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Abstract 

In this paper we study a unique common fixed point theorem. The existence of fixed 
point for two weakly compatible maps is established under new contractive condition of 
integral type by using another functions   and  . 
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1. Introduction 

The concept of commutativity has been used and generalized by many authors in several 
ways. For this Jungck (1976) proved a common fixed point theorem for commuting maps 
generalizing the Banach’s fixed point theorem. On the other hand Sessa (1982) has 
introduced the concept of weakly commuting .It is further generalized by Jungck (1988), 
so called compatibility. It can be easily verified that when two mappings are commuting 
then they are compatible. Clearly commuting, weakly commuting mappings are 
compatible but conversely need not be true.  

The study of fixed point theorems satisfying various types of contractive inequalities has 
been a very active field of research during the last few decades. Such condition involves 
rational, irrational and general type expressions. To study more about this matter we 
recommended going deep into the survey articles by Rhodes (1977), (1983).  

In (2002) Branciari obtained a fixed point result for a single mapping satisfying an 
analogue of a Banach contraction principle for integral type inequality as below: 

Theorem 1.1(Branciari 2002) Let (X, d) be a complete metric space,   [   )       
a mapping such that for each         

∫  ( )  
 (     )

 
 ≤   ∫  ( )  

 (   )

 
 

Where   [    )  [    )  is a “Lebesgue-integrable function” which is summable on 

each compact subset of   , non-negative, and such that for each    ,  ∫  ( )     
 

 
 

then   has a unique fixed point such that for each                  
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After this result, there are many theorems dealing with mappings satisfying a general 
contractive condition of integral type.  

Vishal Gupta et al. (2008) prove a common fixed point theorem for R-weakly commuting 

fuzzy maps satisfying a general contractive condition of integral type. Recently Vishal 

Gupta (2008) proves a Common Fixed Point Theorem for Compatible Mapping. 

Some other is noted in (Abbas et al. 2007; Altun 2007; Branciari 2002; Rhoades 1987; 
Rhoades 2007; Kumar S et al.  2007; Vijayaraju et al. 2005) 

2. Preliminaries 

We recall the definitions of complete metric space and other results that will be needed in 
the sequel. 

                                                                                        

                                  

                                                                             
        

                                           

                                                                                         

                                                          

                                                                                       

                                                                                

                                                   (    )                               

                 
   

 (     )    

                                                   (    )                                

       
   

 (      )                   

                                 (    )                                                  

                    

3. Main Result 

Theorem3.1. Let S and T be self compatible maps of a complete metric space (X, d) 
satisfying the following conditions  

(i) S(X)   T(X)                                     (3.1) 

(ii)  ∫  ( )  
 (     )

 
 ≤  ∫  ( )  

 (     )

 
 -  ∫  ( )  

 (     )

 
     (3.2) 
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for each  x,y   X where   [    )  [    ) is a continuous and non decreasing 

function and   [    )  [    ) is a lower semi continuous and non decreasing 

function such that         ( ) =  ( ) = 0 if and only if     also   [    )  [    )  is 

a “Lebesgue-integrable function” which is summable on each compact subset of   , non-

negative, and such that for each    ,  ∫  ( )     
 

 
 

Then S and T have a unique common fixed point. 

Proof : Let    be an arbitrary point of X. Since S(X)   T(X).Choose a point   in X such 

that S  =T  . Continuing this process, in general, choose      such 

that                               

         For each integer     from (3.2) 

 ∫  ( )  
 (       )

 
    ∫  ( )  

 (       )

 
 -  ∫  ( )  

  (       )

 
   (3.3) 

   ∫  ( )  
 (       )

 
 

Since   is continuous and has a monotone property, Therefore  

 ∫  ( )  
 (       )

 
 ∫  ( )  

 (       )

 
 

Let us take     = ∫  ( )  
 (       )

 
  then it follows that    is monotone decreasing and 

lower bounded sequence of numbers. Therefore there exist     such that       

as    . Suppose that       

Taking limit as     on both sides of (3.3) and using that   is lower semi 
continuous, we get, 

    ( )    ( )    ( )   ( )               

This is a contradiction. Therefore   = 0. This implies 

                                            as        

                                          ∫  ( )  
 (       )

 
    as                                          (3.5) 

Now we prove that      is a Cauchy sequence. Suppose it is not. Therefore there exist an 

    and subsequence  {  ( )} &  {  ( )} such that for each positive integer  ,  ( )is 

minimal in the sense that  

   (  ( )   ( ))         (  ( )     ( ))            
(3.6) 
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Now, 

    (  ( )   ( ))    (  ( )   ( )  )    (  ( )     ( )) 

        (  ( )   ( )  )         
(3.7) 

Now  

            ∫  ( )      ∫  ( )  
 (  ( )   ( ))

 
 

 

 
   ∫  ( )  

   (  ( )   ( )  )

 
  

Letting      and from (3.5) 

                                           ∫  ( )  
 (  ( )   ( ))

 
                                (3.8) 

Now consider the triangle inequality, 

 (  ( )   ( ))    (  ( )   ( )  )    (  ( )     ( )  )    (  ( )     ( )) 

 (  ( )     ( )  )    (  ( )     ( ))    (  ( )   ( ))    (  ( )   ( )  ) 

and therefore, 

∫  ( )  
 (  ( )   ( ))

 
 ∫  ( )  

 (  ( )   ( )  )   (  ( )     ( )  )   (  ( )     ( ))

 
     

∫  ( )  
 (  ( )     ( )  )

 
 ∫  ( )  

 (  ( )     ( ))   (  ( )   ( ))   (  ( )   ( )  )

 
 

Taking     and using (3.5) and (3.8) in above inequalities, we get  

             ∫  ( )  
 (  ( )     ( )  )

 
    ∫  ( )  

 (  ( )     ( )  )

 
 

This implies,  

                                            ∫  ( )  
 (  ( )     ( )  )

 
                           (3.9) 

Now from (3.2), we have 

             ∫  ( )  
 (  ( )   ( ))

 
 ≤  ∫  ( )  

 (  ( )     ( )  )

 
 - 

 ∫  ( )  
 (  ( )     ( )  )

 
 

Taking limit as     and using (3.8) and (3.9), we get 

 ( ) ≤  ( ) -  ( ) 

This is a contradiction. Hence       is a Cauchy sequence. Since (X, d) is complete 

metric space, therefore there exist a point   such that 
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Consequently, we can find   in X such that  ( )    . 

Now,  

 ∫  ( )  
 (        )

 
 ≤  ∫  ( )  

 (       )

 
 -  ∫  ( )  

 (       )

 
 

On taking limit as     implies  

 (∫  ( )  
 (     )

 
) ≤  ( ) -  ( ) 

And so  (∫  ( )  
 (     )

 
)     implies that  ( )    . Hence   is the point of 

coincidence of   and  . 

Now we prove that   is the unique point of coincidence of   and  . Suppose not, 

therefore there exist  (    ) and there exist α in X such that  (α)    (α)   .  

Using (3.2) we have  

             ∫  ( )  
 (     α)

 
  ∫  ( )  

 (     α)

 
 ≤  ∫  ( )  

 (     α)

 
 - 

 ∫  ( )   
 (     α)

 
                  ∫  ( )  

 (     α)

 
   ∫  ( )  

 (     α)

 
 

This is a contradiction which implies    .  This proves uniqueness of point of 

coincidence of   and  . Therefore by using lemma (2.4), the result is proved.  
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