B⋂ C) ∈ Σ for every Borel subset B of H. 

1.2. Definition: A function F: Ω � 	 → 	 is said to be a random operator if F(., x) : Ω →→ 	 is measurable for 

every x ∈ 	. 

1.3. Definition:  A measurable function g: Ω → 	 is said to be a random fixed point of the random operator 

F: Ω � 	 →  C if F(t(g(t))) = g(t)  for all  t ∈ Ω. 

1.4. Definition:  A random operator F: Ω � 	 → C is said to be continuous if for fixed t ∈ Ω,      F(t, .) : � → C is 

continuous. 

 

1.5. Theorem: Let  C be a non-empty closed subset of a separable Hilbert space H. Let S and T be two 

continuous random operators defined on C such that for t ∈ Ω, S(t, .), T(t,.):  	 → C satisfy condition (C). Then S 

and T have a common unique random fixed point in C. and satisfy the following  condition 

��� − ���� ≤ ���� − ������ − ���� 

1 + �� − ��� + �[  �� − ���� +    �� − ����] +  C�� − ���  
                   For each x, y in C, a, b, being positive real number such that 0< � + � < 1/2. 
Proof : We define a sequence of function {&'} as &) : Ω → 	   is arbitrary measurable function for t∈ Ω and n = 

0, 1, 2, 3…   . 

&�'*�(t) =   S(t, &�'(t))            &�'*�(0) =   T(t, &�'*�(t))                                      (1)                                

                             

If &�'(t) =&�'*�(t) = &�'*�(0)  for t ∈ Ω, for some n then we see that &�'(t) is a random fixed point of S and T. 

therefore we suppose that no two consecutive terms of sequence {&'}  are equal. Now consider for t ∈ Ω 

�&�'*�(t) − &�'*�(0)�� =   �S3t, &�'(t)4 − T(t, &�'*�(t)) ��
 

 ≤ ��S3t, &�'(t)4 − T(t, &�'*�(t))���&�'(t) − S(t, &�'(t))��

1 + �&�'(t) − &�'*�(t)��  

   +b[�&�'(t) − S(t, &�'(t)) �� + �&�'*�(t) − T(t, &�'*�(t)) ��]  
   +6[�&�'(t) − &�'*�(t)��]  
    =  7�89:;<(=)� 89:;9(>)) �9�89:(>)�89:;<(>)�9

�*�89:(>)�89:;<(>)�9      

+�[�&�'(t)−, &�'*�(t)) �� + �&�'*�(t)−, &�'*�(t)) ��] 
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+6[�&�'(t)−, &�'*�(t)) ��]  
= (a + b) �3 &�'*�(t)4 − &�'*�(t))�� + (b + c)�&�'(t)−, &�'*�(t)) ��  

⟹ [1 − (� + �)]�3 &�'*�(t)4 − &�'*�(t))�� ≤ (� + 6)�&�'(t)−, &�'*�(t)) ��  

⟹ �3 &�'*�(t)4 − &�'*�(t))� ≤ (� + 6)
[1 − (� + �)] �&�'(t)−, &�'*�(t))� 

⟹ �3 &�'*�(t)4 − &�'*�(t))� ≤ K�&�'(t)−, &�'*�(t))�        Where C =  [ (D*E)
[��(7*D)]]

<
9  ≤ �

� 

In general 

⟹ �&'(t)−, &'*�(t)) � ≤ F �&'��(t)−, &'(t)) � 

⟹ �&'(t)−, &'*�(t)) � ≤ F' �&)(t)−, &�(t)) �     for all  0 ∈ Ω                                                      (2)     

Now, we shall prove that for t ∈ Ω , {&'(t)} is a Cauchy sequence. For this for every positive integer p we have, 

for t ∈ Ω 

⟹ �&'(t) − &'*G(t) � =  �&'(t) −  &'*�(t) + &'*�(t) −  … … … + &'*G��(t) − &'*G(t) � 
  

    ≤ �&'(t) −  &'*�(t) � + �&'*�(t)−, &'*�(t)) � + ⋯ … . +�&'*G��(t) − &'*G(t)�  

    ≤ [F' + F'*� + ⋯ + F'*G�� ]�&)(t)−, &�(t)) �          by (2) 

    = F'[1 + C + F� … + FG�� ]�&)(t) −  &�(t)) � 

     ≤ J:

(��K) �&)(t) −  &�(t)) �         for all  0 ∈ Ω 

as L → ∞,  �&'(t) −  &'*G(t) � → 0 it follows  that for 0 ∈ Ω ,  {&'(t)}  is a Cauchy sequence and  hence is 

convergent in Hilbert space H. 

For 0 ∈ Ω, let 

        {&'(t)} → &(0) as n → ∞                                            (3) 

Since C is closed, g is a function from C to C. 

Existence of random fixed point:  For  0 ∈ Ω, 

�g(t) − T(t. g(t))�� =     �&(0) − &�'*�(t) + &�'*�(t) −  … … … T(t. g(t)) �  

                                         ≤ 2�g(t) − &�'*�(t)�� + 2�&�'*�(t) − T(t. g(t))�� 

by parlallelogram law �� + ��� ≤ 2[���� +  2����] 
                                        = 2�g(t) − &�'*�(t)��+2��30. &�'(t)4 − T(t. g(t))��

 

                                 

≤ 2�g(t) − &�'*�(t)�� + �7�R3=.89:(>)4�S3>,8(=)4�9�89:(>)�R3=.89:(>)4�9

�*�89:(>)�8(=)�9 +                            2b T�&�'(t) −
St, &2Lt2 +&0−Tt,&02  +2c [&2Lt−&02] 

                            = 2�g(t) − &�'*�(t)�� + 2��&�'*�(t) − T3t, &(0)4��

1 + �&�'(t) − &(0)�� + 2b[�&�'(t) − &�'*�(t)�� 

+ �g(t) − T3t, &(0)4��] + 2c [�&�'*�(t) − T3t, &(0)4��
 

   As {&�'*�(t)} and {&�'*�(t)} are subsequences of {&'(t)} as  L → ∞, {&�'*�(t)} →  g(t)   and {&�'*�(t)} →
&(0) 
Therefore, 

                                 
⟹ �g(t) − T(t. g(t))�� 

≤ 2�g(t) − g(t)�� + 2��&(0) − &(0)��[1 + �g(t) − g(t)�� ]
1 + �g(t) − g(t)�� +2b[�g(t) − g(t)�� + �g(t) − T3t, &(0)4��]  

              +2	[�g(t) − T3t, &(0)4�� ]                              
  ⟹ [1 − 2�]�g(t) − T3t, &(0)4�� ≤ 0 

   �g(t) − T3t, &(0)4�� = 0                       ( as 2b < 1) 

⟹ T3t, &(0)4 = g(t)                                         ∀ 0 ∈  Ω                                                                  (4)    

In an exactly similar way we can prove that for all t ∈  Ω, 

             ⟹ S3t, &(0)4 = g(t)                                                                                                       (5) 

Again if  A: Ω�	 →  is a continuous random operator on a non empty subset C of a separable Hilbert space H, 

then for any  measurable function 
: Ω → 	,   the function  h(t) = Y(0, 
(0)) is also measurable [1] 

 It follows from the construction of {&'}  (by (1))  and the above consideration that{&'}    is a sequence of 

measurable function. From (3), it follow that g is also a measurable function. This  fact along with (4) and (5)  

shows that  g: Ω → 	   is common random fixed point of S and T. 
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Uniqueness: 

Let  ℎ: Ω → 	   be another random fixed point common to  S and T that is for t ∈  Ω. 
S3t, ℎ(0)4 = h(t) 

T3t, ℎ(0)4 = h(t) 

Then for     0 ∈  Ω. 
                 ⟹     �g(t) − ℎ(0)�� =  �S(t, g(t) − T3t, ℎ(0)4��

 

                                                     

≤ ��S3t, g(t)4 − T3t, ℎ(0)4���g(t) − S3t, g(t)4�
1 + �g(t) − h(t)�� + �[�g(t) − S3t, g(t)4�� 

+ �h(t) − T3t, ℎ(0)4��] + c[�g(t) − h(t)�]�   
    ≤ ��ℎ(0) − ℎ(0)���g(t) − g(t)�

1 + �g(t) − h(t)�� + �[�g(t) − g(t)�� + �h(t) − h(t)��]  + c[�g(t) − h(t)�]�  

  ⟹  (1 − c)�g(t) − ℎ(0)�� ≤ 0     
 ⟹  g(t) =  ℎ(0)  for all t ∈  Ω. 
This complete proof of theorem. 
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