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Abstract 

This paper is concerned with the estimation of parameters of linear econometric model and the power of test in the 

presence of heteroscedasticity using Monte-Carlo approach. The Monte Carlo approach was used for the study in 

which random samples of sizes 20, 50 and 100, each replicated 50 times were generated. Since the linear 

econometric model was considered, a fixed X variable for the different sample sizes was generated to follow a 

uniform distribution while 50 replicates of the stochastic error term for different sample sizes followed a normal 

distribution. Two functional form of heteroscedasticity ( ) ( )
1

2h x X and h x X= =  were introduced into the 

econometric model with the aim of studying the behaviour of the parameters to be estimated. 50 replicates of the 

dependent variable for each sample size was generated from the model ( )( )i iY x u h xα β= + +  where the 

parameters, andα β  were assumes to be 0.5 and 2.0 respectively. The Ordinary Least Squares (OLS) and the 

Generalized Least Squares (GLS) estimators were studied to identify which is more efficient in the presence of the 

two functional forms of heteroscedasticity considered. Both estimators were unbiased and consistent but none was 

convincingly more efficient than the other. The power of test was used to examine which test of heteroscedasticity 

(i.e., Glejser, Breusch-Pagan and White) is most efficient in the detection of any of the two forms of 

heteroscedasticity using different sample sizes. Glejser test detects heteroscedasticity more efficiently even in small 

sample sizes while White test is not as efficient when sample size is small compared to when the sample size is large. 

 

Keywords: Heteroscedasticity, Monte Carlo, Power of Test, Ordinary Least Squares Estimator, Generalized Least 
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1. Introduction 

Linear statistical models for regression, analysis of variance and experimental design are widely used today in 

business administration, economics, engineering and the social, health and biological sciences. Successful 

application of these models requires a sound understanding of both the underlying theory and the practical problems 

encountered in using the models in real life situations. Econometric models are statistical models used in 

econometrics to specify the statistical relationship that is believed to hold between the various economic quantities 
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that pertain to a particular economic phenomenon under study. An econometric model can be derived from a 

deterministic economic model by allowing for uncertainty or from an economic model which itself is stochastic. 

However, it is also possible to use econometric models that are not tied to any specific economic theory. In 

econometrics, it is presupposed that the quantities being analyzed can be treated as random variables. An 

econometric model then is a set of joint probability distribution to which the true joint probability distribution of the 

variables under study is supposed to belong. In the case in which the elements of this set can be indexed by a finite 

number of real value parameters, the model is called a parametric model; otherwise it is a non-parametric or semi-

parametric model. A large part of econometrics is the study by methods for selecting models, estimating them and 

carrying out inference on them. The most common econometric models are structural, in that they convey causal and 

counterfactual information and are used for policy evaluation. For example, an equation modeling consumption 

spending based on income could be used to see what consumption would be contingent on any of various 

hypothetical levels of income, only one of which (depending on the choice of a fiscal policy) will end up actually 

occurring. An important econometric model to be considered is the Linear Regression. Since econometric models 

deal with economic theories of real life situations and can be treated as random variables, it will be very important to 

consider the variances of the estimates obtained whether it will have constant variances (Homoscedasticity) or 

different variances (Heteroscedasticity). Since it is not always possible to have constant variances in a real life 

situation, this necessitate the in depth study of the concept of heteroscedasticity and the behaviour of estimates of 

parameter in the presence of heteroscedasticity. 

 

 

2 Material and Methods 

In this section attention is focused on the specification of the models used in the study, the design of the Monte-Carlo 

experiment is clearly spelt out. Details of the procedure for evaluating the performance of the heteroscedasticity tests 

considered are stated. Also, the procedures used in generating the data and the associated error terms are discussed. 

 

2.1 The Monte – Carlo Approach 

Under the Monte Carlo approach, the experimenter specifies a model and assumes specific numeric values to its 

parameters. He also specifies the distribution of the error term of the model. He then makes random selection from 

the distribution to obtain values for the error term. 

Depending on the model, the experimenter selects values for the independent variable(s) Xs  and given the chosen 

values of the error term, he solves the equation of the model and obtains values for the dependent variable Y. for 

each randomly drawn value of the error term, a new generated value of the dependent variable is obtained. 

 

Using this procedure, the experimenter forms sample of generated observations of the dependent variable, which 

together with the X values, the generated error terms and the assumed specification are used to estimate the true 

parameter values or carry out the appropriate test of hypothesis. Such experiments are repeated many times and the 

result of the tests are summarized and used in drawing general conclusions about each test. 
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Each author who has introduced a new test usually evaluated its performance or relative performance vis-à-vis other 

test under various scenarios (varying sample size, replication numbers, stochastic terms and other model 

characteristics) using the Monte Carlo approach. 

 

Goldfield – Quandt (1965), in developing their test, varied the number of observations, using two sample size (30 

and 60). They also varied the number of omitted observations as well as their independent variable X by assuming 

different mean xµ  and standard deviations xσ . For each combination of xµ  and xσ , one sample of X was 

generated and for each of such sample, 100 samples of 30 (or 60) disturbance term values were generated from 

N(0,1) and corresponding samples of y values were calculated. The relative frequency (in 100 trials) of cases in 

which the correct statistical decision is reached is recorded as the estimate of the power of the test. 

 

Glejser (1969), using three sample sizes (20, 30, 60) and a fixed standard deviation of their independent variable xσ , 

varied the form of heterocedasticity. Each of the three sample sizes was replicated 100 times and their dependent 

variable (y) was generated using the functional form: 

( )0 1 1
2 . 1 . 1

i
y X uβ β= + +  

Las-Forsberg et-al (1999) used two sample sizes (30 and 120) and generated their disturbance terms iu  from 

( )0,N X δ
where 0.0 2.8δ< ≤  with 0.4  grid and they assumed 

( )2 . 1 . 2iy u=  

for their endogenous variable; using equally spaced regressors. 

Udoko (1990) used three sample sizes ( )20, 40,60n  and varying, the form of heteroscedasticity generated his 

disturbance terms from U (0,1) using linear congruential method, i.e. 

( )( ) ( )1 2 . 1 . 3n nu A u C M o d M−= +  

1, 2,...,n M=  where A  is the multiplier 0 A M≤ ≤  and 

C is the increment 0 A M≤ ≤ , the uniform terms were later transformed into standard normal errors. 

 

In this work, we use three sample sizes ( 20,50,100 ), equally replicated (r= 50 replicates) and two forms of 

heteroscedasticity. At each combination of sample size, replication and form of heteroscedasticity, we undertake a 

comparative study of the performance of the three tests for heteroscedasticity using the power of the tests as 

calculated from the result of the Monte-Carlo experiment. 
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2.2 The Design of the Monte-Carlo Experiment  

2.2.1 Basic Model 

In this study, we use the model 

( )2 . 2 . 1
i i i

y x uα β= + +  

where the independent variable X is invariant and identical in repeated samples, the values of α  and β  are 

arbitrarily chosen because all test statistics used are expected to produce the same result no matter which value we 

choose and iu , the disturbance terms are chosen from normal distribution. In other words, X is said to be non-

stochastic and Y is stochastic because U is stochastic 

The use of an intrinsically linear model is to reduce the complexity of the estimation of parameters. Parameters of 

intrinsically non-linear models can only be estimated using algorithms, which yield approximation values of the 

parameter after numerous iterations. Also all the known tests for heteroscedasticity are based on intrinsically linear 

models. 

 

 

2.2.2 Choice of Parameters and the Independent Variable X 

In the past, computer programmes were tailed to specific data generating process for the Monte-Carlo experiment, 

that is all the necessary constraints and impositions on the data to be generated were spelt out in the computer 

programme by researchers. Consequently, the algorithms underlying the data generation process have had to be 

documented and reported in detail. This complicated the verification of data used in such works 

 

Today, softwares are available in their large numbers that can attend to all these constraints and restrictions and will 

produce what was obtained in the past with relatively higher speed and precision. 

 

For the first round of our experiment, three equally spaced values of regressor sets are chosen to indicate three 

different samples of sizes n= 20, 50, and 100. The regressor sets are 

1, 2,..., 20

1, 2,...,50

1, 2,...,100

I

II

III

X

X

X

=

=

=

 

The sample sizes chosen are multiples of ‘three’ to allow for unambiguous one-third of observations to be omitted in 

the case of Goldfeld-Quandt test which is samples often encountered in applied works. 

Given the equation: 

( )2 . 2 . 1i i iy x uα β= + +  

y  could not be determined except values are set for α and β , and iu  , we therefore arbitrarily set 0.5 and 2.0 for 

α  and β  respectively. 



Mathematical Theory and Modeling                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.5, 2012 
 

31 

The Microsoft Excel package was used to generate random deviates which were later standardized as .iu  We then 

resort to the equation 

i i iy x uα β= + +  

to determine the values of y . However, the following three transformations are made depending on the form of 

heteroscedasticity to be introduced using 

( )( ) ( )* 2 . 2 . 2i iy x u h xα β= + +  

where ( )ih x  is the form of heteroscedasticity. 

The two forms of ( )h x  used in this study are: 

1
2

1.

2.

X

X
 

The main criterion on the choice of the form of x is to consider transformations of dependent variables most 

frequently used in applied regression analysis. 

 

2.2.3 The Generation of Sample Data 

The disturbance terms to be used are generated as follows: 

1 Generate 20  random deviates using Microsoft Excel package 

2 For a replication of size 50, repeat step1, 50 times, to obtain 50 different random samples, each of size 20. 

3 Standardize, each of the 50 replications of random deviates to obtain 50 groups of different standard normal 

deviates of size 20 each having mean 0 and variance 1. 

4 Values of the standardized deviates iu  obtained in step 3 are used to calculate 

( )( ) ( )* 2 .2 .2i i iy x U h xα β= + +  

For other sample sizes and replications, steps 1 to 3 are repeated to meet their specifications. Step 4 is used according 

to the desired form of heteroscedasticity ( )h x . 

Consequently, in the sample design for generating the data sets each of the three sample sizes 20, 50 and 100 are 

replicated 50 times. This is repeated for each of the three specifications of the independent variable X. the generated 

data set for the specification ( )h x , when n = 20 for equally spaced regressor set is displayed in table 2.2.1 
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As shown by (2.2.2), the design of this Monte-Carlo experiment is such that regressor – induced heteroscedasticity is 

used in generating the regressant. Three transformations of the equally spaced and unequally spaced regressors are 

assumed. Three tests for homoscedasticity of the error term are then applied to the data generated with the objective 

of studying their power to detect the introduced heteroscedasticity. 

 

2.3 Results and Discussion 

The bias, variances and the Root Mean Square Error for the two estimators, OLS and GLS, in the presence of the two 

different functional forms of heteroscedasticity will be considered to see what happens as the sample size increases. 

 

Table 1:  Bias for Estimators of β  

 BIAS FOR ESTIMATORS OF β 

HSC ESTIMATORS 
SMPL 20 

INTERCEPT SLOPE SBIAS 

X 
OLS 0.009998 -0.019226 -0.009228 

GLS 0.009798 -0.019226 -0.009428 

SQRT X 
OLS 0.016372 -0.027068 -0.010696 

GLS 0.016370 -0.027068 -0.010698 

  

HSC ESTIMATORS 
SMPL 50 

INTERCEPT SLOPE SBIAS 

X 
OLS 0.011086 -0.028418 -0.017332 

GLS 0.011086 -0.028418 -0.017332 

SQRT X 
OLS 0.015104 -0.033408 -0.018304 

GLS 0.015104 -0.033408 -0.018304 

  

HSC ESTIMATORS 
SMPL 100 

INTERCEPT SLOPE SBIAS 

X 
OLS -0.020190 0.045106 0.024916 

GLS -0.016191 0.044112 0.027921 

SQRT X 
OLS -0.019232 0.048193 0.028961 

GLS -0.019352 0.048188 0.028836 

 

The bias of the OLS and GLS estimators of β  using the three different sample sizes reveals that both estimators are 

unbiased in the presence of the two functional forms of heteroscedasticity considered. This is clearly seen in the 

result from the table above as the sum of the bias are very small. Also, from the table 1 above, the sum of the bias 

tends to reduce as the sample size increases from 20 to 50 but then increased as the sample size increased from 50 to 

100. This is observed in the two different functional forms of heteroscedasticity. 
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Table 2:  Variance for Estimators of β
 

 

 VARIANCE FOR ESTIMATORS OF β 

HSC ESTIMATORS 
SMPL 20 

INTERCEPT SLOPE SVAR 

X 
OLS 0.019198 0.131505 0.150703 

GLS 0.019141 0.131505 0.150646 

SQRT X 
OLS 0.039320 0.194280 0.233601 

GLS 0.039321 0.194280 0.233601 

  

HSC ESTIMATORS 
SMPL 50 

INTERCEPT SLOPE SVAR 

X 
OLS 0.010062 0.085597 0.095660 

GLS 0.010062 0.085597 0.095660 

SQRT X 
OLS 0.018594 0.121316 0.139910 

GLS 0.018594 0.121316 0.139910 

  

HSC ESTIMATORS 
SMPL 100 

INTERCEPT SLOPE SVAR 

X 
OLS 0.003854 0.029581 0.033435 

GLS 0.003647 0.028642 0.032289 

SQRT X 
OLS 0.006724 0.042718 0.049442 

GLS 0.006723 0.042715 0.049438 

 

The variances of the OLS and GLS estimators of β  using the three different sample sizes reveals that the sum of 

variances of both estimators are approximately equal in the presence of the two functional forms of 

heteroscedasticity considered. Although, the OLS estimator was observed to have a smaller variance at most times. 

Also, from the table 2 above, the sum of the variances tends to reduce as the sample size increases from 20 to 50 and 

from 50 to 100. This is observed in the two different functional forms of heteroscedasticity. 
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Table 3:  Root Mean Squares Error for Estimators of β  

 

 RMSE FOR ESTIMATORS OF β 

HSC ESTIMATORS 
SMPL 20 

INTERCEPT SLOPE SRMSE 

X 
OLS 0.138918 0.363145 0.502063 

GLS 0.138699 0.363145 0.501844 

SQRT X 
OLS 0.198968 0.441603 0.640571 

GLS 0.198970 0.441603 0.640573 

  

HSC ESTIMATORS 
SMPL 50 

INTERCEPT SLOPE SRMSE 

X 
OLS 0.100922 0.293947 0.394869 

GLS 0.100922 0.293947 0.394869 

SQRT X 
OLS 0.137195 0.349903 0.487098 

GLS 0.137195 0.349903 0.487098 

  

HSC ESTIMATORS 
SMPL 100 

INTERCEPT SLOPE SRMSE 

X 
OLS 0.065282 0.177808 0.243090 

GLS 0.062522 0.174894 0.237416 

SQRT X 
OLS 0.084223 0.212227 0.296450 

GLS 0.084245 0.212219 0.296464 

 

The RMSE of the OLS and GLS estimators of β  using the three different sample sizes reveals that the sum of 

RMSE of both estimators are approximately equal in the presence of the two functional forms of heteroscedasticity 

considered. Here, the GLS estimator was observed to have a smaller RMSE value at some times (at sample size 20 

with heteroscedasticity ( )h x X=  and at sample size 100 with same functional form of heteroscedasticity). The 

OLS estimator had the smaller RMSE at sample size 20 and 100 with the functional form of heteroscedasticty 

( )
1

2h x X= .  Also, from the table 3 above, the sum of the RMSE tends to reduce as the sample size increases from 

20 to 50 and from 50 to 100 and this was observed in the two different functional forms of heteroscedasticity. 

 

2.4 Power of Test 

Here, the efficiency of three tests in the detection of the functional forms of heteroscedasticity introduced into the 

model will be considered. The EVIEWS 7.0 was used to obtain these results. For the different sample sizes 

considered and in the presence of the two functional forms of heteroscedasticity introduced into the model, the test 

for the detection of heteroscedasticity using the three tests considered are given below. A total of 900 
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heteroscedasticity test were run, (300 Glejser tests, 300 Breusch-Pagan tests and 300 White tests), for the two forms 

of heteroscedasticity. A few samples for each of the three tests are presented in the appendix. 

 

 

Table 4: Summary Table showing the frequency of detection of the three tests in the presence of the two 

functional forms of heteroscedasticity. 

 

HSC TESTS 
SAMPLES SIZES OBSERVED 

TOTAL 

EXPECTED 

TOTAL 
PERCENTAGE 

n = 20 n = 50 n = 100 

X 

BPG 34 50 50 134 150 89% 

GLEJSER 45 50 50 145 150 97% 

WHITE 17 49 50 116 150 77% 

  

SQRT 

X 

BPG 16 41 50 107 150 71% 

GLEJSER 25 43 50 118 150 79% 

WHITE 9 36 48 93 150 62% 

 

The table above reveals the number of times and the corresponding percentages that each of the three tests 

considered (Breusch Pagan Test, Glejser and White test) was able to detect the presence of the two forms of 

heteroscedasticity in the linear econometric model. White test had the least number of times (i.e., 34 out of 50) of 

correctly detecting the presence of heteroscedasticity for sample size 20 for the two different forms of 

heteroscedasticity considered while Glejser had the highest value (i.e. 50 out of 50). This pattern is still maintained 

as the sample size increases from 20 to 50 and from 50 to 100. Also, the number of times that the test detected the 

presence of heteroscedasticity improved as the sample size increases. From the table, the percentages of number of 

correct detection of heteroscedasticity for BPG, Glejser and White are 89%, 97% and 77% respectively for 

functional form of heteroscedasticity ( )h x X=  and   71%, 79% and 62% respectively for functional form of 

heteroscedasticity ( )
1

2h x X= . The Glejser test is observed to have the highest frequency in heteroscedasticity 

detection. 

 

2.5 Conclusion 

The two estimators OLS and GLS are both unbiased and could be used since none of the estimator can be 

convincingly said to be better than the other especially when the form of functional heteroscedasticity is known. 

Both estimators are asymptotically good in the sense that as the sample sizes increases, the estimates of the two 

estimators tend towards the true parameter. The Glejser test is the best test among the three tests considered since it 
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consistently detects the presence of the two functional forms of heteroscedasticity in the various sample sizes 

considered. The White test cannot be reliable in the detection of heteroscedasticity if the sample size is small. 
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Appendix 

 

 

Fig. 1:   Heteroscedasticity Test: Glejser  

     
     F-statistic 13.21323     Prob. F(1,18) 0.0019 

Obs*R-squared 8.466427     Prob. Chi-Square(1) 0.0036 

Scaled explained SS 8.225716     Prob. Chi-Square(1) 0.0041 

     
     
     

Test Equation:    

Dependent Variable: ARESID   

Method: Least Squares   

Date: 07/06/11   Time: 19:27   

Sample: 1 20    

Included observations: 20   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     

C 0.038061 0.107756 0.353212 0.7280 

X1 0.609778 0.167752 3.635000 0.0019 

     
     R-squared 0.423321     Mean dependent var 0.376667 

Adjusted R-squared 0.391284     S.D. dependent var 0.310484 

S.E. of regression 0.242240     Akaike info criterion 0.096866 

Sum squared resid 1.056247     Schwarz criterion 0.196440 

Log likelihood 1.031336     Hannan-Quinn criter. 0.116304 

F-statistic 13.21323     Durbin-Watson stat 2.380648 

Prob(F-statistic) 0.001894    
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Fig. 2:   Heteroscedasticity Test: Glejser  

     
     F-statistic 17.23959     Prob. F(1,48) 0.0001 

Obs*R-squared 13.21252     Prob. Chi-Square(1) 0.0003 

Scaled explained SS 18.96216     Prob. Chi-Square(1) 0.0000 

     
          

Test Equation:    

Dependent Variable: ARESID   

Method: Least Squares   

Date: 07/12/11   Time: 06:08   

Sample: 1 50    

Included observations: 50   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.031961 0.082721 0.386373 0.7009 

X1 0.610081 0.146935 4.152058 0.0001 

     
     R-squared 0.264250     Mean dependent var 0.323602 

Adjusted R-squared 0.248922     S.D. dependent var 0.356493 

S.E. of regression 0.308953     Akaike info criterion 0.527925 

Sum squared resid 4.581704     Schwarz criterion 0.604406 

Log likelihood -11.19812     Hannan-Quinn criter. 0.557049 

F-statistic 17.23959     Durbin-Watson stat 1.981991 

Prob(F-statistic) 0.000134    

     
     

 

 

 

Fig. 3:   Heteroscedasticity Test: Glejser  

     
     F-statistic 51.87468     Prob. F(1,98) 0.0000 

Obs*R-squared 34.61204     Prob. Chi-Square(1) 0.0000 

Scaled explained SS 50.88712     Prob. Chi-Square(1) 0.0000 

     
          

Test Equation:    

Dependent Variable: ARESID   

Method: Least Squares   

Date: 07/13/11   Time: 04:05   

Sample: 1 100    

Included observations: 100   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.044604 0.071431 -0.624435 0.5338 

X1 0.925412 0.128486 7.202408 0.0000 

     
     R-squared 0.346120     Mean dependent var 0.400522 
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Adjusted R-squared 0.339448     S.D. dependent var 0.440689 

S.E. of regression 0.358167     Akaike info criterion 0.804164 

Sum squared resid 12.57181     Schwarz criterion 0.856268 

Log likelihood -38.20821     Hannan-Quinn criter. 0.825251 

F-statistic 51.87468     Durbin-Watson stat 2.152390 

Prob(F-statistic) 0.000000    

     
     

Fig. 4:   Heteroscedasticity Test: White  

     
     F-statistic 3.571095     Prob. F(2,17) 0.0507 

Obs*R-squared 5.916771     Prob. Chi-Square(2) 0.0519 

Scaled explained SS 5.074610     Prob. Chi-Square(2) 0.0791 

     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 07/06/11   Time: 19:28   

Sample: 1 20    

Included observations: 20   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.089837 0.215042 -0.417764 0.6813 

X1 0.605692 1.021273 0.593076 0.5609 

X1^2 -0.031610 0.943265 -0.033511 0.9737 

     
     R-squared 0.295839     Mean dependent var 0.233458 

Adjusted R-squared 0.212996     S.D. dependent var 0.348561 

S.E. of regression 0.309220     Akaike info criterion 0.627952 

Sum squared resid 1.625487     Schwarz criterion 0.777312 

Log likelihood -3.279521     Hannan-Quinn criter. 0.657109 

F-statistic 3.571095     Durbin-Watson stat 2.695626 

Prob(F-statistic) 0.050724    

     
     

 

Fig. 5:   Heteroscedasticity Test: White  

     
     F-statistic 6.686476     Prob. F(2,47) 0.0028 

Obs*R-squared 11.07528     Prob. Chi-Square(2) 0.0039 

Scaled explained SS 36.67321     Prob. Chi-Square(2) 0.0000 

     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 07/12/11   Time: 06:08   

Sample: 1 50    

Included observations: 50   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.244334 0.253867 0.962449 0.3408 

X1 -1.491342 1.195926 -1.247018 0.2186 
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X1^2 2.201805 1.111806 1.980386 0.0535 

     
     R-squared 0.221506     Mean dependent var 0.229263 

Adjusted R-squared 0.188378     S.D. dependent var 0.620815 

S.E. of regression 0.559293     Akaike info criterion 1.733838 

Sum squared resid 14.70200     Schwarz criterion 1.848559 

Log likelihood -40.34594     Hannan-Quinn criter. 1.777524 

F-statistic 6.686476     Durbin-Watson stat 2.155578 

Prob(F-statistic) 0.002783    

     
     

Fig. 6:   Heteroscedasticity Test: White  

     
     F-statistic 14.46955     Prob. F(2,97) 0.0000 

Obs*R-squared 22.97864     Prob. Chi-Square(2) 0.0000 

Scaled explained SS 41.63895     Prob. Chi-Square(2) 0.0000 

     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 07/13/11   Time: 04:06   

Sample: 1 100    

Included observations: 100   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.068880 0.191117 -0.360406 0.7193 

X1 0.344631 0.906473 0.380189 0.7046 

X1^2 0.827623 0.892303 0.927513 0.3560 

     
     R-squared 0.229786     Mean dependent var 0.352683 

Adjusted R-squared 0.213906     S.D. dependent var 0.688562 

S.E. of regression 0.610493     Akaike info criterion 1.880441 

Sum squared resid 36.15205     Schwarz criterion 1.958596 

Log likelihood -91.02203     Hannan-Quinn criter. 1.912071 

F-statistic 14.46955     Durbin-Watson stat 2.291218 

Prob(F-statistic) 0.000003    
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Fig. 7:   Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 7.560631     Prob. F(1,18) 0.0132 

Obs*R-squared 5.915841     Prob. Chi-Square(1) 0.0150 

Scaled explained SS 5.073812     Prob. Chi-Square(1) 0.0243 

     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 07/06/11   Time: 19:26   

Sample: 1 20    

Included observations: 20   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.084297 0.133679 -0.630596 0.5362 

X1 0.572229 0.208109 2.749660 0.0132 

     
     R-squared 0.295792     Mean dependent var 0.233458 

Adjusted R-squared 0.256669     S.D. dependent var 0.348561 

S.E. of regression 0.300518     Akaike info criterion 0.528018 

Sum squared resid 1.625594     Schwarz criterion 0.627591 

Log likelihood -3.280182     Hannan-Quinn criter. 0.547456 

F-statistic 7.560631     Durbin-Watson stat 2.692565 

Prob(F-statistic) 0.013182    

     
 

 

 

Fig. 8:   Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 8.908718     Prob. F(1,48) 0.0045 

Obs*R-squared 7.827200     Prob. Chi-Square(1) 0.0051 

Scaled explained SS 25.91794     Prob. Chi-Square(1) 0.0000 

     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 07/12/11   Time: 06:08   

Sample: 1 50    

Included observations: 50   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.161641 0.154238 -1.047996 0.2999 

X1 0.817730 0.273970 2.984748 0.0045 

     
     R-squared 0.156544     Mean dependent var 0.229263 

Adjusted R-squared 0.138972     S.D. dependent var 0.620815 

S.E. of regression 0.576064     Akaike info criterion 1.773984 
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Sum squared resid 15.92881     Schwarz criterion 1.850465 

Log likelihood -42.34959     Hannan-Quinn criter. 1.803108 

F-statistic 8.908718     Durbin-Watson stat 2.082459 

Prob(F-statistic) 0.004455    

     
     

 

Fig. 9:   Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 28.11890     Prob. F(1,98) 0.0000 

Obs*R-squared 22.29555     Prob. Chi-Square(1) 0.0000 

Scaled explained SS 40.40113     Prob. Chi-Square(1) 0.0000 

     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 07/13/11   Time: 04:05   

Sample: 1 100    

Included observations: 100   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.205516 0.121666 -1.689179 0.0944 

X1 1.160490 0.218848 5.302726 0.0000 

     
     R-squared 0.222955     Mean dependent var 0.352683 

Adjusted R-squared 0.215026     S.D. dependent var 0.688562 

S.E. of regression 0.610058     Akaike info criterion 1.869270 

Sum squared resid 36.47268     Schwarz criterion 1.921374 

Log likelihood -91.46352     Hannan-Quinn criter. 1.890358 

F-statistic 28.11890     Durbin-Watson stat 2.309894 

Prob(F-statistic) 0.000001    
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