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Abstract. This paper is concerned with multiple change points detection in
the mean of observations with time varying variances. The posterior distribution

is estimated using a MCMC method and the hyper-parameters are estimated
via SAEM algorithm. The simulation results are also given.

Keywords: Change point; GARCH models; MCMC; SAEM algorithm;
Weighted energy function

1 Introduction. The stability of parameters of a statistical model over
time is a necessary condition for making inference. The validity of predictions
and interpretations depends on the model stability. In the quality control set-
ting, when the stability of model assumption is violated the underlying process
is out of control. Therefore, it is very important for a researcher to know if
the parameters of the statistical model are constant at least within the given
sample. Because of this need, the change point analysis should be performed in
a specified inferential problem. Page (1954) first proposed change point prob-
lem in the context of quality control. So far, this problem has been received
considerable attentions in statistical literatures. Some excellent references in
this field are Basseville and Nikiforov (1993), Brodsky and Darkhovsky (1993),
Csorgo and Horvath (1997) and Chen and Gupta (2001).

The change point may occur in time series models. For example, Hansen
(1992) examined whether an AR(1) model for annual U.S. output growth rates
has remained constant over 1889-1987. For a review, we refer to Ray and Tsay
(2001), Lavielle and Teyssieve (2006) and Kawano et al. (2008) and references
therein. Change point phenomenon also happens in financial time series models.
For example, Lee et al. (2004) detected multiple change points in the return
of yen/dollar exchange rate data. Three stylized facts of a financial time series
are volatility clustering, fat tail, and volatility mean reversion. These prop-
erties suggest GARCH modeling in these cases (see Zivot and Wang (2005)).
Therefore, performing the change point analysis in a GARCH time series is too
important. For a general review in this area, see Kim et al. (2000), Kokoszka
and Leipus (2000), Lee et al. (2004), Wang and Wang (2006) and Zhao et al.
(2010).

Lavielle and Lebarbier (2001) (hereafter LL) detected multiple change points
in the mean of independent normal observations. They adopted a Bayesian
approach. They estimated the posterior distribution by MCMC algorithm. A
crucial assumption for LLs paper is that the variance of normal data remains
fixed over the time. In this note, we consider the observations with multiple
change points in their means and time varying variances. Author believes that
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the problem in this case is more difficult than the constant variance case. LL
(2001) showed that the posterior distribution is a map of a energy function.
Here, we show that the posterior, in our case, is function of weighted energy
function. This paper is organized as follows. In Section 2, we propose the models
and prior assumptions. The MCMC method for estimating the posterior and
SAEM algorithm to estimate the hyper-parameters are also given in this Section.
The simulation results about time varying independent Normal observations and
GARCH(1,1) time series are given in Section 3.

2 Time varying variance case. Following LL (2001), suppose that the
underlying process is y = {yt}t≥1 at which

yt = st + εt,

for t ≥ 1. The error process εt are independent zero mean random variables such
that var(εt) = σ2ht, and let h = {ht}t≥1. The mean function st is piecewise
constant, i.e., st = mk for τk−1+1 ≤ t ≤ τk, k = 1, ..., R and m = {mt}t≥1. The
parameter R is unknown number of change points. Following LL, the change
point processm = {mt}t≥1 defined by

rt =
{

1 if there exists k s.t t = τk,
0 otherwise,

t = 1, ..., n are iid Bernoulli random variables with parameter λ. Suppose that
s1, ..., sn are independent random variables with mean µ and variance v2di,
i = 1, ..., n. It is easy to see that mk’s are independent and Gaussian with
mean µ and variance v2/

∑τk

i=τk−1+1 d−1
i . The conditional distribution of the

observations is given by

h(y|r, m, h, σ2) = (2πσ2)
−n
2 (

n∏
i−1

h
−1/2
i )

× exp{ −1
2σ2

R∑
k=1

τk∑
i=τk−1+1

(yi −mk)2/hi}.

It is seen that given observations y, the mk’s remain independent and each mk

is distributed as N(αk, σ2
k) where

αk =
σ2v2

v2 + lkσ2
{yw

k

σ2
+

lk
v2

µk},

and

σ2
k =

σ2v2

v2 + lkσ2
{

τk∑
i=τk−1+1

h−1
i },

at which

lk =

∑τk

i=τk−1+1 d−1
i∑τk

i=τk−1+1 h−1
i

and yw
k =

∑τk

i=τk−1+1 h−1
i yi∑τk

i=τk−1+1 h−1
i

,
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is the weighted mean of k − th segment. Note that by letting hi = di = 1, then
the LL formula is derived. Since there is no information about weights di’s, and
to make consistency between hi and di, we let hi = di. Denote hyper-parameters
by θ = (µ, σ2, v2, λ). Then, we can show that

P (r|y, θ) = exp{−ΦSw
r − γR},

where

Sw
r =

R∑
k=1

τk∑
t=τk−1+1

h−1
t (yt − yw

k )2.

Here, Φ = v2

2σ2(v2+σ2) and γ = (1/2) log( v2+σ2

σ2 ) + log( 1−λ
λ ).

Remark 1. The posterior, in our case, is function of weighted energy func-
tion Uw

θ (y, r) = ΦSw
r +γR. We call Uw

θ since sum of square error Sw
r is weighted.

Following LL (2001), the most probable configuration under posterior distribu-
tion is a MAP estimator. As it is stated by LL (2001), a low temperature
version of posterior can be obtained by involving a temperature parameter T to
the posterior distribution, i.e.,

PT (r|y; θ) = CT (y, θ) exp{Uw
θ (y, r)/T}.

They described that T plays an important role to discriminate the global and
local maxima of the posterior distribution.

Remark 2. The probability P (rt = 1|y; θ) of instant t to be a change point
as well as the probability of having exact k change point between instants a, b,

i.e., P (
∑b

t=a rt = k|y, θ) are replaced by their MCMC estimators, in practical
cases. For example, the first probability is estimated by (1/N)

∑N
i=1 r

(i)
t , where

{r(i), i ≥ 1} are ergodic Markov chains generated by MCMC method. For
another example, #(R(i) = k)/N converges a.s. to P (R = k|y; θ). Since the
result of estimation by MCMC method depends weakly on the initial guess
some initial burn-in period is considered before collecting samples. Following
LL (2001), three types of α(r, r̃) probability of accepting r̃ as a new sample in
MCMC methods are considered. They are given as follows.

α1(r, r̃) = min{1, exp{−Φ(Sw
r̃ − Sw

r )− β(Rr̃ −Rr)}},

where βr = (1/2) log( v2+σ2

σ2 ). Hereafter, we use the notation Rr to show that
Rr is the number of change points related to configuration r. The other two
types of α(r, r̃) are

α2(r, r̃) = min{1, exp{−Φ(Sw
r̃ − Sw

r )± γ}},
α3(r, r̃) = min{1, exp{−Φ(Sw

r̃ − Sw
r )}}.

Remark 3. In above, we assumed that the hyper-parameters θ = (µ, σ2, v2, λ)
are known. This is not the usual case, in practice. Here, following LL (2001), we
also advise to estimate θ. Since the closed forms of ML estimators dont exist,
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we use the Stochastic Approximation Expectation Maximization (SAEM) algo-
rithm, for more details see Givens and Hoeting (2005). The hyper-parameters
are estimated by minimizing the likelihood based on complete data (y, r); i.e.,

L(θ) = f(y, r; θ).

One can see that

µ̂ = yw =
∑n

i=1 h−1
i yi∑n

i=1 h−1
i

, σ̂2 = Sw
r /(n−Rr)

and

v̂2 =
∑n

t=1 h−1
t (yt − yw)2 − Sw

r

Rr
− σ̂2 and λ̂ =

Rr − 1
n− 1

.

Remark 4. To perform SAEM and MCMC algorithms, we start by initial
configuration r(0) and initial guess θ(0). Using these values as well as using M
iterations of MCMC algorithm, a new configuration r(1) is generated. Then, by
SAEM algorithm θ(0) is updated to θ(1). Again, using r(1), θ(1) and MCMC a
new r(2) is constructed. This iterative scheme is continued, for more details see
LL (2001).

3 Examples. In this Section, we apply our method to two known situations.
The first one relates to Normal observations with time varying variances which

appears frequently in regression models and the second one is GARCH time
series models.

Example 1 Normal observations: time varying variances. In this
subsection, we assume that εt are independent and distributed as N(0, σ2ht).Here,
we let n = 700. There are five change points at τ1 = 100, τ2 = 250, τ3 = 425,
τ4 = 550, τ5 = 675. The common part of variance, σ2 = 0.1 and we let ht

= 1+0.01t. We let the vector of mean be m = (0.1, 0.45, 0.5, 0.45, 0.2, 0.1). The
the estimated hyper parameter are θ̂ = (µ̂, σ̂2, v̂2, λ̂) = (0.38, 0.11, 2.8, 0.015). It
is seen that MCMC method with 400 burn-in iterations converges after 20000
iterations. The MAP estimators of R and τi’s are R̂ = 6 and τ̂1 = 96,
τ̂2 = 251, τ̂3 = 415, τ̂4 = 553, τ̂5 = 670. The estimated mean vector is
m̂ = (0.15, 0.48, 0.55, 0.43, 0.21, 0.13). This example shows that our method-
works well.

Example 2 GARCH time series. In the previous section we assumed that
weights ht are known, the usual assumption in the Bayesian setting. Here,we
let εt be a GARCH(1,1) time series, that is ht is a linear combination of ht−1

and ε2
t−1. Here, we let

ht = 0.14 + 0.175ε2
t−1 + 0.686ht−1.

Following the previous example, we let σ2 = 0.1 and τ1 = 100, τ2 = 250,
τ3 = 425, τ4 = 550, τ5 = 675. Here, again m̂ = (0.1, 0.45, 0.5, 0.45, 0.2, 0.1).
Then, m̂ = (0.17, 0.43, 0.51, 0.47, 0.25, 0.11). It is seen that R̂ = 6 and τ̂1 = 9,
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τ̂2 = 245, τ̂3 = 420, τ̂4 = 548, τ̂5 = 666. The hyper parameter is estimated as
(0.55, 0.21, 3.2, 0.019). It is seen that our method again works well in this case.
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