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Abstract 

This paper presents experimental and finite element analysis of RC slab panels with steel fiber reinforced concrete 

(SFRC). For this purpose, four SFRC slab panels with (2000×250×50mm) dimensions are poured using a concrete 

class of (f'c=22MPa) with (15kg/m3) dosage of steel fibers and steel class (fy=410MPa) without shear stirrups. Two 

of the slab panels were modeled by using nonlinear material properties adopted from experimental study and 

analyzed till the ultimate failure by ANSYS (Version-15) software. The tested slab panels are subjected to bending 

by two-point loading, exactly after having been moist-cured for (28 days). The slab panels were tested up to the 

failure with control of loads. The applied loads and mid-span deflections are carefully recorded at every (5kN) 

load increment from the beginning till the ultimate failure. The results obtained from the finite element and 

experimental analyses are compared to each other. It is seen from the results that the finite element failure behavior 

indicates a good agreement with the experimental failure behavior. The paper concludes that the traditional 

negative steel reinforcement (steel bars) can be replaced (partially or totally) by using the adopted technique and 

the contribution of SFRC in manufacturing of thin slabs panels was enhanced.  
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1. Introduction  

Slab panels can be used as floor or roof simply supported on masonry components or load bearing walls, steel or 

concrete beams. This technique of construction is widely used and suitable for residential, commercial, 

prefabrication, industrial buildings. A thin slab is widely used in shell structures such as hangers, exhibition halls, 

industrial buildings and a variety of other large span structures. For bridges, deck panels may be poured away from 

the site at a pre-casting plant and shipped to the site once they have cured and are ready for placement (Erection). 

This feature helps to minimize disruptions to traffic, improve construction quality, and lower overall construction 

time. Once at the site the slab panels may be placed directly on precast girders and connected through different 

methods between adjacent slab panels and connections between panels and supporting elements (girders). 

Generally, this type of slabs reinforced in longitudinal direction by two layers (top and bottom) to resist positive 

and negative bending moments produced due to applied loads.  

It is an established fact the flexural resistance of the SFRC slab-system did not change even if the conventional 

reinforcement in the slab section was totally or partially dispensed with and it was replaced with a suitably dose 

of the steel fibers in the concrete mix. Steel fiber-added reinforced concrete (SFRC) applications have become 

widespread in areas such as tunnel shells, concrete sewer pipes, and slabs of large industrial buildings. The 

inclusion of the steel fibers in the concrete at the time of its production leads to a significant improvement of 

strength properties of the concrete, especially the residual-tensile strength and the toughness (energy absorption) 

(Sethunarayanan R., 1960; Raouf  et al., 1984). Several experimental investigations were conducted to increase 

the flexural or shear strength of slabs or beams by using steel fiber reinforced concrete (Noghabai, K., 2000; Shah, 

R., 2004; Gustafsson et al., 2005; Ali H., 2006; Husain et al. 2006; Ali et al., 2013) or high strength concrete or 

concrete polymer composite (Al-Karkhy H., 2004).  

 

2. Paper Significant 

The using of SFRC to produce slab panels is more effective because of the smaller slab thickness, in comparison 

to the beams, that acquires a preferential fiber orientation along its length and breadth, and consequentially leads 

to a favorable alignment of the steel fibers along the principle directions of the moment trajectories. 

 

3. Experimental Work 

The experimental work was carried out on four rectangular section slab panels, continuous (rest on three supports) 

under monotonic concentrated load (in the center of each span). One of which were made fully with NSC, and the 

others were made partially with SFRC in negative moment zone. All slab panels were reinforced with tension bars 

at mid spans (positive reinforcement at bottom), while, for reference slab panel, tension bars (top reinforcement) 
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were used at meddle support (negative reinforcement at top) and extended to adjacent span distance equals to one 

third of adjacent spans,  ACI-318M08 Code. It may be noted that the tested panels were made without shear 

reinforcement. 

Two variables were adopted in this study, presence or absence of SFRC and steel fibers type (straight, hocked-

end and crimped) of steel fiber reinforced concrete. The span, cross-section, concrete strength, steel fiber volume 

friction, and positive reinforcement (bottom reinforcement) were kept constant without any changed for all tested 

specimens. Furthermore, a series of tests were performed on concrete mixes to evaluate the mechanical properties 

of hardened concrete. All slab panels were made with (2000x250x50mm) dimensions for length, width and 

thickness respectively. Figures (1) and (2) present the detailed testing program and nominal dimensions of the 

tested slab panels. 

The main reinforcement consisted of (2ϕ10mm) mild, hot-rolled, deformed steel bars employed as tension 

reinforcement (flexural reinforcement). The longitudinal tension reinforcement was bent with (90О) angle at the 

ends to prevent any steel-concrete bond slip. The reinforcement bars were placed inside the mold with (10mm) 

concrete cover. The tested slab panels are designated as shown in Table (1). 

Table 1. Description of Test Slab Panels 

Slab Designation 
Reinforcement 

Positive (bottom)b Negative (top)c 

SP-1a 

2ϕ10 

2ϕ10mm Steel Bars 

SP-2 SFRC (Hocked-end Fiber) 

SP-3 SFRC (Straight Fiber) 

SP-4 SFRC (Crimped Fiber) 
                        a Reference Slab (Full Slab made with NSC) 
                        b At mid spans (positive reinforcement at bottom). 
                        c At medium support (negative reinforcement). 

 

 
Figure 1. Slab Panel Dimensions and Details (Isometric View) 

 
Figure 2. Slab Panel Concrete Poured Process 

 

3.1 Materials 

In manufacturing the test slab specimens, the properties and description of materials used are reported and 

presented in Tables (2) and (3), and the mix proportions for the normal strength concrete (NSC) and steel fiber 

reinforced concrete (SFRC) are presented in Table (4).  
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Table 2. Properties and Description of Materials 

Material Descriptions 

Cement Ordinary Portland Cement (Type I). 

Sand Natural sand with maximum size of (4.75mm). 

Gravel Crushed gravel with maximum size of (12mm). 

Reinforcing Bars (ϕ10 mm) deformed steel bars having yield strength fy= 410 MPa. 

Water Clean tap water. 

 

Table 3. Properties and Description of Steel Fibers 

Steel Fiber Type Properties a 

Hocked-end 
Mild carbon steel fibers with average length of (50mm), nominal diameter of 

(0.5mm), aspect ratio of (100) and yield strength of (1130MPa). 

Straight 
Smooth mild carbon steel fibers with average length of (25mm), nominal 

diameter of (0.5mm), aspect ratio of (50) and yield strength of (1650MPa). 

Crimped 
Mild carbon steel fibers with average length of (25mm), nominal diameter of 

(0.5mm), aspect ratio of (50) and yield strength of (1130MPa). 

           aFrom Manufacturers (N. V. Bekaert Corporation for steel wire fibers, Belgium). 

 

Table 4. Proportions of Concrete Mixes 

Parameter 
Concrete Type 

NSC SFRC 

Water/cement ratio 0.5 0.5 

Water (kg/m3) 180 180 

Cement (kg/m3) 350 350 

Fine Aggregate (kg/m3) 800 800 

Coarse Aggregate (kg/m3) 1000 1000 

Steel Fiber volume (%) - 1.0 

 

3.2 Test Measurements and Instrumentation 

Hydraulic universal testing machine (300ton Capacity) is used to test the slab specimens as well as control 

specimens. Central deflection has been measured by means of (0.01mm) accuracy dial gauge (ELE type) and 

(30mm) capacity. The dial gauges were placed underneath the bottom face of each span at mid. 

 

3.3 Test Results of Control Specimens 

Test results of mechanical properties of specimens are summarized and presented in Table (5). Compressive 

strength for cylinders was carried out on NSC and SFRC in accordance with ASTM-C39-96, while, the tensile 

strength (Split cylinder) test were carried out in accordance with ASTM-C496-75.  

Table 5. Mechanical Properties of Concrete 

Property  

(MPa) 

Concrete Type 

NSC 
SFRC 

Hocked-End Straight Crimped 

(f'c) 22 24 22.5 24 

( fct) 4.7 7.5 6.2 7.25 

 

3.4. Test Procedure 

All slab specimens were tested, at ages of (28) days, using universal testing machine with monotonic loading to 

ultimate states as shown in Figure (3).  
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Figure 3. Set up of Slab Panel Specimens 

The tested slabs were simply supported over effective spans of (950mm) and loaded with a single-point load 

at mid of effective spans. The slab specimens were placed on the testing machine and adjusted so that the 

centerline, supports, point loads and dial gauges were in their correct or best locations. Loading was applied slowly 

in successive increments, at the end of each load increment, observations and measurements were recorded for the 

mid-span deflections and crack development and propagation on the slab surface. When the samples reached 

advanced stage of loading, smaller increments were applied until failure, where the load indicator stopped 

recording for any more and the deflections increased very fast without any increase in applied load. The 

developments of cracks (crack pattern) were marked with a pencil at each load increment. 

 

4. Finite Element Analysis 

To study the performance of tested slab panels, ANSYS (Version-15) finite element software is used to analyze 

two selected, (SP-1) and (SP-2). A nonlinear, eight nodes brick element, (SOLID-65), with three translations DOF 

at each node is used to model the concrete. For FEM modeling of the steel reinforcement, two nodes, discrete axial 

element, (LINK-180), with three translations DOF at each node is used.  To avoid stress concentration, (10mm) 

thick steel plate is added at the load locations and modeled by using a nonlinear, eight nodes brick element, 

(SOLID-45), with three translations DOF (per node) in x, y and z-directions. 

 

4.1. Properties of Materials 

4.1.1. Concretes 

For finite element modeling, concrete constitutive stress-strain curve in compression can be described by 

isotropically, multi-linear stress-strain relationship. Constitutive model (surface of failure) in ANSYS can be 

specifying only by two constants (tensile strength (ft) and compressive strength of concrete (f'c) as given by 

criterion of  Willam, K., and Warnke, E. . In this paper, transfer coefficients of shear for opened cracks (�o) and 

closed cracks (�c) are assumed to be (0.2) and (0.25) respectively. These values are selected to avoid convergence 

problems during iteration. The stress-strain curve for concrete in tension is assumed to be linear-elastic up to the 

maximum tensile strength. Smeared crack approach is used to model the concrete cracking. Poisson’s ratio, for 

finite element modeling of concrete is assumed to be (0.2). In order to modeling the finite element of concrete, the 

adopted mechanical properties is reported and listed in Table (6). 

Table 6. Mechanical Properties of the Adopted Materials in FEA 

Concrete 

 Type 

f'c a 

(MPa) 

ft b 

(MPa) 

Ec  

(MPa) 
Note 

NSC 22 4.7 22045b Ec =  

SFRC 24 7.5 23825c ESFRC= Ef Vf +(1-Vf)Em 
                                 aExperimental Work    b ACI-318M08 Code            c Rule of Mixture 

4.1.2. Steel Plates and Reinforcement  

Young’s modulus of (Es=200GPa) and Poisson’s ratio of (�=0.3) are utilized in FEM for steel plates and 

reinforcement. While, yield stress for the steel plates and reinforcement used in FEM follow the design material 

properties used for the experimental investigation. The steel reinforcement for the finite element models is assumed 

to be elastic-perfectly plastic material and identical in tension and compression. Von-Mises failure criterion is 

adopted for modeling. The steel plate under the applied load is assumed to be behaves as linearly-elastic materials.  

 

4.2. Finite Element Modeling and Meshing 

The dimensions of the slab panel specimens are shown in Figure (1). Due to simple geometry of the tested 

specimens, entire (full) slab panel is used for modeling, Figure (4). The origin point of coordinates lie in one 

corners and only one loading plate per span are provided at the top of slab panel (under load) to prevent load 

'4700 cf

Left 

Support 

Mid Support Right Support 
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concentration.  In the beginning, the slab panel and steel plates are modeled as lines, then areas, and finally as 

volumes (solid elements). After creating of volumes, meshing of the finite element model is needed. In this stage, 

the FEM model is divided into a number of small elements. When the model problem is solving, the stresses and 

deformations (strains) are estimated at the Gaussian points of these small elements. Best results can be achieved 

by dived (meshing) the model into square (or rectangular) elements. Before distribution (spreading) of the applied 

load by using steel plates (in the early attempt), and due to load concentration on concrete elements, concrete 

crushing started to create in elements which located directly under load. Thereafter, the concrete elements adjacent 

to the applied load were crushed within few steps of loading. Finally, large displacement (deflection) take place, 

the solution in not converges and as a result the FEM model failed prematurely. To prevent this FEM failure 

phenomenon, steel plates are used and inserted under the applied load. 

 
Figure 4. Modeling and Meshing of the Slab Specimens 

 

4.3. Load Application and Boundary Conditions 

To ensure that modeled slab panels behave as an experimental work, boundary conditions (displacement constrains) 

at supports should be satisfied (need to be applied at the supports locations). Thereafter, one of the supports is 

modeled as a hinge and the others two supports were modeled as a roller. Since the external load was applied on 

a steel plate and as a basic of FEM, the plate load must be transformed to adjacent nodes; therefore the applied 

load is represented by an equivalent nodal force on the top nodes of plate. The applied load is divided into load 

steps and done incrementally up to failure (based on Newton-Raphson technique). At a certain stages in the 

analysis, load step size is varied from large (at points of linearity in the response) to small (when cracking and 

steel yielding occurred). The failure is assumed to be occurred when the solution, for a minimum load is diverging 

and the models have a large deflection (rigid body motion). 

 
Figure 5. Loading and Boundary Conditions 

 

5. Results and discussion 

5.1. Experimental work  

During the experimental work, cracked and ultimate loads, load versus deflection at mid-span were recorded. 

Photographs for the tested specimens are taken to show the crack pattern and some other details. The recorded 

data, general behavior and test observations are reported as well as recognizing the effects of various parameters 

on the flexural behavior. 

5.1.1. General Behavior 

Photographs of the tested slab specimens are shown in Figure (6) and test results are given in Table (7). All 

specimens were designed to fail in flexure with tensile mode, which was characterized by the formation of cracks 

in the tensile stress zones, then yielding of steel bars and shifting the neutral axis upwards. At early stages of 

loading, several cracks initiated in the tension zones at the maximum moment regions. With further loading, these 

cracks extended and became wider. At about (60%) of the ultimate load, more cracks developed at the bottom of 
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the slab and proceeded towards the main cracks and often joined together. As expected, the main cracks for all 

tested specimens commenced at the middle zone and all slab specimens exhibited ductile flexural failure.  

                   Table 7. Mode of Failure, Ultimate and Cracking Loads 

Slab 

Designation  

Load (kN) 

Ru

u

)P(

P a 

Rcr

cr

)P(

P
 a Mode of 

Failure Pu Pcr 

SP-1 31 8 1.0 1.0 Tensile Failure 

SP-2 43 10 1.39 1.25 = 

SP-3 38 10 1.23 1.25 = 

SP-4 49 13 1.58 1.625 = 

                               a (Pu)R  and  (Pcr)R  are Reference Beam Ultimate and Cracking Loads. 

 
Figure 6. Crack Patterns for Tested Specimens (Bottom Face) 

5.1.2. Ultimate Strength (Pu) 

The recorded ultimate loads of the tested specimens are presented in Table (7). For tested specimens (SP-2, SP-3 

and SP-4), which had SFRC instead of tension reinforcement in negative moment at medium support, the increase 

in strength were (39%, 23% and 58%). This enhancement is due to the high aspect ratio, fiber length and adequate 

volume fraction of the used fibers. The randomly oriented steel fibers have the ability to arrest cracking and restrain 

propagation and these caused an increase in the load carrying capacity beyond the first cracking. Generally, it can 

be seen that the tested specimens strengthened with SFRC exhibit larger ultimate strength than reference specimens 

which fully made with NSC. With increasing the steel fiber volume fraction, the traditional negative steel 

reinforcement (steel bars) can be replaced (partially or totally) by using SFRC in manufacturing of thin slabs 

panels. 

5.1.3. First Cracking Loading (Pcr) 

The first cracking loadings are presented in Table (7), and crack patterns for tested specimens are shown in 

photograph of Figure (6). For all tested specimens, comparison will be made with first cracking load for the 

reference beams (Pcr)R. For slab specimen containing SFRC, (SP-2, SP-3 and SP-4), the addition of steel fibers 

increased the cracking load that induces first crack by (25%, 25% and 62.5%) comparing with the average first 

cracking load of reference slab (SP-1). This is due to the ability of steel fibers in arresting crack growth and 

restraining cracking widening. As expected, slab specimens made with SFRC exhibit larger cracking loads 

comparing with the reference one.  

5.1.4. Load-Deflection Behavior 

Load-deflection curves of the tested slabs at mid-span at all stages of loading up to failure are constructed and 

presented in Figure (7). At the beginning, all curves were identical and the tested specimen exhibited linear 

behavior and the initial change of slope of the load-deflection curves occurred at (10kN), which indicated the first 

crack loads. Beyond the first crack loading, the slabs behaved in a certain manner.  

 
Figure 7. Mid-Span Load-Deflection Curves (Left and Right Spans) 
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Generally, the load- deflection behavior (for left and right spans) is approximately same, which indicated that 

the spans behave in same manner.  The increase of the ultimate load of slab (SP-2) was observed in comparing 

with (SP-1). This enhancement is due to presence of SFRC and the ability of steel fiber to arrest cracking and 

restrain propagation and these caused an increase in both, ductility and the load carrying capacity beyond the first 

cracking. Load-deflection curve for slab (SP-3) exhibits smooth increase in both applied loads and deflections. 

Presence of SFRC in caused an increase in the load carrying capacity beyond the first cracking and this was 

reflected on the corresponding deflections. Behavior of slab (SP-4) exhibited greater loads and deflections in 

comparison with the other slabs. This panel had the greatest stiffness due to presence of high efficient fiber 

(crimped fibers) in SFRC. 

5.1.5. Steel Fiber Type Effect 

As shown in Table (7), when the SFRC which content hocked end fibers are use, the ultimate strength and cracking 

load increased (39%) and (25%) respectively. When the steel fiber changed to straight type, the ultimate strength 

and cracking load increased (23%) and (25%) respectively. While, when the crimped type employed, the ultimate 

strength and cracking load increased (58%) and (62.5%) respectively. This may be due to geometrical shape of 

crimped fiber which makes it extended through large surface area. 

 

5.2. Finite Element Analysis  

5.2.1. Load-Deflection Curves 

Vertical displacements (Deflection in y-direction) are measured, at mid-span, at the center of the bottom face of 

tested slabs. Deflected shape of finite element model due to the vertical load is shown in Figure (8). The load 

versus deflection curves obtained from the FEM analysis together with the experimental tests are constructed and 

compared in Figure (9)., for tested slab specimens (SP-1) and (SP-4). In general, it can be noted from the load-

deflection curves that the finite element analyses are agree well with the experimental results throughout the entire 

range of behavior. Comparing with the experimental results, all the finite element models show relatively large 

capacity at the ultimate stage. 

 
Figure 8. Deflected Shape of Slab Panel Model 

 
Figure 9. Comparison between Experimental and Finite Element Analysis 
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5.2.2. Ultimate Loads 

Table (8) shows the comparison between the ultimate loads of the experimental (tested) beams, (Pu)EXP., and the 

final loads  from  the  finite  element  models, (Pu)FEM. The final loads for the finite element models are the last 

applied load steps before the solution starts to diverge due to numerous cracks and large deflections. As shown in 

Table (8), the ultimate loads obtained from numerical model agree well with the corresponding values of the 

experimental (tested) slab panels. 

Table 8. Ultimate Loads of the Experimental Tests and Finite Element Models 

Slab Model  
Ultimate Load (kN) 

.EXPu

FEMu

)P(

)P(  Mode of 

Failure (Pu)EXP (Pu)FEM 

SP-1 31 33 1.06 Tensile Failure 

SP-4 49 55 1.12 = 

5.2.3. Crack Patterns 

The crack pattern is recorded, after first crack, at each load step. Cracks pattern come by the FEM analysis and the 

failure modes of the tested slabs are agree well, as shown in Figure (10). Cracks pattern appearances reflect the 

failure mode of tested specimens. The model of FEM, accurately, predicts that the tested slabs are failing in 

bending and predicts that the vertical and cracks formed in the mid span regions. The cracks are concentrated 

under load region and mid support. 

 
Figure 10. Cracks pattern From FEM analysis 

 

5. Conclusions 

For the tested slab panel specimen which contains SFRC instead of traditional negative steel reinforcement (steel 

bars), the increases in ultimate strength were (23% - 58%). Addition of steel fibers increased the cracking load by 

about (25%- 62.5%). Employ the crimped steel fibers, led to increase the ultimate strength and cracking load 

greater than the other types. This may be due to geometrical shape of crimped fiber which makes it extended 

through large surface area. The results obtained from the finite element and experimental analyses are compared 

to each other. It is seen from the results that the finite element failure behavior indicates a good agreement with 

the experimental failure behavior. The paper concludes that the traditional negative steel reinforcement (steel bars) 

can be replaced (partially or totally) by using the adopted technique and the contribution of SFRC in manufacturing 

of thin slabs panels was enhanced.  
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