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ABSTRACT: We study a consolidated system of event; cause and n Qubit register which makes 

computation with n Qubits. Model extensively dilates upon systemic properties and analyses the systemic 

behaviour of the equations together with other concomitant properties. Inclusion of event and cause ,we 

feel enhances the “Quantum ness” of the system holistically and brings out a relevance in the Quantum 

Computation on par with the classical system, in so far as the analysis is concerned. Additional 

VARIABLES OF Space Time provide bastion for the quantum space time studies. 

 

INTRODUCTION: 

 

EVENT AND ITS VINDICATION: 

 

There definitely is a sense of compunction, contrition, hesitation, regret, remorse, hesitation and 

reservation to the acknowledgement of the fact that there is a personal relation to what happens to 

oneself. Louis de Broglie said that the events have already happened and it shall disclose to the people 

based on their level of consciousness. So there is destiny to start with! Say I am undergoing some 

seemingly insurmountable problem, which has hurt my sensibilities, susceptibilities and sentimentalities 

that I refuse to accept that that event was waiting for me to happen. In fact this is the statement of stoic 

philosophy which is referred to almost as bookish or abstract. Wound is there; it had to happen to me. 

So I was wounded. Stoics tell us that the wound existed before me; I was born to embody it. It is the 

question of consummation, consolidation, concretization, consubstantiation, that of this, that creates an 

"event" in us; thus you have become a quasi cause for this wound. For instance, my feeling to become 

an actor made me to behave with such perfectionism everywhere, that people’s expectations rose and 

when I did not come up  to them I fell; thus the 'wound' was waiting for me and "I' was waiting for the 

wound! One fellow professor used to say like you are searching for ides, ideas also searching for you. 

Thus the wound possesses in itself a nature which is "impersonal and preindividual" in character, beyond 

general and particular, the collective and the private. It is the question of becoming universalistic and 

holistic in your outlook. Unless this fate had not befallen you, the "grand design" would not have taken 

place in its entire entirety. It had to happen. And the concomitant ramifications and pernicious or positive 

implications. Everything is in order because the fate befell you. It is not as if the wound had to get 

something that is best from me or that I am a chosen by God to face the event. As said earlier ‘the grand 

design" would have been altered. And it cannot alter. You got to play your part and go; there is just no 

other way. The legacy must go on. You shall be torch bearer and you shall hand over the torch to 

somebody. This is the name of the game in totalistic and holistic way.  

When it comes to ethics, I would say it makes no sense if any obstreperous, obstreperous, ululations, 

serenading, tintinnabulations are made for the event has happened to me. It means to say that you are 

unworthy of the fate that has befallen you. To feel that what happened to you was unwarranted and not 

autonomous, telling the world that you are aggressively iconoclastic, veritably resentful, and volitionally 

resentient, is choosing the cast of allegation aspersions and accusations at the Grand Design. What is 

immoral is to invoke the name of god, because some event has happened to you. Cursing him is 

immoral. Realize that it is all "grand design" and you are playing a part. Resignation, renunciation, 

revocation is only one form of resentience. Willing the event is primarily to release the eternal truth; in 

fact you cannot release an event despite the fact everyone tries all ways and means they pray god; they 

prostrate for others destitution, poverty, penury, misery. But releasing an event is something like an 

"action at a distance" which only super natural power can do.  

Here we are face to face with volitional intuition and repetitive transmutation. Like a premeditated 

skirmisher, one quarrel with one self, with others, with god, and finally the accuser leaves this world in 

despair. Now look at this sentence which was quoted by I think Bousquet "if there is a failure of will", "I 

will substitute a longing for death" for that shall be apotheosis, a perpetual and progressive glorification 

of the will.  
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EVENT AND SINGULARITIES IN QUANTUM SYSTEMS: 

 

What is an event? Or for that matter an ideal event? An event is a singularity or rather a set of 

singularities or set of singular points characterizing a mathematical curve, a physical state of affairs, a 

psychological person or a moral person. Singularities are turning points and points of inflection: they are 

bottle necks, foyers and centers; they are points of fusion; condensation and boiling; points of tears and 

joy; sickness and health; hope and anxiety; they are so to say “sensitive" points; such singularities should 

not be confused or confounded, aggravated or exacerbated with personality of a system expressing itself; 

or the individuality and idiosyncrasies of a system which is designated with a proposition. They should 

also not be fused with the generalizational concept or universalistic axiomatic predications and 

postulation alcovishness, or the dipsomaniac flageolet dirge of a concept. Possible a concept could be 

signified by a figurative representation or a schematic configuration. "Singularity is essentially, pre 

individual, and has no personalized bias in it, or for that matter a prejudice or pre circumspection of a 

conceptual scheme. It is in this sense we can define a "singularity" as being neither affirmative nor non 

affirmative. It can be positive or negative; it can create or destroy. On the other hand it must be noted 

that singularity is different both in its thematic discursive from the run of the mill day to day musings and 

mundane drooling. They are in that sense "extra-ordinary". 

Each singularity is a source and resource, the origin, reason and raison d’être of a mathematical series, it 

could be any series any type, and that is interpolated or extrapolated to the structural location of the 

destination of another singularity. This according to this standpoint, there are different. It can be positive 

or negative; it can create or destroy. On the other hand it must be noted that singularity is different both in 

its thematic discursive from the run of the mill day to day musings and mundane drooling. There are in 

that sense "extra-ordinary". 

 This according to the widely held standpoint, there are different, multifarious, myriad, series IN A structure. 

In the eventuality of the fact that we conduct an unbiased and prudent examination of the series belonging 

to different "singularities" we can come to indubitable conclusions that the "singularity" of one system is 

different from the "other system" in the subterranean realm and ceratoid dualism  of comparison and 

contrast 

EPR experiment derived that there exists a communications between two particles. We go a further step 

to say that there exists a channel of communication however slovenly, inept, clumpy, between the two 

singularities. It is also possible the communication exchange could be one of belligerence, 

cantankerousness, tempestuousness, astutely truculent, with ensorcelled frenzy. That does not matter. All 

we are telling is that singularities communicate with each other. 

Now, how do find the reaction of systems to these singularities. You do the same thing a boss does for 

you. "Problematize" the events and see how you behave. I will resort to "pressure tactics”. “intimidation 

of deriding report", or “cut in the increment" to make you undergo trials, travails and tribulations. I am 

happy to see if you improve your work; but may or may not be sad if you succumb to it and hang 

yourself! We do the same thing with systems. systems show conducive response, felicitous reciprocation 

or behave erratically with inner roil, eponymous radicalism without and with blitzy conviction say like a 

solipsist nature of bellicose and blustering particles, or for that matter coruscation, trepidiational motion 

in fluid flows, or seemingly perfidious incendiaries in gormandizing fellow elementary particles, 

abnormal ebullitions, surcharges calumniations and unwarranted(you think so but the system does not!) 

unrighteous fulminations. 

 So the point that is made here is “like we problematize the "events" to understand the human behaviour 

we have to "problematize" the events of systems to understand their behaviour. 

This statement is made in connection to the fact that there shall be creation or destruction of particles or 

complete obliteration of the system (blackhole evaporation) or obfuscation of results. Some systems are 

like “inside traders" they will not put signature at all! How do you find they did it! Anyway, there are 

possibilities of a CIA finding out as they recently did! So we can do the same thing with systems to. This 

is accentuation, corroboration, fortification, .fomentatory notes to explain the various coefficients we 

have used in the model as also the dissipations called for 

In the Bank example we have clarified that various systems are individually conservative, and their 

conservativeness extends holisticallytoo.that one law is universal does not mean there is complete 

adjudication of nonexistence of totality or global or holistic figure. Total always exists and “individual” 

systems always exist, if we do not bring Kant in to picture! For the time being let us not! Equations 

would become more eneuretic and frenzied...  

Various, myriad, series in a structure. In the eventuality of the fact that we conduct an unbiased and 

prudent examination of the series belonging to different "singularities" we can come to indubitable 
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conclusions that the "singularity" of one system is different from the "other system" in the subterranean 

realm and ceratoid dualism  of comparison and contrast. 

 .  

 

CONSERVATION LAWS: 

 

Conservation laws bears ample testimony ,infallible observatory, and impeccable demonstration to the 

fact that the essential predications, character constitutions, ontological consonances remain unchanged 

with evolution despite  the system’s astute truculence, serenading whimsicality,assymetric disposition or 

on the other hand  anachronistic dispensation ,eponymous radicality,entropic entrepotishness or the 

subdued ,relationally contributive, diverse parametrisizational,conducive reciprocity to environment, 

unconventional behaviour,eneuretic nonlinear frenetic ness ,ensorcelled frenzy, abnormal 

ebulliations,surcharged fulminations ,  or the inner roil. And that holds well with the evolution with time. 

We present a model of the generalizational conservation of the theories. A theory of all the conservation 

theories. That all conservation laws hold and there is no relationship between them is bête noir. We shall 

on this premise build a 36 storey model that deliberates on various issues, structural, dependent, thematic 

and discursive, 

Note THAT The classification is executed on systemic properties and parameters. And everything that is 

known to us measurable. We do not know”intangible”.Nor we accept or acknowledge that. All laws of 

conservation must holds. Hence the holistic laws must hold. Towards that end, interrelationships must 

exist. All science like law wants evidence and here we shall provide one under the premise that for all 

conservations laws to hold each must be interrelated to the other, lest the very conception is a fricative 

contretemps. And we live in “Measurement” world. 

QUANTUM REGISTER: 

Devices that harness and  explore the fundamental axiomatic predications of Physics has wide ranging 

amplitidunial ramification with its essence of locus and focus on information processing that 

outperforms their classical counterparts, and for unconditionally secure communication. However, in 

particular, implementations based on condensed-matter systems face the challenge of short coherence 

times. Carbon materials, particularly diamond, however, are suitable for hosting robust solid-state 

quantum registers, owing to their spin-free lattice and weak spin–orbit coupling. Studies with the 

structurally notched criticism and schizoid fragments of manifestations of historical perspective of 

diamond hosting quantum register have borne ample testimony and, and at differential and determinate 

levels have articulated the generalized significations and manifestations of quantum logic elements can 

be realized by exploring long-range magnetic dipolar coupling between individually addressable single 

electron spins associated with separate colour centres in diamond. The strong distance dependence of 

this coupling was used to characterize the separation of single qubits (98±3 Å) with accuracy close to the 

value of the crystal-lattice spacing. Coherent control over electron spins, conditional dynamics, 

selective readout as well as switchable interaction should rip open glittering façade for a prosperous and 

scintillating irreducible affirmation of open the way towards a viable room-temperature solid-state 

quantum register. As both electron spins are optically addressable, this solid-state quantum device 

operating at ambient conditions provides a degree of control that is at present available only for a few 

systems at low temperature (See for instance P. Neumann, R. Kolesov, B. Naydenov, J. Bec F. Rempp, 

M. Steiner
,
 V. Jacques,, G. Balasubramanian,M, M. L. Markham,, D. J. Twitchen,, S. Pezzagna,, J. 

Meijer, J. Twamley, F. Jelezko & J. Wrachtrup) 

  

CAUSE AND EVENT: 

MODULE NUMBERED ONE 
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NOTATION : 

    : CATEGORY ONE OF CAUSE                 

    : CATEGORY TWO OF CAUSE 

    : CATEGORY THREE OF CAUSE       

    : CATEGORY ONE OF EVENT 

    : CATEGORY TWO OF EVENT 

    :CATEGORY THREE OFEVENT  

 

FIRST TWO CATEGORIES OF QUBITS COMPUTATION: 

 MODULE NUMBERED TWO: 

==========================================================================

=== 

    : CATEGORY ONE OF FIRST SET OF QUBITS     

    : CATEGORY TWO OF FIRST SET OF QUBITS 

    : CATEGORY THREE OF FIRST SET OF QUBITS 

    :CATEGORY ONE OF SECOND SET OF QUBITS 

    : CATEGORY TWO OF SECOND SET OF QUBITS  

    : CATEGORY THREE OF SECOND SET OF QUBITS 

THIRD SET OF QUBITS AND FOURTH SET OF QUBITS: 

 MODULE NUMBERED THREE: 

===========================================================================

== 

    : CATEGORY ONE OF  THIRD SET OF QUBITS 

    :CATEGORY TWO OF THIRD SET OF QUBITS 

    : CATEGORY THREE OF THIRD SET OF QUBITS 

    : CATEGORY ONE OF FOURTH SET OF QUBITS 

    :CATEGORY TWO OF FOURTH SET OF QUBITS 

    : CATEGORY THREE OF FOURTH SET OF QUBITS 

 

 

FIFTH SET OF QUBITS AND SIXTH SET OF QUBITS 

: MODULE NUMBERED FOUR: 
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===========================================================================

= 

 

    : CATEGORY ONE OF FIFTH SET OF QUBITS 

    : CATEGORY TWO OF FIFTH SET OF QUBITS 

    : CATEGORY THREE OF FIFTH SET OF QUBITS 

    :CATEGORY ONE OF SIXTH SET OF QUBITS 

    :CATEGORY TWO OF SIXTH SET OF QUBITS  

    : CATEGORY THREE OF SIXTH SET OF QUBITS 

SEVENTH SET OF QUBITS AND EIGHTH SET OF QUBITS: 

MODULE NUMBERED FIVE: 

===========================================================================

==  

    : CATEGORY ONE OF  SEVENTH SET OF QUBITS 

    : CATEGORY TWO OFSEVENTH SET OF QUBITS 

    :CATEGORY THREE OF SEVENTH SET OF QUBITS 

    :CATEGORY ONE OF EIGHTH SET OF QUBITS 

    :CATEGORY TWO OF EIGHTH SET OF QUBITS  

    :CATEGORY THREE OF EIGHTH SET OF QUBITS 

(n-1)TH SET OF QUBITS AND nTH SET OF QUBITS : 

MODULE NUMBERED SIX: 

 

===========================================================================

==  

    : CATEGORY ONE OF(n-1)TH SET OF QUBITS 

    : CATEGORY TWO OF(n-1)TH SET OF QUBITS 

    : CATEGORY THREE OF (N-1)TH SET OF QUBITS 

    : CATEGORY ONE OF n TH SET OF QUBITS 

    : CATEGORY TWO OF n TH SET OF QUBITS  

    : CATEGORY THREE OF  n TH SET OF QUBITS 
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GLOSSARY OF MODULE NUMBERED SEVEN 

========================================================================== 

    : CATEGORY ONE OF TIME 

    : CATEGORY TWO OF TIME 

    : CATEGORY THREE OF TIME 

    : CATEGORY ONE OF SPACE 

    : CATEGORY TWO OF  SPACE 

    : CATEGORY THREE OF  SPACE 

===========================================================================

==== 

 

(   )
( ) (   )

( ) (   )
( )  (   )

( ) (   )
( ) (   )

( ) (   )
( ) (   )

( ) (   )
( ) 

(   )
( ) (   )

( ) (   )
( ): (   )

( ) (   )
( ) (   )

( )  (   )
( ) (   )

( ) (   )
( ) 

(   )
( ) (   )

( ) (   )
( ) (   )

( ) (   )
( ) (   )

( ) (   )
( ) (   )

( ) (   )
( ),

(   )
( ) (   )

( ) (   )
( )  (   )

( ) (   )
( ) (   )

( ) (   )
( ) (   )

( ) (   )
( ) 

are Accentuation coefficients  

(   
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 )( ) (   
 )( )  (   
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 )( ) (   
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(   
 )( ) (   

 )( ) (   
 )( ) , (   

 )( ) (   
 )( ) (   

 )( ) (   
 )( ) (   

 )( ) (   
 )( ) 

are Dissipation coefficients 

CAUSE AND EVENT: 

MODULE NUMBERED ONE 

 

The differential system of this model is now (Module Numbered one) 

1 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     2 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     3 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     4 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(   )]     5 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(   )]      6 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(   )]      7 

 (   
  )( )(     )    First augmentation factor  8 
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 (   
  )( )(   )     First detritions factor  

FIRST TWO CATEGORIES OF QUBITS COMPUTATION: 

 MODULE NUMBERED TWO: 

 

 

The differential system of this model is now ( Module numbered two) 

9 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     10 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     11 
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 (   )

( )    [(   
 )( )  (   

  )( )((   )  )]      15 

 (   
  )( )(     )    First augmentation factor  16 

 (   
  )( )((   )  )     First detritions factor  17 

THIRD SET OF QUBITS AND FOURTH SET OF QUBITS: 

MODULE NUMBERED THREE 

 

The differential system of this model is now (Module numbered three) 

18 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     19 
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 (   )

( )    [(   
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 (   
  )( )(     )    First augmentation factor  

 (   
  )( )(     )     First detritions factor  25 

FIFTH SET OF QUBITS AND SIXTH SET OF QUBITS 

: MODULE NUMBERED FOUR 

26 
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The differential system of this model is now (Module numbered  Four) 
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  )( )(     )    First augmentation factor 33 
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SEVENTH SET OF QUBITS AND EIGHTH SET OF QUBITS: 

MODULE NUMBERED FIVE 

 

The differential system of this model is now (Module number five) 

35 
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  )( )(     )    First augmentation factor  42 

 (   
  )( )((   )  )     First detritions factor  43 

 

n-1)TH SET OF QUBITS AND nTH SET OF QUBITS : 

MODULE NUMBERED SIX: 

44 

45 
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The differential system of this model is now (Module numbered Six) 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     46 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     47 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     48 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )((   )  )]     49 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )((   )  )]      50 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )((   )  )]      51 

 (   
  )( )(     )    First augmentation factor 52 

 

GOVERNING EQUATIONS: 

 

The differential system of this model is now (SEVENTH MODULE) 
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60 

 (   
  )( )(     )    First augmentation factor  61 

 (   
  )( )((   )  )     First detritions factor 

FIRST MODULE CONCATENATION: 
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Where (   
  )( )(     )   (   

  )( )(     )   (   
  )( )(     )   are first augmentation coefficients for category 1, 2 and 3  

  (   
  )(    )(     )  ,  (   

  )(    )(     )  ,  (   
  )(    )(     )  are second  augmentation coefficient for category 1, 2 and 3   

  (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )  are third  augmentation coefficient for category 1, 2 and 3  

 (   
  )(        )(     )   ,  (   

  )(        )(     )  ,  (   
  )(        )(     )  are fourth augmentation coefficient for category 1, 2 

and 3 

 (   
  )(        )(     )   (   

  )(        )(     )    (   
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( )    
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  (   
  )(  )(     ) ]

 
 
 
 

     

Where  (   
  )( )(   )    (   

  )( )(   )    (   
  )( )(   )  are first detritions coefficients for category 1, 2 and 3    

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )   are second detritions coefficients for category 1, 2 and 3    

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )  are third  detritions coefficients for category 1, 2 and 3    

 (   
  )(        )(     )    (   

  )(        )(     )    (   
  )(        )(     )  are fourth  detritions coefficients for category 1, 2 and 3    

 (   
  )(        )(     )  ,  (   

  )(        )(     )  ,  (   
  )(        )(     )  are fifth detritions coefficients for category 1, 2 and 3    

 (   
  )(        )(     )  ,  (   

  )(        )(     )  ,  (   
  )(        )(     )  are sixth detritions coefficients for category 1, 2 and 3   

 (   
  )(  )(     )   (   

  )(  )(     )   (   
  )(  )(     ) ARE SEVENTH DETRITION 

COEFFICIENTS 
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 ]      

63 

Where  (   
  )( )(   )    (   

  )( )(   )    (   
  )( )(   )  are first detrition coefficients for category 1, 2 and 3    

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )   are second detritions coefficients for category 1, 2 and 3    

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )  are third  detritions coefficients for category 1, 2 and 3    

 (   
  )(        )(     )    (   

  )(        )(     )    (   
  )(        )(     )  are fourth  detritions coefficients for category 1, 2 and 3    

 (   
  )(        )(     )  ,  (   

  )(        )(     )  ,  (   
  )(        )(     )  are fifth detritions coefficients for category 1, 2 and 3    

 (   
  )(        )(     )  ,  (   

  )(        )(     )  ,  (   
  )(        )(     )  are sixth detritions coefficients for category 1, 2 and 3   

64 

SECOND MODULE CONCATENATION: 65 
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68 

Where  (   
  )( )(     )     (   

  )( )(     )    (   
  )( )(     )  are first augmentation coefficients for category 1, 2 and 3   69 
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 (   
  )(    )(     )  ,  (   

  )(    )(     )  ,  (   
  )(    )(     )   are second augmentation coefficient for category 1, 2 and 3    

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )  are third  augmentation coefficient for category 1, 2 and 3   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )   are fourth augmentation coefficient for category 1, 2 and 

3   

 (   
  )(         )(     ) ,  (   

  )(         )(     )  ,  (   
  )(         )(     )   are fifth  augmentation coefficient for category 1, 2 and 

3   

 (   
  )(         )(     ) ,  (   

  )(         )(     )  ,  (   
  )(         )(     )   are sixth augmentation coefficient for category 1, 2 and 

3   

 

 

 

 

 

70 

 (   
  )(    )(     )  (   

  )(    )(     )  (   
  )(    )(     ) ARE SEVENTH DETRITION 

COEFFICIENTS 
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74 

        (   
  )( )(     )    ,  (   

  )( )(     )   ,  (   
  )( )(     )    are first detrition coefficients for category 1, 2 and 3  

 (   
  )(    )(   )    (   

  )(    )(   )  ,  (   
  )(    )(   )   are second detrition coefficients for category 1,2 and 3  

 (   
  )(      )(     )    (   

  )(      )(     )    (   
  )(      )(     )   are  third  detrition coefficients for category 1,2 and 3  

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )   are  fourth detritions coefficients for category 1,2 and 3  

 (   
  )(         )(     )  ,  (   

  )(         )(     )  ,  (   
  )(         )(     )  are  fifth detritions coefficients for category 1,2 and 3  

 (   
  )(         )(     )   (   

  )(         )(     )  ,  (   
  )(         )(     )   are  sixth detritions coefficients for category 1,2 and 3  

 (   
  )(   )(     )  (   

  )(   )(     )  (   
  )(   )(     )                                    

 

 

 

THIRD MODULE CONCATENATION: 

75 
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 (   
  )( )(     ) ,  (   

  )( )(     ) ,  (   
  )( )(     )   are  first  augmentation coefficients for category 1, 2 and 3  

 (   
  )(     )(     )    (   

  )(     )(     )  ,  (   
  )(     )(     )  are second augmentation coefficients for category 1, 2 and 3    

 (   
  )(      )(     )    (   

  )(      )(     )    (   
  )(      )(     )    are third augmentation coefficients for category 1, 2 and 3    

 (   
  )(           )(     )  ,  (   

  )(           )(     )    (   
  )(           )(     )  are fourth augmentation coefficients for category 1, 

2 and 3   

 (   
  )(           )(     )   (   

  )(           )(     )    (   
  )(           )(     )  are fifth augmentation coefficients for category 1, 2 

and 3   

 (   
  )(           )(     )    (   

  )(           )(     )   (   
  )(           )(     )  are sixth augmentation coefficients for category 1, 2 

and 3    

79 
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 (   
  )(      )(     )  (   

  )(      )(     )  (   
  )(      )(     ) are seventh augmentation coefficient 81 
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84 

 (   
  )( )(     )    (   

  )( )(     )     (   
  )( )(     )   are first  detritions coefficients  for category 1, 2 and 3   

 (   
  )(     )(     )  ,  (   

  )(     )(     )  ,  (   
  )(     )(     )   are second detritions coefficients for category 1, 2 and 3      
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 (   
  )(      )(   )    (   

  )(      )(   )  ,  (   
  )(      )(   )   are third detrition coefficients for category 1,2 and 3  

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )  are fourth  detritions coefficients  for category 1, 2 

and 3  

   (   
  )(           )(     )   (   

  )(           )(     )    (   
  )(           )(     )  are fifth  detritions coefficients  for category 1, 2 

and 3   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )  are sixth detritions coefficients  for category 1, 2 

and 3   

– (   
  )(     )(     ) – (   

  )(     )(     ) – (   
  )(     )(     ) are seventh detritions coefficients 

==================================================================================== 

 

FOURTH MODULE CONCATENATION: 
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  )(       )(     )    are fourth augmentation coefficients for category  1, 2,and  

3  

 (   
  )(       )(     ) ,  (   
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  )(       )(     )   are fifth augmentation coefficients for category  1, 2,and  3  
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  )(       )(     )  are sixth augmentation coefficients for category  1, 2,and  3  

 (   
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  )(        )(     )  (   
  )(        )(     ) ARE SEVENTH augmentation 

coefficients 
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FIFTH MODULE CONCATENATION: 98 
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  )(         )(     )   are fourth augmentation coefficients for category 1,2, 

and 3 
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  )(         )(     )   (   
  )(         )(     )  are fifth augmentation coefficients for category 1,2,and  3 
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  )(         )(     )   are sixth augmentation coefficients for category 1,2, 3
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 (   
  )(         )(   )   (   

  )(         )(   )     (   
  )(          )(   )   are fourth detrition coefficients for category 1,2, and 3 

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )  are fifth detrition coefficients for category 1,2, and 3 

– (   
  )(         )(     ) , – (   

  )(         )(     )  – (   
  )(         )(     )  are sixth  detrition coefficients for category 1,2, and 3 
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SIXTH MODULE CONCATENATION 108 
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  )(           )(   )   (   
  )(           )(   )    are fourth detrition  coefficients for category 1, 2, and 3 

 (   
  )(           )(     ) ,  (   

  )(           )(     )   (   
  )(           )(     )   are fifth detrition  coefficients for category 1, 2, and 

3 

– (   
  )(           )(     ) , – (   

  )(           )(     )  – (   
  )(           )(     )   are sixth detrition coefficients for category 1, 2, and 

3 

– (   
  )(           )(     ) – (   

  )(           )(     ) – (   
  )(           )(     ) ARE SEVENTH DETRITION 

COEFFICIENTS 
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                                                                                                                                          ]     

 

126 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )((   )  )]     

  

127 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )((   )  )]      

 

128 

129 
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130 

131 

132 

 (   
  )( )(     )    First augmentation factor  134 

(A) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       135 

(B) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 136 

Definition of (  )
( )   (  )

( ): 137 

(  
  )( )(     )  (  )

( )  (  ̂   )
( )

  138 

(  
  )( )(     )    (  )

( )  (  
 )( )  (  ̂   )

( )  139 

(C)        (  
  )( ) (     )  (  )

( ) 140 

       (  
  )( ) ((   )  )    (  )

( )  141 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( ) are positive constants  and              

142 

They satisfy  Lipschitz condition: 143 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   144 

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   145 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) And (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )  

  then the function  (  
  )( )(     ) , the SECOND augmentation coefficient would be absolutely 

continuous.  

146 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 147 

(D) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

148 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together 

with (  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

  satisfy the inequalities  

149 

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     150 

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     151 
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Where we suppose 152 

(E)    (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )(     )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

153 

       (  
  )( ) (     )  (  )

( )  

      (  
  )( ) (     )    (  )

( )           

 Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants   and              

154 

155 

156 

They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
     (  ̂   )( )   

157 

158 

159 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) And (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )  

  then the function  (  
  )( )(     ) , the THIRD augmentation coefficient, would be absolutely 

continuous.  

160 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(F) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

161 

There exists two constants There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )                   
satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

162 

163 

164 

165 

166 

167 

Where we suppose 168 

(G) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       
 

(H) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 
 

Definition of (  )
( )   (  )

( ): 

169 
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     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

  

(I)        (  
  )( ) (     )  (  )

( ) 

      (  
  )( ) ((   )  )    (  )

( )         

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              

170 

   They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

171 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) And (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if 

(  ̂   )
( )    then the function  (  

  )( )(     ) , the FOURTH augmentation coefficient WOULD be 

absolutely continuous.  

172 

 

 

173 

Defi174nition of (  ̂   )
( ) (  ̂   )

( ) : 

(J) (  ̂   )      ( ) (  ̂   )
( )   are positive constants 

(K)  
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     

174 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(L) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             
satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

175 

Where we suppose 176 

(M) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                      

(N) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

177 
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     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

  

(O)        (  
  )( ) (     )  (  )

( ) 

           (  
  )( ) (     )    (  )

( )           

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants  and              

178 

They satisfy  Lipschitz condition: 

   (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

179 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if 

(  ̂   )
( )    then the function  (  

  )( )(     ) , theFIFTH augmentation coefficient attributable would 

be absolutely continuous.  

180 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(P) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

181 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(Q) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )                   satisfy the inequalities  
 

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

182 

Where we suppose 183 

(  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

(R) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

184 

  

(S)        (  
  )( ) (     )  (  )

( ) 

185 
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           (  
  )( ) ((   )  )    (  )

( )           

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

            Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              

They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

186 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if 

(  ̂   )
( )    then the function  (  

  )( )(     ) , the SIXTH augmentation coefficient  would be 

absolutely continuous.  

187 

Definition of (  ̂   )
( ) (  ̂   )

( ) :  

(  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

188 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             
satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

189 

 190 

Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution 

satisfying the conditions 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

191 

 192 

  

Definition of     ( )    ( ) 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

193 
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  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 194 

 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

195 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

                                         

196 

 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

197 

 

 

 

 

198 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

199 

Proof: Consider operator   ( )  defined on the space of sextuples of continuous functions 

              which satisfy                                           

200 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    201 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     202 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   203 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

204 

  ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
  205 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
  206 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  207 



Mathematical Theory and Modeling                                                                     www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.7, 2012 

 

133 
 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  208 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

209 

 210 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy             

211 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    212 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     213 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   214 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

215 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  216 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  217 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  218 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  219 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

220 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy         

221 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    222 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     223 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   224 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

225 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  226 
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 ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
  227 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  228 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  229 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

230 

 Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy                               

231 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    232 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     233 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   234 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

235 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  236 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  237 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   238 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  239 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

240 

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy               

241 

242 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    243 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     244 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   245 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

246 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
  247 
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Where  (  )  is the integrand that is integrated over an interval (   ) 

251 

 

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy      
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Where  (  )  is the integrand that is integrated over an interval (   ) 

261 

 262 

(a) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into 

itself .Indeed it is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
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(  ̂   )( ) ( (  ̂   )( )   )  

263 

 From which it follows that 264 
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(  ̂   )( ) [((  ̂   )
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 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

Analogous inequalities hold also for                       265 

(b) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into 

itself .Indeed it is obvious that 
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 From which it follows that 
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Analogous inequalities hold also for                       269 

(a) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into 

itself .Indeed it is obvious that 
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Analogous inequalities hold also for                       272 

(b) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed 
it is obvious that 
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 ) is as defined in the statement of theorem 1 
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(c) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed 
it is obvious that 
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( ) (   
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( ) (  ̂   )( ) (  ))] 
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 ) is as defined in the statement of theorem 1 
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(d) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed 
it is obvious that 
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 ) is as defined in the statement of theorem 6 

Analogous inequalities hold also for                       
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 280 

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 
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284 

In order that the operator  ( ) transforms the space of sextuples of functions        satisfying 

GLOBAL EQUATIONS into itself 

285 

The operator  ( ) is a contraction with respect to the metric  

 (( ( )  ( )) ( ( )  ( )))    

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    
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 Indeed if we denote   

Definition of  ̃  ̃ : 

(  ̃  ̃ )   ( )(   ) 

It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 
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|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    
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 )( )|   
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|  (  ̂  )( ) (  )  (  ̂  )( ) (  )
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  )( )(   
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  (  ))|   

( )
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|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )  

Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 
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 )( )  (  ̂  )
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( )(  ̂  )
( )) (( ( )  ( )   ( )  ( )))  

And analogous inequalities for          . Taking into account the hypothesis  the result follows 

288 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as 

not conformal with the reality, however we have put this hypothesis ,in order that we can postulate 

condition necessary to prove the uniqueness of the solution bounded by 

(  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

 (             ) and hypothesis can replaced by a usual Lipschitz condition. 

289 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     
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Definition of  ((  ̂  )
( ))

 
      ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 
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Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

293 

 Remark 5: If       is bounded from below and       ((  
  )( ) ( ( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )( ( )  )         ( )  ( )( )  
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Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is 

unbounded. The same property holds for      if       (   
  )( ) ( ( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  
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It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 
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In order that the operator  ( ) transforms the space of sextuples of functions        satisfying  300 

The operator  ( ) is a contraction with respect to the metric  
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Indeed if we denote   

Definition of    ̃    ̃ :   (    ̃    ̃ )   ( )(       ) 
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It results 
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 
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And analogous inequalities for          . Taking into account the hypothesis  the result follows 306 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as 

not conformal with the reality, however we have put this hypothesis ,in order that we can postulate 

condition necessary to prove the uniqueness of the solution bounded by 

(  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

307 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  
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  )( )(   ( (  ))  (  ))}  (  )
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 )( ) )      for     
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Definition of  ((  ̂  )
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  ((  ̂  )
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     ((  ̂  )
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 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )
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 (   

 )( )    and by integrating  
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 (   
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In the same way , one can obtain 

    ((  ̂  )
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( )((  ̂  )
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 If             is bounded, the same property follows for           and            respectively. 
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Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

311 

 Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then 

        

Definition of  ( )( )        : 

Indeed let     be so that for        
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( )  (  

  )( )((   )( )  )         ( )  ( )( )  
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Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  
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(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that     is 

unbounded. The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  
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It is now sufficient to take 
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(  ̂   )( )    
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(  ̂   )( )     and to choose 
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( ) large to have 
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In order that the operator  ( ) transforms the space of sextuples of functions         into itself 319 

The operator  ( ) is a contraction with respect to the metric  
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Indeed if we denote   

Definition of    ̃    ̃ :( (   )̃ (   )̃ )   ( )((   ) (   )) 
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It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )

 

 
   

(   
  )( )(   

( )
  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )  

Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 
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And analogous inequalities for          . Taking into account the hypothesis  the result follows 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as 

not conformal with the reality, however we have put this hypothesis ,in order that we can postulate 

condition necessary to prove the uniqueness of the solution bounded by 

(  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 
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Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  
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Remark 3: if     is bounded, the same property have also              . indeed if  
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 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  
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 If             is bounded, the same property follows for           and            respectively. 
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Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 
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 Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then 

        

Definition of  ( )( )        : 

Indeed let     be so that for        
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  )( )((   )( )  )         ( )  ( )( )  
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Then  
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( )( )( )        which leads to  
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) (       )     

        If we take    such that         
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  By taking now      sufficiently small one sees that      is 

unbounded. The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  
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It is now sufficient to take 
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(  ̂   )
( )     (  ̂   )

( ) large to have 

333 

(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

334 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

335 

In order that the operator  ( ) transforms the space of sextuples of functions        satisfying  IN to 

itself 
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The operator  ( ) is a contraction with respect to the metric  
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses it follows 
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And analogous inequalities for          . Taking into account the hypothesis the result follows 

339 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as 

not conformal with the reality, however we have put this hypothesis ,in order that we can postulate 

condition necessary to prove the uniqueness of the solution bounded by 

340 
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(  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then 

it suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     

341 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

342 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

343 

Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then 

        

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )((   )( )  )         ( )  ( )( )  

344 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is 

unbounded. The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS 

inequalities hold also for                       

345 
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 It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 
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349 

In order that the operator  ( ) transforms the space of sextuples of functions         into itself 350 

The operator  ( ) is a contraction with respect to the metric  
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 Indeed if we denote   

Definition of (   )̃ (   )̃ :    ( (   )̃ (   )̃ )   ( )((   ) (   )) 

It results 
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 
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And analogous inequalities for          . Taking into account the hypothesis (35,35,36) the result 

follows 

353 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as 354 
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not conformal with the reality, however we have put this hypothesis ,in order that we can postulate 

condition necessary to prove the uniqueness of the solution bounded by 

(  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then 

it suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

Remark 2: There does not exist any    where    ( )           ( )      

From GLOBAL EQUATIONS it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     
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Definition of  ((  ̂  )
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  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )
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 (   

 )( )  

In the same way , one can obtain 
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   (   )
( )((  ̂  )
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 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 
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Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

357 

Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then 

        

Definition of  ( )( )        : 

Indeed let     be so that for        
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  )( )((   )( )  )         ( )  ( )( ) 
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Then  
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( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is 

unbounded. The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 
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We now state a more precise theorem about the behaviors at infinity of the solutions  

Analogous inequalities hold also for                       

 361 

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )
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(  ̂   )( )     and to choose 
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( ) large to have 
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In order that the operator  ( ) transforms the space of sextuples of functions         into itself 365 

The operator  ( ) is a contraction with respect to the metric  
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 Indeed if we denote   
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 
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And analogous inequalities for          . Taking into account the hypothesis the result follows 

368 



Mathematical Theory and Modeling                                                                     www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.7, 2012 

 

148 
 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as 

not conformal with the reality, however we have put this hypothesis ,in order that we can postulate 

condition necessary to prove the uniqueness of the solution bounded by 

(  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then 

it suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 
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Remark 2: There does not exist any    where    ( )           ( )      

From 69 to 32 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )
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  ( (  

 )( ) )      for     
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Definition of  ((  ̂  )
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  ((  ̂  )
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     ((  ̂  )
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 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 
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( ))
 
 (   

 )( )    and by integrating  
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In the same way , one can obtain 
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 )( )  

 If             is bounded, the same property follows for           and            respectively. 
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Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

372 

Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then 

        

Definition of  ( )( )        : 

Indeed let     be so that for        
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Then  
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        If we take    such that         
 

 
  it results  
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  By taking now      sufficiently small one sees that      is 
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unbounded. The same property holds for      if       (   
  )( ) ((   )( )  ( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

 376 

Behavior of the solutions  

 If we denote and define 
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( )  (  )
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  )( )(      )   (  )

( )   

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(   )  (   
  )( )(   )   (  )

( )  

377 

Definition of  (  )
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( ) (  )
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and analogously 
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Then the solution satisfies the inequalities 
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where (  )
( ) is defined  
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Behavior of the solutions  

 If we denote and define 
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and  (   )
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 418 

Behavior of the solutions 

 If we denote and define 
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( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

420 

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) :- 

(c) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   

421 

and analogously 

  (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

  (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )      and (  )

( )  
   

 

   
   

 (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )    

Then the solution  satisfies the inequalities 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )   

(  )
( ) is defined  

422 

 

 

 

 

 

 

423 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   424 
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( 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

  (  )( )    (   
 )( )       

   (   
 )( ) )  

425 

      
  (  )( )     ( )     

  ((  )( ) (   )( ))     
426 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))   427 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

428 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  

              (  )
( )  (   )

( )(  )
( )  (   

 )( )   

                        (  )
( )  (   

 )( )  (   )
( ) 

429 

 430 

 431 

Behavior of the solutions  
If we denote and define 
 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 
 

(d) (  )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 
 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   
 

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )  

 

432 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 
 

(e) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the 

equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

 

433 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 
 

       By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

 

(f) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 
 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

434 
435 
 
 
 
436 
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       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  
 
and analogously 

 

       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 
 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

     and (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 
are defined by 59 and 64 respectively 
 

437 
438 

Then the solution satisfies the inequalities 
 

       
  ((  )( ) (   )( ))     ( )     

  (  )( )  
 

where (  )
( ) is defined  

439 
440 
441 
442 
443 
444 
445 
 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

 

446 
447 

(
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]      

   (   
 )( ) )  

 

448 

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    

 

449 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))   

 

450 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

451 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 
 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )  
  

             (  )
( )  (   )

( )  (   )
( )  

 

                 (  )
( )  (   )

( )(  )
( )  (   

 )( )   
 

             (  )
( )  (   

 )( )  (   )
( )  

 

452 
 
 
 
 
 
 
 
453 

Behavior of the solutions  454 
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If we denote and define 
 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 
 

(g) (  )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 
 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   
 

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )  

 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 
 

(h) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the 

equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

 

455 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 
 

       By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

 

(i) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 
 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 
 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  
 

456 

and analogously 
 

       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 
 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

     and (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 
are defined  respectively 
 

457 

Then the solution satisfies the inequalities 
 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )   
 

where (  )
( ) is defined  

458 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

 

459 
 
460 
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(
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]      

   (   
 )( ) )  

 

461 

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    

 

462 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))   

 

463 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

464 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 
 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )  
  

             (  )
( )  (   )

( )  (   )
( )  

 

                 (  )
( )  (   )

( )(  )
( )  (   

 )( )   
 

             (  )
( )  (   

 )( )  (   )
( )  

 

465 

Behavior of the solutions 
 If we denote and define 
 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 
 

(j) (  )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 
 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   
 

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )  

 

466 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 
 

(k) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the 

equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

 

467 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 
 

       By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

 

(l) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 
 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 
 

468 
 
 
 
 
 
 
 
 
 
 
470 
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       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  
 
and analogously 

 

       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 
 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

     and (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 
are defined respectively 
 

471 

Then the solution  satisfies the inequalities 
 

      
  ((  )( ) (   )( ))     ( )     

  (  )( )  
 

where (  )
( ) is defined 

472 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

 

473 

(
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]      

   (   
 )( ) )  

 

474 

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    

 

475 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))   

 

476 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

477 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 
 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )  
  

             (  )
( )  (   )

( )  (   )
( )  

 

             (  )
( )  (   )

( )(  )
( )  (   

 )( )   
 

             (  )
( )  (   

 )( )  (   )
( )  

478 

 479 

Proof : From GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))   (   

  )( )(     ) 
( )  (   )

( ) ( )  

480 
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Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

 From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

 

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( ) 

481 

 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

482 

(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

483 

(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

484 
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Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
   

Now, using this result and replacing it in GLOBAL E486QUATIONS we get easily the result stated 

in the theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition 

(  )
( )  (  )

( ) then   ( )( )  (  )
( ) and as a consequence    ( )  (  )

( )   ( ) this also 

defines (  )
( ) for the special case  

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

 

 

 

 

485 

 486 

 we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

487 

Definition of  ( ) :-          ( )  
   

   
 

488 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

489 

From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

(d) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

    ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( )  

490 

In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

491 

From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 492 

(e) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

(  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )    

493 
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( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

(f) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

494 

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

495 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

496 

. 497 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition 

(  )
( )  (  )

( ) then   ( )( )  (  )
( ) and as a consequence    ( )  (  )

( )   ( ) 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

498 

 499 

From GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

500 

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

501 

 

 From which one obtains  

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

 ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

502 
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            (  )
( )   ( )( )  (  )

( )  

 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

Definition of ( ̅ )
( ) :- 

From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

503 

(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

 (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

504 

(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

(  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( )  

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition 

(  )
( )  (  )

( ) then   ( )( )  (  )
( ) and as a consequence    ( )  (  )

( )   ( ) 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

505 

 506 

: From GLOBAL EQUATIONS we obtain  
 

507 
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  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 
 

Definition of  ( ) :-          ( )  
   

   
 

 
It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 From which one obtains  
 

Definition of ( ̅ )
( ) (  )

( ) :- 
 

(d) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

   ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 

            (  )
( )   ( )( )  (  )

( )  
 

 
 
 
 
508 

In the same manner , we get 
 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 
 

509 

(e) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

510 

 511 

(f) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

 
And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

   

512 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Mathematical Theory and Modeling                                                                     www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.7, 2012 

 

163 
 

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 
theorem. 
 
Particular case : 
 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition 

(  )
( )  (  )

( ) then   ( )( )  (  )
( ) and as a consequence    ( )  (  )

( )   ( ) this also 

defines (  )
( ) for the special case . 

 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )   

 
 
 
 
 
 
513 

 514 
        From  GLOBAL EQUATIONS we obtain  

 
  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 
 

Definition of  ( ) :-          ( )  
   

   
 

 
It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 
 
 From which one obtains  

 

Definition of ( ̅ )
( ) (  )

( ) :- 
 

(g) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 

            (  )
( )   ( )( )  (  )

( )  
 

515 

In the same manner , we get 
 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 
 

516 

(h) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

517 
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(i) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

 
And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

   
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 
theorem. 
 
Particular case : 
 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition 

(  )
( )  (  )

( ) then   ( )( )  (  )
( ) and as a consequence    ( )  (  )

( )   ( ) this also 

defines (  )
( ) for the special case . 

 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

 

518 
 
 
 
 
519 

 520 
we obtain  

 
  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 
 

Definition of  ( ) :-          ( )  
   

   
 

 
It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 
 
 From which one obtains  

 

Definition of ( ̅ )
( ) (  )

( ) :- 
 

(j) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 

521 
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            (  )
( )   ( )( )  (  )

( )  
 

In the same manner , we get 
 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 
 

522 
 
523 

(k) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 

  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

524 

(l) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

 
And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

   
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 
theorem. 
 
Particular case : 
 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition 

(  )
( )  (  )

( ) then   ( )( )  (  )
( ) and as a consequence    ( )  (  )

( )   ( ) this also 

defines (  )
( ) for the special case . 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

525 

 526 
527 527 

We can prove the following 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

528 
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(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined, then the system 

 

 

 

 

529 

 If (  
  )( )    (  

  )( ) are independent on   , and the conditions  530. 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      531 

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     532 

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  533 

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined are satisfied , then the system 

534 

 If (  
  )( )    (  

  )( ) are independent on   , and the conditions 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined are satisfied , then the system 

535 

If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined  are satisfied , then the system 

536 

If (  
  )( )    (  

  )( ) are independent on   , and the conditions 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined  satisfied , then the system 
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If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined are satisfied , then the system 
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539 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        540 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        541 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        542 

(   )
( )     (   

 )( )  (   
  )( )( )          543 

(   )
( )     (   

 )( )  (   
  )( )( )          544 

(   )
( )     (   

 )( )  (   
  )( )( )          545 

has a unique positive solution , which is an equilibrium solution for the system 546 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        547 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        548 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        549 

(   )
( )     (   

 )( )  (   
  )( )(   )          550 

(   )
( )     (   

 )( )  (   
  )( )(   )          551 

(   )
( )     (   

 )( )  (   
  )( )(   )          552 

has a unique positive solution , which is an equilibrium solution for  553 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        554 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        555 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        556 

(   )
( )     (   

 )( )  (   
  )( )(   )          557 

(   )
( )     (   

 )( )  (   
  )( )(   )          558 

(   )
( )     (   

 )( )  (   
  )( )(   )          559 

has a unique positive solution , which is an equilibrium solution 560 
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584 

has a unique positive solution , which is an equilibrium solution for the system  582 

 583 

 

(a) Indeed the first two equations have a nontrivial solution          if  

 ( )  (   
 )( )(   

 )( )  (   )
( )(   )
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  )( )(   )  (   
 )( )(   

  )( )(   )  
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(   
  )( )(   )(   

  )( )(   )      

 

(a) Indeed the first two equations have a nontrivial solution          if  
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  )( )(   )(   

  )( )(   )      

560 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

561 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  
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   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 
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equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
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 )]
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Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows 

that there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three 

first equations  
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  )( )(   
 )]
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Definition  and uniqueness of    
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(   )( )   

[(   
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 )]

 

567 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows 
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    for which   (   

 )   . With this value , we obtain from the three 
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 )]
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(e) By the same argument, the equations 92,93  admit solutions         if  

 ( )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )( )  (   
 )( )(   

  )( )( )] (   
  )( )( )(   

  )( )( )     

 Where in  (           )         must be replaced by their values from 96. It is easy to see that   

is a decreasing function in     taking into account the hypothesis   ( )      ( )     it follows 

that there exists a unique    
  such that  (  )    

569 

(f) By the same argument, the equations 92,93  admit solutions         if  

 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )
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Where in (   )(           )         must be replaced by their values from 96. It is easy to see that 

  is a decreasing function in     taking into account the hypothesis   ( )      ( )     it follows 

that there exists a unique    
  such that  ((   )

 )    
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(g) By the same argument, the concatenated equations  admit solutions         if  

 
 (   )  (   

 )( )(   
 )( )  (   )

( )(   )
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 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in    (           )         must be replaced by their values from 96. It is easy to see that   

is a decreasing function in     taking into account the hypothesis   ( )      ( )     it follows 

that there exists a unique    
  such that  ((   )

 )    
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(h) By the same argument, the equations of modules  admit solutions         if  
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follows that there exists a unique    
  such that  ((   )
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(i) By the same argument, the equations (modules)  admit solutions         if  
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follows that there exists a unique    
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(j) By the same argument, the equations (modules) admit solutions         if  
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 )( )(   

  )( )(   )  (   
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decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that 

there exists a unique    
  such that  (  )    

578 
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580 
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Finally we obtain the unique solution of 89 to 94 
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 )( ) (   

  )( )(   
 )]

    ,      
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[(   
 )( ) (   

  )( )(   
 )]
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 )( ) (   
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Obviously, these values represent an equilibrium solution  
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Obviously, these values represent an equilibrium solution  

594 

ASYMPTOTIC STABILITY ANALYSIS 

Theorem 4:   If the conditions of the previous theorem are satisfied and if the functions 

(  
  )( )     (  

  )( )  Belong to  ( )(   ) then the above equilibrium point is asymptotically stable. 

Proof:  Denote 

Definition of       :- 

                           
             ,      

     

                      
 (   

  )( )

    
(   

 )  (   )
( )   ,  

 (  
  )( )

   
(    )       
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Then taking into account equations (global) and neglecting the terms of power 2, we obtain  597 
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 If the conditions of the previous theorem are satisfied and if the functions (  
  )( )     (  

  )( )  

Belong to  ( )(   ) then the above equilibrium point is asymptotically stable 
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605 
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607 

taking into account equations (global)and neglecting the terms of power 2, we obtain  608 
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And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, 

and this proves the theorem. 
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