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Abstract 

We consider two state automata playing infinitely iterated two players, two strategies game, where each 

move can be mis-implemented (or mis-perceived) with a small error probability, and compute the payoff 

matrix by means of a perturbation approach. 
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1. Introduction 

The “trembling hand” approach plays an ever-increasing role in game-theoretic considerations, especially 

in Selten's notion of a perfect equilibrium (Selten 1975, Selten and Hammerstein 1984, Van Damme 1988, 

Boyd 1991, etc.). In many situations, it is indeed necessary to take into account errors occurring with some 

small probability and affecting the implementation of a strategy. In this note, we investigate the effect of 

such errors in a special, but important setup that of finite automata engaged in playing iterated games. Early 

accounts of such situations can be found in Rapoport and Chammah (1967) or in Aumann (1981). For more 

recent work, inspired by Axelrod's well-known computer tournaments with the Prisoner's Dilemma game 

(PD game) (Axelrod 1982) we refer to Rubinstein 1986, Abreu and Rubinstein 1988, Banks and Sundaram 

1990, Binmore and Samuelson 1992 etc. In these papers, the automata were assumed to work faultlessly. 

But since the automata are usually meant to be abstractions of strategies implemented by agents of bounded 

rationality (like humans or other animals), it seems reasonable to allow for mistakes (see, e.g. May 1987, 

Axelrod and Dion 1988, Miller 1989, Lindgren 1991, Nowak and Sigmund 1993). The aim of this note is to 

compute the payoff matrix, for a small error probability 𝜖, in the simplest case, when we assume that a 

game between two players having two strategies each is repeated endlessly. As payoff for the iterated game, 

we use the limit in the mean; as strategies, we allow all possible two state automata. In PD game the two 

players have the same two options denoted by C to cooperate and by D to defect. In each round of 

simultaneous model of this game the two players take their choice as the same time. The moves of the game 

are hidden and it is appropriate to model the situation as a simultaneous-move game (even if both players 

didn't take their decisions at the same time). But in the alternating model of this game one of the two 

players choose his option in a round and the other player reply with his option in another round. This means 

that in each round of the alternating model there is a single option for one player. This player is called 

leader (or donor) and the other is called recipient. 

 

2. Automata Repeated Game 

We denote the two states by C and D; these are also the two strategies which can be played in each round. 

The payoff matrix, for each round, is given by 
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                                                               (
𝑅 𝑆
𝑇 𝑃

)                                                                                           (1) 

Our finite automata corresponds to transition rules which specify the state in the current round according to 

the outcome in the previous round, i.e. as a function of the own move and the co-player's move .There are 

four possible outcomes, which are expressed by the player as R,S,T or P, and which we number 1,2,3 and 4. 

Each transition rule is given by a 4-tuple (𝑢1, 𝑢2, 𝑢3, 𝑢4), where 𝑢𝑘 is 1 or 0 depending on whether the 

automaton plays C or D after outcome 𝑘 (𝑘 = 1,2,3,4). For instance, (1,0,1,0) is the familiar Tit For Tat 

strategy (it repeats what the co-player did in the previous round. See Fig.1); (0,0,0,0) always plays D, etc. 

We shall denote these 16 strategies by 𝑆𝑖, where 𝑖 is the integer given, in binary notation, by 𝑢1𝑢2𝑢3𝑢4 

(𝑖 =  0,1… ,15). Hence 𝑆0 = (0,0,0,0), 𝑆9 = (1,0,0,1),  𝑆10 = (1,0,1,0) etc. 

 

 

 

 

 

3. The Perturbed Payoff matrix of Simultaneous PD game 

If 𝜖 > 0 denotes the probability of a mistake in implementing a move, then 𝑆𝑖 is changed into 𝑆𝑖(𝜖), which 

is given by the 4-tuple obtained from (𝑢1, 𝑢2, 𝑢3, 𝑢4) by replacing 0 with 𝜖 and 1 with 1 − 𝜖. The problem 

now is to compute the payoff for strategy 𝑆𝑖(𝜖) against 𝑆𝑗(𝜖). 

More generally, let us consider strategies  𝐩 = (𝑝1, 𝑝2, 𝑝3 , 𝑝4) and 𝐪 = (𝑞1, 𝑞2, 𝑞3, 𝑞4), where the 𝑝𝑘 and 𝑞𝑘 

are the probabilities to play C after outcome 𝑘 (𝑘 = 1,2,3,4). The transition matrix between the four states 

𝑅, 𝑆, 𝑇 and 𝑃, from one round to the next, are given by the stochastic matrix 

𝐻 = (

𝑝1𝑞1 𝑝1(1 − 𝑞1) (1 − 𝑝1)𝑞1 (1 − 𝑝1)(1 − 𝑞1)

𝑝2𝑞3 𝑝2(1 − 𝑞3) (1 − 𝑝2)𝑞3 (1 − 𝑝2)(1 − 𝑞3)
𝑝3𝑞2 𝑝3(1 − 𝑞2) (1 − 𝑝3)𝑞2 (1 − 𝑝3)(1 − 𝑞2)

𝑝4𝑞4 𝑝4(1 − 𝑞4) (1 − 𝑝4)𝑞4 (1 − 𝑝4)(1 − 𝑞4)

)                                                                     (2)                           

(we note the interchange of  2 and 3, due to the fact that one player's S is the other player's T ). If the matrix 

𝐻 is irreducible [as is always the case when 0 < 𝑝𝑘 , 𝑞𝑘 < 1 for all 𝑘 , and in particular if  𝐩 and 𝐪 

correspond to strategies 𝑆𝑖 ], 𝐻 has a unique left eigenvector 𝜂 = (𝜂1, 𝜂2, 𝜂3, 𝜂4) to the eigenvalue 1 such 

that 0 < 𝜂𝑘 for 𝑘 = 1,2,3,4 and ∑𝜂𝑘 = 1 . These 𝜂𝑘 denote the relative frequencies of the states 𝑘 of the 

corresponding Markov chain. They specify the limit in the mean payoff for strategy 𝐩 against strategy 𝐪 

which is 

𝜂1𝑅 + 𝜂2𝑆 + 𝜂3𝑇 + 𝜂4𝑃                                                                                                                                (3)                                                

The 𝐪 player's payoff is obtained by interchanging  𝜂2 and  𝜂3 . 

If 𝐩 = 𝑆𝑖(𝜖) and 𝐪 = 𝑆𝑗(𝜖), then we can write 

𝐻(𝜖) = 𝐻 + 𝜖𝐻1 + 𝜖2𝐻2                                                                                                                               (4)                      

where 𝐻 is a stochastic matrix, 𝐻1 and 𝐻2 have row sum 0. Actually, 𝐻 has exactly one entry 1 in each row, 

𝐻1 has -2 at this position, 0 in the mirror position and 1's at the other two places (position 2 is said to be the 

mirror position of 3, and 1 of 4); the matrix 𝐻2 has a 1 wherever 𝐻1 has a -2 or a 0, and a -1 wherever 𝐻1 

has a 1. The matrix 𝐻2 is of rank 1, because if we denote its first column by 𝛼, then its other columns are 

−𝛼,−𝛼, 𝛼 (in this order). 

We may view 𝐻(𝜖) as a perturbation of the matrix 𝐻 and treat accordingly the question of finding the left 

C                                  D 
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Figure 1 : Tit For Tat 

strategy 
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eigenvector 𝜂(𝜖) of 𝐻(𝜖) as a perturbation problem. Thus we set 

𝜂(𝜖) = 𝜂 + 𝜖𝑥 + 𝜖2𝑦 + ⋯                                                                                                                             (5)                            

Where the stochastic vector 𝜂 is a solution of the unperturbed problem  

𝜂𝐻 = 𝜂                                                                                                                                                           (6)                  

Whereas the components of the vectors 𝑥 and 𝑦 must sum up to 0. Writing 𝐻 = 𝐼 + 𝐻0 (where 𝐼 is the 

identity matrix) and using (4) and (5), the eigenvalue equation  

𝜂(𝜖)𝐻(𝜖) = 𝜂(𝜖)                                                                                                                                           (7)                   

implies, upon comparing powers in 𝜖 , the three equations  

𝜂𝐻0 = 0 ,                                                                                                                                                       (8)            

𝑥𝐻0 + 𝜂𝐻1 = 0 ,                                                                                                                                            (9) 

𝑦𝐻0 + 𝑥𝐻1 + 𝜂𝐻2 = 0 .                                                                                                                               (10) 

Of course (8) is just (6). In most cases ,the matrix 𝐻 is not irreducible, so that 𝜂 is not uniquely determined 

by (8). In Nowak, Sigmund and ElـSedy (1995), they have used a direct method to compare 𝜂, but they 

stress that even if 𝜂 is known, 𝑥 need not be fully specified by (9). The system (8), (9), (10), however, 

allows the computation of 𝜂 and 𝑥 (they omit the computation of 𝑦, for which, in general, we have to 

expand (5) by one further term). They are specified by the equation 

(𝜂, 𝑥, 𝑦) (

𝐻0 𝐻1 𝐻2

0 𝐻0 𝐻1
0 0 𝐻0

) = (0,0,0)                                                                                                                           (11)               

subject to the condition that the components of 𝜂 sum up to 1 while those of 𝑥 and  𝑦 sum up to 0 to keep 

∑ 𝜂𝑖(𝜖) = 1 =4
𝑖=1 ∑ 𝜂𝑖

4
𝑖=1 . The results are encapsulated in tables 1 and 2. They yield the limiting term 𝜂 and 

the perturbation term 𝑥, and hence, up to order 𝜖, the payoff for the 𝑆𝑖(𝜖)ـstrategy playing against the 

Sj(ϵ)ـstrategy, for 0 ≤ 𝑖, 𝑗 ≤ 15 (We omitted the terms below the diagonal, since the (𝑖, 𝑗)ـterm is obtained 

from the (𝑗, 𝑖)ـterm by simply interchanging 𝜂2 and 𝜂3 ). 

Let us check this, for instance, for 𝑆8(𝜖) = (1 − 𝜖, 𝜖, 𝜖, 𝜖) against 𝑆11(𝜖) = (1 − 𝜖, 𝜖, 1 − 𝜖, 1 − 𝜖). In this 

case 

𝐻(𝜖) =

(

 
 

(1 − 𝜖)2 𝜖(1 − 𝜖) 𝜖(1 − 𝜖) 𝜖2

𝜖(1 − 𝜖) 𝜖2 (1 − 𝜖)2 𝜖(1 − 𝜖)

𝜖2 𝜖(1 − 𝜖) 𝜖(1 − 𝜖) (1 − 𝜖)2

𝜖(1 − 𝜖) 𝜖2 (1 − 𝜖)2 𝜖(1 − 𝜖))

 
 

 , 

which implies 

𝐻0 = (

0 0 0 0
0 −1 1 0
0 0 −1 1
0 0 1 −1

), 𝐻1 = (

−2 1 1 0
1 0 −2 1
0 1 1 −2
1 0 −2 1

), 𝐻2 = (

1 −1 −1 1
−1 1 1 −1
1 −1 −1 1
−1 1 1 −1

) 

Equation (8) immediately yields 𝜂2 = 0 and 𝜂3 = 𝜂4. Hence 𝜂 is of the form (1 − 2𝑢, 0, 𝑢, 𝑢), for some 

suitable u, and 𝑠𝐻1 = (−2 + 5𝑢, 1 − 𝑢, 1 − 3𝑢,−𝑢). On the other hand, 𝑥𝐻0 = (0,−𝑥2, 𝑥2 − 𝑥3 +
𝑥4, 𝑥3 − 𝑥4). The first component of (9) yields 𝑢 = 2/5 and hence 𝜂 = (1/5,0,2/5,2/5), which in turn 

implies 𝑥 = (−1 − 2𝜐, 3/5,2/5 + 𝜐, 𝜐) for some suitable 𝜐. Hence 𝜂𝐻2 = (1/5, −1/5, −1/5,1/5) and 

𝑥𝐻1 = (13/5 + 5𝜐,−3/5 − 𝜐,−9/5 − 3𝜐,−1/5 − 𝜐); since the first component of  𝑦𝐻0 is 0, equation 

(10) yields  𝜐 = −14/25 , and hence 𝑥 = (1/25)(3,15, −4,−14) .  

Up to order 𝜖2, the payoff for 𝑆8 against 𝑆11 is therefore  

𝐹(𝑆𝑖(𝜖), 𝑆𝑗(𝜖)) = 𝜂 [

𝑅
𝑆
𝑇
𝑃

] + 𝜖𝑥 [

𝑅
𝑆
𝑇
𝑃

] 

Then we have, 
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 𝐹(𝑆8(𝜖), 𝑆11(𝜖)) =
1

25
[(5 + 3𝜖)𝑅 + 15𝜖𝑆 + (10 − 4𝜖)𝑇 + (10 − 14𝜖)𝑃]. 

Table 1 has been discussed in Nowak, Sigmund and ElـSedy (1995), especially in the context of the PD 

game and the Chicken game. Concerning table 2, we only note that some payoff values are not at all 

affected by the error term (i.e. 𝑥 = 0 , for instance when  𝑆3 plays against  𝑆6, while sometimes the 

perturbation is five times as large as the error size, for instance when  𝑆9 plays against 𝑆11 ). 

We also remark that there are 44 = 256 different matrices 𝐻0, one for every entry of the 16 × 16 payoff 

matrix. Wherever there is a 1 in 𝐻 = 𝐼 + 𝐻0, there is a −2 in 𝐻1. This specifies the position of the 0ـ entry, 

and hence also that of the two 1ـ entries in every row of 𝐻1. Since 𝐻2 has as entry 1 wherever 𝐻1 has as 

entry -2 or 0, there are only half as many possibilities for 𝐻2 as for 𝐻1 in every row, and hence altogether 

only 16 different possible matrices 𝐻2 . 

So far, we have considered the effect of errors in the implementation also of a given strategy. We can also 

analyze the effect of errors in perceptionــin misunderstanding the other's C or D, for example (see, e.g., 

Axelrod and Dion 1988 and Miller 1989). This type of errors can sometimes lead to quite different results. 

Let us denote by 𝜖 the probability of mistaking the other player's previous move, and by 𝜆𝜖 the probability 

of mistaking one's own previous move (usually, 𝜆 should be smaller than 1). The perturbation of the Tit For 

Tat strategy 𝑆10 is (1 − 𝜖, 𝜖, 1 − 𝜖, 𝜖), just as with mistakes in implementation. The perturbation of 𝑆9 is 

(1 − (𝜆 + 1)𝜖, (𝜆 + 1)𝜖, (𝜆 + 1)𝜖, 1 − (𝜆 + 1)𝜖); that of 𝑆11 is (1 − 𝜖, (𝜆 + 1)𝜖, 1,1 − 𝜆𝜖), while that of  

𝑆0  is (0,0,0,0), i.e. no perturbation at all. In general the strategy (𝑢1, 𝑢2, 𝑢3, 𝑢4) turns into 

(1 − (𝜆 + 1)𝜖)(𝑢1, 𝑢2, 𝑢3, 𝑢4) + 𝜖(𝑢2, 𝑢1, 𝑢4, 𝑢3) + 𝜆𝜖(𝑢3, 𝑢4, 𝑢1, 𝑢2) + 𝜆𝜖2(𝜐, −𝜐, −𝜐, 𝜐)                    (12) 

where 𝜐 = 𝑢1 + 𝑢4 − 𝑢2 − 𝑢3. Again, one can use the same perturbation method as before to find the 

payoff values. For 𝑆1 against 𝑆4, for instance, one obtains 𝜂 = (0, 1 2⁄ , 0, 1 2⁄ ) and 

𝑥 = (𝜆 2⁄ , −1 − 3𝜆 4⁄ , 𝜆 2⁄ , 1 − 𝜆 4⁄ ), which reduce neither for 𝜆 = 1 nor for 𝜆 = 0 to the corresponding 

perturbation term for mistakes in implementation. 

Similarly, one can consider the joint effect of errors in implementation and perception; allow for different 

propensities to misـimplement (or misـperceive) a C or a D; investigate repeated games where the players 

move alternatingly, rather than simultaneously (see Nowak and Sigmund 1994); compute the higher order 

terms of the perturbation of the payoff etc. In all these contexts, analogous perturbation arguments allow to 

compute the payoff matrix. 

 

4. The unperturbed payoff matrix of randomly alternating PD game 

Let us now turn to the randomly alternating PD game. We assume here that in every round, each player has 

a 50% chance of being the leader this mean that, in each round chance decides which of the two players is 

the leader (or donor) and which is the recipient. The leader then chooses between two options C and D. 

Option C yields 𝑎 points to the donor and 𝑏 points to the recipient, whereas option D yields 𝑐 points to the 

donor and 𝑑 points to the recipient. We shall assume that in a single round, playing C rather than D entails a 

cost to the donor which is smaller than the benefit that this action brings to the recipient. Since the cost is 

𝑐 − 𝑎 and the benefit 𝑏 − 𝑑, this means that 

0 < 𝑐 − 𝑎 < 𝑏 − 𝑑 

Let us consider two rounds for which the players are donors in turn. If both play C, both earn 𝑎 + 𝑏, if one 

plays C and the other D while leader, the co-operator earns 𝑎 + 𝑏 and the defector earns 𝑐 + 𝑏. We have 

𝑅 = 𝑎 + 𝑏, 𝑇 = 𝑐 + 𝑏, 𝑃 = 𝑐 + 𝑑  and 𝑆 = 𝑎 + 𝑑, then we have 𝑇 + 𝑆 = 𝑅 + 𝑃. The outcome of one 

round of the repeated alternating PD game is completely specified by the payoff obtained by one of the 

players ; this can be 𝑎, 𝑏, 𝑐 or d. We denote these outcomes by 1 to 4(in this order), noting that one player's 

𝑎 (or 𝑐) is the other player's 𝑏 (resp. 𝑑 ). We restrict our attention to players whose strategy is determined 

by the outcome of the previous round only, i.e., given by a quadruple 𝐩 = (𝑝1, 𝑝2, 𝑝3, 𝑝4), where 𝑝𝑖  denotes 

the propensity to play C after outcome 𝑖. If a 𝐩 player is matched against a 𝐪 player, then the transition 

probability from one round to the next is given by 
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𝑀 =
1

2

(

 

𝑝1 𝑞2 (1 − 𝑝1) (1 − 𝑞2)

𝑝2 𝑞1 (1 − 𝑝2) (1 − 𝑞1)

𝑝3 𝑞4 (1 − 𝑝3) (1 − 𝑞4)

𝑝4 𝑞3 (1 − 𝑝4) (1 − 𝑞3))

  

The stationary distribution of transition matrix 𝑀 is the eigenvector 𝜂 where 

𝜂 = (𝜂1, 𝜂2, 𝜂3, 𝜂4)     ;  ∑ 𝜂𝑖
4
𝑖=1 = 1 

which correspond to the left eigenvalue of 𝑀. Hence 𝜂 is given by 𝜂𝑀 = 𝜂, then 𝜂 is given by the vector 

𝜂 = (𝜎, 𝜎′,
1

2
− 𝜎,

1

2
− 𝜎′) where 𝜎 and 𝜎′ are given by the relations (after straightforward computations) 

𝜎 =
(𝑝3+𝑝4)(2+𝑞3−𝑞1)−(𝑞3+𝑞4)(𝑝4−𝑝2)

2[(2+𝑝3−𝑝1)(2+𝑞3−𝑞1)−(𝑝4−𝑝2)(𝑞4−𝑞2)]
 ,   𝜎′ =

(𝑞3+𝑞4)(2+𝑝3−𝑝1)−(𝑝3+𝑝4)(𝑞4−𝑞2)

2[(2+𝑝3−𝑝1)(2+𝑞3−𝑞1)−(𝑝4−𝑝2)(𝑞4−𝑞2)]
  

Now if 𝐹 is the payoff for the 𝐩ـplayer, then 𝐹 is given by 

𝐹 = 𝜂 [

𝑎
𝑏
𝑐
𝑑

] = (𝜎, 𝜎′,
1

2
− 𝜎,

1

2
− 𝜎′) [

𝑎
𝑏
𝑐
𝑑

] = 𝜎(𝑎 − 𝑐) + 𝜎′(𝑏 − 𝑑) +
1

2
(𝑐 + 𝑑). 

For instance, if 𝐩 = (0,0,1,0) and 𝐪 = (0,1,0,1) then, 𝜎 =
1

6
 and 𝜎′ =

3

6
 ,  𝜂 = (

1

6
,
3

6
,
2

6
, 0). The payoff for 𝐩ـ 

player will be 

𝐹 = (
1

6
,
3

6
,
2

6
, 0) [

𝑎
𝑏
𝑐
𝑑

] =
𝑎

6
+

3𝑏

6
+

2𝑐

6
 .  

 

5. The perturbed payoff matrix of randomly alternating PD game 

5.1. The payoff matrix corresponding to the error in implementation  

Consider that the game has an error in implementation in each move, then there is a probability for a 

mistake in each strategy. If 𝜖 > 0 denotes the probability of mistake in implementation, then 𝑆𝑖 becomes 

𝑆𝑖(𝜖) . If 𝑆𝑖 is the quadruple (𝑢1, 𝑢2, 𝑢3, 𝑢4) of zeros and ones, then 𝑆𝑖(𝜖) is the resulting quadruple after 

replacing 0 by 𝜖 and 1 by 1 − 𝜖. Suppose for instance, 𝑆0(𝜖) = (𝜖, 𝜖, 𝜖, 𝜖) play against 𝑆9(𝜖) =
(1 − 𝜖, 𝜖, 𝜖, 1 − 𝜖) then we have  

𝑀(𝜖) =
1

2
(

𝜖 𝜖 1 − 𝜖 1 − 𝜖
𝜖 1 − 𝜖 1 − 𝜖 𝜖
𝜖 1 − 𝜖 1 − 𝜖 𝜖
𝜖 𝜖 1 − 𝜖 1 − 𝜖

) =
1

2
(

0 0 1 1
0 1 1 0
0 1 1 0
0 0 1 1

) +
𝜖

2
(

1 1 −1 −1
1 −1 −1 1
1 −1 −1 1
1 1 −1 −1

)  

which can be written as  

𝑀(𝜖) = 𝑀 + 𝜖𝑀1 ,                                                                                                                                      (13) 

where 𝑀 = 𝐼 +𝑀0 (𝐼 is the identity matrix), 

𝑀0 =
1

2
(

−2 0 1 1
0 −1 1 0
0 1 −1 0
0 0 1 −1

) and  𝑀1 =
1

2
(

1 1 −1 −1
1 −1 −1 1
1 −1 −1 1
1 1 −1 −1

) 

Substituting from (13) and (5) in (7) after replacing the matrix 𝐻 by the matrix 𝑀 and comparing powers in 

𝜖  we get the following three equations 

𝜂𝑀0 = 0 ,                                                                                                                                                     (14)             

𝑥𝑀0 + 𝜂𝑀1 = 0 ,                                                                                                                                         (15) 

𝑦𝑀0 + 𝑥𝑀1 = 0.                                                                                                                                          (16) 

According to the last three equations we get 𝜂 = (0,1/2, 1/2,0)  and  𝑥 = (1/2, −3/2, −1/2, 3/2). 
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The payoff is given by the relation  𝐹 (𝑠𝑖(𝜖), 𝑠𝑗(𝜖)) = 𝜂 [

𝑎
𝑏
𝑐
𝑑

] + 𝜖𝑥 [

𝑎
𝑏
𝑐
𝑑

] , hence 

𝐹(𝑠0(𝜖), 𝑠9(𝜖)) = (
𝜖

2
) 𝑎 +

1

2
(1 − 3𝜖)𝑏 +

1

2
(1 − 𝜖)𝑐 + (

3𝜖

2
) 𝑑. 

The vectors 𝜂 and 𝑥 are shown in table 3 and table 4 respectively. If we take the numerical values 𝑎 =
2, 𝑏 = 1, 𝑐 = 3, 𝑑 = −2 (𝑅 = 3, 𝑆 = 0, 𝑇 = 4, 𝑃 = 1) and 𝜖 = 0.001  then, 𝐹(𝑠0(𝜖), 𝑠9(𝜖)) = 1.995. 

Table 5 represents the payoff matrix due to the error in implementation of the 16 strategies. 

 

 

5.2-The payoff matrix corresponding to the error in perception 

As in section 3 let us consider there is an error in perception for the randomly alternating model, then if we 

have strategy 𝑆0 = (0,0,0,0) play against strategy 𝑆9 = (1 − (1 + 𝜆)𝜖, (1 + 𝜆)𝜖, (1 + 𝜆)𝜖, 1 − (1 + 𝜆)𝜖) 
then the corresponding transition matrix is 

𝑀(𝜖) =
1

2
(

0 (1 + 𝜆)𝜖 1 1 − (1 + 𝜆)𝜖

0 1 − (1 + 𝜆)𝜖 1 (1 + 𝜆)𝜖

0 1 − (1 + 𝜆)𝜖 1 (1 + 𝜆)𝜖

0 (1 + 𝜆)𝜖 1 1 − (1 + 𝜆)𝜖

). 

Again this matrix can be written as  𝑀(𝜖) = 𝑀 + 𝜖𝑀1, where 𝑀 = 𝐼 + 𝑀0 This implies to 

𝑀 =
1

2
(

0 0 1 1
0 1 1 0
0 1 1 0
0 0 1 1

),    𝑀0 =
1

2
(

−2 0 1 1
0 −1 1 0
0 1 −1 0
0 0 1 −1

),  and 

 𝑀1 =
1

2
(1 + 𝜆)(

0 1 0 −1
0 −1 0 1
0 −1 0 1
0 1 0 −1

). 

Using (14), (15) and (16) we obtain 𝜂 = (0,
1

2
,
1

2
, 0) and 𝑥 = (0, −(1 + 𝜆), 0, (1 + 𝜆)). 

The payoff function according to these vectors will be 

𝐹(𝑠0(𝜖), 𝑠9(𝜖)) = (0,
1

2
,
1

2
, 0) [

𝑎
𝑏
𝑐
𝑑

] + 𝜖(0, −(1 + 𝜆), 0, (1 + 𝜆)) [

𝑎
𝑏
𝑐
𝑑

].   

𝐹(𝑠0(𝜖), 𝑠9(𝜖)) = (
1

2
− 𝜖(1 + 𝜆)) 𝑏 +

1

2
𝑐 + 𝜖(1 + 𝜆)𝑑 . 

Table 6 and table 7 represents the vectors 𝜂 and 𝑥 respectively. Substituting by 𝑎 = 2, 𝑏 = 1, 𝑐 = 3, 𝑑 =
−2 (𝑅 = 3, 𝑆 = 0, 𝑇 = 4, 𝑃 = 1), 𝜖 = 0.001 and 𝜆 = 0.01, we get 𝐹(𝑠0(𝜖), 𝑠9(𝜖)) = 1.997. Table 8 

represents the payoff matrix due to the error in perception of the 16 strategies. 

Note that for a large set of payoff values, no pure strategy is evolutionarily stable;  every pure strategy can 

be invaded, and even outcompeted by another pure strategy. A strategy 𝑆𝑖 can be invaded by a strategy Sj if 

the equilibrium point 𝑒𝑖 is unstable in the one dimensional subsystem of the game dynamical equation 

obtained by setting 𝑥𝑘 = 0 for all 𝑘 ≠ 𝑖, 𝑗 , i.e. by its restrictions to the edge eiej of the state simplex; this 

occurs exactly if the following two conditions are satisfied 

i. 𝑐𝑗𝑖 ≥ 𝑐𝑖𝑖 

ii. If 𝑐𝑗𝑖 = 𝑐𝑖𝑖  , then 𝑐𝑗𝑗 > 𝑐𝑖𝑗  

The strategy 𝑆𝑖 is outcompeted by Sj if both   cji ≥ cii and cji ≥ cij with at least one inequality being strict. 

For example the payoff matrix between the 𝑆0-player and 𝑆1-player is given by  

 𝑆0 𝑆1 
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𝑆0 
(
0.501 1.2488

0.25175 0.83356
) 

𝑆1 

Then,  𝑐0,0 − 𝑐1,0 = 0.24925 > 0 and 𝑐0,1 − 𝑐1,1 = 0.41524 > 0. This means that, the strategy 𝑆1 is 

outcompeted by the strategy 𝑆0. 

Writing Si << Sj if 𝑆𝑖 is outcompeted by Sj, then from the payoff matrix of table 5 for any choice of payoff 

values for the randomly alternating PD, we get that 

𝑆0 <<  ــــــ 

𝑆1 << 𝑆0 , 𝑆8 , 𝑆12, 𝑆14 

𝑆2 << 𝑆0 , 𝑆8 , 𝑆12 

𝑆3 << 𝑆0 , 𝑆1 , 𝑆2 , 𝑆6 , 𝑆8 

𝑆4 << 𝑆1 , 𝑆12 , 𝑆14 

𝑆5 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆8 

𝑆6 << 𝑆0 , 𝑆2 , 𝑆8 

𝑆7 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆3 , 𝑆5 , 𝑆6 , 𝑆8, 𝑆9 , 𝑆10, 𝑆11 

𝑆8 << 𝑆0 

𝑆9 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆8 

𝑆10 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆8 

𝑆11 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆3 , 𝑆5 , 𝑆6 , 𝑆8, 𝑆9 , 𝑆10 

𝑆12 << 𝑆3 , 𝑆5 , 𝑆6 , 𝑆9 , 𝑆10, 𝑆14 

𝑆13 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆3 , 𝑆5 , 𝑆6 , 𝑆7 , 𝑆8, 𝑆9 , 𝑆10, 𝑆11 , 𝑆14 

𝑆14  <<  ــــــ  

𝑆15 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆3 , 𝑆5 , 𝑆6 , 𝑆7 , 𝑆8, 𝑆9 , 𝑆10, 𝑆11 , 𝑆13 , 𝑆14. 

It is clear that all strategies except 𝑆0 and 𝑆14 are outcompeted by at least one other strategies. We note that 

𝑆0 can outcompete the greatest number of rival strategies, while 𝑆4 is the least able at invading or 

outcompeting a homogeneous population. 

From the payoff matrix of table 8 for any choice of payoff values for the randomly alternating PD, we 

obtain 

𝑆0 <<  ــــــ 

𝑆1 << 𝑆0 , 𝑆2 , 𝑆8 , 𝑆12, 𝑆14 

𝑆2 << 𝑆0 , 𝑆8  

𝑆3 << 𝑆0 , 𝑆1 , 𝑆2 , 𝑆8 

𝑆4 << 𝑆12 , 𝑆14 

𝑆5 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆8 

𝑆6 << 𝑆0 , 𝑆1 , 𝑆2 , 𝑆8 , 𝑆14 

𝑆7 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆3 , 𝑆5 , 𝑆6 , 𝑆8, 𝑆9 , 𝑆10 

𝑆8 << 𝑆0 

𝑆9 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆8 

𝑆10 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆8 

𝑆11 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆3 , 𝑆5 , 𝑆6 , 𝑆8, 𝑆9 , 𝑆10 

𝑆12 << 𝑆7 , 𝑆11 , 𝑆13 , 𝑆14, 𝑆15 
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𝑆13 << 𝑆0 , 𝑆1 , 𝑆2, 𝑆3 , 𝑆5 , 𝑆7 , 𝑆8, 𝑆9 , 𝑆10, 𝑆11 

𝑆14  <<  ــــــ  

𝑆15 << 𝑆0 , 𝑆2 , 𝑆5 , 𝑆6 , 𝑆7 , 𝑆8, 𝑆9 , 𝑆10, 𝑆11. 

Similar to table 5 it is clear that all strategies except 𝑆0 and 𝑆14 are invaded by at least one other strategies. 

Also, we see that 𝑆0 can outcompete the greatest number of rival strategies, while 𝑆4 cannot invade or 

outcompete any other strategy. 
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Table 1:  The vectors 𝜂 of the 16 strategies due to the error in implementation for simultaneous PD, where the vector 𝜂 for 𝑆𝑖  against 𝑆𝑗 is (𝜂1, 𝜂2, 𝜂3, 𝜂4), with 𝜂𝑖 =  𝑖( 1 +  2 +

 3 +  4)
−1, and ( 1,  2,  3,  4) is the element in the 𝑖ـth row and 𝑗ـth column of this table. 

 

 

 

 

 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 

𝑠0 (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (0,0,1,2) (0,0,1,0) (0,0,1,1) (0,0,1,0) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (0,0,1,1) (0,0,1,0) (0,0,2,1) (0,0,1,0) 

𝑠1  (1,0,0,1) (0,1,1,1) (1,0,0,1) (0,2,1,2) (1,0,1,1) (0,0,1,0) (1,0,2,1) (0,1,0,1) (1,0,1,1) (0,1,1,1) (1,0,1,1) (0,1,2,1) (0,0,1,0) (0,0,1,0) (0,0,1,0) 

𝑠2   (0,1,1,2) (0,1,1,0) (0,0,0,1) (1,0,1,1) (0,0,0,1) (1,0,1,1) (0,0,0,1) (0,1,1,1) (0,1,1,1) (0,1,1,0) (1,0,1,2) (1,0,1,0) (2,0,2,1) (1,0,1,0) 

𝑠3    (1,1,1,1) (0,1,0,1) (1,0,0,1) (1,1,1,1) (1,0,0,1) (0,1,0,1) (1,1,1,1) (0,1,1,0) (0,1,1,0) (1,1,1,1) (1,0,1,0) (1,0,1,0) (1,0,1,0) 

𝑠4     (0,1,1,2) (0,0,1,0) (0,0,1,2) (0,0,1,0) (0,1,0,2) (0,1,2,2) (0,0,0,1) (0,0,1,1) (0,1,3,2) (0,0,1,0) (0,0,2,1) (0,0,1,0) 

𝑠5      (1,1,1,1) (1,1,1,1) (1,0,1,1) (0,1,0,0) (1,1,1,1) (1,1,1,1) (1,0,1,1) (0,1,1,0) (0,0,1,0) (0,0,1,0) (0,0,1,0) 

𝑠6       (0,0,0,1) (1,0,1,1) (0,2,0,1) (0,1,0,0) (1,1,1,1) (1,1,1,0) (1,1,1,1) (2,1,2,0) (2,0,2,1) (1,0,1,0) 

𝑠7        (1,0,0,1) (0,1,0,0) (0,1,0,0) (1,1,1,0) (1,1,1,0) (0,1,2,1) (2,1,2,0) (1,0,1,0) (1,0,1,0) 

𝑠8         (0,0,0,1) (1,0,2,2) (0,0,0,1) (1,0,2,2) (1,0,2,3) (1,0,2,0) (1,0,2,1) (1,0,2,0) 

𝑠9          (1,0,0,0) (1,1,1,1) (1,0,0,0) (1,1,1,1) (2,0,1,0) (1,0,2,0) (1,0,1,0) 

𝑠10           (1,1,1,1) (1,1,1,0) (1,0,0,1) (1,0,0,0) (1,0,0,0) (1,0,0,0) 

𝑠11            (2,1,1,1) (2,1,0,0) (1,0,0,0) (1,0,0,0) (1,0,0,0) 

𝑠12             (1,1,1,1) (2,1,3,0) (3,0,2,1) (1,0,1,0) 

𝑠13              (2,1,1,0) (2,0,1,0) (2,0,1,0) 

𝑠14               (1,0,0,0) (1,0,0,0) 

𝑠15                (1,0,0,0) 
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Table 2:  The vectors 𝑥 of the 16 strategies due to the error in implementation for Simultaneous PD. 

𝑠15 𝑠14 𝑠13 𝑠12 𝑠11 𝑠10 𝑠9 𝑠8 𝑠7 𝑠6 𝑠5 𝑠4 𝑠3 𝑠2 𝑠1 𝑠0  

(1,0,−2,1) 1

9
(6,3,−8,−1) (1,0,−2,1) 1

2
(1,1,−1,−1) 

1

4
(2,2,−1,−3) (0,1,2,−3) 1

2
(1,1,−1,−1) (0,1,1,−2) (1,0,−3,2) 1

2
(1,1,−1,−1) (1,0,−3,2) 1

3
(1,2,−1,−2) 

1

2
(1,1,−1,−1) (0,1,2,−3) 1

4
(2,−3,2,−1) (0,1,1,−2) 𝑠0 

(2,0,−3,1) (1,1,−3,1) (2,0,−3,1) 1

8
(6,−1,−6,1) 

1

9
(−5,6,1,−2) 

1

9
(6,−4,−1, −1) 

1

3
(−1,2, −1,0) 

1

2
(1,−2,2,−1) 

1

4
(1,2,−2,−1) (1,2,−5,2) 1

9
(−4,6, −1,−1) 

1

25
(15,−14,3,−4) (−2,1,1,−1) 1

9
(6,−2,−5,1) 

1

2
(−3,2,2, −1)  𝑠1 

1

4
(−3,2, −1,2) 1

25
(−16,15,−6,7) (−1,1, −1,1) 1

8
(−1,6,1, −6) 

1

2
(2,−2,−1,1) 1

9
(6,−4,−1, −1) 

1

3
(2,−1,0,−1) (0,2,1,−3) 1

9
(−2,6,1,−5) (2,1,2,−5) 1

9
(−4,6, −1,−1) (1,1,1,−3) (1,−2,−1,2) 1

2
(1,0,0,−1)   𝑠2 

1

2
(−1,1, −1,1) 

1

2
(−2,2,−1,1) 

1

2
(−1,1,−2,2) 1

8
(1,−1,−1,1) (2,−2, −1,1) (1,−1,−1,1) (0,0,0,0) 1

2
(1,−1,2,−2) (−1,1,2,−2) (0,0,0,0) (−1,1,1,−1) 1

2
(2,−2,1,−1) 1

16
(1,−1,−1,1)    𝑠3 

(1,0,−2,1) 1

3
(3,1,−4,0) 

1

2
(2,1,−5,2) 1

9
(6,1,−6,−1) 

1

2
(2,1,−1,−2) (1,1,2,−4) 1

5
(3,0,−1,−2) 

1

9
(3,−2,9,−10) (1,0,−3,2) 1

9
(9,6,−2,−13) (1,1,−4,2) 1

2
(1,0,0,−1)     𝑠4 

(2,1,−4,1) (2,1,−4,1) (2,1,−4,1) (1,−1, −1,1) 1

9
(−1,6,−1,−4) (0,0,0,0) 1

16
(−3,1,5,−3) (1,−4,1,2) 1

9
(−1,6, −1,−4) (0,0,0,0) (0,0,0,0)      𝑠5 

1

2
(−1,1, −1,1) 1

5
(−1,3,−2,0) 

1

5
(−2,0,−1,3) (0,0,0,0) 1

3
(−1,−1,0,2) (0,0,0,0) (1,2,−4,1) 1

9
(6,−14,9,−1) 

1

3
(0,2,−1,−1) (2,1,1,−4)       𝑠6 

1

4
(−1,2, −3,2) 

1

2
(−1,2,−2,1) 1

25
(−4,3,−14,15) 

1

8
(1,−6,−1,6) 

1

9
(1,−5,−2,6) 

1

9
(−1, −1,−4,6) (2,−5,2,1) (1,−3,1,1) 1

2
(−1,2,2,−3)        𝑠7 

1

9
(−1,3, −8,6) 

1

2
(0,1,−1,0) 1

9
(−2,3,−10,9) 

1

3
(1,6,−1,−6) 

1

25
(3,15,−4,−14) (1,1,2,−4) 1

5
(0,3,−2,−1) 

1

2
(1,2,2,−5)         𝑠8 

1

2
(−1,1, −1,1) 1

9
(−1,9,−14,6) 

1

9
(−14,6,−1,9) (0,0,0,0) (−5,1,2,2) (0,0,0,0) (−4,1,1,2)          𝑠9 

(−3,1,2,0) (−4,1,2,1) (−4,1,2,1) 1

2
(−3,2,2, −1) 1

9
(−1,−4,−1,6) (0,0,0,0)           𝑠10 

(−3,1,2,0) (−3,1,2,0) (−3,1,1,1) 1

4
(0,−1,3,−2) 

1

2
(−1,0,0,1)            𝑠11 

1

2
(−1,1, −1,1) 1

9
(−6,6,−1,1) 

1

9
(−1,1,−6,6) (0,0,0,0)             𝑠12 

1

9
(−8,6, −1,3) 

1

9
(−10,9,−2,3) 

1

2
(−1,0,0,1)              𝑠13 

(−2,1,1,0) 1

2
(−5,2,2,1)               𝑠14 

(−2,1,1,0)                𝑠15 
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Table 3: The vectors 𝜂 of the 16 strategies due to the error in implementation for the randomly alternating PD, where the vector 𝜂 for 𝑆𝑖  against 𝑆𝑗 is (𝜂1, 𝜂2, 𝜂3, 𝜂4), with 𝜂𝑖 =

 𝑖( 1 +  2 +  3 +  4)
−1, and ( 1,  2,  3,  4) is the element in the 𝑖ـth row and 𝑗ـth column of this table. 

NOTE: we omitted the terms below the diagonal since the (𝑖, 𝑗) ـterm is obtained from the (𝑗, 𝑖)  .term by interchanging 𝜂1and 𝜂2 also 𝜂3 and 𝜂4 ـ

 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 

𝑠0 (0,0,1,1) (0,1,2,1) (0,1,3,2) (0,2,3,1) (0,0,1,1) (0,1,2,1) (0,1,3,2) (0,2,3,1) (0,0,1,1) (0,1,1,0) (0,1,2,1) (0,1,1,0) (0,0,1,1) (0,1,1,0) (0,1,2,1) (0,1,1,0) 

𝑠1  (1,1,2,2) (1,1,2,2) (1,3,4,2) (2,1,3,4) (1,2,3,2) (2,3,5,4) (1,4,5,2) (1,0,1,2) (0,1,1,0) (1,2,3,2) (0,1,1,0) (1,1,2,2) (0,1,1,0) (2,1,3,4) (0,1,1,0) 

𝑠2   (1,1,2,2) (3,5,6,4) (2,1,4,5) (2,3,4,3) (3,4,6,5) (1,2,2,1) (1,0,2,3) (1,2,2,1) (2,3,4,3) (2,5,4,1) (1,1,2,2) (1,3,2,0) (1,2,2,1) (1,3,2,0) 

𝑠3    (1,1,1,1) (4,2,3,5) (1,1,1,1) (1,1,1,1) (4,6,5,3) (2,0,1,3) (1,1,1,1) (1,1,1,1) (2,4,3,1) (1,1,1,1) (1,3,2,0) (3,5,4,2) (1,3,2,0) 

𝑠4     (0,0,1,1) (1,2,3,2) (1,2,4,3) (1,2,2,1) (0,0,1,1) (1,2,2,1) (1,2,3,2) (2,4,3,1) (0,0,1,1) (1,2,1,0) (1,2,2,1) (1,2,1,0) 

𝑠5      (1,1,1,1) (1,1,1,1) (3,4,3,2) (1,0,1,2) (1,1,1,1) (1,1,1,1) (2,3,2,1) (1,1,1,1) (1,2,1,0) (2,3,2,1) (1,2,1,0) 

𝑠6       (1,1,1,1) (5,6,4,3) (1,0,2,3) (1,1,1,1) (1,1,1,1) (4,5,3,2) (1,1,1,1) (2,3,1,0) (3,4,2,1) (2,3,1,0) 

𝑠7        (2,2,1,1) (2,0,1,3) (2,1,1,2) (4,3,2,3) (2,2,1,1) (2,2,1,1) (2,3,1,0) (4,5,2,1) (2,3,1,0) 

𝑠8         (0,0,1,1) (0,1,1,0) (0,1,2,1) (0,1,1,0) (0,0,1,1) (0,1,1,0) (0,1,2,1) (0,1,1,0) 

𝑠9          (1,1,1,1) (1,1,1,1) (0,1,1,0) (1,1,1,1) (0,1,1,0) (1,2,2,1) (0,1,1,0) 

𝑠10           (1,1,1,1) (2,3,2,1) (1,1,1,1) (1,2,1,0) (2,3,2,1) (1,2,1,0) 

𝑠11            (2,2,1,1) (2,2,1,1) (1,2,1,0) (3,4,2,1) (1,2,1,0) 

𝑠12             (1,1,1,1) (1,1,0,0) (1,1,0,0) (1,1,0,0) 

𝑠13              (1,1,0,0) (1,1,0,0) (1,1,0,0) 

𝑠14               (1,1,0,0) (1,1,0,0) 

𝑠15                (1,1,0,0) 
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Table 4: The error vectors 𝑥 in implementation for the randomly alternating PD of the 16 strategies. 

NOTE: we omitted the terms below the diagonal since the (𝑖, 𝑗) ـterm is obtained from the (𝑗, 𝑖) ـterm by interchanging 𝜂1 and 𝜂2 also 𝜂3 and 𝜂4. 

 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 

𝑠0 
1

2
(1,1,−1,−1) 

1

4
(2,−1,−2,1) 1

18
(9,2,−9,−2) 

1

18
(9,−5,−9,5) 

1

4
(2,3,−2, −3) 

1

2
(1,0,−1,0) 1

18
(9,5,−9,−5) 

1

18
(9,−2,−9,2) 

1

2
(1,2,−1,−2) 

1

2
(1,−3,−1,3) 

1

2
(1,0,−1,0) 

1

4
(2,−3, −2,3) 

1

2
(1,3,−1,−3) 

1

2
(1,−2,−1,2) 

1

4
(2,1,−2, −1) 

1

2
(1,−1, −1,1) 

𝑠1  
1

9
(1,1,−1,−1) 

1

9
(1,1,−1, −1) 

1

5
(2,−1, −2,1) 

1

25
(7,−1,−7,1) 

1

4
(1,0,−1,0) 1

49
(8,5,−8,−5) 

1

18
(7,−2,−7,2) 

1

2
(−1,2,1,−2) (2,−3,−2,3) 

1

4
(1,0,−1,0) (1, −1,−1,1) 

1

3
(0,1,0,−1) (1,−1,−1,1) 

1

25
(−1,7,1,−7) 

1

4
(3,−2, −3,2) 

𝑠2   
1

9
(1,1,−1, −1) 

1

27
(3,−2,−3,2) 1

18
(2,7,−2,−7) 

1

9
(1,0,−1,0) 

1

27
(3,2,−3,−2) 1

9
(1,−1, −1,1) 

1

9
(1,9,−1,−9) 

1

9
(1,−4,−1,4) 

1

9
(1,0,−1,0) 

1

18
(2,−7,−2,7) 

1

9
(1,4,−1,−4) 

1

9
(1,−9,−1,9) 

1

9
(1,−1, −1,1) 

1

18
(2,−9,−2,9) 

𝑠3    (0,0,0,0) 
1

49
(−5,8,5,−8) (0,0,0,0) (0,0,0,0) 

1

27
(2,−3,−2,3) 1

9
(−4,9,4,−9) (0,0,0,0) (0,0,0,0) 

1

5
(1,−2, −1,2) (0,0,0,0) 

1

9
(5,−9,−5,9) 

1

49
(5,−8,−5,8) 

1

18
(5,−9,−5,9) 

𝑠4     (1,1,−1,−1) 
1

4
(1,0,−1,0) 1

5
(2,1,−2, −1) 

1

9
(1,−1, , −1,1) (1,1, , −1, −1) 

1

3
(0,−1,0,1) 

1

4
(1,0,−1,0) 1

25
(−1,−7,1,7) (2,3,−2,−3) 

1

2
(−1,−2,2,1) 1

9
(1,−1, −1,1) 

1

4
(−1, −2,1,2) 

𝑠5      (0,0,0,0) (0,0,0,0) 
1

9
(0,−1,0,1) (0,1,0,−1) (0,0,0,0) (0,0,0,0) 

1

4
(0,−1,0,1) (0,0,0,0) (0,−1,0,1) 

1

4
(0,−1,0,1) 

1

2
(0,−1,0,1) 

𝑠6       (0,0,0,0) 
1

27
(−2,−3,2,3) 1

9
(4,9,−4,−9) (0,0,0,0) (0,0,0,0) 

1

49
(−5,−8,5,8) (0,0,0,0) 

1

9
(−4,−9,4,9) 

1

5
(−1, −2,1,2) 

1

18
(−5,−9,5,9) 

𝑠7        
1

6
(−1, −1,1,1) 

1

9
(−1,9,1,−9) 

1

9
(−1,4,1,−4) 

1

9
(−1,0,1,0) 

1

9
(−1, −1,1,1) 

1

9
(−1,−4,1,4) 

1

9
(−1,−9,1,9) 

1

18
(−2,−7,2,7) 

1

18
(−2,−9,2,9) 

𝑠8         (1,1, , −1, −1) (1,−2,−1,2) (1,0,−1,0) (1, −1,−1,1) (1,2,−1,−2) (1,−1,−1,1) 
1

2
(2,1,−2, −1) 

1

2
(2,−1, −2,1) 

𝑠9          (0,0,0,0) (0,0,0,0) (3, −2,−3,2) (0,0,0,0) (2,−1,−2,1) 
1

3
(1,0,−1,0) 

1

2
(3,−1, −3,1) 

𝑠10           (0,0,0,0) 
1

4
(0,−1,0,1) (0,0,0,0) (0,−1,0,1) 

1

4
(0,−1,0,1) 

1

2
(0,−1,0,1) 

𝑠11            
1

9
(−1, −1,1,1) 

1

3
(0,−1,0,1) 

1

2
(1,−2,−1,2) 1

25
(1,−7,−1,7) 

1

4
(1,−2, −1,2) 

𝑠12             (−1,−1,1,1) (−2,−1,2,1) (−3,−2,3,2) 
1

2
(−3, −1,3,1) 

𝑠13              (−1,−1,1,1) (−1,−1,1,1) 
1

2
(−2, −1,2,1) 

𝑠14               (−1,−1,1,1) 
1

4
(−3, −2,3,2) 

𝑠15                
1

2
(−1, −1,1,1) 
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Table 5: The payoff matrix due to the error in implementation of the 16 strategies for the randomly alternating PD game for the values 

𝑎 = 2, 𝑏 = 1, 𝑐 = 3, 𝑑 = −2 (𝑅 = 3, 𝑆 = 0, 𝑇 = 4, 𝑃 = 1) with 𝜖 = 0.001   

 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 

𝑠0 0.501 1.2488 0.99983 1.4987 0.50175 1.2495 1.0003 1.4992 0.5025 1.995 1.2495 1.9973 0.504 1.9965 1.2503 1.998 

𝑠1 0.25175 0.83356 0.83356 1.299 0.59992 1.1248 0.99957 1.4167 0.252 1.989 1.1248 1.996 0.83433 1.996 0.60088 1.9978 

𝑠2 0.33472 0.83356 0.83356 1.3997 0.58439 1.0832 1.0001 1.3329 0.33622 1.3319 1.0832 1.5821 0.83456 1.8302 1.3329 1.8317 

𝑠3 0.16844 0.5014 0.72263 1 0.64345 1 1 1.2774 0.17011 1 1 1.4986 1 1.8298 1.3566 1.8316 

𝑠4 0.50075 0.9996 0.91661 1.2138 0.502 1.1248 1.0002 1.3329 0.502 1.3323 1.1248 1.4992 0.507 1.75 1.3329 1.7488 

𝑠5 0.2515 0.62575 0.75033 1 0.62575 1 1 1.2497 0.253 1 1 1.3743 1 1.747 1.3743 1.7485 

𝑠6 0.33456 0.71467 0.77804 1.0003 0.6018 1 1 1.2220 0.33589 1 1 1.2853 1 1.6641 1.399 1.6654 

𝑠7 0.16828 0.41794 0.66711 0.83383 0.66711 0.91678 0.99983 1.1663 0.16978 0.66811 0.91678 1.1664 1.1654 1.6638 1.4156 1.6653 

𝑠8 0.5005 1.2475 0.99933 1.4977 0.502 1.249 1.0003 1.4987 0.502 1.993 1.246 1.996 0.505 1.996 1.2505 1.9975 

𝑠9 0.003 0.009 0.66744 1 0.667 1 1 1.3326 0.005 1 1 1.991 1 1.995 1.333 1.997 

𝑠10 0.2515 0.62575 0.75033 1 0.62575 1 1 1.2497 0.253 1 1 1.3743 1 1.747 1.3743 1.7485 

𝑠11 0.00225 0.004 0.58406 0.701 0.70016 0.87525 0.99986 1.1664 0.004 0.011 0.87525 1.1664 1.1657 1.7465 1.3991 1.7483 

𝑠12 0.5 1.2497 1.2494 1 0.503 1 1 1.1677 0.501 1 1 1.167 0.998 1.499 1.497 1.5 

𝑠13 0.0025 0.004 0.50133 0.50267 0.7495 0.751 0.99967 1.0007 0.004 0.007 0.751 0.7525 1.495 1.498 1.498 1.4995 

𝑠14 0.25125 0.9996 0.66711 0.78618 0.66711 0.87525 0.9998 1.0834 0.2525 0.66767 0.87525 1.004 1.498 1.498 1.4995 1.4993 

𝑠15 0.002 0.00275 0.50083 0.50133 0.74975 0.75025 0.99967 0.99983 0.0035 0.005 0.7505 0.75125 1.496 1.4975 1.4983 1.499 
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Table 6: The vectors 𝜂 for the randomly alternating PD of the 16 strategies due to the error in perception, where the vector 𝜂 for 𝜂𝑖 against 𝜂𝑗 is (𝜂1, 𝜂2, 𝜂3, 𝜂4), with 𝜂𝑖 =

 𝑖( 1 +  2 +  3 +  4)
−1, and ( 1,  2,  3,  4) is the element in the 𝑖ـth row and 𝑗ـth column of this table. 

NOTE: we omitted the terms below the diagonal since the (𝑖, 𝑗) ـterm is obtained from the (𝑗, 𝑖) ـterm by interchanging 𝜂1and 𝜂2 also 𝜂3 and  𝜂4. 

 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 

𝑠0 (0,0,1,1) (0,1,2,1) (0,1,3,2) (0,2,3,1) (0,0,1,1) (0,1,2,1) (0,1,3,2) (0,2,3,1) (0,0,1,1) (0,1,1,0) (0,1,2,1) (0,1,1,0) (0,0,1,1) (0,1,1,0) (0,1,2,1) (0,1,1,0) 

𝑠1  (1,1,2,2) (1,1,2,2) (1,3,4,2) (2,1,3,4) (1,2,3,2) (2,3,5,4) (1,4,5,2) (1,0,1,2) (0,1,1,0) (1,2,3,2) (0,1,1,0) (1,1,2,2) (0,1,1,0) (2,1,3,4) (0,1,1,0) 

𝑠2   (1,1,2,2) (3,5,6,4) (2,1,4,5) (2,3,4,3) (3,4,6,5) (1,2,2,1) (1,0,2,3) (1,2,2,1) (2,3,4,3) (2,5,4,1) (1,1,2,2) (1,3,2,0) (1,2,2,1) (1,3,2,0) 

𝑠3    (1,1,1,1) (4,2,3,5) (1,1,1,1) (1,1,1,1) (4,6,5,3) (2,0,1,3) (1,1,1,1) (1,1,1,1) (2,4,3,1) (1,1,1,1) (1,3,2,0) (3,5,4,2) (1,3,2,0) 

𝑠4     (0,0,1,1) (1,2,3,2) (1,2,4,3) (1,2,2,1) (0,0,1,1) (1,2,2,1) (1,2,3,2) (2,4,3,1) (0,0,1,1) (1,2,1,0) (1,2,2,1) (1,2,1,0) 

𝑠5      (1,1,1,1) (1,1,1,1) (3,4,3,2) (1,0,1,2) (1,1,1,1) (1,1,1,1) (2,3,2,1) (1,1,1,1) (1,2,1,0) (2,3,2,1) (1,2,1,0) 

𝑠6       (1,1,1,1) (5,6,4,3) (1,0,2,3) (1,1,1,1) (1,1,1,1) (4,5,3,2) (1,1,1,1) (2,3,1,0) (3,4,2,1) (2,3,1,0) 

𝑠7        (2,2,1,1) (2,0,1,3) (2,1,1,2) (4,3,2,3) (2,2,1,1) (2,2,1,1) (2,3,1,0) (4,5,2,1) (2,3,1,0) 

𝑠8         (0,0,1,1) (0,1,1,0) (0,1,2,1) (0,1,1,0) (0,0,1,1) (0,1,1,0) (0,1,2,1) (0,1,1,0) 

𝑠9          (1,1,1,1) (1,1,1,1) (0,1,1,0) (1,1,1,1) (0,1,1,0) (1,2,2,1) (0,1,1,0) 

𝑠10           (1,1,1,1) (2,3,2,1) (1,1,1,1) (1,2,1,0) (2,3,2,1) (1,2,1,0) 

𝑠11            (2,2,1,1) (2,2,1,1) (1,2,1,0) (3,4,2,1) (1,2,1,0) 

𝑠12             (0,0,1,1) (1,1,0,0) (1,1,0,0) (1,1,0,0) 

𝑠13              (1,1,0,0) (1,1,0,0) (1,1,0,0) 

𝑠14               (1,1,0,0) (1,1,0,0) 

𝑠15                (1,1,0,0) 
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Table 7: The error vectors 𝑥 in perception for the randomly alternating PD of the 16 strategies. 

 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 

𝑠0 (0,0,0,0) 
(2𝜆 + 1)

8
(0, −1,0,1) 

(𝜆 − 1)

18
(0,−1,0,1) 

𝜆

9
(0,−1,0,1) 

𝜆

4
(0,1,0,−1) (0,0,0,0) 

𝑠1  
𝜆

9
(1, −2,−1,2) 

𝜆

18
(−1,−1,1,1) 

1

50
((5𝜆 + 6),−(5𝜆 + 2),−(5𝜆 + 6), (5𝜆 + 2)) 

1

50
(−(7𝜆 + 1),−(𝜆 + 3), (7𝜆 + 1), (𝜆 + 3)) 

1

16
(1,0,−1,0) 

𝑠2   
1

18
(−(𝜆 + 2), −𝜆, (𝜆 + 2), 𝜆) 

1

162
(−(9𝜆 + 6),−(3𝜆 − 2), (9𝜆 + 6), (3𝜆 − 2)) 

(2𝜆 − 1)

36
(−1,1,1,−1) 

(2𝜆 + 1)

36
(−1,0,1,0) 

𝑠3    (0,0,0,0) 
1

98
(−(3𝜆 − 2),−(5𝜆 + 6), (3𝜆 − 2), (5𝜆 + 6)) (0,0,0,0) 

𝑠4     
𝜆

2
(1,1,−1,−1) 

1

16
(−1,0,1,0) 

𝑠5      (0,0,0,0) 

 

 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 

𝑠0 
(𝜆 + 1)

9
(0,1,0,−1) 

(𝜆 + 2)

18
(0,1,0,−1) 

𝜆

2
(0,1,0,−1) (𝜆 + 1)(0,−1,0,1) (0,0,0,0) 

𝑠1 
1

98
(−(5𝜆 − 1), (3𝜆 + 5), (5𝜆 − 1), −(3𝜆 + 5)) 

(2𝜆 + 3)

36
(1,1,−1,−1) 

(2𝜆 + 1)

4
(−1,1,1,−1) 

(𝜆 + 1)

2
(3,−5,−3,5) 

1

16
(1,0,−1,0) 

𝑠2 
(3𝜆 + 1)

162
(−3,−1,3,1) 

1

18
(−(𝜆 + 2), (𝜆 + 1), (𝜆 + 2),−(𝜆 + 1)) 

1

6
((𝜆 + 1), (3𝜆 + 1), −(𝜆 + 1),−(3𝜆 + 1)) 

(𝜆 + 1)

3
(−1,−5,1,5) 

(2𝜆 + 1)

36
(−1,0,1,0) 
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𝑠3 (0,0,0,0) 
1

162
((3𝜆 − 2), (9𝜆 + 6),−(3𝜆 − 2), −(9𝜆 + 6)) 

1

18
(−(5𝜆 + 2), (9𝜆 + 6), (5𝜆 + 2), −(9𝜆 + 6)) (0,0,0,0) (0,0,0,0) 

𝑠4 
1

50
((5𝜆 − 1), (5𝜆 + 3),−(5𝜆 − 1), −(5𝜆 + 3)) 

(𝜆 + 1)

18
(−1,1,1,−1) 

𝜆

2
(1,1,−1,−1) 

(𝜆 + 1)

6
(−1,−1,1,1) 

1

16
(−1,0,1,0) 

𝑠5 (0,0,0,0) 
(2𝜆 + 1)

36
(0,1,0,−1) 

(2𝜆 + 1)

4
(0,1,0,−1) (0,0,0,0) (0,0,0,0) 

𝑠6 (0,0,0,0) 
1

54
(−(𝜆 +

5

3
) , (3𝜆 + 1), (𝜆 +

5

3
) , −(3𝜆 + 1)) 

1

18
((5𝜆 + 3), (9𝜆 + 3),−(5𝜆 + 3), −(9𝜆 + 3)) (0,0,0,0) (0,0,0,0) 

𝑠7  
𝜆

18
(1,1,−1,−1) 

1

18
((𝜆 + 2), (9𝜆 + 6),−(𝜆 + 2),−(9𝜆 + 6)) 

(𝜆 + 1)

18
(1,5,−1,−5) 

(2𝜆 + 1)

36
(1,0,−1,0) 

𝑠8   
𝜆

2
(1,1,−1,−1) 

(𝜆 + 1)

2
(1,−3,−1,3) 

(2𝜆 + 1)

4
(1,0,−1,0) 

𝑠9    (0,0,0,0) (0,0,0,0) 

𝑠10     (0,0,0,0) 

 

 

Table 7 (cont.) 

NOTE: we omitted the terms below the diagonal since the (𝑖, 𝑗) ـterm is obtained from the (𝑗, 𝑖) ـterm by interchanging 𝜂1and 𝜂2 also 𝜂3 and 𝜂4 . 

 𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 

𝑠0 
(𝜆 + 1)

4
(0,−1,0,1) 𝜆(0,1,0,−1) 

(𝜆 + 1)

2
(0,−1,0,1) 

(2𝜆 + 1)

8
(0,1,0,−1) (0,0,0,0) 

𝑠1 
(𝜆 + 1)

2
(1,−1,−1,1) 

𝜆

6
(−1,1,1,−1) 

(𝜆 + 1)

2
(1, −1,−1,1) 

1

50
(−(7𝜆 + 5), −(𝜆 − 5), (7𝜆 + 5), (𝜆 − 5)) 

(𝜆 + 1)

4
(1,0,−1,0) 

𝑠2 
(2𝜆 + 3)

36
(−1,−1,1,1) 

𝜆

18
(−1,5,1,−5) 

1

18
(−(𝜆 + 2), −(9𝜆 + 6), (𝜆 + 2), (9𝜆 + 6)) 

(𝜆 + 1)

18
(−1,1,1,−1) 

(𝜆 + 2)

18
(−1,0,1,0) 

𝑠3 
1

50
((5𝜆 + 2),−(5𝜆 + 6),−(5𝜆 + 2), (5𝜆 + 6)) (0,0,0,0) 

1

18
((5𝜆 + 2),−3(3𝜆 + 2), −(5𝜆 + 2), 3(3𝜆 + 2)) 

1

98
((3𝜆 − 2), (5𝜆 + 6),−(3𝜆 − 2), −(5𝜆 + 6)) 

𝜆

21
(2,1,−2,−1) 

𝑠4 
1

50
(−(7𝜆 + 6), (𝜆 − 2), (7𝜆 + 6),−(𝜆 − 2)) 

𝜆

2
(3,5,−3,−5) 

(3𝜆 + 2)

50
(−3,−1,3,1) 

(𝜆 + 1)

18
(−1,1,1,−1) 

(2𝜆 + 1)

8
(−1,0,1,0) 

𝑠5 
1

16
(0, −1,0,1) (0,0,0,0) 

(2𝜆 + 1)

4
(0, −1,0,1) 

1

16
(0,1,0,−1) (0,0,0,0) 
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𝑠6 
1

98
(−(3𝜆 + 5),−(1 − 5𝜆), (3𝜆 + 5), (1 − 5𝜆)) (0,0,0,0) 

1

18
(−(5𝜆 + 1), −(9𝜆 + 3), (5𝜆 + 1), (9𝜆 + 3)) 

(1 − 𝜆)

10
(1,1,−1,−1) 

(𝜆 + 1)

9
(−1,0,1,0) 

𝑠7 
𝜆

18
(−1,−1,1,1) 

𝜆

18
(1,−5,−1,5) 

1

18
((𝜆 − 1),−(9𝜆 + 3), −(𝜆 − 1), (9𝜆 + 3)) 

(2𝜆 − 1)

36
(1,−1,−1,1) 

(𝜆 − 1)

18
(1,0,−1,0) 

𝑠8 
(𝜆 + 1)

2
(1,−1,−1,1) 

𝜆

2
(1,3,−1,−3) 

(𝜆 + 1)

2
(1, −1,−1,1) 

(2𝜆 + 1)

4
(1,1,−1,−1) 

(𝜆 + 1)

2
(1,0,−1,0) 

𝑠9 
(𝜆 + 1)

2
(5,−3,−5,3) (0,0,0,0) 

(𝜆 + 1)

2
(3, −1,−3,1) 

(𝜆 + 1)

6
(1,1,−1,−1) (𝜆 + 1)(1,0,−1,0) 

𝑠10 
𝜆

16
(0,1,0,−1) (0,0,0,0) 

(2𝜆 + 1)

4
(0, −1,0,1) 

1

16
(0,1,0,−1) (0,0,0,0) 

𝑠11 
𝜆

18
(1,1,−1,−1) 

𝜆

6
(1,−1,−1,1) 

(2𝜆 + 1)

4
(1,−1, −1,1) 

1

50
((7𝜆 + 1), (𝜆 + 3),−(7𝜆 + 1), −(𝜆 + 3)) 

(2𝜆 + 1)

8
(1,0,−1,0) 

𝑠12  (0,0,0,0) 
𝜆

2
(−3,−1,3,1) 

𝜆

2
(−5,−3,5,3) 𝜆(−1,0,1,0) 

𝑠13   
𝜆

2
(−1,−1,1,1) 

𝜆

2
(−1,−1,1,1) 

𝜆

2
(−1,0,1,0) 

𝑠14    
𝜆

2
(−1,−1,1,1) 𝜆(−1,0,1,0) 

𝑠15     (0,0,0,0) 
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Table 8:The payoff matrix due to the error in perception of the 16 strategies for the randomly alternating PD game for the values 

𝑎 = 2, 𝑏 = 1, 𝑐 = 3, 𝑑 = −2 (𝑅 = 3, 𝑆 = 0, 𝑇 = 4, 𝑃 = 1) with 𝜖 = 0.001 and 𝜆 = 0.01  

 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 

𝑠0 0.5 1.2496 1.0002 1.5 0.50001 1.25 1.0003 1.5003 0.50002 1.9970 1.25 1.9992 0.50003 1.9985 1.2504 2 

𝑠1 0.25013 0.83333 0.83333 1.2998 0.59984 1.1249 1.0001 1.4168 0.25102 1.9909 1.1249 1.9980 0.83334 1.998 0.6004 0.59975 

𝑠2 0.33328 0.83333 0.83344 1.1667 0.58322 1.0833 1 1.3336 0.33368 1.3286 1.0834 1.5832 0.83334 1.8324 1.3336 1.8334 

𝑠3 0.16667 0.5004 0.72210 1 0.64265 1 1 1.2779 0.16780 1 1 1.4996 1 1.8322 1.3573 1.1 

𝑠4 0.5 1 0.91678 1.2144 0.50001 1.1251 1.0002 1.3336 0.50001 1.3330 1.1251 1.5 0.50006 1.75 1.3336 1.7501 

𝑠5 0.25 0.62519 0.74997 1 0.62481 1 1 1.2501 0.25077 1 1 1.3748 1 1.7492 1.3752 1.75 

𝑠6 0.33322 0.71426 0.77773 1 0.59988 1 1 1.2223 0.33368 1 1 1.2857 1 0.71383 1.4002 1.6668 

𝑠7 0.16656 0.41683 0.66628 0.83326 0.66644 0.91664 0.99989 1.1667 0.16757 0.66745 0.91664 1.1667 1.1667 1.6662 1.4168 1.6667 

𝑠8 0.5 1.2490 1.0003 2.2493 0.50001 1.2497 1.0003 1.5 0.50001 1.995 1.2497 1.998 0.50004 1.998 1.2505 1.9995 

𝑠9 0.00101 0.00707 0.66734 1 0.66633 1 1 1.3332 0.00303 1 1 1.9929 1 1.999 1.3337 1.999 

𝑠10 0.25 0.62519 0.74992 1 0.62481 1 1 1.2501 0.25077 1 1 1.375 1 1.7492 1.3752 1.75 

𝑠11 0.0002525 0.00202 0.58317 0.70024 0.69968 0.87506 0.87486 1.1667 0.00202 0.00909 0.87500 1.1667 1.1667 1.7490 1.4002 1.7499 

𝑠12 0.49999 0.83333 0.83333 1 0.50002 1 1 1.1667 0.5 1 1 1.1667 1 1.5 1.5 1.5 

𝑠13 0.000505 0.00202 0.49999 0.50068 0.74968 0.75026 1 1 0.00202 0.00505 0.75026 0.75102 1.5 1.5 1.5 1.5 

𝑠14 0.24987 0.99960 0.66644 0.78559 0.66644 0.87494 1.0002 1.0832 0.25051 0.667 0.87494 1 1.4999 1.5 1.5 1.5 

𝑠15 0 0.0007575 0.49967 0.5 0.74962 0.75 0.99966 0.99984 0.001515 0.00303 0.75 0.75038 1.5 1.5 1.5 1.5 
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