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Abstract 

By employing an addition theorem for the confluent hypergeometric function, Paris R.B.[3], has obtained a 

Kummer-type transformation for a 2F2 (x) hypergeometric function with general parameters in the form of a sum 

of 2F2 (-x) functions. Recently, Choi Junesang and Rathie Arjun K.[1], has obtained the same result without 

using the addition theorem. The aim of this paper is to derive the result of Paris R.B.[3], with change in the 

general parameters without using the addition theorem in the line of Choi Junesang and Rathie Arjun K.[1]. 
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1. Introduction and results required 

We start with a Kummer-type transformation for a 2F2 (x) hypergeometric function with general parameters in 

the form of a sum of 2F2 (-x) functions due to Paris R.B.[3, Eq.(3)]: 

 

2F2(� , d ; b, c ; �) = ��  ∑
� !"#$

�%#$   &!
(
&)* �−�#& 2F2(, − � , d ; b, c + n ; �)                                ……. (1.1) 

where (�)n = 
 -�./0#

-.
 (n =0,1,2,3, ……. ) is the Pochhammer symbol. 

 

Paris R.B.[3], also considered several interesting special cases of (1.1).This result (1.1) was established with the 

help of the integral representation for 2F2 [5, Eq.(4.8.3.11)]: 

 

2F2(� , d ; b, c ; �)= 
 -1

-. -�1! .#  2 3.! 44

*
�1 − 3#1!.! 4

  1F1(d ; c ; �3)  dt                                   ……. (1.2) 

 

and 

2F2(� , d ; b, c ; �)= 
 -1

-. -�1! .#  2 31!.! 44

*
�1 − 3#.! 4

  1F1(d ; c ; �- �3)  dt                              ……. (1.3) 

 

provided R(b) > 0 and R(�) > 0, and the addition theorem for the confluent hypergeometric function in the form 

due to Slater L. J.[4, Eq.(2.3.5)]: 

 

1F1(d ; c ; �- �3)= ��  ∑
� !"#$

�%#$   &!
(
&)* �−�#& 1F1(d ; c + n ; −�3)                                               ……. (1.4) 

Paris R.B.[3],  remarked that the special case of (1.1) when c = d reduces to the well-known Kummer's first 

theorem due to [5]: 

 

1F1(� ; b ; �) =  ��
1F1(, − � ; b ; −�)                                                                                    ……. (1.5) 

 

Choi Junesang and Rathie Arjun K.[1], has derived the following result: 

2F2(6 , � ; 7, b ; �) = ��  ∑
� !"#8

�%#8   9!
(
9)* �−�#9 2F2(, − � , d ; b, c + r ; �)                                ……. (1.6) 

 

The aim of this paper is to derive the result of Paris R.B.[3], with change in the general parameters without using 

the addition theorem in the line of Choi Junesang and Rathie Arjun K.[1]. 

 

2. Main Result 

2F2(, , � ; �, b ; �+y) = ��/:  ∑
�.!1#;

�.#;   <!
(
<)* �−� − =#<  

                                                            2F2(, − �, b ; b, � + ? ; −�-y)                                                    ……. (2.1) 
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Proof:- 

Start with the left-hand side of (2.1) and use (1.2), it becomes 

 

2F2(,, � ; �, b ; �+y) = 
 -.

-1 -�.! 1#  2 31! 44

*
�1 − 3#.!1! 4

  

                                                      1F1(, ; � ; �3+yt)  dt                                                                           ……. (2.2)              

 

which can be written as 

 

2F2(,, � ; �, b ; �+y) = 
 -.

-1 -�.! 1# ��/:
 2 31! 44

*
�1 − 3#.!1! 4

 �!�!:
  

                                                              1F1(, ; � ; �3+yt)  dt                                                                       ……. (2.3)              

           

Using equation (1.5) in the integrand of the integral in equation (2.3), we have  

 

2F2(, , � ; �, b ; �+y) = 
 -.

-1 -�.! 1# ��/:
 2 31! 44

*
�1 − 3#.!1! 4

 �!��4!@#!:�4!@#            

                                        1F1(� − , ; � ; −�3-yt)  dt                                                              ……. (2.4) 

           

Now expand �!��4!@#!:�4!@# in equation (2.4) as the Maclaurin series, after a little simplification, we obtain 

 

2F2(, , � ; �, b ; �+y)  = 
 -.

-1 -�.! 1#   ��/:  ∑
�!�!:#;

<!   
(
<)*   2 31! 44

*
�1 − 3#.!1/A! 4

 �!��4!@#!:�4!@#
  

                                                               1F1(� − , ; � ; −�3-yt)  dt                                                             ……. (2.5) 

           

Substituting 1-t = z  in equation (2.5) and simplifying, we have 

 

2F2(, , � ; �, b ; �+y)  = 
 -.

-1 -�.! 1#   ��/: . ∑
�!�!:#;

<!   
(
<)*     2 �1 − B#1! 44

*
B.!1/A! 4

 �!��4!@#!:�4!@# 

                                                              1F1(� − , ; � ; −��1 − B# – y(1-z))  dz                                          ……. (2.6) 

 

Finally, applying (1.3) to the integral part in the last identity, we have 

 

2F2(, , � ; �, b ; �+y) = ��/:  ∑
�.!1#;

�.#;   <!
(
<)* �−� − =#<  

                                                            2F2(, − �, b ; b, � + ? ; −�-y)                                                        ……. (2.7) 

 

This completes the proof of (2.1). 
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