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ABSTRACT 

The object of this paper is to obtain a common random fixed point theorem for two continuous random operators 

defined on a non empty closed subset of a separable Hilbert space for integral type mapping. 
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1. INTRODUCTION AND PRELIMINARIES  
   Impact of fixed point theory in different branches of mathematics and its applications is immense. The first 

result on fixed points for Contractive type mapping was the much celebrated Banach’s contraction principle by S. 

Banach [9] in 1922. In the general setting of complete metric space, this theorem runs as the follows,  

Theorem 1.1 (Banach’s contraction principle) Let (X,d) be a complete metric space, c (0,1)∈ and f: X→X be 

a mapping such that for each x, y ∈X, d (fx,fy) cd (x,y)≤   Then f has a unique fixed point a ∈X, such that 

for each x ∈ X, lim
n

n f x a→∞ = . 

  After the classical result, Kannan [7] gave a subsequently new contractive mapping to prove the fixed point 

theorem. Since then a number of mathematicians have been worked on fixed point theory dealing with mappings 

satisfying various type of contractive conditions. 

         In 2002, A. Branciari [1] analyzed the existence of fixed point for mapping f defined on a complete metric 

space (X,d) satisfying a general contractive condition of integral type.  

Theorem 1.2 (Branciari) Let (X,d) be a complete metric space, c (0,1)∈ and let f: X→X be a mapping such 

that for each x, y ∈ X,   

    

:[0, ) [0, )ξ +∞ → +∞ is a Lebesgue  Where 

is summable on each compact subset of [0, )+∞ , non integrable mapping which 

negative, and such that for each ϵ > o, ( )
0

t dtξ
∈
∫  , then f has a unique fixed point a ∈ X  such that for each x∈X, 

lim
n
f x an =→∞ . After the paper of Branciari, a lot of a research works have been carried out on generalizing 

contractive conditions of integral type for different contractive mappings satisfying various known properties. A 

fine work has been done by Rhoades [2] extending the result of Branciari by replacing the condition [1.2] by the 

following 

          

    

 

The aim of this 

paper is to generalize some mixed type of contractive conditions to the mapping and then a pair of mappings 

satisfying general contractive mappings such as Kannan type [7], Chatrterjee type [8], Zamfirescu type [11], etc. 

   In 2010, the study of random fixed points has attracted much attention. Some of the recent literatures in 

random fixed point may be noted in  Rhoades [3], and Binayak S. Choudhary [4].In this paper, we construct a 

sequence of measurable functions and consider its convergence to the common unique random fixed point of 

four continuous random operators defined on a non-empty closed subset of a separable Hilbert space. For the 

purpose of obtaining the random fixed point of the four continuous random operators. We have used a rational 

inequality (from B. Fisher [5] and S.S. Pagey [10]) and the parallelogram law. Throughout this paper, (Ω, Σ) 

denotes a measurable space consisting of a set Ω and sigma algebra Σ of subsets of Ω, H stands for a separable 

Hilbert space and C is a nonempty closed subset of H. 

d (fx,fy) ( , )
( ) ( )0 0

d x y
t dt t dtξ ξ≤∫ ∫

0 0

( , ) ( , )max ( , ), ( , ), ( , ),
( , ) 2

( ) ( )

d x fy d y fxd x y d x fx d y fy
d fx fy

t dt t dtξ ξ

 
 
 
  

+

≤∫ ∫
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Definition 1.3.   A function f: Ω → C is said to be measurable if 
1( )f B C− ∩ ∈∑  for every Borel subset B of H. 

Definition 1.4. A function :F C CΩ× → is said to be a random operator if (., ) :F x CΩ → is measurable 

for every x C∈  

Definition 1.5. A measurable :g CΩ→ is said to be a random fixed point of the random operator 

:F C CΩ× →  if  ( , ( )) ( )F t g t g t=  for all t∈Ω  

Definition 1.6. A random operator F: Ω×C → C is said to be continuous if for fixed   t∈Ω , ( ,.) :F t C C→  

is continuous. 

Condition (A). Two mappings, T, S: C → C, where C is a non-empty closed subset of a Hilbert space H, is said 

to satisfy condition (A) if 

0 0

2 2
1

2 22
1

1
w ith a , 0 ,

2

( ) ( )

y Ty x Sx

x Sx y Tyx y
S Tx y

b a b

a t dt b t dtξ ξ

 
  

− + −

− + −+ −
−

≥ + <

≤ +∫ ∫         

where ,x y C∈  : R Rξ + +→  is a lebesgue- integrable mapping which  is   summable on each compact 

subset of R +
, non negative, and such that for each    ∈  > o ,    

0

( )t d tξ
∈

∫ . 

2. MAIN RESULTS 

Theorem 2.1. Let C   be a non-empty closed subset of a separable Hilbert spaceH . Let S and T  be two 

continuous random operators defined on C  such that for, t∈Ω ( , .), ( , .) :T t S t C C→ satisfy condition (A) 

then  S  and T  have unique common random fixed point. 

Proof: We define a sequence of functions { }ng as 
0g  : Ω → C is arbitrary measurable function for t∈Ω , and 

n = 0, 1, 2, 3, . . .  2 1 2 2 2 2 1( ) ( , ( )) , ( ) ( , ( ))n n n ng t S t g t g t T t g t+ + += =
------------------------ (1) 

If 
2 2 1 2 2( ) ( ) ( )n n ng t g t g t+ += =  for t∈Ω  for some n then we see that { }2ng    

is a random fixed point of S 

and T. Therefore, we suppose that no two     consecutive terms of sequence { }ng are equal. 

Common random fixed point theorem:   Now Consider for  t∈Ω  
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2 2

2 1 2 2 2 2 1

2 2

2 1 2 1 2 2

2

2 2 1

( ) ( ) ( , ( )) ( , ( )

0 0

( ) ( , ( ) 1 ( ) ( , ( )

1 ( ) ( )

0

( ) ( )

( )

                               

                                

 

n n n n

n n n n

n n

g t g t S t g t T t g t

g t T t g t g t S t g t

g t g t

d d

a d

ξ λ λ ξ λ λ

ξ λ λ

+ + +

+ +

+

− −

 − + −  

+ −

≤

≤

∫ ∫

∫
2 2

2 2 2 1 2 1

2 1

( ) ( , ( ) ( ) ( , ( )

0

( )

0

( )

( )

                               

                               

                                

                              

n n n n

n

g t S t g t g t T t g t

g t g

b d

a d

ξ λ λ

ξ λ λ

+ +

+

 − + −  

−

+

=

∫

[ ]

2 2
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2
2 2 1
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2 2 1 2 1 2 2
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2 1 2 2 2 2 1

2
2 1 2 2

( ) 1 ( ) ( )

1 ( ) ( )

( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

( ) ( )

0
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( ) ( )

1 ( ) ( ) ( )
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+
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+

= +

⇒ − + ≤

∫

∫

∫

∫
2

2 2 1

2 2

2 1 2 2 2 2 1

( ) ( )

0

( ) ( ) ( ) ( )

0 0
( ) ( )

1 ( )

n n

n n n n

g t g t

g t g t g t g tb
d d

a b
ξ λ λ ξ λ λ

+

+ + +

−

− −
⇒ ≤

− +

∫

∫ ∫  

   

2 2

2 1 2 2 2 2 1( ) ( ) ( ) ( )

0 0
( ) ( )

1
2 1

where 
1 ( ) 2

n n n ng t g t g t g t

d k d

b
k

a b

ξ λ λ ξ λ λ
+ + +− −

⇒ ≤

=
− +

 
 
 

∫ ∫

p  

 
                        In Integral  

  

1 1

1 1

( ) ( ) ( ) ( )

0 0

( ) ( ) ( ) ( )

0 0

( ) ( )

( ) ( )

                        fo r ( 2 )

n n n n

n n n n

g t g t g t g t

g t g t g t g t

d k d

n
d k d

t

ξ λ λ ξ λ λ

ξ λ λ ξ λ λ

+ −

+ −

− −

− −

≤

≤

∈ Ω − − − − − − − − − − − − − −

∫ ∫

∫ ∫
 

  

   Now, we shall prove that for t∈Ω , ( )ng t is a Cauchy sequence. 

  for Common  random   fixed point theorem every positive integer p, 

 We have, 
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1 1 2 2 1
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0
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( )
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1 ... ( )
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d

d
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ξ λ λ

ξ λ λ
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− + − + + + −
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∫

∫

∫

1( ) ( )t g t−
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( )
0 1( ) ( )

0

( ) ( )

0

( )
1

( ) 0  for 
n n p

g t g t

g t g t

n
k

d
k

d tLim
n

ξ λ λ

ξ λ λ
+

−

−

≤
−

⇒ ∈ Ω=
→∞

∫

∫
 

It follows that for, { }( )ng t  is a Cauchy sequence and hence is convergent   in closed subset C of Hilbert space 

H. 

  

{ }( )

0

lim ( ) ( ) 
ng t

d g t
n

ξ λ λ =
→∞ ∫ For t∈Ω ------------------------------------- (3) 

   Existence of random fixed point: Consider for t∈Ω  

    

2

2

2 1 2 1

2
2 1

( , ( )) ( ))

0

( , ( )) ( ) ( ) ( ))

0

( , ( )) ( )

0 0

2
( ) ( ))2 1

    

( )

( )

2 ( ) 2 ( )

n n

n

T t g t g t

T t g t g t g t g t

T t g t g t g t g tn

d

d

d d

ξ λ λ

ξ λ λ

ξ λ λ ξ λ λ

+ +

+

−

− + −

− −+

=

≤ +

∫

∫

∫ ∫

 

                                       [By parallelogram law
2 2 2

x y x y+ ≤ + ] 

                     

     

  

 As ( ){ }2 1ng t+ and ( ){ }2 2ng t+ are subsequences of ( ){ }ng t  

                         asn→ ∞ , ( ){ } ( ){ }2 1ng t g t+ → and ( ){ } ( ){ }2 1ng t g t+ →
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Therefore, 

  

                          

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( )

[ ]

2 2

2 2

2

2 2

2

2

( , )

0 0

( , ) 1

1

0

( , )

0

( , )

0

( ) ( , ( ))

0

( ) ( , ( ))

0

( ) 2 ( )

2 ( )

2 ( )

2 ( )

1 2 ( ) ( ) 0

( )

g t T t g t g t g t

g t T t g t g t g t

g t g t

g t g t g t T t g t

g t T t g t

g t T t g t

g t T t g t

d d

a d

b d

a b d

a b d

d

ξ λ λ ξ λ λ

ξ λ λ

ξ λ λ

ξ λ λ

ξ λ λ

ξ λ λ

− −

 − + −  
 + −  

 − + −  

−

−

−

≤

+

+

≤ +

⇒ − + ≤

⇒

∫ ∫

∫

∫

∫
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(4 )

T t g t

as a b

g t
d d tξ λ λ ξ λ λ

= +

⇒ = ∀ ∈ Ω

− − − − − − − − − − − − − − − − − − − − −

∫

∫ ∫

p

 

    

                Common unique random fixed point theorem 

In an exactly similar way we can prove that for all t∈Ω  

                               
( , ( )) ( )

0 0
( ) ( )

S t g t g t

d dξ λ λ ξ λ λ=∫ ∫ --------------------- (5) 

 Again, if A: Ω × C → C is a continuous random operator on a non-empty subset C of a separable 

Hilbert space H, then for any measurable function f : Ω → C, the function h(t) = A(t, f(t)) is also measurable [3]. 

      It follows from the construction of { }ng  (by (1)) and the above   consideration that { }ng is a sequence of 

measurable functions. From (3), it follows that g is also a measurable function. This fact along with (4) and (5) 

shows that g: Ω → C is a common random fixed point of S and T. 

Uniqueness- 

    Let h: Ω → C be another random fixed point common to S and T, that     is, for t∈Ω    

        

( , ( )) ( ) ( , ( )) ( )

0 0 0 0

( , ( )) ( )

0 0

( ) ( ) ( ) ( )

( ) ( )

,

,

T t h t h t S t h t h t

S t h t h t

d d d d

d d

ξ λ λ ξ λ λ ξ λ λ ξ λ λ

ξ λ λ ξ λ λ

= =

=

∫ ∫ ∫ ∫
∫ ∫

  

  Then for t∈Ω , 
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This completes proof of theorem (2.1). 
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