
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol 2, No.7, 2012

32

Website Vulnerability to Session Fixation Attacks

Bhavna C.K. Nathani Erwin Adi*

School of Computer Science, Binus International, Bina Nusantara University, Jl. Hang Lekir 1
No. 6, Senayan, Jakarta 10270, Indonesia

* E-mail of the corresponding author: eadi@binus.edu

Abstract

Session fixation is a vulnerability of web applications where a malicious attacker gains full control of a
victim’s web account without having to use the victim’s credentials such as username and password.
Extant defensive techniques and procedures are not completely effective against such attacks. The
authors found that some 48% of Indonesian websites are vulnerable to such attacks because, contrary to
best software engineering practices, many use default session management IDs generated by their
development platforms. This paper presents procedures for identifying vulnerable websites and the
results.
Keywords: web application security; session fixation; session hijacking

1. Introduction

In http communication, various TCP connections are used to access websites. To recognize every
user’s connection, a web server creates a session ID and sends this to the user’s browser in various
ways: as a cookie in the HTTP response body, or as a string of characters in the URL or in any part of
the HTTP response header.

A malicious attacker can impersonate the user by sending a request to the web server that contains
this session ID. This technique, known as session hijacking, is ranked 3rd among the world’s most
critical security risk, up from its previous rank of 7th in 2007 (OWASP, 2010)

One subset of session hijacking is to make the user access a web application using a session ID
created by the attacker. This procedure, called session fixation (Kolsek, 2002) works as follows: first,
the attacker interacts with a web server to obtain a session ID. Through phishing or some other means,
the attacker tailors a message for a user to click. By doing so, a user unknowingly submits a session ID
to the server on which a web application session has been owned by the attacker. Thus the user
becomes a victim.

One report suggests that such attacks can be avoided by using web applications that change the
session ID after each login (Takamatsu, Kosuga, & Kono, 2010). However, our investigation found that
such attacks succeed despite post-login change of session IDs. Curiously, the investigation also found
websites that are immune to session fixation attacks yet use the same session IDs.

This paper contributes to the existing body of knowledge with (a) an identification protocol for
potential website vulnerability to session fixation attacks, (b) testing and measurement protocols for
actual website vulnerability to session fixation attacks, and (c) procedures to help technical and
nontechnical users against such attacks.

This paper includes five (5) sections: Section I presents the research background and relevance,
Section II describes the research procedure and limitations, Section III presents the results and analysis,
Section IV contains the authors’ recommendations, and Section V suggests areas for future research

2. Research Procedure and Limitations

This research was implemented using a five-step process.
• One hundred and twenty-five (125) websites on servers under Indonesia domain name were

randomly selected via a Google search command using the search term site:id.
• The websites were examined and initially categorized. (a) Each website with a URL and/or

cookie containing a string of characters that can represent a session ID was classified as
vulnerable. (b) When such a pattern was not found, the website was classified as immune.

• A procedure was created to test website vulnerability. One challenge, which the authors met,
was to design an ethical procedure which: (a) does not break into any third-party website
account, (b) does not penetrate the website being tested and, (c) ensures that all parties
involved do not experience loss or damage of any kind.

• The websites were subjected to session fixation attacks using the designed procedure.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Science, Technology and Education (IISTE): E-Journals

https://core.ac.uk/display/234676972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol 2, No.7, 2012

33

• Each website that succumbed to the attack was classified as vulnerable, while websites
impervious to the attack were classified immune. The initial and final classifications were
compared. A successful attack pattern was identified in two ways: (a) a server response
containing a tailored message (i.e., “123456789”) or (b) a server-generated text that is absent
prior to a login (i.e., having a link to “Logout”).

This research was implemented with two limitations. One is the exclusion of hidden fields which,
although not the best way for managing sessions, remains a legitimate technique. The exclusion is for
ethical reasons: the launching of a program that modifies values of hidden fields in third-party websites
is unethical. Secondly, this investigation is limited to websites on Indonesian servers because:

• Indonesian laws do not specifically ban invasive testing procedures that penetrate websites
without permission (Allister, Michael, & Lim, 2009) and

• It is commonly perceived that web programmers in Indonesia focus more on meeting
deadlines and budgets than on website security. In addition, frequent reports on compromised
Indonesian websites (Wardi, 2010) indicate that many web programmers in Indonesia do not
prioritize website security. These two assumptions were not tested.

3. Results and Discussion

This study found six (6) categories of website vulnerability to session fixation attacks (See Table 1). A
local attack refers to one that is done by modifying cookies of the victim. A remote attack is done
through phishing or cross-site scripting that induces a user to click on a malicious message.
The study identified seven (7) categories of website immunity to session fixation attacks (See Table 2).
SID means session ID.

Results of the investigation indicate that almost half (48%) of the tested websites are vulnerable to
session fixation attacks. Most of the vulnerability (47.2%) is caused by reusing the same session IDs.
This supports the notion that a significant number of programmers in Indonesia do not prioritize
website security design.
3.1 Session ID Renewal

The investigation found that, contrary to popular belief (OWASP, 2010) replacing session IDs after
logins do not immunize websites to session fixation attacks (category vuln-3). At least 16.8% of the
tested websites are immune although these do not renew session IDs (category immune-3 and
immune-7).

These immune websites use information in the referer header to track the page where the user had
just came from and, using that information, block access to particular pages. This indicates that
programming websites against session fixation attacks can be done by using the referer header.
However, this approach is not recommended because character strings in referer headers are limited in
length. The Cookie State Management Approach, which allows access through session management, is
recommended because it has no limitations on string lengths and, in addition, is scalable.
3.2 Post-Authentication Pattern

Expiring each session ID after log out is a mechanism that is theoretically effective against session
fixation attacks. Curiously, 4% of the tested websites that follow this protocol fall under two
vulnerability categories (vuln-2 and vuln-4). The authors assume that the programmers of these
websites did not use session IDs as part of authentication control.
3.3 Naming Pattern

This investigation found that more than half of the tested websites use default naming to name session
IDs (see Figure.1). The names, mostly PHPSESSID (55.83% used PHP), and ASPSESSION ID (60%
used ASP) also include common naming conventions such as osCsid (10.83%) and zenid (6.67%).

Since osCsid ID names are generated by the osCommerce software while zenid ID names are
generated by zen cart (Zen Ventures, LLC, 2010) an open source ecommerce shopping cart software,
this data indicates that the website programmers cut corners and use the default session management
functions of the programming platforms they use. This practice allows malicious attackers to access the
websites; it may explain the numerous reports of compromised websites in Indonesia.

Since the strength of each session ID determines the success of each session fixation attack, and
since session ID regeneration is the programmer’s domain, the programmer is responsible for changing
the ID for every page in each session (Figure 1).

4. Conclusions and Recommendations

For most people, session management procedures are too complex to easily understand. To help more
people learn how to nullify session fixation attacks, this research offers two types of recommendations:

Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol 2, No.7, 2012

34

one for programmers, one for technically-skilled users as well as universal users. Session ID names in
PHP-based web applications.
4.1 Recommendations for Programmers

Ideally, web servers generate a sequence of session IDs in such a way that the pattern is difficult to
predict. This would deter a cracker to predict the subsequent IDs. However session fixation attack does
not depend on the randomness of the session ID for the attack to succeed. Instead of relying on this
mechanism, the web application programmers must implement techniques to prevent session fixation
attacks (Stuttard & Pinto, 2008). There are several ways:

Disallow logins to a chosen session ID: A common strategy of session fixation attacks is to allow
users to login using a session ID chosen by the attacker. A program to issue a new session ID after each
authentication procedure prevents this. The program must display the association between the old and
the new IDs, which an attacker should not be able to read.

Implement session timeout: An attacker may find a pattern of subsequently-generated session IDs.
To prevent this, programmers must implement session timeouts by storing a session variable containing
the time stamp of the last access of each session ID (Wikipedia contributors, 2010). When the same
session ID is used again, the current timestamp (e.g., in PHP use the time () function call) is compared
with the timestamp stored in the session. If the difference is more than a certain value, say 2 minutes,
the session variable is destroyed or updated to a new timestamp.

There is a race between the session duration and the time it takes for an attacker to find the
subsequently generated session ID. Hence the strength of the ID should exceed the time it takes to find
the ID’s next sequence.

Store the session ID in cookies: Although storing the session ID in cookies is not the best solution
to prevent session fixation attacks; this mechanism is more difficult to attack than protocols that store
the ID in the URL.

Destroy session if the referer seems suspicious: When a user clicks on a web page, most browsers
embed information in the referer header. This information contains the link that the user followed to
arrive at this page. A user request to access a page (i.e., welcome.php) must activate a web application
that allows access to the page only if the referer header shows that the page is being accessed from a
valid page (i.e., login.php).

Accept server-generated session IDs only: One way to ensure security is to accept
server-generated session IDs only. The following code can be used for such a purpose (Wikipedia
contributors, 2010)
 if (!isset($_SESSION['SERVER_GENERATED_SID'])) {

 session_destroy();

 }

 session_regenerate_id();

 $_SESSION['SERVER_GENERATED_SID'] = true;
4.2 Recommendations for Users

Technically knowledgeable users should check for a session ID within an internet link before clicking
on it. When such a link is present, exercise caution about inadvertent submission of credentials by
clicking on the links.

Universal users include web users who cannot be bothered to delete cookies, who do not know
about session IDs is or how to recognize strings in a URL. Hence, there is a challenge to create detailed
“how-to’s” that help web users avoid false negatives. For these types of users, the authors recommend
that they constantly update their web browsers with the latest patch.
4.3 Recommendations for Future Research

This paper recommends two directions for future research: (1) how a session fixation attacks succeed
despite new session IDs, and (2) a cost-effective program design to effectively thwart any session
fixation attack.

Despite session ID renewal after logins, session fixation attacks can be launched by predicting
succeeding IDs. The recommended research focus is on observing degrees of difficulty in predicting
session IDs by devising a metric to measure the difficulty. This difficulty largely depends on the degree
of randomness of the selected session IDs. A tool designed by the National Institute of Standards and
Technology is a statistical test suite for degrees of randomness, available at
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html. Tools such as WebScarab and Burp Suite allows

Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol 2, No.7, 2012

35

session ID collection and randomness analysis (Hope & Walther, 2008). These tools, however, do not
allow assessment of randomness from combined session management techniques such as hidden fields.
To lower the success rate of session fixation attacks, Stuttard & Pinto 2008 suggest a conservative
approach: issuing a new session ID for every generated page. However, we would question the
scalability and performance of this technique, which serves as the basis of our second recommendation
for future research. Szydlowski, Kruegel, & Kirda (2007) describe a technique to bind sensitive
information to confirmation tokens to transfer data securely through a compromised host. The authors
suggest using this technique to generate a secure session ID, with the end goal of formulating a metric
that measures complexity and efficiency.

5. References

Allister, D., Michael, F., & Lim, C. (2009). Eastern cyberlaw exposed: The port scanning way. ICT
Development for The Knowledge Based Society. Bandung, Indonesia.
Hacker ikut bantu Susno! Rusak 60 situs. (2010, May 17). Retrieved from resep.web.id:
http://www.resep.web.id/berita/hacker-ikut-bantu-susno-rusak-60-situs.htm
Hope, P., & Walther, B. (2008). Web security testing cookbook. Sebastopol: O'Reilly Media, Inc.
Kolsek, M. (2002, December). Session fixation vulnerability in web-based application. Retrieved
March 24, 2010, from ACROS Security: http://www.acrossecurity.com/papers/session_fixation.pdf
OWASP. (2010, April). OWASP top 10. Retrieved May 1, 2010, from OWASP: http://www.owasp.org
OWASP. (2010, February). Testing for session fixation (OWASP-SM-003). Retrieved from OWASP:
The Open Web Applications Security Project:
http://www.owasp.org/index.php?title=Testing_for_Session_Fixation_%28OWASP-SM-003%29&oldi
d=78834
Stuttard, D., & Pinto, M. (2008). The web application hacker's handbook. Indianapolis: Wiley
Publishing, Inc.
Szydlowski, M., Kruegel, C., & Kirda, E. (2007). Secure input for web applications. 23rd Annual
Computer Security Applications Conference (pp. 375-384). Miami Beach: The IEEE Computer Society
Digital Library.
Takamatsu, Y., Kosuga, Y., & Kono, K. (2010). Automated detection of session fixation
vulnerabilities. WWW2010 (pp. 1191-1192). Raleigh, USA: The ACM Digital Library.
Wardi. (2010, June 7). Retrieved from maswardi.com:
http://www.maswardi.com/2010/06/website-pemda-lampung-tengah-kena-hack.html
Wikipedia contributors. (2010, July). Retrieved from Session fixation:
http://en.wikipedia.org/w/index.php?title=Session_fixation&oldid=374643499
Zen Ventures, LLC. (2010). Retrieved from zen cart: the art of e-commerce: http://www.zen-cart.com/

Table 1. Categories of vulnerable websites

Category

SID sent

through
After login SID expires after

Type of attack

Population

Cookie URL
Renew

ID

New

cookie
Logout

Browser

closed

Local Remote

Vuln-1 √ √ √ 40.0%

Vuln-2 √ √ 2.4%

Vuln-3 √ √ √ √ √ 0.8%

Vuln-4 √ √ √ 1.6%

Vuln-5 √ √ √ √ 2.4%

Vuln-6 √ √ √ √ 0.8%

 Total 48.0%

Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol 2, No.7, 2012

36

Table 2. Categories of immune websites

Category
SID sent through SID sent

before login

Renew SID
Population

Cookie URL Before Login After Login More Cookies

Immune-1 √ √ 15.2%

Immune-2 √ √ 3.2%

Immune-3 √ √ 16.0%

Immune-4 √ √ √ 6.4%

Immune-5 √ √ √ 4.0%

Immune-6 √ √ 6.4%

Immune-7 √ 0.8%

 Total 52.0%

Figure 1. Session ID names in PHP-based web applications (left) and in ASP-based web
applications (right)

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

