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Abstract  

In this paper we introduce the concept of function-ε-chain between two sets in topological spaces through 
continuous function which is the extension of function-ε-chain between two points of the space. Simple 
characterization of function-ε-chainable sets in terms of function –ε-chains between their points has been 
established. In case of metric space, the equivalence of ε-chainability and function-ε-chainability of sets is also 
established in this paper. Further some results of [1] have been generalized. 
Subject Classification: AMS (2000):54A99 
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Throughout this paper �  will stand for topological space with topology � and � ∶  � → [0, ∞) will be a real 
valued non-constant continuous function unless stated otherwise. 
1.  Definitions 

Let � be a subset of the topological space �. For � >  0,              
let  �� � (�) = { � ∈ �: ∣ �(�) − �(�) ∣ < � }, where  ∣ �(�) − �(�) ∣= ��� { ∣ �(�) − �(�) ∣ : � ∈ �} 

1.1. Definition 

 Let � ⊂ � .Then � −diameter of � is defined to be  !"{ ∣ �(�) − �(�) ∣ ∶ �, � ∈ � } and is denoted by  #�(�).    

1.2. Definition  

Let �, $ ⊂ �. Then �-distance between � and $ is defined to be  ��� {∣ �(�) − �(%) ∣∶   � ∈ �, % ∈ $} and is 
denoted by  &�(�, $). 

1.3. Remark 

  �� �(�) = {�: &�(�, �) < �}           

1.4. Definition 

 A topological space (�, �) is said to be function-� − � -chainable if for � > 0 there exists a non-constant 
continuous function �: � → [0, ∞)  such that for every pair of elements  �, ( ∈  �  there is a sequence 
  � =  �), �*, �+, … , �- = (  of elements in � with   ∣ �(�.  ) − �(�./*) ∣ <  �  ; 1 ≤ � ≤ �    
1.5. Definition  

 Let (�, �) be a topological space and let there exist a non –constant continuous function �: � → [0, ∞)  such that 
� is function−� − � −chainable for every � > 0. Then � is said to be function−� −chainable.        
1.6. Definition 

Let �, $ ⊂  � .  A function−� − � −chain of length �  from �  to $  is a finite sequence �),, �*, �+, … , �- of 

subsets of �  with � = �),  �- = $, �./* ⊂ �� �(�.)  and  �. ⊂ �� �(�./*) . If function  – � − � − chain exist 

between � and $ we say that < �, $ > is function−� − � −chainable and < �, $ > is function−� −chainable if 
it is function−� − � −chainable for each positive �. 
        Using the notation inductively construct the set �� �

- (�) for each � ∈ 45 as follows:              

  �� �
* (�)  =  �� �(�) for each � ≥ 2 set  �� �

- (�) = �� �(�� �
-/*(�)). The following should be observed:          

(1)     �� � 
- (�)  ⊂ �� �

-5*(�) 

(2)   �� �
- (�) ⊂ �� -�(�) 

We set 8� �(< �, $ >) to be the length of the shortest function−� − � −chain between � and $. 

1.7. Example of function−9 − : −chainable sets 

Let  � be a topological space with odd even topology which is a partition topology generated by ; =
{ {1,2}, {3,4} , {5,6}, … . } and �: � → [0, ∞) define by  �(2@) = @ , �(2@ − 1) = @ is continuous function. Let 
� =  {1,2} , $ =  {3,4}  and  � = 1.2  then �� �(�) = {1,2,3,4}  and   �� �($) = {1,2,3,4,5,6}  or           � ⊂

 �� �($) ��& $ ⊂ �� �(�) AB � = �), �* = $   then < �, $ > is � − � −chainable for � = 1.2 
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2.  Theorems 

2.1. Some results whose proofs are obvious hence omitted. 
2.1.1. Result 
Let �, $ ⊂  �, then 

i.  &�(�, $) < �  if $ ∩ �� �(�) ≠ ∅   

ii. &�(�, $) < �  if � ∩ �� �($) ≠ ∅  

iii. � ⊂ �� �(�) 

iv.iv.iv.iv. �� �(�) ⊂ �� �($) if � ⊂  $  

v. �� �(�) ∪ �� �($) = �� �(� ∪ $) 

vi. �� �(� ∩ $) ⊆ �� �(�) ∩ �� �($)  

2.1.2. Result 
 If < �, $ >   and  < J, K >  are � − chainable then < � ∪ J , $ ∪ K >   is also � − chainable  where   
�, $, J, K ⊂  � 
2.2. Theorem  

Let (�, �) be a topological space and � ⊂ � then 

� ⊆ ∩
�L)

�� �(�) = � 

Proof :    As  A ⊂ �� �(�) , ε > 0 then A ⊆ ∩
�L)

�� �(�) 

Let  � ∈ �    then   �(�)  ∈  �(�)  ⊂  �(�)      or  there exists ( ∈ �  such that |�(�) − �(()| < �                          
or  � ∈ �� �(�),   ∀  � > 0    

or    � ⊂ ∩
�L)

�� �(�) 

         Suppose that � ⊈  ∩
�L)

�� �(�)    or there exist   � ∈ ∩
�L)

�� �(�)    such that   � ∉ �                            

or  there exist � ∈ �� �(�),   ∀ � > 0  such that  � ∉ �  and  hence  � ∉   � 

Or |�(�) − �(�)| ≠ 0  or  |�(�) − �(�)| = :′  for some real number :′  > 0  or  � ∉  �� �(�)  for � <  :′  .  

This contradicts that  � ∈ �� �(�)   ∀  � > 0   

                           Hence         � = ∩
�L)

�� �(�)                                                                                                                       

2.2.1.  Collolary  

 � is closed if and only if  
 � = ∩

�L)
�� �(�). 

Characterization of function−� − � −chainable sets in terms of function−� − � −chains between points and 
sequence is given below. 
2.3. Theorem  

Let �, $ ⊂  � and < �, $ > be function−� − � −chain from every point of � to some point of $ and vice-versa . 
Also converse holds. 
Proof:  We prove the necessary part first. As < �, $ > is function−� − � −chainable there exists a sequence 
  �), �* , … , �-  of subsets of � with   � = �), �- = $,   �. ⊂ �� �(�./*) and �./* ⊂ �� �(�.) ;  1 ≤ � ≤ �.  Let 

 � ∈  �  be arbitrary. Then � ∈  � or  � ∈  �� �(�*)   AB  |�(�) − �(�*)|  <  �   for some �* ∈ �* .                  

Again  � ∈  �* then  |�(�*) − �(�+)|  < �  for some    �+ ∈ �+. Repeating the above process � times we obtain 
a sequence of points    � =  �), �*, �+, … , �- = ( ∈ $  such that  |�(�.) − �(�./*)|  < � ;   1 ≤ � ≤ �  and  
�. ∈ �.,  showing that there exist a function−� − � −chain from � to (. Likewise we can obtain a function−� −
� −chain from every point of $ to a point of �. 
              We next prove the sufficient part. Let there exist a function−� − � −chain from every point of � to 
some point of $ and vice-versa.   Let  �* = {( ∈ �: |�(() − �(�)| < � for some � ∈ � and � ≠ (}.         Clearly 
�* ≠ ∅  and �* ⊂ �� �(�).  Next we show that  � ⊂ �� �(�*) . If � ∈  �  then there exist a sequence                     

� =  �), �*, �+ … , �- = ( ∈  $ such that |�(�) − �(�*)| < �  or  �*  ∈  �* then  |�(�) − �(�*)| < �               
 or   � ∈  �� �(�*)  or  � ⊆  �� �(�*).  

            Again let  �+ = {( ∈ �: |�(() − �(�)| < � �AB  Aef � ∈ �* ��& � ≠ ( }.                                                 
Clearly �+ ≠ ∅ , �+ ⊂ �� �(�*)  and it can be shown as above that �* ⊂ �� �(�+). Repeating the above process  

�  times we obtain a sequence � = �), �* , … , �- = $  of subsets of � , such that < �, $ >  is function−� −
� −chainable. 
2.4. Theorem  

Let �, $ ⊂  �, if   #�(� ∪ $) ≤ �,  then < �, $ > is function−� − � −chainable. 
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Proof : Obvious 
In next theorem the equivalence of � −chainability and function-� − � −chainability of two sets is obtained in 
metric spaces. 
2.5. Theorem  

Let (�, &)  be  a metric space and (�, �) be  topological space. If < �, $ >  is ε-chainable then < �, $ >  is 
� − � −chainable for some continuous function � ∶ � → [0, ∞). 
Proof:  Let � ∈  �   and  � ∶  � → [0, ∞) be defined as  �(�)  = &(�, � )  ∀  � ∈ �.  Let < �, $ >  be   

�– chainable where �, $ ⊂  �. Then there exist �–chain of finite sequence � =  �), �*, �+, … , �- = $ such that 

�./* ⊂ ��(�.)   and   �. ⊂ ��(�./*). Let x ∈ ��(�.)     or    &(�, �.) < � 

AB inf
g∈hi

&(�, �) < �  or  d(x, a) < � for some � ∈ �. .                                                                                                    

Now   &(�, �)  ≤  &(�, � )  +  &(�, �)   
or   �(�) − �(�) ≤ &(�, �) < �  AB  |�(�) − �(�)| < �    
or |�(�) − �(�.)| < �    or    � ∈  �� �(�.)   or  ��(�.) ⊂ � � �(�.).   

Hence  �./* ⊂ �� �(�.)  and   �. ⊂ �� �(�./*)  or  < �, $ > is � − � − chainable. 

2.6. Theorem  

Let < �- > be monotonically increasing sequence of positive real number converging to �  (arbitrary). Then 
< �, $ > is function−� − �-chainable if and only if  there exists a subsequence < �-k

> of < �- > such that 

< �, $ > is function−� − �-k
-chainable for each @ ∈ l. 

Proof: Similar to proof of theorem 2[1] 
2.7. Theorem  

Let �, $ ⊂ � . If (� ∪ $) is connected and � >  e�� {#�(�), #�($)}  then < �, $ >  is function −� −

� −chainable. 
Proof:  Similar to proof of theorem 4[1] 
2.8. Theorem  

Let �, $ ⊂  �   and � >  e�� {#�(�), #�($), &�(�, $)}  then < �, $ >  is function −� − � − chainable and 

8��(< �, $ >) = 2. 

Proof :Similar to proof of Preposition [1] 
2.9.  Theorem  

 � is function−� − � −chainable if and only if < �, $ > is function−� − � −chainable for every pair of subsets 
�, $ of  �. 
Proof : Similar to proof of theorem 5[1] 
2.10.  Theorem  

Let �, $ ⊂  �. Then � = $ if and only if < �, $ > is function−� −chainable and   8� �(< �, $ >) = 1. 

Proof : Similar to theorem 7[1] 
2.11.  Theorem  

If  �� �
- (�)  ⊂ $ ⊆ �� �

-5*(�)  , then < �, $ > is function−� − � −chainable and  8� �(< �, $ >) = � + 1.  

Proof : Similar to proof of theorem 8[1] 
2.12.  Theorem  

Let � be function−� − � −chainable. Define a relation ~ on � as follows: 
< �, $ >  ~  < J, K > if and only if 8� �(< �, $ >) = 8� �(< J, K >). 

Then  ~  is an equivalence relation on � , which partitions �  into disjoint equivalence classes denoted 

by < �, $ > , < J, K > . 
Proof : Obvious. 
2.13.  Theorem  

Let {� = �), �*, �+, … , �- = $}  be a simple chain [3] then < �, $ >  is function−� − 2� −chainable where 
� >  e�� {#�(�), #�(�*), #�(�+), … , #�($)}. 

Proof : Let � ∈ �,   ( ∈  (� ∩ �*),   n ∈ �*   
then  |�(�) − �(()|  < �   and   |�(() − �(n)| <  �     or |�(�) − �(n)| < 2�   or   |�(�) − �(�*)| < 2�     
or   � ∈  �� +�(�*)    or    � ⊆   �� +�(�*). 

then   inf
o∈h

|�(�) − �(n)| < 2�   AB    |�(n) − �(�)| < 2�                                                                          

Or  n ∈ �� +�(�)   or  � ⊂ �� +�(�*)   and   �* ⊂ �� +�(�).  

 Similarly �*⊂�� �(�+),  �+⊂�� �(�*), …, �-/*⊂�� �(�-) and �-⊂�� �(�-/*).       

 Thus the sets �*, �+, … , �-/*  forms a function−� − � −chain from � to $  that is < �, $ > is function−� −
2� −chainable. 
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