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Abstract 

In this paper, we derive several interesting subordination results for certain class of analytic functions defined by the 

Salagean Operator which was introduced and studied by Oyekan et. Al.[1]. 
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1. INTRODUCTION AND DEFINITIONS 

Let A denote the class functions of the form: 

   

which are analytic in the open unit disk  For two functions  and  given by 

  and  

Their Hadamard product (or Convolution) is defined by 
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Let  be the Salagean operator (see [2]), 

defined as 

 

 

 

 

 

By using the above Salagean operator, Oyekan et. al.[1] introduced and investigated certain properties of the class 

 This class is due to the class  earlier introduced and studied by Eker and 

Seker [3]. The class is defined as the class of all functions  which satisfies the 
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following condition: 
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where ≺ denotes subordination, A and B are arbitrary fixed numbers 

and  

We note that  

  

  

and (see [1]). 

Also, 

  and  

(see [2]). 

Furthermore, for functions , Oyekan et. al.[1] proved the following inequality: 

Lemma 1.1 ([1]). If  satisfies 

  

For some , then 

.   

Let  denote the class of functions  whose Taylor-Maclaurin coefficients  

satisfy the condition (1.8). 

We note that  

      

and that  and  are the coefficients  and  depending on β. 

In this paper, we obtain a sharp subordination result associated with the class   by using the 

same techniques as in [4] (see also [5-7]). 

However, before we state and prove our main result we need the following definitions and lemmas. 

Definition 1.1 (Subordination Principle). Let  be analytic and univalent in U. If  is analytic in U, 

 and  then we see that the function  is subordinate to  and we write 

 

Definition 1.2 (Subordinating Factor Sequence). A sequence  of complex numbers is called a subordinating 

factor sequence if, whenever  is analytic, univalent and convex in U, we have the subordination given by 

     

Lemma 1.2 ([8]). The sequence  is a subordinating factor sequence if and only if 

    Re{1+2 }>0        (z ).            (1.11) 
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MAIN THEOREM    

Theorem 2.1. Let the function  defined by (1.1) be in the class  where  

and   Also let ᴋ denote 

the familiar class of functions  which are also univalent and convex in U. Then,  
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The constant 
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is the best estimate. 

Proof. Let ),,,;,()( min  BAEzf  and let 
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(2.3) 
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By invoking definition (1.2), the subordination (2.1) of our theorem will hold true if the sequence 

 4.2
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is a subordinating factor sequence. By virtue of  Lemma 1.2, there is equivalent to the inequality 
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Now, let us put 

)()1)(1)(()]()1()()1()[1(),( 222  nnmnm BABnm   

and we write 
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It is observed that the sequence ),( nm  is a non-decreasing function of  m, n under the condition (or constraints) 

 .01,11),(,,;10;0 022  BABnmnm  

In particular (under the same condition) 
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Therefore, for |z| = r (r < 1), we obtain that 
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This evidently establishes the inequality (2.5), and consequently, the subordination relation (2.1) of our theorem 2.1, is 

proved. 

The assertion (2.2) follows readily from (2.1) when the function g(z) is selected as 
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The sharpness of the multiplying factor 
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by considering a function ),,,;,()( min  BAEzh  given by 
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(2.7) 

It can easily be verified that, 
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This shows that the constant 
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is best possible. Which complete the proof of theorem (2.1) 

Corollary 2.2. Let the function f(z) defined by (1.1) be in the class ),,1,1;,(min  E
 

and satisfy the 

condition  
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and 
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Putting 1)()( 22    in corollary 2.2, we obtain  

Corollary 2.3. Let the function f(z) defined by (1.1) be in ),,1,1;,(min  E  and satisfy the condition (2.9), 

then 
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Putting 1 in corollary 2.3, we obtain  

Corollary 2.4. Let the function f(z) defined by 1.1 be in )1,,1,1;,(min  E and satisfies the condition (2.9) when 

1)()( 22   , m=1 and n=0, then 
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The constant factor  
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 is the best estimate. 

Remark 1: The result in corollary 2.4 was obtained by Selvaraj and Karthikeyan [9], Rosihan et.al. [5] and Frasin [7]. 

Putting 0 in corollary 2.4, we obtain corollary 2.5. Let the function f(z) defined by 1.1 be in 
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)1,0,1,1;,(min  E and satisfies the condition (2.9) when 1)()( 22   , m=1 and n=0, then 
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The constant 
3

1
 is the best estimate. 

Remark 2: The result in corollary 2.5 was obtained by Oyekan and Opoola [10], Sukhjit [11], Selvaraj and 

Karthikeyan [9] and Frasin [7]. 

Finally, a simple computation shows that when 
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  in corollary 2.3, we obtain the following:  

Corollary 2.6. 

. Let f (z) defined in 1.1 be in ),,1,1;,(min  E , then 
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The constant factor )1(
2

1
  is the best estimate. 

Remark 3: The result in corollary 2.6 is due to Ghanim and Darus [12]. 
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