Mathematical Theory and Modeling ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.5, 2012

Estimation of Parameters of Linear Econometric Model and the Power of Test in the Presence of Heteroscedasticity Using Monte-Carlo Approach

Femi J. Ayoola, and O.E. Olubusoye Department of Statistics, University of Ibadan, Oyo State, Nigeria. E-mail:ayoolafemi@yahoo.com

Abstract

CORE

This paper is concerned with the estimation of parameters of linear econometric model and the power of test in the presence of heteroscedasticity using Monte-Carlo approach. The Monte Carlo approach was used for the study in which random samples of sizes 20, 50 and 100, each replicated 50 times were generated. Since the linear econometric model was considered, a fixed X variable for the different sample sizes was generated to follow a uniform distribution while 50 replicates of the stochastic error term for different sample sizes followed a normal distribution. Two functional form of heteroscedasticity h(x) = X and $h(x) = X^{\frac{1}{2}}$ were introduced into the econometric model with the aim of studying the behaviour of the parameters to be estimated. 50 replicates of the dependent variable for each sample size was generated from the model $Y = \alpha + \beta x_i + u_i(h(x))$ where the

parameters, α and β were assumes to be 0.5 and 2.0 respectively. The Ordinary Least Squares (OLS) and the

Generalized Least Squares (GLS) estimators were studied to identify which is more efficient in the presence of the two functional forms of heteroscedasticity considered. Both estimators were unbiased and consistent but none was convincingly more efficient than the other. The power of test was used to examine which test of heteroscedasticity (i.e., Glejser, Breusch-Pagan and White) is most efficient in the detection of any of the two forms of heteroscedasticity using different sample sizes. Glejser test detects heteroscedasticity more efficiently even in small sample sizes while White test is not as efficient when sample size is small compared to when the sample size is large.

Keywords: Heteroscedasticity, Monte Carlo, Power of Test, Ordinary Least Squares Estimator, Generalized Least Squares Estimator, Breusch-Pagan test, Glejser test, White test, Bias, Variance, Root Mean Square Error

1. Introduction

Linear statistical models for regression, analysis of variance and experimental design are widely used today in business administration, economics, engineering and the social, health and biological sciences. Successful application of these models requires a sound understanding of both the underlying theory and the practical problems encountered in using the models in real life situations. Econometric models are statistical models used in econometrics to specify the statistical relationship that is believed to hold between the various economic quantities

that pertain to a particular economic phenomenon under study. An econometric model can be derived from a deterministic economic model by allowing for uncertainty or from an economic model which itself is stochastic. However, it is also possible to use econometric models that are not tied to any specific economic theory. In econometrics, it is presupposed that the quantities being analyzed can be treated as random variables. An econometric model then is a set of joint probability distribution to which the true joint probability distribution of the variables under study is supposed to belong. In the case in which the elements of this set can be indexed by a finite number of real value parameters, the model is called a parametric model; otherwise it is a non-parametric or semiparametric model. A large part of econometrics is the study by methods for selecting models, estimating them and carrying out inference on them. The most common econometric models are structural, in that they convey causal and counterfactual information and are used for policy evaluation. For example, an equation modeling consumption spending based on income could be used to see what consumption would be contingent on any of various hypothetical levels of income, only one of which (depending on the choice of a fiscal policy) will end up actually occurring. An important econometric model to be considered is the Linear Regression. Since econometric models deal with economic theories of real life situations and can be treated as random variables, it will be very important to consider the variances of the estimates obtained whether it will have constant variances (Homoscedasticity) or different variances (Heteroscedasticity). Since it is not always possible to have constant variances in a real life situation, this necessitate the in depth study of the concept of heteroscedasticity and the behaviour of estimates of parameter in the presence of heteroscedasticity.

2 Material and Methods

In this section attention is focused on the specification of the models used in the study, the design of the Monte-Carlo experiment is clearly spelt out. Details of the procedure for evaluating the performance of the heteroscedasticity tests considered are stated. Also, the procedures used in generating the data and the associated error terms are discussed.

2.1 The Monte – Carlo Approach

Under the Monte Carlo approach, the experimenter specifies a model and assumes specific numeric values to its parameters. He also specifies the distribution of the error term of the model. He then makes random selection from the distribution to obtain values for the error term.

Depending on the model, the experimenter selects values for the independent variable(s) Xs and given the chosen values of the error term, he solves the equation of the model and obtains values for the dependent variable Y. for each randomly drawn value of the error term, a new generated value of the dependent variable is obtained.

Using this procedure, the experimenter forms sample of generated observations of the dependent variable, which together with the X values, the generated error terms and the assumed specification are used to estimate the true parameter values or carry out the appropriate test of hypothesis. Such experiments are repeated many times and the result of the tests are summarized and used in drawing general conclusions about each test.

Each author who has introduced a new test usually evaluated its performance or relative performance vis-à-vis other test under various scenarios (varying sample size, replication numbers, stochastic terms and other model characteristics) using the Monte Carlo approach.

Goldfield – Quandt (1965), in developing their test, varied the number of observations, using two sample size (30 and 60). They also varied the number of omitted observations as well as their independent variable X by assuming

different mean μ_x and standard deviations σ_x . For each combination of μ_x and σ_x , one sample of X was generated and for each of such sample, 100 samples of 30 (or 60) disturbance term values were generated from N(0,1) and corresponding samples of y values were calculated. The relative frequency (in 100 trials) of cases in which the correct statistical decision is reached is recorded as the estimate of the power of the test.

Glejser (1969), using three sample sizes (20, 30, 60) and a fixed standard deviation of their independent variable σ_x ,

varied the form of heterocedasticity. Each of the three sample sizes was replicated 100 times and their dependent variable (y) was generated using the functional form:

$$y = \beta_0 + \beta_1 X_1 + u_i$$
 (2.1.1)

Las-Forsberg et-al (1999) used two sample sizes (30 and 120) and generated their disturbance terms u_i from

 $N(0, X^{\delta})$ where $0.0 < \delta \le 2.8$ with 0.4 grid and they assumed

$$y = u_i$$
 (2.1.2)

for their endogenous variable; using equally spaced regressors.

Udoko (1990) used three sample sizes n(20, 40, 60) and varying, the form of heteroscedasticity generated his disturbance terms from U (0,1) using linear congruential method, i.e.

$$u_{n} = (A u_{n-1} + C)(M o d M) \qquad (2.1.3)$$

n = 1, 2, ..., M where A is the multiplier $0 \le A \le M$ and

C is the increment $0 \le A \le M$, the uniform terms were later transformed into standard normal errors.

In this work, we use three sample sizes (20, 50, 100), equally replicated (r=50 replicates) and two forms of heteroscedasticity. At each combination of sample size, replication and form of heteroscedasticity, we undertake a comparative study of the performance of the three tests for heteroscedasticity using the power of the tests as calculated from the result of the Monte-Carlo experiment.

2.2.1 Basic Model

In this study, we use the model

$$y_i = \alpha + \beta x_i + u_i$$

(2.2.1)

where the independent variable X is invariant and identical in repeated samples, the values of α and β are arbitrarily chosen because all test statistics used are expected to produce the same result no matter which value we

choose and u_i , the disturbance terms are chosen from normal distribution. In other words, X is said to be non-

stochastic and Y is stochastic because U is stochastic

The use of an intrinsically linear model is to reduce the complexity of the estimation of parameters. Parameters of intrinsically non-linear models can only be estimated using algorithms, which yield approximation values of the parameter after numerous iterations. Also all the known tests for heteroscedasticity are based on intrinsically linear models.

2.2.2 Choice of Parameters and the Independent Variable X

In the past, computer programmes were tailed to specific data generating process for the Monte-Carlo experiment, that is all the necessary constraints and impositions on the data to be generated were spelt out in the computer programme by researchers. Consequently, the algorithms underlying the data generation process have had to be documented and reported in detail. This complicated the verification of data used in such works

Today, softwares are available in their large numbers that can attend to all these constraints and restrictions and will produce what was obtained in the past with relatively higher speed and precision.

For the first round of our experiment, three equally spaced values of regressor sets are chosen to indicate three different samples of sizes n= 20, 50, and 100. The regressor sets are

 $X_I = 1, 2, ..., 20$ $X_{II} = 1, 2, ..., 50$ $X_{III} = 1, 2, ..., 100$

The sample sizes chosen are multiples of 'three' to allow for unambiguous one-third of observations to be omitted in the case of Goldfeld-Quandt test which is samples often encountered in applied works.

Given the equation:

$$y_i = \alpha + \beta x_i + u_i$$
 (2.2.1)

y could not be determined except values are set for α and β , and u_i , we therefore arbitrarily set 0.5 and 2.0 for α and β respectively.

The Microsoft Excel package was used to generate random deviates which were later standardized as u_i . We then

resort to the equation

$$y_i = \alpha + \beta x_i + u_i$$

to determine the values of y. However, the following three transformations are made depending on the form of heteroscedasticity to be introduced using

$$y^{*} = \alpha + \beta x_{i} + u_{i} (h (x))$$
 (2.2.2)

where $h(x_i)$ is the form of heteroscedasticity.

The two forms of h(x) used in this study are:

2. $X^{\frac{1}{2}}$

The main criterion on the choice of the form of x is to consider transformations of dependent variables most frequently used in applied regression analysis.

2.2.3 The Generation of Sample Data

The disturbance terms to be used are generated as follows:

- 1 Generate 20 random deviates using Microsoft Excel package
- 2 For a replication of size 50, repeat step1, 50 times, to obtain 50 different random samples, each of size 20.
- 3 Standardize, each of the 50 replications of random deviates to obtain 50 groups of different standard normal

deviates of size 20 each having mean 0 and variance 1.

4 Values of the standardized deviates u_i obtained in step 3 are used to calculate

$$y^{*} = \alpha + \beta x_{i} + U_{i} (h (x_{i}))$$
 (2.2.2)

For other sample sizes and replications, steps 1 to 3 are repeated to meet their specifications. Step 4 is used according to the desired form of heteroscedasticity h(x).

Consequently, in the sample design for generating the data sets each of the three sample sizes 20, 50 and 100 are replicated 50 times. This is repeated for each of the three specifications of the independent variable X. the generated data set for the specification h(x), when n = 20 for equally spaced regressor set is displayed in table 2.2.1

As shown by (2.2.2), the design of this Monte-Carlo experiment is such that regressor – induced heteroscedasticity is used in generating the regressant. Three transformations of the equally spaced and unequally spaced regressors are assumed. Three tests for homoscedasticity of the error term are then applied to the data generated with the objective of studying their power to detect the introduced heteroscedasticity.

2.3 Results and Discussion

The bias, variances and the Root Mean Square Error for the two estimators, OLS and GLS, in the presence of the two different functional forms of heteroscedasticity will be considered to see what happens as the sample size increases.

BIAS FOR ESTIMATORS OF β					
USC	FETIMATODS	SMPL 20			
пъс	ESTIMATORS	INTERCEPT	SLOPE	SBIAS	
v	OLS	0.009998	-0.019226	-0.009228	
Λ	GLS	0.009798	-0.019226	-0.009428	
SOPT V	OLS	0.016372	-0.027068	-0.010696	
SQKIA	GLS	0.016370	-0.027068	-0.010698	
нес	SMPL 50				
пъс	ESTIMATORS	INTERCEPT	SLOPE	SBIAS	
v	OLS	0.011086	-0.028418	-0.017332	
Λ	GLS	0.011086	-0.028418	-0.017332	
SOPT V	OLS	0.015104	-0.033408	-0.018304	
SQKI A	GLS	0.015104	-0.033408	-0.018304	
ЧСС	FSTIMATODS		SMPL 100		
lise	ESTIMATORS	INTERCEPT	SLOPE	SBIAS	
v	OLS	-0.020190	0.045106	0.024916	
Λ	GLS	-0.016191	0.044112	0.027921	
SORT Y	OLS	-0.019232	0.048193	0.028961	
SUNTA	GLS	-0.019352	0.048188	0.028836	

Table 1: Bias for Estimators of β

The bias of the OLS and GLS estimators of β using the three different sample sizes reveals that both estimators are unbiased in the presence of the two functional forms of heteroscedasticity considered. This is clearly seen in the result from the table above as the sum of the bias are very small. Also, from the table 1 above, the sum of the bias tends to reduce as the sample size increases from 20 to 50 but then increased as the sample size increased from 50 to 100. This is observed in the two different functional forms of heteroscedasticity.

VARIANCE FOR ESTIMATORS OF β						
USC	ESTIMATODS		SMPL 20			
nse	ESTIMATORS	INTERCEPT	SLOPE	SVAR		
v	OLS	0.019198	0.131505	0.150703		
Λ	GLS	0.019141	0.131505	0.150646		
SODT V	OLS	0.039320	0.194280	0.233601		
SQKI A	GLS	0.039321	0.194280	0.233601		
USC	ESTIMATODS		SMPL 50			
пъс	ESTIMATORS	INTERCEPT	SLOPE	SVAR		
v	OLS	0.010062	0.085597	0.095660		
Λ	GLS	0.010062	0.085597	0.095660		
SORT X	OLS	0.018594	0.121316	0.139910		
SQRI A	GLS	0.018594	0.121316	0.139910		
USC	ESTIMATODS	SMPL 100				
nse	ESTIMATORS	INTERCEPT	SLOPE	SVAR		
v	OLS	0.003854	0.029581	0.033435		
Λ	GLS	0.003647	0.028642	0.032289		
SORT V	OLS	0.006724	0.042718	0.049442		
SUNIA	GLS	0.006723	0.042715	0.049438		

Table 2: Variance for Estimators of β

The variances of the OLS and GLS estimators of β using the three different sample sizes reveals that the sum of variances of both estimators are approximately equal in the presence of the two functional forms of heteroscedasticity considered. Although, the OLS estimator was observed to have a smaller variance at most times. Also, from the table 2 above, the sum of the variances tends to reduce as the sample size increases from 20 to 50 and from 50 to 100. This is observed in the two different functional forms of heteroscedasticity.

RMSE FOR ESTIMATORS OF β					
HSC	FSTIMATORS	SMPL 20			
пъс	ESTIMATORS	INTERCEPT	SLOPE	SRMSE	
V	OLS	0.138918	0.363145	0.502063	
Λ	GLS		0.363145	0.501844	
SORT X	OLS	0.198968	0.441603	0.640571	
JUNIA	GLS	0.198970	0.441603	0.640573	
		-			
HSC	FSTIMATORS	SMPL 50			
nse	ESTIMATORS	INTERCEPT	SLOPE	SRMSE	
x	OLS	0.100922	0.293947	0.394869	
Λ	GLS	0.100922	0.293947	0.394869	
SORT X	OLS	0.137195	0.349903	0.487098	
JUNI A	GLS	0.137195	0.349903	0.487098	
		-			
HSC	FSTIMATORS	SMPL 100			
nse	ESTIMATORS	INTERCEPT	SLOPE	SRMSE	
x	OLS	0.065282	0.177808	0.243090	
4	GLS	0.062522	0.174894	0.237416	
SORT X	OLS	0.084223	0.212227	0.296450	
SQAT A	GLS	0.084245	0.212219	0.296464	

Table 3: Root Mean Squares Error for Estimators of β

The RMSE of the OLS and GLS estimators of β using the three different sample sizes reveals that the sum of RMSE of both estimators are approximately equal in the presence of the two functional forms of heteroscedasticity considered. Here, the GLS estimator was observed to have a smaller RMSE value at some times (at sample size 20 with heteroscedasticity h(x) = X and at sample size 100 with same functional form of heteroscedasticity). The OLS estimator had the smaller RMSE at sample size 20 and 100 with the functional form of heteroscedasticity $h(x) = X^{\frac{1}{2}}$. Also, from the table 3 above, the sum of the RMSE tends to reduce as the sample size increases from 20 to 50 and from 50 to 100 and this was observed in the two different functional forms of heteroscedasticity.

2.4 Power of Test

Here, the efficiency of three tests in the detection of the functional forms of heteroscedasticity introduced into the model will be considered. The EVIEWS 7.0 was used to obtain these results. For the different sample sizes considered and in the presence of the two functional forms of heteroscedasticity introduced into the model, the test for the detection of heteroscedasticity using the three tests considered are given below. A total of 900

heteroscedasticity test were run, (300 Glejser tests, 300 Breusch-Pagan tests and 300 White tests), for the two forms of heteroscedasticity. A few samples for each of the three tests are presented in the appendix.

HSC	TESTS	SA	SAMPLES SIZES OBSERVED EXPECTED PERCENTA		PERCENTAGE		
inse	TESTS	n = 20	n = 50	n = 100	TOTAL	TOTAL	TERCENTROE
	BPG	34	50	50	134	150	89%
Х	GLEJSER	45	50	50	145	150	97%
	WHITE	17	49	50	116	150	77%
	BPG	16	41	50	107	150	71%
SQRT X	GLEJSER	25	43	50	118	150	79%
	WHITE	9	36	48	93	150	62%

Table 4: Summary Table showing the frequency of detection of the three tests in the presence of the two functional forms of heteroscedasticity.

The table above reveals the number of times and the corresponding percentages that each of the three tests considered (Breusch Pagan Test, Glejser and White test) was able to detect the presence of the two forms of heteroscedasticity in the linear econometric model. White test had the least number of times (i.e., 34 out of 50) of correctly detecting the presence of heteroscedasticity for sample size 20 for the two different forms of heteroscedasticity considered while Glejser had the highest value (i.e. 50 out of 50). This pattern is still maintained as the sample size increases from 20 to 50 and from 50 to 100. Also, the number of times that the test detected the presence of heteroscedasticity improved as the sample size increases. From the table, the percentages of number of correct detection of heteroscedasticity for BPG, Glejser and White are 89%, 97% and 77% respectively for functional form of

heteroscedasticity $h(x) = X^{\frac{1}{2}}$. The Glejser test is observed to have the highest frequency in heteroscedasticity detection.

2.5 Conclusion

The two estimators OLS and GLS are both unbiased and could be used since none of the estimator can be convincingly said to be better than the other especially when the form of functional heteroscedasticity is known. Both estimators are asymptotically good in the sense that as the sample sizes increases, the estimates of the two estimators tend towards the true parameter. The Glejser test is the best test among the three tests considered since it

consistently detects the presence of the two functional forms of heteroscedasticity in the various sample sizes considered. The White test cannot be reliable in the detection of heteroscedasticity if the sample size is small.

References

- Damodar N. Gujarati (2004): Basic Econometrics, McGraw-Hill Companies, fourth edition.
- Davidson, R. and J.G. MacKinnon (1993): Estimation and Inference in Econometrics. Oxford University

Press, Oxford.

- F. J. Ayoola (2007): Estimation of Linear Regression Model with Autocorrelated Error Term Using Bootstrapping Approach.
- Fasoranbaku (2005): The Power of Test for Homoscedasticity in a Single Equation Econometric Model.
- Greene, W. (2003): Econometric Analysis, Fifth Edition. Prentice Hall, Upper Saddle River.

Appendix

Fig. 1: Heteroscedasticity Test: Glejser

F-statistic	13.21323	Prob. F(1,18)	0.0019
Obs*R-squared	8.466427	Prob. Chi-Square(1)	0.0036
Scaled explained SS	8.225716	Prob. Chi-Square(1)	0.0041

Test Equation: Dependent Variable: ARESID Method: Least Squares Date: 07/06/11 Time: 19:27 Sample: 1 20 Included observations: 20

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1	0.038061 0.609778	0.107756 0.167752	0.353212 3.635000	0.7280 0.0019
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.423321 0.391284 0.242240 1.056247 1.031336 13.21323 0.001894	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.376667 0.310484 0.096866 0.196440 0.116304 2.380648

Fig. 2: Heteroscedasticity Test: Glejser

F-statistic Obs*R-squared	17.23959	Prob. F(1,48) Prob. Chi-Square(1)	0.0001
Scaled explained SS	18.96216	Prob. Chi-Square(1)	0.0000

Test Equation: Dependent Variable: ARESID Method: Least Squares Date: 07/12/11 Time: 06:08 Sample: 1 50 Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.031961	0.082721	0.386373	0.7009
X1	0.610081	0.146935	4.152058	0.0001
R-squared	0.264250	Mean depende	nt var	0.323602
Adjusted R-squared	0.248922	S.D. dependent	t var	0.356493
S.E. of regression	0.308953	Akaike info cri	terion	0.527925
Sum squared resid	4.581704	Schwarz criter	on	0.604406
Log likelihood	-11.19812	Hannan-Quinn	criter.	0.557049
F-statistic	17.23959	Durbin-Watson	n stat	1.981991
Prob(F-statistic)	0.000134			

Fig. 3: Heteroscedasticity Test: Glejser

F-statistic	51.87468	Prob. F(1,98)	0.0000
Obs*R-squared	34.61204	Prob. Chi-Square(1)	0.0000
Scaled explained SS	50.88712	Prob. Chi-Square(1)	0.0000

Test Equation: Dependent Variable: ARESID Method: Least Squares Date: 07/13/11 Time: 04:05 Sample: 1 100 Included observations: 100

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1	-0.044604 0.925412	0.071431 0.128486	-0.624435 7.202408	0.5338 0.0000
R-squared	0.346120	Mean depende	nt var	0.400522

Mathematical Theory and Modeling ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.5, 2012

Adjusted R-squared	0.339448	S.D. dependent var	0.440689
S.E. of regression	0.358167	Akaike info criterion	0.804164
Sum squared resid	12.57181	Schwarz criterion	0.856268
Log likelihood	-38.20821	Hannan-Quinn criter.	0.825251
F-statistic	51.87468	Durbin-Watson stat	2.152390
Prob(F-statistic)	0.000000		

Fig. 4: Heteroscedasticity Test: White

F-statistic	3.571095	Prob. F(2,17)	0.0507
Obs*R-squared	5.916771	Prob. Chi-Square(2)	0.0519
Scaled explained SS	5.074610	Prob. Chi-Square(2)	0.0791

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 07/06/11 Time: 19:28 Sample: 1 20 Included observations: 20

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1 X1^2	-0.089837 0.605692 -0.031610	0.215042 1.021273 0.943265	-0.417764 0.593076 -0.033511	0.6813 0.5609 0.9737
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob/E-statistic)	0.295839 0.212996 0.309220 1.625487 -3.279521 3.571095 0.050724	Mean depende S.D. dependen Akaike info cr Schwarz criter Hannan-Quinn Durbin-Watson	nt var t var iterion ion criter. n stat	0.233458 0.348561 0.627952 0.777312 0.657109 2.695626

Fig. 5: Heteroscedasticity Test: White

F-statistic	6.686476	Prob. F(2,47)	0.0028
Obs*R-squared	11.07528	Prob. Chi-Square(2)	0.0039
Scaled explained SS	36.67321	Prob. Chi-Square(2)	0.0000

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 07/12/11 Time: 06:08 Sample: 1 50 Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.244334	0.253867	0.962449	0.3408
X1	-1.491342	1.195926	-1.247018	0.2186

Mathematical Theory and Modeling ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.5, 2012

X1^2

R-squared	0.221506	Mean dependent var	0.229263
Adjusted R-squared	0.188378	S.D. dependent var	0.620815
S.E. of regression	0.559293	Akaike info criterion	1.733838
Sum squared resid	14.70200	Schwarz criterion	1.848559
Log likelihood	-40.34594	Hannan-Quinn criter.	1.777524
F-statistic	6.686476	Durbin-Watson stat	2.155578
Prob(F-statistic)	0.002783		
Fig. 6: Heteroscedasti	city Test: Whi	te	
Fig. 6: Heteroscedasti F-statistic	city Test: Whi 14.46955	te Prob. F(2,97)	0.0000
Fig. 6: Heteroscedasti F-statistic Obs*R-squared	city Test: Whi 14.46955 22.97864	te Prob. F(2,97) Prob. Chi-Square(2)	0.0000

1.111806

1.980386

0.0535

2.201805

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 07/13/11 Time: 04:06 Sample: 1 100 Included observations: 100

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1 X1^2	-0.068880 0.344631 0.827623	0.191117 0.906473 0.892303	-0.360406 0.380189 0.927513	0.7193 0.7046 0.3560
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.229786 0.213906 0.610493 36.15205 -91.02203 14.46955 0.000003	Mean depende S.D. dependen Akaike info cr Schwarz criter Hannan-Quinn Durbin-Watson	nt var t var iterion ion criter. n stat	0.352683 0.688562 1.880441 1.958596 1.912071 2.291218

F-statistic	7.560631	Prob. F(1,18)	0.0132
Obs*R-squared	5.915841	Prob. Chi-Square(1)	0.0150
Scaled explained SS	5.073812	Prob. Chi-Square(1)	0.0243

Fig. 7: Heteroscedasticity Test: Breusch-Pagan-Godfrey

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 07/06/11 Time: 19:26 Sample: 1 20 Included observations: 20

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1	-0.084297 0.572229	0.133679 0.208109	-0.630596 2.749660	0.5362 0.0132
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.295792 0.256669 0.300518 1.625594 -3.280182 7.560631 0.013182	Mean depende S.D. dependen Akaike info cr Schwarz criter Hannan-Quinn Durbin-Watson	nt var t var iterion ion criter. n stat	0.233458 0.348561 0.528018 0.627591 0.547456 2.692565

Fig. 8: Heteroscedasticity Test: Breusch-Pagan-Godfrey

F-statistic	8.908718	Prob. F(1,48)	0.0045
Obs*R-squared	7.827200	Prob. Chi-Square(1)	0.0051
Scaled explained SS	25.91794	Prob. Chi-Square(1)	0.0000

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 07/12/11 Time: 06:08 Sample: 1 50 Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.161641	0.154238	-1.047996	0.2999
X1	0.817730	0.273970	2.984748	0.0045
R-squared	0.156544	Mean depende	nt var	0.229263
Adjusted R-squared	0.138972	S.D. dependen	t var	0.620815
S.E. of regression	0.576064	Akaike info cr	iterion	1.773984

Sum squared resid	15.92881	Schwarz criterion	1.850465
Log likelihood	-42.34959	Hannan-Quinn criter.	1.803108
F-statistic Prob(F-statistic)	8.908718 0.004455	Durbin-Watson stat	2.082459

Fig. 9: Heteroscedasticity Test: Breusch-Pagan-Godfrey

E statistic	20 11000	Drob $E(1,09)$	0.0000
r-statistic	28.11890	P100. F(1,98)	0.0000
Obs*R-squared	22.29555	Prob. Chi-Square(1)	0.0000
Scaled explained SS	40.40113	Prob. Chi-Square(1)	0.0000

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 07/13/11 Time: 04:05 Sample: 1 100 Included observations: 100

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1	-0.205516 1.160490	0.121666 0.218848	-1.689179 5.302726	0.0944 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.222955 0.215026 0.610058 36.47268 -91.46352 28.11890 0.000001	Mean depende S.D. dependen Akaike info cri Schwarz criter Hannan-Quinn Durbin-Watson	nt var t var iterion ion criter. n stat	0.352683 0.688562 1.869270 1.921374 1.890358 2.309894

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: <u>http://www.iiste.org</u>

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. **Prospective authors of IISTE journals can find the submission instruction on the following page:** <u>http://www.iiste.org/Journals/</u>

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

