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Abstract 

In this paper we apply He’s variational iteration method to find out an appropriate solution to a class of 
singular differential equation under imposed conditions by introducing and inducting in a polynomial  pro 
satisfying the given subject to conditions at the outset as selective function to the solution extracting 
process. As for as application part is concerned, Illustrative examples from the available literature when 
treated all over reveal and out show that the solution deduced by proposed method is exact and again 
polynomial. Overall, a successful produce of exact solutions by proposed process itself justify the 
effectiveness and efficiency of the method so very much.         

Keywords: He’s variational iteration method, Lane-Emden differential equation, exact solution, 
polynomial, Lagrange multiplier.  

               

1. Introduction 

The universe is filled with numerous scientific advances and full off due observations that had tempted and 
motivated to ponder on with outmost concern and curiosity all about. So happened realised seriously, 
considered accordingly, analysed with all effort either implicitly or explicitly to the field of 
multi-disciplinary sciences through modelling into suitable mathematical preposition like in the form of a 
singular second order differential equation endowed with known boundary or other subject to conditions. 
Further onwards for the sake of  convenience and ascertaining definiteness to not only systematic 
characteristics but also to the corresponding proper solution out of these prolific existing thought provoking 
spectral problems of science thoroughly, the area of interest and investigation into such variety of subject 
matter is constricted and limited to only some of the phenomenon occurring in mathematical 
physics ,astrophysics, biological science of human physiology and chemical kinetics inter alia the theory of 
stellar structure , the thermal behaviour of a spherical cloud of a gas , the isothermal gas spheres, the 
thermionic emission of currents , the degeneration of white-dwarf of a star, the thermal distribution profile 
in a human head , the radial stress within a circular plane , the elastic pressure under normal pressure the 
oxygen tension in a spherical cell with Michaelis–Menton oxygen uptake kinetics, the reactants 
concentration in a chemical reactor, the radial stress on a rotationally symmetric shallow membrane cap, the 
temperature present in an anti-symmetric circular plate and many more like 
problems[3,4,5,9,11,12,13,18,25,40] .Thereupon the considered range of mathematically modelled 
problems may be affined to the a special class of  Lane-Emden differential equation for apropos 
interpretation and comprehensive investigation. Let the Lane-Emden differential equation considered with 
composite imposed condition be 

                                           (1.1) 

                                                

 Subject to conditions   

                             or 
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Where f(x, y) is a real valued continuous function, g(x)  C [0 1] and A, B, C, D are real constant. 
The parameter ‘k’ is a real number greater than or equal to one. If k =1 or k=2 the problem (1.1) reduces to 
cylindrical or spherical type by virtue of corroborating perspective symmetries properly. To begin with the 
mode of analytical realisation, as of now, we again opt to restrict the domain of class of differential 
equation (1.1) in the larger interest of finding any suitable, simple and effective methodology enabling 
some better and appropriate much needed solution to the corresponding accustomed and coherent subclass 
of problems. Subsequently as to the sufficient interest towards such class of problems a sincere attempt is 
made ahead via the technique of variational iteration method successfully. 

Now consider a specific subclass of problems as follow 

  

                             (1.2)                                        

 

Subject to conditions  

                           Or 

                   

where A, B, C and D are real constants and the parameter k≥1.  

However, p(x) and q(x) are polynomials of suitable degree and ‘a’ is any real number. Solution to the class 
of problems (1.1) exists and is unique as well [15, 33, 38]. The point x=0 is a singular point of the problem 
may offer a peculiar behavior to the solution in the neighborhood of that point like out showing a rapid 
change, partly skeptical and chaotic towards some solution procuring process making one unable to 
understand about the behavior of the solution over there at ‘x’(=0)equals to zero. However, due to 
singularity to the extreme of the solution domain any of the numerical scheme may again face convergence 
problem. However, the singular behavior could not impede the keen interest of researchers related to the 
field of study of such kind of thought provoking problems any more.   

In recent past, with regard to finding the solution to the Lane-Emden equation so far several other methods 
like B-Spline method, Homotopy method, Finite element method, Lie group analysis, Modified Variational, 
iteration method, Adomian method, Modified Adomian Decomposition method, Multi-integral method, 
Differential method, Projection method, Legendre wavelets method, Taylors series method, Rational 
Chebyshev collocation method ,Pseudo spectral methods have had been discussed and applied gracefully 
[2,7,8,10,14,16,17,23,27,28,34,36,37,42,43].   

The method under consideration that is to be put forward and proposed to be applied upon, is a method 
none other than the He’s variational iteration method often ascribed to and eulogised for solving famous 
subtle and meticulous problems like Autonomous ordinary differential system, Nonlinear oscillations, 
Nonlinear relaxation phenomena in polycrystalline solids, Nonlinear thermo elasticity, Cubic nonlinear 
Schrodinger equation, Ion acoustic plasma wave, Nonlinear oscillators with discontinuities, non-Newtonian 
flows, Burger’s and coupled Burger’s equation, General Riccati equation, Multispecies Lotaka –Volterra 
equations, Rational solution of Toda lattice equation, Helmholtz equation ,Generalized KdV equation and 
Nonlinear differential equations of fractional order[1,6,20,21,29,30,31,32,35,39,40].   

 

2. He’s Variational Iteration Method (V I M) 

Variational iteration method may be understood like simultaneous toning up of Lagrange multiplier and 
variational theory complimenting each other in unison. In as much as the type of such consequential mutual 
indiscrete coexistence happen to be deduced out of two different mathematical concepts altogether 
sometimes also referred to as modified Lagrange multiplier method previously put forward by Inokuti 
Sakine and Mura[19] and later on envisioned and improvised by Chinese mathematician J.H. He  have 
outreached and surpassed a milestone for known to have solved plenty of challenging problems with 
perfection, accuracy and great efficiency.Wich is what that itself speaks the volumes of its ability to elicit 
solution out of a diversifying class of problems. In order to incorporate and treat on by this very method 
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further on consider a general differential equation in operator form as 

D     where D is the usual differential operator                      (2.11)                                

y(x) is twice continuously differentiable function on a domain and g(x) is real valued inhomogeneous term. 

The relation (2.1) may be decomposed as follows                                           

L                                                   (2.12)                                                        

where L and N are linear and nonlinear differential operators respectively. 

The variation iteration method acquires high efficiency and real potential to the required process of finding 
solution systematically by successive generation of recursive relations of correctional functional with 
respect to (2.12) via variational theory. Observing the success and usefulness of the proposed variant on so 
many other intrigue solution desired problems it is expedient to introduce and treat the given class of 
problems similarly. It is important to note that the variation iteration method  accumulates  its inner 
efficiency and enough potential needed for the solution exhibiting procedure with regard to (2.12) is by 
virtue of successive generation of recursive correctional functional systematically with the help of well 
thought exotic concept of variational theory. Eventually, therefore for finding a just and acceptable solution 
to the class of the problems (1.1) we adhere to construct a sequence of integral equations also called as 
correctional functional to the problems (2.12) as follows  

 

 ( ) = ( ) + ( ) ((L ( ( )) +N ( )  g ( )) ds    , n 0                    (2.13)                                         

 

Where  is Lagrange multiplier determined optimally satisfying all stationary conditions after  

variational method is applied to (2.3).However, there exists one more important feature responsible for ease 

and utility of the proposed method realized so all over is the assumption and choice of considering the 

inconvenient highly nonlinear and complicated dependent variables as restricted variables so as to 

minimizing the  magnitude of the undesired error  creeping into the susceptible solution finding process  

of  the general problem(1.1).The emblem aforementioned ‘  is the restricted variation, which means  

=0.Eventually, after ‘ ’ is determined , a proper and suitable selective function may it be a linear one 

or appropriately nonlinear with respect to (2.2) is assumed as an initial approximation for finding next 

successive iterative function by recursive sequence of correction functionals anticipating to satisfy the 

given boundary conditions. On few occasions it is witnessed that finally or preferably the limiting value 

(as  of sequential approximations incurred after due process of iteration leads to exact solution. 

However, to our class of problems we consider a polynomial pre satisfying either boundary condition or 

initial condition corresponding to the problem as selective function that is likely to produce well desired 

exact solution. 

 

2.1Variational Method and generalized Lagrange Multiplier 

In order to avert the inconvenience caused by the presence of singularity the model (1.2) is required to be 

treated by modifying the problem without changing the status of referred physical phenomenon. 

Accordingly, the modified imposed value problem is 



Mathematical Theory and Modeling  www.iiste.org 
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 
Vol.2, No.4, 2012 

39 

  

   for    all ‘ x’ belonging to [0 1]                (2.11)                           

 

Thus the sequential correctional funtionals corresponding to (2.11) may be defined as follows 

                                                                                                                            

  ( )   =   ds     n 0    (2.12)                    

where (x) is the initial selective function and is  iterate of the correctional functional. Now 

optimal value of (s) is identified naturally by taking variation with respect to (x) and subject to 

restricted variation of unpleasing terms of   i.e. (x) =0. Consequently to embark on the relation 

 

 (x) = (x) + (s)( + )ds     ,  n 0        (2.13) 

 

Further on by virtue of integrating ( ) by parts and subject to the restricted variation of =0) we 

have then for    n  0 

                                                                                                                             

(x) = (1 + -1) ) (x) + ( (s) (s)) |s=x + (s) ds,  

 

This mathematical variational equation asserts that the stationary conditions are 

 

 = 0                                                                       (2.14)                                              

 

=0                                                                                              (2.15)                                                               

 

s                                                                           (2.16)                                                                                                 

                                                                                                                                                                    

The relations (2.14), (2.15) and (2.16)   altogether implies that 
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(s                                                                        

(2.17)                                                

 

Henceforth, the sequence of correction functionals are now given by 

 (x) = (x) + ) ( + n  0   (2.18)             

Moreover, the relation (2.18) can be rewritten as 

 (x) = (x) + ) ( + n 0   (2.19) 

In view of (2.11), (2.18) and (2.19) it is plausible to observe that by variational theory the process of 

optimization self endeavors to multiply the relation (1.2) by ‘  ’power of the variable ‘x’ to come to 

succor and modify the considered model problem in the neighborhood of singular point so that the 

proposed method becomes expedient and can be expedited elegantly to conclude about innate and cohesive 

grid scientific behavior of hitherto discussed well defined class of applied nature of problems.Again,we 

also observe that the execution process carried out this way facilitate to express all the derivative terms as a 

total differential of some function henceforth manifesting the differential equation like semi-exact. Which is 

why, we can visualize the Lagrange multiplier as semi integrating factor for our model problems.  

Also clearly would it be deduced from (2.19) that the limit of the convergent iterative sequence  

satisfying given conditions is the desired exact solution to (1.1). 

 

2.2 Convergence of Iterative Sequence 

Essentially our prime motive in this section is to establish the convergence of the considered sequence of 

correctional functionals generated out after VIM is executed onto the class (1.1) with regard to establish 

(2.19) observe that 

 =  + (x)) is the ‘ ’  partial sum of the infinite series 

 

+ (x)                                                       (2.21)                                                             

 

Then necessarily the convergence of infinite series (2.21) implies the convergence of intermediary iterative 

sequence  of partial   sums   of the auxiliary series (2.21) as well. Suppose  be the 
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initial selective function of polynomial function consuming the given conditions in the problem. 

Then the first successive variational iterate is given by 

( ) = (s) a )) ds                         (2.22)                                         

                                                                                                                                                               

On integration by parts and erstwhile appliance of the proper stationary conditions we have 

| (x) (x)|=| (s) + ds|                                 (2.23) 

This implies that 

| ( ≤  (s)|+ |  (s) | (| a ||p(s) |  + ds                    (2.24) 

Similarly, the relation (2.19) on carrying out similar simplifications and using stationary conditions, imply 

 

 

or, | (x)| | p(s)|)(  ds   

 

                 ≤  (  ds  

 

                 ≤   ds                   (2.25)                                                                                                  

And, above all 

 | (x)|=| ) ds|    

                                                                              

or,| (x)| | p(s)|  ds , 2 
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               ≤ ds,   , s      

(2.26)               

 Now, choose      

 M =sup (| (s) |  ,  )          (2.27) 

                  0≤s≤   n                                           

                                                                  

Then, again observe and proceed to establish the inequality 

  (s) (s)|                                         (2.28)                                     

 

Obviously, relations (2.24), (2.25), (2.26) and (2.27)   together imply that 

 

 | (x)- (x) |     ds     = M                                              (2.29)                                         

 

As well as,    |  (x)|  ds                          (2.30)                                     

                             s        

Using (2.29) in (2.30) we find that                                                                  

|  (x)|   M  ds   =  

                 s                                    

Thus, the statement (2.28) is true for natural number n=1 

As usual, suppose that   

(s) (s)|         holds    for    some,                            (2.31) 

Then, again relations (2.24) and (2.27) altogether imply that   

 |  –   (x) |   ( (s) (s) |ds 
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                     s                                                                                                              

 or,  | (x) (x)| ds 

                     s  

That implies by (2.27) and (2.31) 

| (x) (x)| M ds=  

 

Therefore, by Principle of Induction 

 

|  |       holds                           (2.32) 

 

Now we claim that the series (2.21) converges both absolutely and uniformly for all [0 1] using (2.32) 

 

Since,| (x)|+ (x) (x)|  | (x)|+ =| (x)|+ ( 1) [01]      (2.33)                 

 

Therefore the series  + (x)  converge uniformly  [01] and by virtue of 

  

(2.33) sequence of its partial sums converges to solution function of the given class of 

problems.  

 

3. Illustrative Problems 

The proposed method is justified by successful implementation of VIM on some of the specific problems of 

linear and nonlinear type often referred, discussed and had been attempted to solve by other different 

methods in literature available so far.  

 

3.1Example1:  

Consider the following boundary value problem [21,34] 

(x) + (x) +  =                                                       (3.11)                                              
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Subject to    ,    

Solution:   To solve (5.1) we construct correction functional as follows   

 ( ) = ( ) + ( (s)    s ( )) ds             n0 

Where ‘ (s)’ is optimally identified Lagrange multiplier similar to (2.27).Then the first iterative solution is  

 ( ) = ( ) + ( (s)   (s)   s ( )) ds              

Let  (x) be the selective polynomial function satisfying the given boundary conditions. We may simply 

choose selective function as 

(x) = a a  

Then the first iterate is as follows                                                               

  (x) = a a + ( (s)   (s)   s ( )) ds                                                               

Now on performing simplifications, we get 

  (x)= a a (a + (a  

Further onwards imposition of boundary condition on (x) asserts that ‘a=1’enabling,  (x) =   

as the produced exact solution to the problem. 

        

3.2Example2:  

 Consider the boundary value problem [7, 34,35]        

 )                                       (3.21)                                               

 y (0) =1   ,    y (1) =0                                                                                     

Solution: The correction functional for the problem (3.21) is 

 (x) = (x) +  ds              (3.22)                            
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‘ (s) ’is usual optimally identified Lagrange multiplier   

Let (x) = a (1  as selective initial approximation function to induce successive first iterate as  

(x) = a (1               

Since solution to (1.2) type of boundary value problems are unique, therefore upon matching the boundary 

condition we get ‘a=1’ rendering (x) = (1  as the exact solution to (3.21) 

3.3Example3: 

Let the nonlinear boundary value problem [42]                   

(3.31)                                  

y(0) =2, (0) = 0                                                                                                                      

Solution: The correctional functional with respect to (3.31) is given by 

(x) = (x) + ds   for   n=0, 1…   (3.32)      

Let, (x) = = 2+a  b  be the selective initial approximation function .Then by VIM, 

First iterative approximate solution to (3.32) simplifies to       

(x)=2+                      (3.32)                       

Then on matching the given initial condition and applying unique feature of solution again implies that a=0 

and b=1, exhibiting (x)= 2+ , the exact solution to the problem. 

However if we consider differential equation (3.31) along boundary conditions =2 and (1) =3 then 

(3.33) similarly provides exact solution to the boundary value problem as well. 
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3.4 Example4:  

Consider the boundary value problem [17, 42] 

 +    +   = 6                                              (3.41) 

Subject to =0   , (1) = 1                                                                                                               

Solution: The correctional functional for boundary value problem (3.41) is as follows  

(x) = (x) +  ds  for n=0, 1, 2……    (3.42)                                                         

Let ( ) = a + (1-a)  be the selective function satisfying the given boundary condition then                           

Then the first iterate by variation iteration method from (3.42) is given by 

  

Now matching the conditions at the end points of the solution domain and using the fact that the solution to 

such boundary value problem are unique we get, . Hence the method producing the exact solution  

  . 

3.5Example5 

Consider the problem[10,33]  

                                 (3.51) 

Subject to         

Solution: If ‘λ ’is the Lagrange multiplier then the first correctional functional is given by  
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(3.52) 

Let us consider  as selective function  

Then on inserting the value of  in (3.52) we get  

                                      (3.53) 

Hence upon imposing the given initial condition in (3.53) and using the criterion of uniqueness of the 

solution we have a=-1 and b=1 felicitating y(x) = . 

Moreover, if we again consider the problem (3.51) along with condition = =  then on the basis 

of similar logic on (3.53) we get an exact solution to the considered boundary value problem. 

4. Conclusions    

This is pertinent to note that He’s variation iteration method applies successfully to a linear as well as to a 

nonlinear class of boundary or initial value problems of type (1.2). Frontier examples of relevance that have 

had occurred time and again and had been dealt by some other method of solution are taken and solved  to 

focus and assert that a proper selection of selective function and henceforth imposition of boundary or 

initial condition as we please on iterative correctional function may lead to an exact solution. However 

sometimes necessity of uniqueness of solution is also assumed during solution maneuvering process. 
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