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Abstract 

Information surges and advances in machine learning tools have enable the collection and storage of large amounts 

of data. These data are highly dimensional.  Individuals are deeply concerned about the consequences of sharing 

and publishing these data as it may contain their personal information and may compromise their privacy. 

Anonymization techniques have been used widely to protect sensitive information in published datasets. However, 

the anonymization of high dimensional data while balancing between privacy and utility is a challenge. In this 

paper we use feature selection with information gain and ranking to demonstrate that the challenge of high 

dimensionality in data can be addressed by anonymizing attributes with more irrelevant features. We conduct 

experiments with real life datasets and build classifiers with the anonymized datasets. Our results show that by 

combining feature selection with slicing and reducing the amount of data distortion for features with high relevance 

in a dataset, the utility of anonymized dataset can be enhanced. 
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1. Introduction 
Advances in information technology have enabled the collection and storage of large amounts of data. These data 

has high dimensionality and data may be shared via publications for research and scientific purposes (Wagner & 

Eckhoff, 2018).  Privacy is one of the major concerns, when sharing personal data, because without appropriate 

protection, personal information is vulnerable to misuse (Fung, Wang, & Yu, 2005). Micro-data contain  different 

types of information which include;  personally identifying information (PII) such as national identification 

number (ID), social security number (SSN) personal identification number (PIN) etc,  quasi identifying 

information (QID) such as sex, date of birth, postal address, marital status etc and  sensitive information such as 

disease, financial information etc (Samarati & Sweeney, 1998).  To secure privacy in complex research 

environments, a broad spectrum of measures have been /must be implemented, including legal, contractual as well 

as technical measures (Fabian Prasser & Kohlmayer, 2015) and  (W. Li et al., 2018).  Privacy enhancing 

technologies (PET) together with data anonymization techniques are some of the technical measures implemented 

to enhance the privacy of data. In this paper we consider research efforts aimed at anonymizing quasi identifiers 

and sensitive attributes with the intention of ensuring that PII, QID and sensitive attributes are protected. We 

introduce feature based data anonymization and show that relevant feature selection can be used to reduce the 

amount of data distortion in a given dataset while preserving privacy and quality. The rest of this paper is organized 

as follows; section 2 presents the literature review while section 3 presents our approach. In section 4 we conduct 

experiments and discuss the results of the experiments in section 5 and finally, section 6 concludes the paper. 

 

2. Related works 
To protect the privacy of individuals in data various privacy enhancing technologies have been proposed (PET) 

(Abdou Hussien, Darwish, Hefny, & Hussien, 2015) 

A study by (Samarati & Sweeney, 1998) introduced the k- anonymity model. K-anonymity ensures that there 

are at least k  people with the same quasi-identifier such that the risk of identity disclosure is reduced to 

1/ (Sweeney, 2002b). A table satisfies k-anonymity if every record in the table is indistinguishable from at least 

k−1 other records with respect to every set of quasi-identifier attributes; such a table is called a k-anonymous table. 

The enforcement of k-anonymity ensures that individuals cannot be uniquely identified by linking attack 

(Machanavajjhala, Kifer, Gehrke, & Venkitasubramaniam, 2007). Machanavajjhala et al. (2007) further observed 

that due to lack of diversity in the sensitive attribute, k-anonymity can create groups that leak sensitive information 

and hence privacy breach.  

To overcome some of the shortcomings of the k-anonymity model, (Machanavajjhala et al., 2007) proposed 

the l-diversity model.  The ℓ-Diversity Principle states that “An equivalence class is said to have L-diversity if 
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there are at least L “well-represented” values for the sensitive attribute. A table is said to have L-diversity if every 

equivalence class of the table has L-diversity” (Machanavajjhala et al., 2007). The degree of privacy protection is 

determined by the number of distinct sensitive values in each QI group. According to (Xiao & Tao, 2006b) the ℓ 

-diversity model guarantees stronger privacy than k-anonymity model.  The l-diversity model requires that the 

values of attributes in a group have enough degree of diversity in the sensitive attribute and this effectively prevents 

the elimination attack. However l- diversity has some defects in handling numerical sensitive attributes as It’s 

designed for static data with one sensitive attribute (Han, Yu, & Yu, 2008).  

The work of (Ninghui, Tiancheng, & Venkatasubramanian, 2007)presented the t-closeness principle. The t-

closeness principle requires that the distribution of a sensitive attribute in any equivalence class is close to the 

distribution of the attribute in the overall table as much as is possible. Therefore  the distance between the two 

distributions should be no more than a threshold t (Ninghui et al., 2007). T- closeness requires that the sampling 

distribution of the confidential attribute within each of the k-anonymous groups be similar to the sampling 

distribution over the whole data set (Soria-comas & Domingo-ferrer, 2013).  

Enforcing t-closeness destroys the correlation between quasi identifier attributes and sensitive attributes 

(Ahmed Ali Mubark, Emad Elabd, 2016).   

(Dwork, 2006) introduced Differential Privacy (DP). DP is a mathematical framework that is widely accepted 

for protecting data privacy and captures ones increased risk to privacy by participating in a database. In DP, a 

randomized function A randomized function K gives  -differential privacy if for all datasets D1 and D2 differing 

on at most one element, and all  ! "#$%&'()), 

 

Pr[)(*1+ ,  ] - exp(.+ /Pr'[)(*2+ ,  ''''''''''''''''''''(1+ 
 

The k-anonymity, ℓ-diversity and t-closeness are also commonly referred to as Syntactic privacy models and 

mainly utilize anonymization methods to enhance privacy. Syntactic models address the trade-off between privacy 

and utility by requiring the anonymized data set to follow a specific pattern that is known to limit the risk of 

disclosure privacy (Fabian Prasser & Kohlmayer, 2015). 

 

2.1 Data Anonymization 

In Cox (1980) and Dalenius (1986) Anonymization refers to the PPDP approach that seeks to hide the sensitive 

data and/or the identity of record owners, assuming that sensitive data must be retained for other purposes such as 

scientific research, data analysis e.t.c. Anonymous technology is a safe and effective method of privacy 

preservation. A study by (Samarati & Sweeney, 1998) conducted the pioneering studies on k-anonymity. This 

study utilized the concept of data anonymization. data anonymization approaches assume that data publisher has 

a table T that includes four subsets of attributes namely: 1) Personally Identifying Information (PII) which  contains 

information that explicitly identifies a record owner and are removed from the released dataset for example name, 

social security number, passport number and cell-phone number;  2) quasi-identifiers (QID) containing information 

that could potentially identify a record owner and typically transformed in the released dataset such as date-of-

birth, gender and ZIP code. 3) Sensitive attributes (S) containing sensitive information about data owner such as 

financial  or medical information and/which should be protected, and 4) non-sensitive attributes, which refers to 

any information that does not fall into the previous three categories and can be published as it is,  when needed 

e.g. one’s favorite food (Canbay & Sever, 2015). 

Anonymity as method of privacy protection has been utilized to effectively balance the relationship between 

the efficiency and the security of the data. The basic idea of anonymization is that from a transformed table, the 

attacker cannot easily analyze the sensitive attribute of a tuple, and therefore cannot identify a specific individual’s 

sensitive information. This effectively addresses the issue of re-identification in published datasets Wang et.al 

(2016). 

Anonymity principles focus on a universal approach that exerts the same amount of privacy preservation for 

all individuals. These principles do not take the personalized privacy preservation requirement into consideration 

(Liu, Xie, & Wang, 2015). Data sets are anonymized to satisfy certain privacy requirements such as k-anonymity, 

or l-diversitybefore they are shared with data users. Data anonymization  preserves  privacy by eliminating  the 

link between people and sensitive information and therefore preventing their identifiability from the dataset (Lee, 

Kim, Kim, & Chung, 2017) .  

The main challenge with any anonymization process is to balance between the utility and the privacy of the 

data. Hiding data reduces the utility of the data, while disclosing the data reduces privacy. During the 

anonymization process there is a tradeoff between privacy and information loss (Bhaladhare & Jinwala, 2012). 

Different anonymization levels leads to different amounts of information loss (Gal, Tucker, Gangopadhyay, & 

Chen, 2014). Various methods have been used to implement data anonymization processes.  

2.1.1 Generalization 

Generalization is a widely used anonymization approach, which replaces quasi-identifier values with values that 



Journal of Information Engineering and Applications                                                                                                                       www.iiste.org 

ISSN 2224-5782 (print) ISSN 2225-0506 (online) DOI: 10.7176/JIEA 

Vol.9, No.2, 2019 

 

14 

are less- specific but semantically consistent. As a result, more records will have the same set of quasi-identifier 

values. An equivalence class of an anonymized table is defined to be a set of records that have the same values for 

the quasi-identifiers (Sunitha, Venkata Subba Reddy, & Vijayakumar, 2012). The number of equivalence classes 

 in anonymized data set is determined by the specified value of   in a - anonymity model (Chiu & Tsai, 2007). 

This is given by the following formulae; 

0 = 3 45 ''''''''''''''''''''''''''''''''''''' [2] 

Where given    is the equivalence classes,  is the number of records in a table and  is the value of   

specified in  - anonymity. generalization preserves privacy, however a  considerable amount of information in 

the micro-data is lost,  which severely compromises the accuracy of data analysis (Xiao & Tao, 2006b). 

Generalization does not work well on high dimensional data  due to the curse of dimensionality (Mohanapriya, 

2013). 

2.2.2 Suppression 

Suppression means to remove data from a table so that the data is not released. Sensitive information and all  other 

information that may allow inference to sensitive information is not released (Sweeney, 2002). Suppression can 

be applied at the tuple level, where, a tuple can be suppressed only in its entirety. Suppression is used to moderate 

the generalization process when a limited number of outliers would force a great amount of generalization.

2.2.3 Anatomy 

Anatomy was proposed to overcome the defects of generalization. According to  (Xiao & Tao, 2006a) Anatomy 

releases all the quasi-identifier and sensitive values directly in two separate tables. This is combined with a 

grouping mechanism; so as to captures a large amount of correlation in the micro-data and to protect privacy. 

Anatomy releases a quasi-identifying table (QIT) and a sensitive table (ST). The construction of the table is done 

by partitioning the tuples of the micro-data into several QI groups based on a certain strategy. The grouping is 

done for each tuple in the table using the  QIT table   (Xiao & Tao, 2006a). 

2.2.4 Data Swapping 

This technique transforms a database by exchanging values of sensitive variables among individual records. The 

swapping/ exchange of records is done  in such a way so as to maintain lower-order frequency counts or marginals 

(Fienberg & Mcintyre, 2005).    

2.2.5 Perturbation 

In (Smith, 2006)perturbation is the most natural way to anonymize numerical data. For an attribute whose value 

is  the data publisher, publishes /6 =  + !  where ! is a random value drawn from a bias free distribution. The 

larger the perturbation, the more blurred the value and thus the more protected the data. Perturbation works by 

changing the values of data items in a given dataset (Smith, 2006). 

2.2.6 Slicing 

According to (T. Li, Li, Zhang, & Molloy, 2012) slicing partitions a data set  horizontally and  vertically. 

Horizontal partitioning is done by grouping tuples into buckets. Values in each column are randomly permutated 

(or sorted) within each bucket, so as to break the linking between different columns. Vertical partitioning is done 

by grouping attributes into columns based on the correlations between them. Each column contains a subset of 

attributes that are highly correlated. The basic idea with slicing is to preserve the association within each column 

and to break the association across columns and therefore reduce the dimensionality of the data. By grouping 

highly correlated attributes together Slicing preserves utility, and preserves the correlations between such attributes. 

Slicing protects privacy as it breaks the associations between the uncorrelated attributes, that are infrequent and 

thus identifying (T. Li et al., 2012).  

 

2.3 Feature selection 

A study by (H. Liu, 1998) defined feature selection as the study of algorithms selecting an optimal subset of the 

input feature set. Optimality is normally dependent on the evaluation criteria or the application’s needs. (Hall, 

2000) describe the task of feature selection as a search problem, with each state in the search space specifying a 

subset of the possible features. According to (Qinbao Song, Jingjie Ni, & Guangtao Wang, 2013) feature selection 

involves identifying a subset of the most useful features that produces compatible results as the original entire set 

of features.  The work of (Sharma & Bala, 2014) assert that the central assumption when using a feature extraction 

technique is that data contains many redundant or irrelevant features.  

Redundant features not only affect the performance of classification algorithm but also require an additional 

computational cost (Miao & Niu, 2016).  Thus, feature subset selection should be able to identify and remove as 

much of the irrelevant and redundant information as much as possible. Feature ranking algorithms assign a weight 

to each feature of the data set and rank the relevance of features according to their weights (Hall, 2000). 

2.3.1 Information Gain 

Information gain has been used as a measure of feature relevancy for filter based feature selection and evaluates 
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the worth of an attribute by measuring the information gain with respect to a class (Shaltout, El-Hefnawi, Rafea, 

Moustafa, & El-Hefnawi, 2014). Given two attributes X and Y that belong to dataset D, the Information Gain or 

mutual information between attributes can be calculated using conditional entropy as; 

IG[X; Y] = "H(X) # H $%&"' + "H(Y) # "H $&%'                               [3] 

Where IG"[X; Y] measures the degree of uncertainty about  *  due to the knowledge of y. IG [X; Y]  also 

measures the two way association between the attributes   andddd . 

 

2.4 Data Utility Vs Privacy 

In (Dwork & Roth, 2013), perfect privacy can be achieved by publishing nothing at all but this has no utility.  

Perfect utility can be achieved by publishing data as received but this has no privacy at all. In  (Mivule & Turner, 

2013), the more confidential data is , the more likely that the privatized data will decline in utility and therefore 

may  become useless.  

(Doka et al., 2015) argue that  utility may be achieved at the expense of runtime since the anonymization 

process is a one-time process. Privacy preservation requires that data is protected with minimum impact on its 

accuracy and utility (Basso, Matsunaga, Moraes, & Antunes, 2016). (Basso et al., 2016) further present that 

excessive data anonymization can make the published data less useful and so it’s important to measure the utility 

of anonymized data. 

2.4.1 Information Loss 

According to (Ghinita, Karras, Kalnis, & Mamoulis, 2007) all privacy-preserving transformations cause a certain 

degree of  information loss. This loss must be minimized in order to maintain high utility in the dataset and thus, 

the ability to extract meaningful information from the published data.  

We use the term information loss to refer to loss in data accuracy caused by anonymization. The main 

objective of the anonymization techniques is privacy protection. However, it is important that the anonymized 

dataset should be as useful as possible. The utility of data is measured by the quality of the anonymized dataset 

(Lee et al., 2017). 

 

2.5 Information Loss Metrics 

A study by (Garcia-Alfaro et al., 2015) presents that several metrics have been proposed to assess the level of 

anonymity in a published dataset. These metrics differ in a number of ways, but they all express the risk of 

disclosing personal-identifiable information when releasing a given dataset (Garcia-Alfaro et al., 2015).  

A survey by (Wagner & Eckhoff, 2018) explains that many authors have proposed various metrics  to measure 

the quality of data after the anonymization process. We discuss some of these metrics. 

2.5.1 Generalization Height 

Generalization height by (Sweeney, 2002a) is one of the earliest utility measures. Generalization height refers to 

the total number of generalization steps that have been performed on the original data set to anonymize it. A 

generalization step represents a loss of information, so the use as few generalization steps as possible maximize 

on utility. When the height is 0 (zero), that means no distortion (Huang, Liu, Han, & Yang, 2014). The distortion 

value of a whole table is the sum of all generalized values in a generalized table and is given as; 

!"#$%&$"%' =  ( )"*+,                                [4] 

Where hij is the height of the value a generalized QI of qiof the record rj.  

2.5.2 Classification Metric 

The work of (Iyengar, 2002) proposed the classification metric (CM), which was defined as the sum of the 

individual penalties for each row in the table normalized by the total number of rows N (see equation below); 

 ! = "
#$%%"&'()"

*+,$%-."/&'(
"&0

1
""""""""""""""""""""""[5] 

A study by (Kifer & Gehrke, 2006) explains that classification metric is appropriate when one wants to train a 

classifier over the anonymized data. 

2.5.3 Suppression Ratio 

Another metric used is the suppression ratio, which is the proportion of suppressed records to the total records 

presented by (Han, 2013) and is defined as; 

Suppression"Ratio = "
23
2

                                         [6] 

Where ns  is the number of suppressed tuples/records and n is the total number of records. A lower suppression 

ratio implies a higher quality of data. When the suppression ratio is zero, the data quality is optimal. 

2.5.4 Performance of Classifiers 

A classifiermust be evaluatedin-order to determine its performance. ROC curves determine the area under curve 

(commonly referred to as AUC) is the most popular approach used to determine the performance of a classifier 

(Fawcett, 2004). The performance of different classification models can be compared using a performance metric 
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such as accuracy (Tan, Steinbach, & Kumar, 2006), which can be defined as;  

Accuracy = "
Number of correct predictions

Total number of predictions
=  

f11 + f00
f11 +  f10 + f01 + f00

              [7] 

 

3 PROPOSED APPROACH 
In this section, we present a feature based anonymization model with information gain and slicing. The model first 

categorizes the different attributes in a dataset into quasi identifiers and sensitive attributes. Secondly it performs 

a feature selection by establishing the information gain with ranking for the different quasi identifiers. The quasi 

identifiers are ranked based on their information gain score. Third we slice the quasi identifier attributes into low 

information gain and high information using a user defined threshold. The low information gain quasi identifiers 

are anonymized via generalization and suppression and finally we evaluate the model. 

 

3.1 The Model 

The proposed model provides an outline of the various steps that one should follow in order to anonymize data 

while maintaining data quality and at the same time preserving privacy.  The raw dataset is preprocessed.  

Preprocessing involves removing tuples with missing values. The next step involves categorizing the attributes in 

the dataset into the different categories as described in section 2.1. These categories are; the personally identifying 

information (PII), the quasi identifiers (QIDs) and the sensitive attributes (SAs).  The model then establishes the 

information gain for the different QIDs and ranks the attributes. A feature with a high level of redundancy is ranked 

low. The model performs horizontal slicing as described in section 2.2.6.  Slicing yields two slices namely the high 

information gain attributes and the low information gain attributes. The model anonymizes the low information 

gain attributes. Finally, the model tests the anonymized dataset for quality.  To implement the model experiments 

were conducted.  An anonymization tool built on java platform was used to conduct the experiments. The tool 

provided a graphical user interface for the entry of the data and a display for the anonymized data.  Figure 1 

presents our model; 
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Figure 1: Feature Based Data Anonymization Model with Information Gain 

The model utilizes feature selection with ranking and the slicing technique.  Feature selection is useful in 

identifying the subset of features that are most useful. The general intuition when using a feature extraction 

technique is that data contains many redundant features.  Redundant features affect the performance of 

classification algorithm and also require an additional computational cost. Slicing was used to address the 

challenge of high dimensionality in data.  

 

4 Experiment 
We adopted the adult dataset (Dheeru, Dua , Karra Taniskidou, 2017) as it is a real-world dataset and has  already 

been utilized for benchmarking previous work on k-anonymity. Data cleaning was done by removing tuples with 

missing values. The dataset contains 30162 tuples after cleaning. Ten attributes were used for the experiments. 

The selected attributes were; Age, Work class, Education, Marital status, Occupation, Relationship, Race, Sex, 

Hours worked and Salary.  The Dataset is conceptually organized as a table of rows (or records) and columns (or 

fields). Each row is termed a tuple. Tuples within a table are not necessarily unique. Each column is called an 

attribute and denotes a set of possible values within its domain. We begin by categorizing our attributes into quasi 

identifying and sensitive attribute. Occupation was used as the sensitive attribute while the other nine attributes 
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were used as the quasi identifier attributes. All the experiments were conducted on a java platform. We then 

establish the information gain for the different quasi identifiers with ranking. We vertically slice the quasi identifier 

attributes based on the amount of information gain. The quasi identifiers with low information gain are generalized 

using the approach similar to that of  (Fabian Prasser & Kohlmayer, 2015) and  (F. Prasser, Eicher, Bild, Spengler, 

& Kuhn, 2017). The purpose of this is to reduce the overall distortion of data when the data analysis task is 

unknown. We utilize generalization and suppression for the anonymization process. We use the l-diversity model 

for the sensitive attribute occupation.  

 

5 Results and Discussions 

Our first experiment aimed at establishing the information gain for the different quasi identifier attributes (see 

Table 1). Information Gain (IG) was used as the feature selection method since it is a filter based technique and 

may scale well with highly dimensional data.  The attribute occupation was not used in the determination of 

information gain as it’s a sensitive attribute and was therefore not generalized. We used a threshold of 0.02 for the 

information gain. We categorized features scoring less than 0.02 (work class, age, race, education and native 

country) as low information gain quasi identifiers while those that scored greater than 0.02 (salary, marital status 

and relationship) were categorized as high information gain quasi identifiers. This formed the basis for slicing our 

data. We sliced our data horizontally. The results for the sliced attributes are presented in table 2. 

Table 1: Information Gain Score 

Attribute Score with Ranking 

Relationship 0.394 

 Marital Status 0.167 

Salary 0.037 

Work Class 0.017 

Age 0.01 

Race 0.01 

Education 0.006 

Native Country 0.004 

 

Table 2: The sliced QID Table 

High Information Gain Attribute Low Information Gain Attribute 

Relationship Work Class 

 Marital Status Age 

Salary Race 

 Education 

 Native Country 

The next step was to generalize the QIDs with low information gain. The purpose of this was to reduce the 

amount of data distortion that occurs during the anonymization process for attributes whose features were deemed 

to have a high level of relevance. During the anonymization process we utilized generalization and suppression. 

In generalization we used global transformation and a suppression rate of 1.5% for all the experiments. We used 

generalization hierarchies and classifier performance to measure the quality of the anonymized dataset. Intuitively 

a high amount of generalization implies a high amount of data distortion occurred.   

We build three classifiers namely, Logistic Regression, Naïve bayes and Random forest using the anonymized 

dataset with k=5 and l=3 without Information Gain and k=5 and l=3 with Information Gain with our target variable 

as salary and presents the results in table 3 and 4.  

Table 3 Classifier Performance when k=5 and l=3 without Information Gain 

Classifier Input Data Output/ Anonymized Data 

Naïve Bayes % % 

≤ 50 86.15158 85.15485 

≥ 50 86.15159 85.15491 

   
Logistic Regression   

≤ 50 88.4457 86.76108 

≥ 50 88.44572 86.76114 

   
Random Forest   

≤ 50 86.10684 85.21981 

≥ 50 86.10686 85.21982 

Table 3 presents a summary of the performance of the three classifiers built on the input data and on the 
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anonymized dataset when the value of k=5 and the value of  l = 3 in the l-diversity model with the target variable 

being salary.  

Table 4: Classifier Performance when k=5 and l = 3 with Feature Selection 

Classifier Input Data output/ Anonymized Data 

Naïve Bayes % % 

≤ 50 86.1553 85.81782 

≥ 50 86.15531 85.81802 

   
Logistic Regression   

≤ 50 88.44541 87.73816 

≥ 50 88.44543 87.73837 

   
Random Forest   

≤ 50 86.35558 84.76587 

≥ 50 86.35559 84.76892 

Table 4 presents a summary of the performance of the three classifiers built on the input data and on the 

anonymized dataset when the value of k=5 and the value of  l = 3 in the l-diversity model with information gain.    

With the Naïve bayes classifier when salary was ≤ 50, when k=5 and l=3 the classification accuracy for the 

output data was 85.15485% while that of k=5 and l=3 for feature selection with information gain was 85.81782%. 

We noted that the performance of the classifier improved by 0.66297%. For salary ≥ 50, when k=5 and l=3 the 

classification accuracy for the output data was 85.15491% while that of k=5 and l=3 using feature selection with 

information gain and slicing method was 85.81802%. We noted that the performance of the classifier improved 

by 0.66311%.  

With the Logistic regression classifier when salary was ≤ 50, when k=5 and l=3 the classification accuracy 

for the output data was 86.76108% while that of k=5 and l=3 for feature selection with information gain was 

87.73816%. We noted that the performance of the classifier improved by 0.97708%. For salary ≥ 50, when k=5 

and l=3 the classification accuracy for the output data was 86.76114% while that of k=5 and l=3 using feature 

selection with information gain and slicing method was 87.73837%. We noted that the performance of the classifier 

improved by 0.97723%.  

With the RandomForest classifier when salary was ≤ 50, when k=5 and l=3 the classification accuracy for the 

output data was 85.21981% while that of k=5 and l=3 for feature selection with information gain was 84.76587%. 

We noted that the performance of the classifier degraded by (-0.45394%). For salary ≥ 50, when k=5 and l=3 the 

classification accuracy for the output data was 85.21982% while that of k=5 and l=3 using feature selection with 

information gain and slicing method was 84.76892%. We observed that the performance of the classifier degraded 

by (-0.4509%).  

To determine the quality of the anonymized dataset we evaluate the performance of the classifiers in table 3 

and 4. This was done by comparing the results in table 3 and 4 with the results of a classifier built from the raw 

dataset before the anonymization process. 

Table 5: % Information Loss in Classifier Accuracy for k=5 

Classifier k=5 k=5 with Information Gain 

Naïve Bayes   
≤ 50 1.00206 0.34342 

≥ 50 0.96187 0.34351 

   
Logistic Regression   
≤ 50 1.65435 0.77863 

≥ 50 1.65415 0.77872 

   
Random Forest   
≤ 50 4.52429 -0.89638 

≥ 50 4.52333 -0.89624 

Table 5 presents the loss in the performance of the classifier when salary was the target attribute. This research 

compared the performance of the classifier with the input data and with output data when the value of k=5 without 

information gain and for k=5 with information gain.  The results were presented in table 5. An analysis of the 

results in table 5 revealed the following; 

With the Naïve bayes classifier when k=5 for salary ≤ 50, the accuracy went down by 1.00206% while with 

information gain the accuracy went down by 0.34342%. We observed that our approach improved the performance 

of the naïve bayes classifier by 0.65864%. For salary ≥ 50 the classification accuracy for k=5 reduced by 0.96187% 
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and when k=5 with information gain the accuracy went down by 0.34351%. We noted an improvement in the 

classifier performance with our approach by 0.61836%. 

For the Naïve logistic regression classifier when k=5 for salary ≤ 50, the accuracy went down by 1.65435% 

while with information gain the accuracy went down by 0.77863%. We observed that our approach improved the 

performance of the naïve bayes classifier by 0.87572%. For salary ≥ 50 the classification accuracy for k=5 reduced 

by 1.65415% and when k=5 with information gain the accuracy went down by 0.77872%. We noted an 

improvement in the classifier performance with our approach by 0.87543%. 

With the Random Forest classifier when k=5 for salary ≤ 50, the accuracy went down by 4.52429% while 

with information gain the accuracy went down by -0.89638%. We observed that our approach improved the 

performance of the naïve bayes classifier by 5.42067%. For salary ≥ 50 the classification accuracy for k=5 reduced 

by 4.52333% and when k=5 with information gain the accuracy went down by -0.89624%. We noted an 

improvement in the classifier performance with our approach by 5.41957%. 

 

Figure 2: A comparison of loss in classifier accuracy for the three classifiers when k=5 and l=3 with and without 

information gain. 

From figure 2 we noted that data anonymization for k=5 and l=3 with the information gain resulted in better 

classification accuracy with the naïve bayes and logistic regression classifiers than that for the three classifiers 

built from the dataset anonymized with k=5 and l=3 without the information gain. 

 

6. Contribution 

The contribution of this work includes the introduction of a new approach for anonymizing high dimensional data 

through a combination of feature selection with slicing, generalization and suppression; and an enhanced 

anonymization of high dimensional data with improved data utility and reduced data distortion.  

 

7. Conclusions and Future Work 

This paper focused on the anonymization of high dimensional data with a single sensitive attribute.  Different 

anonymization approaches have different benefits and drawbacks. However, every approach must have the goal 

of preserving privacy without compromising the utility of the data much. This work proposed a privacy 

preservation approach that anonymizes high dimensional data while enhancing the quality of published data. For 

future work, we recommend that further research be undertaken in the area of privacy preservation for high 

dimensional data with multiple sensitive attributes.   
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