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Abstract 

In this paper, we present a special second order non symmetric fitted difference method for solving singular 

perturbed two point boundary value problems having boundary layer at one end. We introduce a fitting factor in the 

special second order non symmetric finite difference scheme which takes care of the rapid changes occur that in the 

boundary layer. The value of this fitting factor is obtained from the theory of singular perturbations. The discrete 

invariant imbedding algorithm is used to solve the tridiagonal system obtained by the method. We discuss the 

existence and uniqueness of the discrete problem along with stability estimates and the convergence of the method. 

We present the maximum absolute errors in numerical results to illustrate the proposed method. 

Keywords: Singularly perturbed two-point boundary value problem, Boundary layer, Fitting factor, Maximum 

absolute error 

 

1. Introduction 

During the last few years much progress has been made in the theory and in the computer implementation of the 

numerical treatment of singular perturbation problems. Typically, these problems arise very frequently in fluid 

mechanics, fluid dynamics, chemical reactor theory, elasticity, aero dynamics and other domains of the great world 

of fluid motion. The solution of this type of problem has a narrow region in which the solution changes rapidly and 

the outside solution changes smoothly. However, the area of singular perturbations is a field of increasing interest to 

applied mathematicians. Much progress has been made recently in developing finite element methods for solving 

singular perturbation problems. This type of problem was solved by Bellman (1964), Bender and Orszag (1978), 

Eckhaus (1973), Kevorkian and Cole (1981), Nayfeh (1973), O’Malley (1974), Van Dyke (1974), and numerically 

by Ascher and Weis (1984), Kadalbajoo, Reddy (1989) and Kadalbajoo and Patidar (2003), Lin and Su (1989), Roos 

(1986), Vulanovic (1991). It is well known that standard discretization methods for solving singular perturbation 

problems are unstable and fail to give accurate results when the perturbation parameterε is small. Therefore, it is 

important to develop suitable numerical methods for these problems, whose accuracy does not depend on parameter

ε as presented in Doolan et al. (1980). The fitted technique is one such tool to reach these goals in an optimum way.  

There are two possibilities to obtain small truncation error inside the boundary layer(s). The first is to choose a fine 

mesh there, whereas the second one is to choose a difference formula reflecting the behaviour of the solution(s) 

inside the boundary layer(s). Present work deals with the second approach. In this paper, we have presented a special 

second order non symmetric fitted difference method for solving singularly perturbed problems. We introduce a 

fitting factor in a special second order non symmetric finite difference scheme which takes care of the rapid changes 

occur that in the boundary layer. This fitting factor is obtained from the theory of singular perturbations. The discrete 

invariant imbedding algorithm is used to solve the tridiagonal system. The existence and uniqueness of the discrete 

problem along with stability estimates are discussed. We have discussed the convergence of the method. Maximum 

absolute errors in numerical results are presented to illustrate the proposed method. 

 

2. Description of the method 

2.1 Left-End Boundary Layer Problems 
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Consider a linearly singularly perturbed two point boundary value problem of the form: 

]1,0[   , )()()()()()( ∈=+′+′′ xxfxyxbxyxaxyε                                                                 (1) 

 with the boundary conditions       )0( α=y                                                           (2a) 

                       and   β=)1(y                                                                             (2b) 

where ε is a small positive parameter ( 10 <<< ε ) and βα  ,  are given constants. We assume that a(x), b(x) and f(x) 

are sufficiently smooth functions and such that (1) with (2) has a unique solution in [0, 1].  Further more, we assume 

that b(x) ≤ 0, a(x) ≥ M > 0 throughout the interval [0, 1], where M is some positive constant. This assumption implies 

that boundary layer exists in the neighborhood of x = 0. 

From the theory of singular perturbation s it is known that the solution of (1) - (2) is of the form  
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where )(0 xy  is the solution of β==+′ )1(y   , )()()()()( 000 xfxyxbxyxa                                                           (4) 

By taking Taylor’s series expansion for a(x) and b(x) about the point ‘0’ and restricting to their first terms, (3) 

becomes,  
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Now we divide the interval [0, 1] into N equal parts with constant mesh length h. Let 0= Nxxx ,......., 21 =1 be the 

mesh points. Then we have == iihxi : 0, 1, 2, … , N. 

From (5), we have  )())0(()()(
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where 
ε

ρ
h
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From finite differences, we have  
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Substituting )4(2
iyh  from the above equation in (7), we have 
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Now from the equation (1), we have 

111

*

!11

111

*

!11

−−−−−−

++++++

+−′−=′′

+−′−=′′

+−′−=′′

iiiiii

iiiiii

iiiiii

fybyay

fybyay

fybyay

ε

ε

ε

             (9) 

where we approximate *
1+′iy  and *

1−′iy  using non symmetric finite differences 
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Substituting (9) and (10) in (8) and simplifying we get 
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Now introducing the fitting factor )(ρσ in the above scheme 
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The fitting factor )(ρσ  is to be determined in such a way that the solution of (11) converges uniformly to the 

solution of (1)-(2). Multiplying (11) by h and taking the limit as 0→h , and by using equation (6), we get 
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which is a constant fitting factor. 

The tridiagonal system of the equation (11) is given by  

,11 iiiiiii HyGyFyE =+− +−  for i = 1,2,…,N-1                                        (13) 

where  
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where σ is given by (12). We solve this tridiagonal system by the discrete invariant imbedding algorithm. 

2.2 Right-end boundary layer problem 

Finally, we discuss our method for singularly perturbed two point boundary value problems with right-end boundary 

layer of the underlying interval. To be specific, we consider a class of singular perturbation problem of the form: 

)()()()()()( xfxyxbxyxaxy =+′+′′ε , x ∈[0, 1]               (14) 

with y(0)=α             (15a) 

and y(1)= β                                                (15b) 

where ε is a small positive parameter (0 < ε <<1) and α, β are known constants. We assume that a(x), b(x) and f(x) 

are sufficiently smooth functions in [0, 1]. We assume that a(x) ≤ M < 0 throughout the interval [0, 1], where M is 

some negative constant. This assumption merely implies that the boundary layer will be in the neighborhood of x =1. 

From the theory of singular perturbations the solution of (14)-(15) is of the form  
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where )(0 xy is the solution of  

)()()()()( 00 xfxyxbxyxa =+′ , α=)0(0y .           (17) 

By taking the Taylor’s series expansion for a(x) and b(x) about the point ‘1’ and restricting to their first terms, (16) 

becomes )())1(()()(
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Now we divide the interval [0, 1] into N equal parts with constant mesh length h.   

Let 0= Nxxx ,......., 21 =1  be the mesh points. Then we have == iihxi : 0, 1, 2, … , N. 

From (18), we have )())1(()()(
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where 
ε

ρ
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Proceeding as in the left-end boundary layer problem, we get the fitting factor as 
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which is a constant fitting factor. The tridiagonal system of the equation (11) is given by (13) where iii GFE ,,  and 

iH  are same as given in left-end boundary layer. 

3. Stability and convergence analysis 

Theorem 1.  Under the assumptions 0>ε , 0)( >≥ Mxa  and b(x) < 0, ]1 ,0[∈∀x , the solution to the system of the 

difference equations (13), together with the given boundary conditions exists, is unique and satisfies  
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Proof.  Let (.)hL  denote the difference operator on left hand side of Eq. (13) and iw be any mesh function satisfying 

iih fwL =)(  

By rearranging the difference scheme (13) and using non-negativity of the coefficients  
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Now using the assumption ε >0 and Ma i ≥ , the definition of ∞l -norm and manipulating the above inequality, we 

get 

 

( )

( )
0 

2

43

12212

10

1212

10

122

34

12

2
 

1111

1

1

1

111

2

11

≥+








 +−
+

−
+

+++








 −+−
+

+−

−+−+

+
+

−
−−+−+

i

iiiii

i

i

i

i

i

iiiiiii

H
h

wwwM

h

wwM

w
b

w
b

w
b

h

wwwM

h

www
εσ

  (20) 

To prove the uniqueness and existence, let { } { }ii vu  ,  be two sets of solution of the difference equation (13) satisfying 

boundary conditions. Then iii vuw −=  satisfies iih fwL =)( where .0 and  0 0 === Ni wwf  

Summing (20) over i = 1, 2, ……, N-1, we obtain  
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Since ,1,......,2,1 ,  0  and  0 ,0  ,0
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−=∀≥<≥>
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Niiwba iih
ε  therefore for inequality (21) to hold, we must have
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This implies the uniqueness of the solution of the tridiagonal system of difference equations (13). For linear 

equations, the existence is implied by uniqueness. Now to establish the estimate, let ,iii lyw −=   
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Then summing (20) from i = n to N-1 and using the assumption on a(x), which gives 

( )

0
2

3

12

212

10

12

1

12

10

12

1

2

33

12

111

111 1

11

1

11

11

2

1

2

1

≥∑+








 +−−
+










 −−
+∑ ∑+

+∑+








 −+
+−

−
−

−

=

−−

−−−

=

−

=
++

−

=
−−

−−−−

N

ni
i

nnN

nnNN

ni

N

ni
iiii

N

ni
ii

nnNNnn

H
h

wwwM

h

wwwM
wbwb

wb
h

wwwM

h

w

h

ww
σεσε

         (22) 

Inequality (22), together with the condition on b(x) implies that 
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Also, we have iii lwy +=  
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Now to complete the estimate, we have to find out the bound on il  
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From Eqs. (23) – (25), we obtain the estimate ( )βα ++≤
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This theorem implies that the solution to the system of the difference equations (18) are uniformly bounded, 

independent of mesh size h and the perturbation parameterε . Thus the scheme is stable for all step sizes. 

Corollary 1. Under the conditions for theorem 1, the error iii yxye −= )(  between the solution y(x) of the continues 

problem and the solution iy  of the discretized problem, with boundary conditions, satisfies the estimate  
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Proof. Truncation error iτ  in the difference scheme is given by 
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One can easily show that the error ie , satisfies  

( ) ( ) ( ) 1,...,2,1  ,)()( −==−= NiyLxyLxeL iihihih τ  
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Then Theorem 1 implies that 
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The estimate (26) establishes the convergence of the difference scheme for the fixed values of the parameterε . 

Theorem 2. Under the assumptions 0>ε , 0)( <≤ Mxa and b(x)< 0, ]1 ,0[∈∀x , the solution to the system of the 

difference equations (13), together with the given boundary conditions exists, is unique and satisfies 
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∞ ,
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,
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fMy . 

The proof of estimate can be done on similar lines as we did in theorem 1. 

4. Numerical Examples 

To demonstrate the applicability of the method we have applied the method to three linear singular perturbation 

problems with left-end boundary layer and two linear singular perturbation problems with right-end boundary layer. 

These examples have been chosen because they have been widely discussed in literature and because approximate 

solutions are available for comparison. The numerical solutions are compared with the exact solutions and maximum 
absolute errors with and without fitting factor are presented to support the given method. 

Example 1. Consider the following homogeneous singular perturbation problem from Bender and Orszag [4] 

0)()()( =−′+′′ xyxyxyε , x∈[0,1] with y(0) = 1 and y(1) = 1.       

  
Clearly this problem has a boundary layer at x = 0 i.e., at the left end of the underlying interval.      

The exact solution is given by   
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The maximum absolute errors are presented in table 1 for different values of ε with and without fitting factor. 

Example 2. Now consider the following non-homogeneous singular perturbation problem from fluid dynamics for 

fluid of small viscosity xxyxy 21)()( +=′+′′ε ;  x∈[0,1] with y(0)=0 and y(1)=1. The exact solution is given by 
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. The maximum absolute errors are presented in table 2 for different values 

of ε  with and without fitting factor. 

Example 3.  Finally we consider the following variable coefficient singular perturbation problem from Kevorkian 

and Cole [3] 0
2

1

2
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−+′′ yy

x
yε , x∈[0,1] with y(0)=0 and y(1)=1.      

We have chosen to use uniformly valid approximation (which is obtained by the method given by Nayfeh [2] as our 

‘exact’ solution: 
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The maximum absolute errors are presented in table 3 for different values of ε with and without fitting factor. 

Example 4.  Consider the following singular perturbation problem 0)()( =′−′′ xyxyε ; x ∈[0,1]  
with y(0) = 1 and y(1) = 0. Clearly, this problem has a boundary layer at x=1. i.e., at the right end of the underlying 
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interval.      

The exact solution is given by
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e
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. The maximum absolute errors are presented in table 4 for 

different values of ε  with and without fitting factor. 

Example 5.  Now we consider the following singular perturbation problem                

     0)()1()()( =+−′−′′ xyxyxy εε , x∈[0,1] with y(0) = 1+exp(-(1+ε)/ε) and y(1) =1+1/e.   

The exact solution is given by y(x) = ( )( ) )exp(/11exp xx −+−+ εε                                           

The maximum absolute errors are presented in table 5 for different values of ε with and without fitting factor. 

 

5. Discussions and conclusions 
We have described a special second order fitted difference method for solving singularly perturbed two point 

boundary value problems. We have introduced a fitting factor in a special second order finite difference scheme 

which takes care of the rapid changes occur that in the boundary layer. This fitting factor is obtained from the theory 

of singular perturbations. Thomas algorithm is used to solve the tridiagonal system of the fitted method. The 

existence and uniqueness of the discrete problem along with stability estimates are discussed. We have presented 

maximum absolute errors for the standard examples chosen from the literature and also presented maximum absolute 

errors for the some of the examples with and without fitting factor to show the efficiency of the method when h<<ε . 

The computational rate of convergence is also obtained by using the double mesh principle [4] defined below. 
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2N  i.e., 
4/2/

2/ max h

j

h

j
j

h yyZ −= ,  j= 0, 1, 2, ….., 2N-1. 

The computed order of convergence is defined as 
)2log(

loglog
Order 2/hh ZZ −

= .                       We have taken h =
3

2
−

 

for finding the computed order of convergence and results are shown in Table 6. 
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