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1.Introduction and Preliminaries:  

Kasahara [8] had shown that if an iterated sequence defined by using a continuous linear mapping is convergent 

under certain assumption, then the limit point is a common fixed point of each of two non-linear mappings. 

Ganguly [6] arrived at same conclusion by taking the same contractive condition and using the sequence of 

Mann iteration [9].  

              It this note, it is proved that if a random Mann iteration scheme is defined by two operators is 

convergent under some contractive inequality the limit point is a common fixed point of each of two random 

operators in a Banach space. 

                  The study of random fixed point has been an active area of contemporary research in mathematics. 

Random iteration scheme has been elaborately discussed by Choudhury ([1], [2], [3], [4]). Looking to the 

immense applications of iterative algorithms in signal processing and image reconstruction, it is essential to 

venture upon random iteration. 

           We first review the following concepts, which are essential for our study.   

Throughout this paper ( Ω, ∑ ) denotes a measurable space and X  stands for a separable Banach space. C  is a 

nonempty subset of  X . 

A mapping :f Ω C→  is said to be measurable if ( ) ∑∈∩− CBf 1
 for every Borel subset B  of X . 

A mapping :F Ω ,CC →×  is said to be a random operator, if ( ) :., xF Ω C→ is measurable for every 

Cx∈ . 

A  measurable mapping :g Ω C→  is said to be a random fixed point of the random operator :F Ω

,CC →×  if ( ) )()(, tgtgtF =  for all  ∈t Ω. 

A random operator :F Ω CC →×  is said to be continuous if, for fixed  ∈t Ω, ( ) CCtF →:,.  is 

continuous. 

Definition 1 (Random Mann Iteration scheme): Let  :,TS Ω CC →× be two random operators on a 

nonempty convex subset  C  of a separable Banach space X . Then the sequence { }nx
 
of random Mann 

iterates associates with TS or   is defined as follows: 

(1) Let :0x Ω C→  be any given measurable mapping. 

(2)  ( ) ( ))(,1)(1 txtScxctx nnnnn +−=+  for 0>n , ∈t Ω,  or  

(3)   ( ) ( ))(,1)(1 txtTcxctx nnnnn +−=+  for 0>n , ∈t Ω, 

where nc  satisfies: 

(4)   10 =c  for 0=n  

(5)    10 ≤< nc  for 0>n  
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(6)    0lim >=
∞→

hcn
n

 

           2.Main Result: 

Theorem 1: Let :,TS Ω ,CC →× where C is a nonempty closed convex subset of a separable Banach space

X , be two continuous random operators which satisfy the following inequality: for all Cyx ∈, and ∈t Ω, 

            

( ) ( ) ( ) ( ){ }
( ) ( ){ }

( ){
( ) })()()(,)(                                                            

 ,)()()(,)(max                                            

)(,)(,)(,)(max                                      

)(,)(,)(,)(,)()(max,,    (7)
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tytTtytxtStx

txtStytytTtxtytxytTxtS

−+−

−+−+

−−+

−−−≤−

γ

β

α

                              

            where 1 and 0,, <++≥ γβαγβα  . 

  If the sequence { })(txn of random Mann iterates associated with TS or  satisfying    (1)-(6) converges, then it 

converges to a common random fixed point of both TS   and . 

Proof: We may assume that the sequence { })(txn  defined by (2) is pointwise convergent, that is, for all ∈t Ω, 

  (8)                                    )(lim)( txtx n
n ∞→

=
 

 Since X  is a separable Banach space, for any continuous random operator  

:A Ω ,CC →× and any measurable mapping :f Ω C→ , the mapping ( ))(,)( tftAtx =  is measurable 

mapping [7].  

      Since )(tx  is measurable and C  is convex, it follows that{ })(txn  constructed in the random iteration from 

(2)-(6) is a sequence of measurable mappings. Hence being limit of measurable mapping sequence is also 

measurable. Now for ∈t Ω, from (2), (6) and (7) we obtain 

( ) ( ))(,)()()()(,)( 11 txtTtxtxtxtxtTtx nn −+−≤− ++  

                           ( ) ( ) ( ))(,)(,)(1)()( 1 txtTtxtSctxctxtx nnnnn −+−+−≤ +  
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Now   ( )( ) ( ) )()()()(,)()(, 1 txtxtxctxtSctxtxtSc nnnnnnnnn −=−=− +  

Implies that   ( ) )()(
1

)()(, 1 txtx
c

txtxtS nn

n

nn −≤− +  

This shows that for ∈t Ω,  ( ) ∞→→− ntxtxtS nn  as 0)()(,  and so 

( ) ∞→→− ntxtxtS n  as 0)()(,  as S  is continuous random operator and x  is a  

measurable mapping. Consequently from (9) on taking limit as ∞→n  we obtain 

( ) ( ) ( ) ( ){ }[
( ){ } ( ){ }])(,)( ,0max)(,)( ,0max                                

0 ,)(,)( ,0max)(,)(10)(,)(

txtTtxtxtTtx
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                            ( ) ( ))(,)(1 txtTtxhhhh −+++−≤ γβα  

implies that ( ) )()(, txtxtT =  for all ∈t Ω ( )1 sin <++ γβαce  as T  is continuous random operator and 

x  is measurable. 

Therefore, 

( ) ( ) ( ))(,)(,)()(, txtTtxtStxtxtS −=−

( ) ( ){ }
( ) ( ){ }
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                                ( ) ( ))(,)( txtStx −++≤ γβα  

Since 1<++ γβα  implies that ( ) )()(, txtxtS = .  

Uniquness:-Let )()(  ),( txtvtv ≠ is another common fixed point of S and T ,then, using (7), we have  

( ) ( ){ }
( ) ( ){ }

( ){
( ) })()()(,)(                                                            

 ,)()()(,)(max                                            

)(,)(,)(,)(max                                      

)(,)(,)(,)(,)()(max)()( 

tvtxtvtTtv

tvtxtxtStx

tvtTtvtxtStx

txtStvtvtTtxtvtxtvtx

−+−

−+−+

−−+

−−−≤−

γ

β

α

 

{ }
{ }

{
})()()()(                                                            

 ,)()()()(max                                            

)()(,)()(max                                      

)()(,)()(,)()(max                      

tvtxtvtv

tvtxtxtx

tvtvtxtx

txtvtvtxtvtx

−+−

−+−+

−−+

−−−≤

γ

β

α

 

          )()()(                      tvtx −+≤ γα  

     1     as   )()( <+=⇒ γαtvtx  

This complete the proof. 
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