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Abstract 

 This Paper present some common fixed point theorem for Occasionally Weakly Compatible mapping in Q-

fuzzy metric spaces under various conditions. 
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1. Introduction: 

The concept of fuzzy sets introduced by Zadeh [12] in 1965 plays  an   important role in topology and analysis. 

Since then, there are many author to study the fuzzy set with application. Especially Kromosil and Michalek [10] 

put forward a new concept of fuzzy metric spaces. George and Veermani [6] revised  the notion of fuzzy metric 

spaces with the help of continuous t-norm. As a result of many fixed point theorem for various  forms of 

mapping are obtained in fuzzy metric spaces. Dhage [5] introduced the definition of D-metric spaces and proved 

many new fixed point theorem in D-metric spaces. Recently, Mustafa and Sims[13] presented a new definition 

of  G-metric  space  and  made  great contribution to the development of Dhage theory.  

On  the other  hand ,Lopez-Rodrigues and  Romaguera [11] introduced  the  concept of  Hausdorff  fuzzy  metric  

in  a  more  general  space . 

 The Q-fuzzy metrics spaces is introduced by Guangpeng Sun and kai Yang[7] which can be cosider as a 

Generalization of fuzzy metric spaces. Sessa [18] improved commutativity condition in fixed point theorem by 

introducing the notion of weakly commuting maps in metric space. R.Vasuki[14] proved fixed point theorems 

for R-weakly commuting mapping  Pant [14,15,16] introduced the new concept of reciprocally  continuous 

mappings and established some common fixed point theorems. The concept of compatible maps by [10] and 

weakly compatible maps by [8] in fuzzy metric space is generalized by A.Al Thagafi and Naseer Shahzad [1] by 

introducing the concept of occasionally weakly compatible mappings. Recent results on fixed point in Q-fuzzy 

metric space can be viewed in[7]. In this paper we prove some fixed point theorems for four occasionally weakly 

compatible owc mappings which improve the result of  Ganpeng Sun and Kai Yang [7] in Q-fuzzy metric spaces. 

 

2. Preliminary Notes: 

Definition:2.1[2] A binary operation  

∗:[0,1]×[0,1]→[0,1] is a continuous t-norm if it satisfy the following condition: 

(i)   ∗ is associative and commutative . 

(ii)  ∗ is continous function. 

(iii)  a∗1=a for all  a∈ [0,1] 

(iv) a∗b≤c∗d whenever a≤c and b≤d and      a,b,c,d ∈ [0,1] 

Definition  2.2[7] : A  3-tuple  (X,Q, ∗ )  is 

 called a Q-fuzzy metric space if X is  an  arbitrary (non-empty) set ,* is a continuous  t -norm,  and Q  is  a fuzzy 

set on  

X
3
×(0,∞),satisfying the following   conditions  for  each  x,y,z,a ∈ X and   t ,s> 0 : 

(i) Q( x,x,y,t)>0  and Q(x,x,y,t)≤ Q(x,y,z,t)   for all x,y,z ∈  X  with  z≠y 

(ii) Q ( x,y,z,t)=1  if and only if x =y = z 

(iii) Q(x,y,z,t) = Q(p(x,y,z),t),(symmetry)  where  p  is  a permutation   function , 

(iv) Q(x,a,a,t) ∗Q(a,y,z,s)≤Q(x,y,z,t+s), 

(v) Q(x,y,z,. ):( 0 ,∞)→[0,1] is continuous 

A  Q-fuzzy metric  space is said to be   symmetric if  Q( x,y,y,t)= Q(x,x,y,t) for  all x,y ∈ X . 

Example : Let X is a non empty  set  and  G  i s  t h e G-metric on X. Denote a*b = a.b  for all a, b ∈[0,1].For  

each  t > 0 : 

                                  Q(x,y,z,t) =
�

���(	,�,�) 
Then (X,Q,∗) is a Q-fuzzy metric . 

Definition 2.3[6] Let (X,Q,∗) be a Q-fuzzy  metric  space.For  t>0, the open ballBQ(x,r,t)  with  center  x∈X  and  

radius   0 <r<1 is defined by                        BQ( x,r,t)={y∈X:Q(x,y,y,t)>1-r}  
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A subset A  of X  is  called open  set if for  each  x∈A there exist t>0  and 0<r<1 such that  BQ(x,r,t) ⊆  A . 

A sequence { xn} in X converges to x if and only if  Q (xm,xn,x ,t) →1  as  n→∞,for each t>0. It is called a  

Cauchy sequence if for each  0 <ε<1 and t>0,there existn0∈N   such  that  Q(xm,xn,x1)>1- ε for each l, n ,m ≥ 

n0.The  Q-fuzzy metric space  is called   to  be complete  if  every Cauchy sequence is convergent. Following  

similar argument  in G-metric space, the  sequence {xn} in X   also  converges  to x  if  and only if  Q(xn,xn,x,t) 

→1  as  n→∞, for each t >0   and  it  is a Cauchy  sequence   if  for  each   0 <g<1  and  t>0, there exist n0∈N  

suc h  that  Q(xm,xn,xn) > 1-ε for each n,m ≥ n0. 

Lemma2.4[7] : If  (X,Q, ∗)  be a Q-fuzzy  metric space,then Q(x,y,z,t) is non-decreasing with respect to  t  for all  

x,y,z in X . 

Proof: Proof is this is implicated in [7] 

Lemma2.5[7] : Let (X,Q, ∗)  be a Q-fuzzy  metric space.(a) If there exists a positive  number k<1 such that : 

Q(yn + 2,yn + 1,yn + 1,kt)≥Q(yn+1,yn,yn, t ),t >0, n ∈N  then{yn} is a Cauchy sequence in X.  

(b) if there exists k ∈ ( 0,1) such that Q(x,y,y,kt) ≥ Q(x,y,y,t) for all x, y ∈X  and       t > 0    then   x= y . 

Proof: By the assume lim�→∞ Q(x, y, z, t ) =1  and  the property of  non-decreasing, it  is easy  to get the  results .  

Definition 2.6[3]: Let X be a set, f and g Self maps of X. A point x ∈ �  is called a coincidence point of f and g 

iff fx=gx .We shall call w=fx=gx a point of coincidence of f  and g. 

Definition 2.7[7]:   Let f  and g be  self  maps   on  a  Q-fuzzy metric  space          (X ,Q,*) .Then  the  mappings  

are  said  to  be weakly  compatible   if   they commute  at   their  coincidence  point, that  is,  f x =gx   implies  

that   fgx = gfx . 

Definition 2.8 [7]: Let  f  and g  be  self maps  on  a  Q-fuzzy metric  space      (X,Q, *) .  The  pair  (f ,g) is   

said to be compatible if  

lim�→∞ �(����,gf��, gf�� , �)=1   whenever {xn} is a sequence in X such that 

lim�→∞ ���=lim�→∞ ���=z  for some z∈ � 

Definition 2.9[3]: Two self maps  f and g of a set X are occasionally weakly compatible (owc) iff there is a point  

x  in X which is coincidence point of  f  and  g at which f and g  commute. 

Lemma 2.10 [9]: Let X be a set, f , g  owc self  maps of X. If  f and g have unique point of coincidence, w = f x 

= g x , then w is  the unique common fixed point of   f  and g . 

 

3. Main Result 

Theorem 3.1 :  Let  (X,Q,∗) be complete symmetric Q-fuzzy metric space and       f ,g ,S and T be a self 

mapping of  X. Let the pair {f, T} and {g, S} be owc. If there exist  k ∈ (0,1) such that 

Q(fx,gy,gy,kt) ≥ Q(Tx,Sy,Sy,t)∗Q(Tx,gy,gy,t) ∗Q(fx.Sy,Sy,t) ∗Q(fx,Tx,Tx,t)…(1) 

For all x ,y ∈ � "#$ �%& "'' � > 0,then there exist a unique point w ∈ X such that  f w =Tw=w  and a unique 

point z ∈ X such that g z = S z =z, Moreover, z = w so that  there is a unique common fixed point of  f , g ,S and 

T. 

Proof:Let the  pair {f,T} and {g ,S} be owc, so there are point x ,y ∈ � such that fx =Tx and gy = Sy. We claim 

that f x= gy. If not by inequality (1) 

Q(fx,gy,gy,kt)≥Q(fx,gy,gy,t)∗Q(fx,gy,gy, t)∗Q(fx,gy,gy,t)∗Q(fx,fx,fx,t) 

                           ≥Q(fx, gy, gy ,t )∗1 

                        ≥Q(fx, gy, gy ,t ) 

Therefore  f x = g y   i.e. fx=Tx=gy=Sy. 

Suppose that there is another  point  z such that  f z=T z   then  by  (1) we have       f z = Tz =g y = S y , So f x = f 

z and   w = f x = T x  is the unique  point of coincidence of  f and g by Lemma 2.10 w is the only common fixed 

point of f and g. Similarly there is a unique point z∈ �. such that z= gz =Sz. 

Assume that w≠ * . We have 

Q(w,z,z,kt) = Q(fw,gz,gz,kt) 

                   ≥Q(Tw,Sz,Sz,t)∗Q(Tw,gz,gz,t) ∗Q(fw.Sz,Sz,t) ∗ Q(fw,Tw,Tw,t) 

                      ≥Q(w,z ,z, t)∗Q(w ,z ,z ,t) ∗Q(w, z, z, t) ∗Q(w, w, w, t) 

                      ≥Q(w,z ,z, t)∗1  
                      ≥Q(w,z ,z, t)   

Therefore we have z = w by Lemma 2.10 and z is unique common fixed point of   f ,g, S and T. The uniqueness 

of the fixed point holds from (1). 

Theorem 3.2 : Let  (X,Q,∗) be complete symmetric Q-fuzzy metric space and         f ,g ,S and T be a self 

mapping of  X. Let the pair {f, T} and {g ,S} be owc. If there exist k ∈ (0,1) such that 

Q(fx, gy, gy, kt)  ≥ ∅ /01# 2Q(Tx, Sy, Sy, t), Q(Tx, gy, gy, t)
 , Q(fx. Sy, Sy, t), Q(fx, Tx, Tx, t)56   ..................(2)    

for all x,y ∈ � and ∅: 80,19 → 80,19 such that ∅(�) > � for all 0< t< 1,then there exist a unique common fixed 

point of  f ,g ,S and T. 
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Proof: The proof  follows from Theorem 3.1 .  

Theorem 3.3 Let (X,Q,∗) be complete symmetric Q-fuzzy metric space and  f ,g ,S and T be a self mapping of  

X. Let the pair {f, T} and {g, S} be owc. If there exist k ∈ (0,1) such that 

Q(fx, gy, gy, kt)  ≥ ∅ 2Q(Tx, Sy, Sy, t), Q(Tx, gy, gy, t),
Q(fx. Sy, Sy, t), Q(fx, Tx, Tx, t) 5 .....(3) 

For all x,y ∈ �, t>0 and ∅[0,1]
4→[0,1] such that ∅(t,t,t,1) >t for all 0< t< 1 then there exist a unique common 

fixed point of  f ,g ,S and T. 

Proof: Let the  pair {f,T} and {g ,S} be owc, so there are point x ,y ∈ � such that   f x =Tx and gy = Sy. We 

claim that f x= gy .If not by inequality (3) 

Q(fx, gy, gy, kt)  ≥ ∅;Q(fx, gy, gy, t), Q(fx, gy, gy, t), Q(fx, gy, gy, t), Q(fx, fx, fx, t)<     

                           ≥ ∅  {Q(fx,gy,gy,t), Q(fx,gy,gy,t), Q(fx,gy,gy,t),1} 

                           > Q(fx,gy,gy,t) 

 Therefore  f x = g y   i.e. fx=Tx=gy=Sy. 

Suppose that there is another  point  z such that  f z=Tz  then  by  (3) we have f z =T z =g y = S y , So f x = f z 

and   w = f x = T x  is the unique  point of coincidence of  f and g by Lemma 2.10 w is the only common fixed 

point of f and g. Similarly there is a unique point z∈ �. such that z=gz=Sz. 

Q(fx, gy, gy, kt)  ≥ ∅ 2Q(Tx, Sy, Sy, t), Q(Tx, gy, gy, t),
Q(fx. Sy, Sy, t), Q(fx, Tx, Tx, t) 5 

Assume that w≠ * . We have 

Q(w,z,z,t) =  Q(fw,gz,gz,kt) 

                   ≥ ∅;Q(Tw, Sz, Sz, t), Q(Tw, gz, gz, t), Q(fw. Sz, Sz, t), Q(fw, Tw, Tw, t)< 

                   ≥ ∅;Q(w, z, z, t), Q(w, z, z, t), Q(w, z, z, t), Q(w, w, w, t)< 

                  ≥ ∅;Q(w, z, z, t), Q(w, z, z, t), Q(w, z, z, t), 1< 

                  > Q(w,z,z,t) 

Therefore we have z = w  by Lemma 2.10 and z is unique common fixed point of  f ,g, S and T. The uniqueness 

of the fixed point holds from (3).  
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