
Dakota State University
Beadle Scholar

Masters Theses & Doctoral Dissertations

Spring 3-2019

Advanced Code-reuse Attacks: A Novel
Framework for JOP
Bramwell J. Brizendine
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

Part of the Databases and Information Systems Commons, Information Security Commons, and
the Other Computer Sciences Commons

This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses & Doctoral
Dissertations by an authorized administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

Recommended Citation
Brizendine, Bramwell J., "Advanced Code-reuse Attacks: A Novel Framework for JOP" (2019). Masters Theses & Doctoral Dissertations.
336.
https://scholar.dsu.edu/theses/336

https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Ftheses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholar.dsu.edu%2Ftheses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.dsu.edu%2Ftheses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.dsu.edu%2Ftheses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/336?utm_source=scholar.dsu.edu%2Ftheses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

ADVANCED CODE-REUSE ATTACKS: A NOVEL

FRAMEWORK FOR JOP

A dissertation submitted to Dakota State University in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Cyber Operations

March 2019

By

Bramwell J. Brizendine

Dissertation Committee:

Dr. Joshua Stroschien

Dr. Jared DeMott

Dr. Yong Wang

Dr. Mark Hawkes

 ii

© Copyright 2019 by Bramwell Brizendine.

ALL RIGHTS RESERVED.

 iii

DISSERTATION APPROVAL FORM

 iv

ACKNOWLEDGMENT

 I dedicate this dissertation to every student and every professor I have encountered. I

would like to extend my gratitude to everyone who has helped me throughout the dissertation

process. I dare not name names, lest I forget someone.

 v

ABSTRACT

Return-oriented programming is the predominant code-reuse attack, where short gadgets

or borrowed chunks of code ending in a RET instruction can be discovered in binaries. A chain of

ROP gadgets placed on the stack can permit control flow to be subverted, allowing for arbitrary

computation. Jump-oriented programming is a class of code-reuse attack where instead of using

RET instructions, indirect jumps and indirect calls are utilized to subvert the control flow. JOP is

important because can allow for important mitigations and protections against ROP to be bypassed,

and some protections against JOP are imperfect. This dissertation presents a design science study

that proposes and creates the Jump-oriented Programming Reversing Open Cyber Knowledge

Expert Tool, the JOP ROCKET. This is a novel framework for jump-oriented programming (JOP)

that can help facilitate binary analysis for exploit development and code-reuse attacks.

The process for manually developing exploits for JOP is a time-consuming and tedious

process, often fraught with complications, and an exhaustive review of the literature shows there

is a need for a mature, sophisticated tool to automate this process, to allow users to easily

enumerate JOP gadgets for Windows x86 binaries. The JOP ROCKET fulfills this unmet need for

a fully-featured tool to facilitate JOP gadget discovery. The JOP ROCKET discovers dispatcher

gadgets as well as functional gadgets, and it performs classification on gadgets, according to

registers used, registers affected, and operations performed. This allows researchers to utilize this

tool to be very granular and specific about what gadgets they discover. Additionally, there are a

variety of options available to modify how the gadgets are discovered, and this will expand or

narrow the quantity of gadgets discovered. This design science research presents original

 vi

significant contributions in the form of an instantiation and five new or highly reworked and

enhanced methods. Some of these methods pertain directly to JOP, while others could be adapted

and utilized in other reverse engineering projects. The JOP ROCKET allows researchers to

enumerate JOP gadgets for software easily, allowing for a JOP exploit to be more efficiently

constructed, whereas before the task would have been a time-consuming process requiring expert

knowledge and the use of multiple tools.

Keywords: binary analysis, code-reuse attacks, Jump-oriented programming, return-

oriented programming, JOP, ROP, reverse engineering, software exploitation

 vii

DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the language

of others is set forth, quotation marks so indicate, and that appropriate credit is given where I

have used the language, ideas, expressions or writings of another.

I declare that the dissertation describes original work that has not previously been presented for

the award of any other degree of any institution.

Signed,

Bramwell J. Brizendine

 viii

TABLE OF CONTENTS

DISSERTATION APPROVAL FORM .. iii

ACKNOWLEDGMENT.. iv

ABSTRACT .. v

DECLARATION .. vii

TABLE OF CONTENTS ... viii

LIST OF TABLES ... xiv

LIST OF FIGURES .. xv

INTRODUCTION .. 1

Statement of the Problem .. 8

Purpose of the Study ... 13

Significance of the Study .. 15

Nature of the Study ... 18

Objectives and Approach .. 19

Assumptions .. 20

Scope and Limitations ... 21

Dissertation Organization .. 22

LITERATURE REVIEW ... 23

Memory Corruption... 24

Historical Perspective and Introduction .. 24

Stack Buffer Overflow ... 26

Heap corruption ... 27

Heap spraying .. 28

 ix

Use-After-Free ... 28

Double-Free ... 29

Code-Reuse Attacks .. 29

Return-to-libc... 30

Return-Oriented Programming .. 30

ROP: Turing-complete Features .. 33

Memory Load and Store Operations .. 35

Arithmetic Operations .. 35

Logical Operations .. 36

Branching Operations ... 36

System and Function Calls .. 38

Other Useful Operations ... 38

Beyond ROP .. 39

Jump-Oriented Programming .. 40

Jump-Oriented Programming: Bring Your Own Pop Jump Paradigm 42

Jump-Oriented Programming: Dispatcher Gadget Paradigm ... 42

Jump-Oriented Programming: BLX Attack on ARM .. 44

Solutions and Countermeasures .. 45

DEP .. 45

ASLR ... 46

EMET .. 47

Control Flow Integrity Background .. 48

Control Flow Guard and Return Flow Guard .. 50

NSA's CFI Implementation ... 51

CET .. 51

Other ROP Solutions ... 52

Kbouncer ... 53

ROPecker ... 53

 x

G-Free ... 54

ROPGuard ... 55

Other CFI Solutions ... 55

Cryptographically Enhanced Control Flow .. 55

Lockdown .. 57

Summary ... 57

RESEARCH METHODS ... 59

Hypothesis ... 59

Research Approach ... 60

Hevner’s Desigin Science Guidelines ... 62

Design as an Artifact ... 64

Problem Relevance .. 65

Design Evaluation.. 66

Research Contribution ... 68

Research Rigor .. 69

Design as a Search Process .. 69

Communication of Research ... 70

Wieringa’s Design Science Guidelines ... 71

Objectives .. 73

Artifacts of Design Science ... 75

Requirements for Instantiation of the Artifact ... 76

Assumptions and Limitations .. 77

Data Collection .. 81

Validity and Reliability ... 83

Overview of Framework ... 85

Specification of Major Functional Requirements ... 86

 xi

Command Line Interface ... 86

Parsing of Input ... 92

Capture of Text Section ... 93

Search for opcodes ... 94

Disassemble and Search .. 94

Search for Dispatcher Gadget .. 95

Data Structures .. 96

Save to Data Structures .. 97

Provide Disassembly for Printing of Gadgets ... 98

Summary ... 99

RESULTS AND ANALYSIS ... 100

Evaluating the Instantiation ... 101

Evaluating the Methods ... 106

Artifact 1: A Method to Discover JOP Functional Gadgets 106

Artifact 2: A Method to Discover JOP Dispatcher Gadgets 112

Artifact 3: A Method for Printing Disassembly for JOP Gadgets............................... 117

Artifact 4: A Method for Classifying JOP Gadgets into Categories Based on Turing

Catalogue Features, ... 121

Faceted Classification .. 123

Artifact 5: A Method for Statically Enumerating and obtaining modules in the import

table and obtaining their JOP gadgets, while applying exclusion criteria. 127

Artifact 6: An Instantiation of the Artifact .. 133

Verification of Disassembly .. 134

Validation .. 136

Single-Case Mechanism Experiment .. 137

JOP Dataset.. 138

 xii

Validation Model ... 141

Sampling .. 142

Context... 143

Execution of the Validation ... 144

Unexpected Events ... 144

Treatment Validation ... 145

Data Analysis ... 145

Descriptions .. 146

Explanations .. 148

Analogic Generalization .. 151

Answers to Knowledge Questions .. 152

Implications for the Context ... 156

Discussion of Results ... 156

The Iterative Approach.. 157

Hevner’s Design Science Guidelines .. 158

Design Evaluation.. 158

Research Contributions.. 159

Research Rigor .. 159

Design as a Search Process .. 160

Communication of Research ... 160

Summary ... 161

CONCLUSION ... 162

Contributions ... 163

Faceted Classification for JOP Gadgets .. 164

Robust, Powerful Framework that can work across platforms 164

Novel and Improved Methods ... 165

Big Picture ... 166

 xiii

Lessons Learned .. 167

Limitations .. 170

Recommendations ... 173

Future Work .. 175

Conclusions ... 177

Summary ... 178

REFERENCES ... 179

APPENDIX A: FREQUENCY OF JOP GADGETS IN SELECT BINARIES 190

Binaries Tested .. 190

JOP Gadgets for Scanned Applications – Image Only ... 191

JOP Gadgets for Scanned Applications, Image and Modules 205

JOP Gadgets Results from Two Applications ... 219

APPENDIX B: SAMPLE OUTPUT OF GADGETS ... 252

APPENDIX C: DEFINITIONS .. 269

 xiv

LIST OF TABLES

Table 1. Hevner Design Science Guidelines ... 62

Table 2. Requirements for Instantiation of the Artifact .. 77

Table 3. The main screen user interface commands. .. 88

Table 4. The print screen user interface commands. .. 89

Table 5. Faceted classification for gadgets that perform various operations 125

Table 6. Faceted classification for gadgets that perform various operations 126

Table 7. Faceted classification for gadgets that perform various operations 126

Table 8. Faceted classification for all gadgets that jump to specific registers 127

Table 9. Faceted classification for all gadgets that call specific registers 127

Table 10. Select binaries scanned for JOP GADGETS .. 190

Table 11. JOP Gadgets for 31 applications (image only) – Part 1. 192

Table 12. JOP Gadgets for 31 applications (image only) – Part 2 198

Table 13. JOP Gadgets for 31 applications (image and associated modules) – Part 1. .. 205

Table 14. JOP Gadgets for 31 applications (image and associated modules) – Part 2. .. 211

Table 15. JOP Gadgets for Snaggit.exe and its associated modules – Part 1 220

Table 16. JOP Gadgets for Snaggit.exe and its associated modules – Part 2 230

Table 17. JOP Gadgets for Filezilla.exe and its associated modules – Part 1 239

Table 18. JOP Gadgets for Filezilla.exe and its associated modules – Part 2 246

 xv

LIST OF FIGURES

Figure 1. Diagram of JOP utilizing a JOP dispatcher gadget and dispatch table to reach

functional gadgets ... 3

Figure 2. Function get_Op_JMP_EAX... 108

Figure 3. Hexadecimal opcodes for various JMPs.. 108

Figure 4. A diagram of method addListBaseAdd ... 109

Figure 5. The source code for method addListBaseAdd... 109

Figure 6. The "carve out" portion of function disHereJmp .. 110

Figure 7. A diagram depicts the function get_OP_JMP_EAX 111

Figure 8. Excerpt from function get_Dispatcher_G ... 112

Figure 9. Excerpt from findDG_EAX function depicting the "carve out" portion 113

Figure 10. Excerpt from findDG_EAX function depicting regular expressions to find the

primary category of dispatcher gadgets .. 114

Figure 11. Excerpt from findDG_EAX function depicting regular expressions to find the

“other” category of dispatcher gadgets ... 115

Figure 12. Excerpt from function printlistOP_CALL_EDI .. 118

Figure 13. Excerpt from function disHereClean ... 119

Figure 14. Print sub-menu options .. 120

Figure 15. Excerpt from function disHereJmp pertaining to the operation of adding to

EAX .. 123

Figure 16. Excerpt from extractDLLNew function, illustrating its ability find DLL file

locations when handle module base is null ... 130

Figure 17. Excerpt from function noApi_MS, that drops APIs that will be represented by

ucrtbase.dll .. 131

Figure 18. Excerpt from function obtainAndExtractDlls, which drops extraneous modules

... 132

Figure 19. IDA Pro confirms that these are unintended instructions. 135

Figure 20. Defuse Assembler and Disassembler confirms that those opcodes do produce

the unintended instructions provided by the JOP ROCKET. ... 135

 xvi

Figure 21. The JOP ROCKET provides output for a gadget. The gadget is created using

unintended instructions. .. 135

Figure 22. By using the u command in WinDbg, we can see what Assembly instructions

would be executed if we began execution at the address provided. ... 135

Figure 23. Average number of indirect jumps and indirect calls for the 32 binaries

analyzed. ... 153

Figure 24. Selected averages for total number of operational gadgets for the 32 binaries

analyzed. ... 154

Figure 25. The total number of indirect jumps and indirect calls for the 32 binaries

analyzed .. 155

Figure 26. MOV Val EDI output from WinRAR.exe 252

Figure 27. JMP EDX output from Respond.exe .. 256

Figure 28. Truncated Dispatcher Gadget EAX output from Snagit.exe 264

Figure 29. Dispatcher Gadget Other EAX output from Filezilla.exe 266

 1

CHAPTER 1

INTRODUCTION

Buffer overflows, were not new in 1995, when Peter Zatko, or “Mudge,” first made it

publicly known, and then in 1996, when Aleph One made it much more widely known (Zatko,

1995; One, 1996 Nelißen, 2002). As the 1990s continued on, this memory corruption bug as well

as others led to the development of numerous exploits and malware, that took advantage of

software vulnerabilities such as the buffer overflow. A software vulnerability may be the result of

a program behaving in a fashion unintended or not anticipated by the programmer, and some of

these can be weaponized and used to perform arbitrary computation (Krusl, 1998). Arbitrary

computation could be benign in nature, such as executing a trivial Windows application, like

Calculator, or it could be much more malicious, allowing an attacker to perform theft,

modification, or destruction to the contents of one computer or even that of an entire network

(Stroschien, 2017; Engebretson, 2013). While such vulnerabilities that manifested themselves in

malware would be caught by antivirus industry and added to quarantine lists when caught

discovered, that did nothing to curtail the onslaught of zero-day exploits (Bilge & Dumitras, 2012).

A zero-day exploit is one that makes use of a hitherto unknown vulnerability, and for which

defenses, such as earlier forms of antivirus, would lack protection, since having not been known,

signatures would not exist. In the hands of a well-funded and capable adversary, a zero-day exploit

could be used to such extremes as causing millions of dollars in loss to businesses and

organizations, to crippling national critical infrastructure (Zetter, 2014). Indeed, lives could be lost,

 2

or wars could be decided, based on the efficacy of an undetected zero-day vulnerability that had

been fully weaponized. Typically, a memory corruption bug that has been weaponized will not lead

to such dramatic results; however, the possibility exists of serious ramifications from a zero-day

vulnerability, underscoring the importance of strong cyber security.

The most direct way to achieve enhanced cyber security is through protections at a binary

or system level, to prevent a malicious action from taking place in the first place. Inevitably, the

continued development of numerous attacks utilizing memory corruption bugs led to the

development of various protections and mitigations over the years (Bania, 2010). Broadly, these

efforts were designed to curtail or stop such attacks. The situation evolved to what could be

described as an escalating arms race, with both defenders and attackers, continuously innovating

and improving techniques, alternatively to overcome protections or to thwart defenses. These

mitigations include stack cookies, Data Execution Prevention (DEP), Address Space Layout

Randomization (ASLR), Enhanced Mitigation Experience Toolkit (EMET), and Control Flow

Guard (CFG), to name a few of the most well-known ones that are most prevalent today. Each will

be explained in detail in their appropriate section.

As part of the arms race, one emerging attack methodology has been code-reuse attacks.

This first took the form of return-into-libc buffer overflows. This involves using the stack overflow

to call a function directly with the needed parameters (Nelißen, 2002). That technique would later

be expanded to return-oriented programming (ROP) (Checkoway, et al., 2010; Roemer, et al.,

2010). The central idea with ROP is that to execute borrowed chunks of executable code that exist

in the virtual memory of the process image. Each borrowed chunk will terminate in a RET

instruction, and this is called a ROP gadget. This returns the instruction pointer to the next

instruction or address that is on the stack. Thus, a user can easily chain ROP gadgets together,

 3

simply by having the addresses fall one after the other in the stack. Because of the very nature of

how the RET instruction works, it will always return and execute whatever is next on the stack.

This result is the user can manipulate control flow, directing it from one gadget to the next, and in

the process being able to achieve arbitrary execution. Instead of simply being able to call certain

functions with parameters, now any arbitrary computation would be feasible (Shacham, 2007).

This included being able to disable or circumvent mitigations that otherwise would have protected

the binary from attack.

Figure 1. Diagram of JOP utilizing a JOP dispatcher gadget and dispatch table to reach functional gadgets

Code-reuse attacks have exploded in popularity since the formal introduction of return-

oriented programming, though the tradition dates back much further with return-to-libc (Shacham,

2007). We have seen since then other code-reuse attacks develop, such as jump-oriented

programming (JOP). JOP is a more advanced code-reuse attack that subverts control flow, allowing

for arbitrary computation as with ROP, but in a very specific fashion. JOP can take on various

 4

forms, both in a Windows environment as well as on other architectures. In a Windows

environment, the most useful variation of JOP takes the form of the dispatcher gadget paradigm.

JOP will be discussed exhaustively in chapter 2, but we can introduce it briefly here.

The mechanics of how JOP works is a little more labyrinthine than ROP. With JOP, instead

of using the stack to subvert control flow, we instead craft a dispatch table, as shown in Figure 1.

This dispatch table serves to replace the stack, as it provides the order in which the gadgets will

occur. The dispatch table does this by providing functional gadgets that perform arbitrary

computation, much in the same fashion as ROP gadgets. The difference here is that instead of using

a RET instruction to return to the stack, the JOP functional gadget will instead terminate in an

indirect jump or indirect call. This gadget will jump back to the address of the dispatcher gadget.

The dispatcher gadget is a specialized gadget that is used to advance the instruction pointer

forwards or backwards in the dispatch table (Bletsch, 2011). It does this by adding, subtracting, or

otherwise modifying in a predictable fashion, the address of the dispatcher table. This address is

to be contained in a register. For instance, if EBX contained the address of the dispatch table, the

dispatcher gadget would modify EBX in a predictable fashion, such as by the following instruction:

ADD EBX, 8 / JMP EBX. Thus, each invocation of the dispatcher gadget would modify where the

dispatcher gadget begins execution; this provides the analyst with a means of subverting control

flow. JOP can be useful if exploitation limited to the heap that may be achieved through corruption

of the heap or UAF.

JOP is a code-reuse attack that has been written about in the academic literature for the last

decade, but it has only rarely been used in the wild for exploits, to the extent that some researchers

have claimed erroneously that it has never been used. JOP is the code-reuse attack that this research

will focus on.

 5

As a point of information, this dissertation at times will refer to users of code-reuse attacks

using a variety of terms, most frequently as analyst or user. This work takes a neutral stance, as

many people who utilize code-reuse attacks may do so for purely benign purposes, such as security

researchers, or others who may have appropriate authorization. Very occasionally, the user of code-

reuse attacks may be referred to as an attacker, but this too is used in a neutral sense, referring

simply to an individual carrying out an attack, which may be for benign purposes. At the opposite

end of the spectrum, a user of code-reuse attacks may use them with malintent; this work is not

directed at such persons.

In response to code-reuse attacks, we have seen the rise and fall of various mitigations to

try limit or mitigate their efficacy. Inevitably we have witnessed bypass after bypass emerge

against these and other defenses, making these mitigations less and less useful, necessitating

endless updates. Over the years, we have had additional mitigations evolve in response to advances

in exploitation techniques, as with the release of the isolated heap mitigation being quickly

followed up by the release of the deferred free mitigation, both addressing the Use-After-Free

(UAF) bug (Bo Qu & Lu, 2014). A UAF a memory corruption bug that can be used to launch into

a code-reuse attack

Ultimately, the question is begged, if an attack is can overcome many of these mitigations,

even if it raises the level of difficulty, how useful are these protections really? It may deter

amateurs, but it will not prevent more dedicated individuals. In recognizing the fallibility of these

types of defenses, defensive efforts in the last few years turned more in the direction of control

flow integrity (Carlini, et al., 2015). Control flow integrity in concept is a perfect solution and can

provide total defense against ROP and JOP, as it enforces the control flow graph. Put simply,

control flow integrity (CFI) is a theoretical defensive mechanism for try to prevent or reduce the

 6

subverting of execution to unintended instructions. Strong CFI would make impossible all feasible

control flow attacks, such as ROP or JOP, but in actual practice, a resilient CFI that is impervious

to attacks and has no performance lags has been very difficult to achieve (Göktas, et al., 2014), as

will be discussed in the literature. A control flow graph represents all the valid paths a program

can embark upon during the path of execution (Abadi, et al., 2009).

Practical considerations have necessitated that efforts focus more on coarse-grained

implementations of CFI that are software-based, such as Microsoft's Control Flow Guard (CFG)

(Tang, et al., 2015). While CFG does offer some protection to certain classes of use-cases, there

have been bypasses (Wojtczuk & DeMott, 2015). Software-based CFI by necessity must make

sacrifices as there can be considerable performance overheads if one tries to do too much, and the

end result is not complete defense, but just enhancing the difficulty. A hardware-based CFI has the

potential to afford much greater protection by providing fine-grained CFI (de Clercq &

Verbauwhede, 2017). Leading efforts for hardware-based CFI currently in development include

Capability Hardware Enhanced RISC Instructions (CHERI), Dover Riscv, and CET. CET likely

will become the more predominant form of CFI, as it is a joint effort by Intel and Microsoft and

will eventually be deployed on new machines on the market.

 While CET will be able to offer fine-grained defense against code-reuse attacks such as

ROP and JOP, that does not mean it will be invulnerable to code-reuse attacks. Advanced code-

reuse attacks such as Counterfeit Object-oriented Programming (COOP) and DOP adhere to a

control flow graph perfectly and yet still effectuate an attack successfully (Schuster, et al., 2015;

Hu, et al., 2016). These data-based attacks have data side effects that can help facilitate an attack

that likely can overcome CET as well as other CFI solutions. CFI is not equipped to deal with these

types of attacks; these attacks are outside the scope, since they follow valid execution paths. Yet

 7

while these attacks show tremendous potential for future attacks, their use thus far has been

confined to academic journals; they simply are not much done in the wild, at least not that we have

seen yet.

 As this work will introduce a framework for advancing one particular type of code-reuse

attack, we should then return to the issue of the merits of introducing a tool that may potentially

help overcome defenses. We are to be reminded though that strong offensive security results in

stronger defensive security, as shortcomings, opportunities for improvement, and vulnerabilities

can be found, and then they can be remediated. Performing advanced code-reuse attacks, including

JOP, COOP, DOP, or others, is not a trivial matter, it can involve a significant preparation. This

extra difficulty, owning to the need to manually discover gadgets or to craft one’s own tools, is

among some of the reasons why easier and simpler attacks such as ROP continue to be more

prevalent. The tools available for ROP help provide the ease and reduces the learning curve, such

that any motivated attacker could use ROP. However, there will come a time when attackers may

be forced to use more advanced code-given attacks. Being able to simplify the process for

achieving these advanced code-reuse attacks is certainly a great need.

 This chapter will introduce the reader to the research problem and how this research will

address the topic. The chapter describes the creation of a framework that helps to reduce the level

of complexity and manual labor needed to undertake certain advanced code-reuse attacks. This

proposed framework will serve to enhance security research by providing the necessary features

and search architecture to improve the state of studies in advanced code-reuse attacks. With the

realization of the proposed JOP framework, analysts can have at their disposal a means to more

readily produce necessary data for their exploits, and security practitioners then can make progress

towards enhancing security. Chapter 2, consisting of the literature review, will introduce more of

 8

the background for this subject matter

Statement of the Problem

 As mitigations become increasingly more advanced and more sophisticated, popular modes

of code-reuse attacks such as ROP run the risk of being made irrelevant. Mitigations such as ASLR,

DEP, and particularly CFG can greatly complicate matters for attackers. CFG is present on

Windows 8.1 on up, and that represents over 500 million instances of it in use. Yet many users

still need to use Windows 7 or lower for legacy reasons, and CFG remains absent on such systems.

Windows 7 with ASLR and EMET, as well as third-party solutions, such as VTint (Zhang, 2015)

would provide an effective defense against ROP, but would still come short of defending against

JOP, and that is to say nothing of the myriad other third-party ROP mitigations out there, as

described in the literature review. Thus, one might assert that under certain circumstances, in a

well-defended, hardened Windows 7 environment, JOP could be feasible means of attack, capable

of overcoming all mitigations. In actual practice, JOP is rarely used in the wild, in part owing to

the difficulty of setting it up. In an ideal world, all systems would utilize the far more hardened,

secure Windows 10, where CFG would make JOP impractical. However, the fact remains that as

of the end of 2018, Windows 7 is still on 36.9% of all personal computers and 42.8% of all

Windows PCs (Keizer, 2019), and as of only December 2018, Windows 7 was the leading

operating system (Keizer, 2018). Thus, the relevance of JOP is still high because of the prevalence

of Windows 7 systems.

CFG, additionally, is not impervious on Windows 10 with respect to JOP. As an

approximation of control flow integrity, it has some shortcomings, due to practical considerations.

In February 2018, researchers from University of Padua presented a technical paper that CFG’s

 9

defense against indirect calls or jumps can be bypassed with a Back to the Epilogue (BATE) attack.

They wrote that CFG works only if a target is aligned to 16 bytes. Failing that, the “unaligned”

targets can be used in a bypass, owing to the 16-byte imprecision. Their research concluded that

even on Windows 10, with CFG, this allowed for there to be numerous gadgets on Windows

libraries (Biondo, et al., 2018). With BATE, CFG could be bypassed, and then more common

code-reuse attacks could be used. This will soon be remediated by Microsoft, but it demonstrates

that future attacks that may arise may allow opportunity for JOP in a Windows 10 environment,

although such possible attacks likely are to be remediated within a reasonable period of time.

We inevitably return to the prospect of JOP, a significantly more advanced form of code-

reuse attacks. It is also far more limited than ROP, under the most ideal of circumstances. Although

it is more challenging to use, JOP remains a valid and viable attack paradigm, one which can be

powerful. Some tools, such as ROPgadget and Mona provide extremely limited functionality, but

to such a limited extent as to be of only very marginal value (Salwan, n.d.; Van Eckhaute, n.d.).

That is to be expected, as these are ROP tools, and they are highly effective in their problem

domain; both provide an abundance of functionality and tools to help make the construction of

ROP gadget chains uncomplicated and painless. That ease and functionality provided by those

tools, is lacking within the province of JOP. As a far more complicated form of code-reuse attacks,

the argument could be made that it more strongly needs some of that automation, to better assist

security researchers.

The problem is there is a lack of tools to automate and facilitate building JOP exploits, as

the current workflow makes it a manual, tedious, time-consuming process (Bletsch, 2011;

Checkoway & Shacham, 2010; Quiao, 2015; Davi, 2015; Erdődi, 2013; Min, 2012). A versatile,

powerful framework that can account for the complexity of JOP could be a solution to the research

 10

problem. In endeavoring to address the research problem, this work will endeavor to answer

secondary research questions that will be useful in crafting such a solution:

How can software most effectively implement in an automated fashion the discovery of

JOP gadgets?

How can software most effectively implement in an automated fashion a means of

discovering dispatcher gadgets?

How can software most effectively classify these gadgets into relevant categories and allow

these to be displayed on demand, as a means to provide utmost utility to the security

researcher?

How can potentially unusable, highly impractical gadgets most effectively be expunged

from results, in an automated fashion?

How can software most effectively ensure that no potential JOP gadgets of value are

missed?

All the above are questions that will help guide the DSR process of creating a framework with a

high degree of usability, versatility, portability, and customization. These are subproblems that

need to be responded to, in order devise a solution to the problem statement.

We can try to expand upon some of the above. First, existing tool sets lack functionality to

directly discover JOP Gadgets. Both Mona and ROPgadget provide very limited functionality, but

only such that it is a footnote in passing; neither is equipped for any serious undertaking with JOP.

A team of researchers did develop a tool to find ROP and JOP gadgets for ELF binaries that were

implemented with the NSA’s proposed CFI solution (Brandon, 2016). Their work was not suited

for PE files, and they lack some of robust features necessary that this framework will endeavor to

address. Finally, many existing reverse engineering tools could be used to manually search for the

 11

opcodes for the desired indirect jump or call, or to search for the disassembled instructions. Either

effort would be thought of as a manual search, and neither would adequately address the matter of

unintended instructions.

Manually searching for gadgets for code-reuse attacks can be a time-consuming matter

without proper tools, regardless of whether it is for ROP or JOP. For instance, Roemer was

attempting manual discovery of Turing-complete features. He spent three weeks doing manual

analysis of Assembly in a Solaris libc file, to come up with 19 gadgets in his Turing-complete

features gadget catalog for SPARC (Roemer, 2009). That is a considerable amount of time, and it

addresses just one file. Roemer later developed a tool to facilitate this process, allowing for Turing

features to be discovered more quickly on binaries. A manual process to exhaustively search for

JOP Turing-complete features would require even more time and effort.

Second, while some general-purpose reverse engineering tools provide the facility to

discover gadgets, such as by manually searching for desired opcodes or disassembly, there is not

a way to accomplish this in automated fashion. One specific gadget that is essential is the

dispatcher gadget; this helps allow the instruction pointer to go forwards or backwards in the

dispatch table, as a means of providing order to the control flow. There is not presently a publicly

accessible dispatcher gadget finder.

 Next, there is a need to provide classification for JOP gadgets. ROP gadgets do not require

classification, other than simply distinguishing between useful gadgets and those that are less

likely to be so. ROP gadgets, unlike JOP gadgets, all end in RET, and they abound in plentiful

numbers, so presenting a collection of useful ROP gadgets is often adequate for a good starting

point. Some tools will group like gadgets with like gadgets, providing some informal sense of

classification. With JOP, the necessities of control flow dictate that more careful classification

 12

must be employed, as the gadgets will end in an direct jump or call to a specific register. Thus,

having them ordered as such would be a significant improvement over simply providing them all,

with no classification. Still, even that classification falls short; the ability to be very granular and

specific, with respect to the operations performed in the gadgets, would allow an analyst to much

more readily locate the needed functionality, rather than having to wade through endless

possibilities or to have to perform an ad hoc search on the results. Thus, there is a need for

classification based additionally on specific operation performed.

Forth, the volume of data presented to users from some gadgets is overwhelming,

depending on the binary. Moreover, many of these gadgets would have no practical use, and may

have just been unintended instructions. For instance, if a user were attempting to add a value into

EAX and then in the next line EAX is clobbered, that gadget would be useless for that purpose.

Alternatively, if a user were seeking gadgets that performed the SUB operation, they would not

wish to encounter an example such as the following: SUB BYTE PTR [EAX+0x53532],0x4 / JMP

EBX. That gadget is certainly valid disassembly, but if its only purpose for being presented to the

user was on account of the presence of SUB, then it should be excluded, as the chances of it being

of practical use for exploitation would be remote. Thus, many gadgets may border on being

unusable. Sometimes these are intended instructions; other times they stem from unique

combinations of opcodes, creating unusual instructions that may have marginal value to security

researchers. Because some of these potentially impractical gadgets stem from certain opcode

combinations, there sometimes can be a deluge of such gadgets, thereby making it more

challenging to find useful gadgets.

Finally, there is a need to ensure no potential gadgets are missed. Some researchers have

stated it likely is impossible with many binaries to do JOP without considering all unintended

 13

instructions (Bletsch, et al., 2011). Depending on the technique employed or the tools in question,

it could be easy to overlook some less than obvious gadgets. There are two ways to find gadgets:

by looking at the opcodes and by looking at the disassembly that stems from the opcodes. Doing

both of this is not adequate, as some gadgets could be missed. Thus, there is a strong need for a

JOP tool that considers all possibilities of disassembly, not just those intended by the compiler,

and this can only be done by iterating through all valid possibilities. With JOP gadgets being

relatively scarce with many binaries, this is essential.

Purpose of the Study

The purpose of this study is to utilize design science research (DSR) to create a powerful,

versatile framework, to facilitate the creation of exploits that utilize JOP. This framework will be

known as the JOP ROCKET, or Jump-oriented Programming Reversing Open Cyber Knowledge

Expert Tool. The motivation for the JOP ROCKET is threefold. First, there is a lack of tools that

address JOP. Constructing JOP through a manual process without tools is a time-consuming,

tedious, and often difficult effort. As it currently stands, if a security researcher wanted to craft a

JOP exploit, they would need to create their own tool set, or make use of tools not well-suited for

that purpose. The process of finding suitable JOP gadgets would be made monumentally more

difficult than need be. Second, the JOP ROCKET could help discover gadgets that would be

missed by utilizing general-purpose reverse engineering tools. JOP will not generate nearly as

many fruitful gadgets as ROP, so there is also an urgent need to make sure no gadget is missed. In

many cases, there simply are not enough gadgets for a JOP exploit otherwise, and while other work

addresses how to find these, it does so imperfectly. Finally, JOP can allow us to bypass mitigations

against ROP that do not defend against JOP. This is important because once successful JOP

 14

exploits are created, they could be used to bypass many traditional mitigations that would have

been unavailable due to anti-ROP defenses. Many tools, as described in the literature review, have

heuristics to detect ROP, but would fail at detecting JOP.

This research is focused on ensuring the JOP ROCKET is made to be a meaningful, fully-

featured artifact, to be used by a security practitioner. At present, the security researcher interested

in working with JOP would have significant challenges, due to absence of tools. This work will

help provide a robust solution to this problem. Additionally, although it is not designed for this

purpose, the framework should also provide a response to some supplemental knowledge research

questions:

How common or uncommon on certain categories of gadgets, according to different

classifications that may be applied?

On average what is the breakdown of indirect jumps or calls to specific registers?

These questions will not drive the creation of the design science artifact. However, the artifact

should be able to answer these open knowledge questions as a by-product, with only minimal

additional work being done. These questions are of value because they can allow the security

researcher to have a better understanding of some of the intrinsic properties of JOP. This

knowledge could help guide some of their decisions as they contemplate attack strategies.

One of the hallmarks of design science is that it is intended to produce posterior knowledge,

that which is known only after the conclusion of the research (Wieringa, 2014). This can help serve

as a contribution to the discipline. It is felt that the above supplemental questions could be used to

help draw out some of this posterior knowledge with respect to some of the intrinsic qualities of

JOP. To be clear though, the work will not attempt a comprehensive, quantitative investigation of

 15

JOP, and thus it will not make rigorous use of quantitative methodology. The results produced will

be indications of what a more exhaustive study might confirm.

Significance of the Study

The JOP ROCKET is not likely to impact exploit development significantly. ROP is the

dominant code-reuse attack for good reason, even in the face of numerous mitigations. Even with

a framework such as the proposed JOP ROCKET, the fact remains JOP still will be complicated

to use and set up. While JOP can be used in some situations where third-party tools make ROP

impractical, many times it will be far simpler and easier to use ROP. In a Windows 10 environment,

as mentioned, CFG will provide defense against JOP. However, even in a Windows 7

environment, where JOP could safely execute, the absence of appropriate tools would make the

prospect of using JOP highly improbable. This would be from the standpoint of the researcher not

wanting to invest significant time into a tedious manual process. Additionally, even if an analyst

were interested in investing the time, they would not likely discover the unintended instructions,

necessary to successfully execute JOP, unless they invested significant labor into the process.

Many would-be JOP users might lack the expertise to find JOP gadgets, even with available

general-purpose tools, through a manual process, and even if they were motivated to create their

own tool set, they might lack the skills or the time.

Thus, this framework could make JOP more accessible to security analysts and allow for

more independent research to be done, thereby giving back to the community. The JOP ROCKET

may allow researchers to discover hitherto unknown vulnerabilities and thereby patch against said

vulnerabilities. This would serve to further harden systems, making them safer from malicious

actors. Most researchers would be able to make little tangible progress in the domain of JOP-

 16

facilitated exploitation without significant efforts, including as mentioned, having to create a

toolset, so the JOP ROCKET serves as contribution that helps eradicate such barriers.

With respect to the significance of this study, the scope of this work primarily deals with Windows

7, but it can also encompass Windows 8. CFG was released with Windows 8.1. Update

KB3000850 (Kennedy & Satran, “Control Flow,” 2018). Windows 8 is a distinct operating system

from Windows 8.1, as the latter was a free release to those who had purchased Windows 8 at retail,

as a sort of mea culpa for some of the public’s perceived shortcomings. They marked it as an

update, rather than an upgrade, to distinguish it from a service pack. In actual practice there is little

difference between it and a service pack, other than some restrictions on how it is made available.

It is important to note, however, Windows 8 remains unsupported, as users must install Windows

8.1 or Windows 10 to continue to receive updates. Thus, at the current time of writing, it seems

unlikely that home users would continue to use an unpopular operating system such as Windows

8, when superior alternatives are available to them at no cost. Of note though and applicability to

this research is that users of Windows 8 Enterprise from volume licensing must upgrade to 8.1

through an upgrade process or clean install, for which a special Windows 8.1 product key is

needed. That is not the case for OEM or retail customers who can upgrade easily as if it were a

service pack. Due to this requirement, many small business administrators were upset about and

did not wish to undergo the tedious, time-consuming process of upgrading to Windows 8.1 (Keizer,

2013). While Windows 8 is not widely used, it is feasible there are some small businesses or

organizations who obtained Windows 8 through volume licensing, but due to poor or inadequate

IT staffing, may not have gone through the more complicated upgrade procedure. Such

organizations that did not upgrade to Windows 8.1 and who are still using Windows 8 would then

be susceptible to JOP attacks.

 17

Although Windows 7 represents a significant share of Windows users out there, with it

comprising 42.8% of all Windows OSs as of January 2019, support for Windows 7 will end

January, 2020. However, upgrades will continue to be available at a cost to business users of

Windows 7 Professional for an additional three years (Bacchus, 2019). This could significantly

expand the viability of JOP in an enterprise environment for an additional three and a half years

from the time of this writing.

As Windows 7 and versions of Windows 8 that lack CFG, they provide a significant

number of machines vulnerable to JOP. Once Windows 7 is phased out and these numbers

diminish, we may see the importance of JOP come into play in other operating systems. Other

work could produce similar results on other operating systems. It serves to underscore the need for

stronger security, not only on Windows OS, but elsewhere as well, as very strong anti-ROP

defenses potentially could be overcome.

The broader implications of this study are noteworthy. In short, JOP provides a “side door,”

an alternate way of gaining entry, through the use of code-reuse attacks. The JOP ROCKET makes

an entire class of code-reuse attacks plausible, whereas before that simply was not the case due to

JOP being a difficult and tedious, manual process. The JOP ROCKET would enable attacks

potentially to bypass systems that lack CFG, such as Windows 7 or Windows 8. With nearly 43%

of Windows computers lacking CFG, this a significant number of machines that could otherwise

be employing strong security, including EMET or other anti-ROP defenses, but that now

potentially could be vulnerable to compromise. The susceptibility of the Windows 7 and Windows

8 operating systems to JOP underscores the need for strong control flow integrity (CFI).

CFG can provide control flow integrity, but various attacks and bypasses have existed

allowing opportunity for exploitation, before they could be remediated. In some cases, Microsoft

 18

even ignored attacks on CFG (Wojtczuk & DeMott, 2015). CFG is an imperfect, software-based

CFI solution, and as such it will always be vulnerable to emerging bypasses, just as other

mitigations have given rise to myriad bypasses. The only complete solution for CFI would be a

hardware-based shadow stack, designed to integrate with a control flow integrity solution, such as

with the forthcoming CET from Intel and Microsoft. CET is planned to provide support to CFG to

give it additional resiliency, making it truly impervious to any bypass for JOP. It still may be years

out before this happens, and that does nothing for all the existing computers that would lack CET.

This research underscores the need for stronger cyber security in the form of CFI. At present,

Microsoft’s CFG is strong, but is it adequate? A strong argument could be made against that.

Additionally, this research underscores the need for organizations and information security

personnel to be cognizant of the threats posed by JOP, even if they utilize anti-ROP defenses.

This research is significant also because it will answer important design science questions.

Some of these questions do not concern themselves specifically with code-reuse attacks, but could

be applied to other reverse engineering tools or techniques. How this work responds to these

questions will materialize in the form of a new artifact, as an instantiation of a framework, and five

methods that support the framework, as will be described in chapter 3. Some of these methods

could be used with other reverse engineering tools.

Nature of the Study

This research is guided by the research problem, and the response will be a DSR endeavor.

This work follows in the DSR traditions of Hevner et al. and Wieringa, to allow for the iterative

development of a tool that would present an original contribution to design science and to the

province of JOP research and development. It will closely follow the iterative processes described

 19

by Hevner and Wieringa, as a means to best understand the research problems and allow for those

to organically result in a strong artifact. Design theories explain how an artifact is able to interact

with its intended problem context (Wieringa, 2014). Due to its very nature, a design science theory

for any framework can be thought of as those a way to satisfy all goals, address all stakeholders,

and satisfy all requirements (2014). Thus, the proposed JOP ROCKET artifact should be able to

function and meet all these needs, not only under isolated conditions, but given any conditions.

This design science theory will help guide this work, and it will be elaborated upon further in

chapter 4.

Objectives and Approach

The objective is to develop an approach that fully responds to the problem definition and

research questions that have motivated this research, as will be covered in more detail in chapter

3. In so doing, DSR techniques will be employed that will culminate in the construction of an

instantiation of an artifact, the JOP ROCKET, and its supporting methods. Briefly, we can assert

that the artifact creates a practical solution to the problem of not having adequate tools to facilitate

JOP. The JOP ROCKET is intended to produce output that is highly useful and relevant, and whose

interface will be intuitive and require only nominal effort from the user.

Because this research meets the requirements of a Ph.D. in Cyber Operations, it was felt

that it would be too simple to create a tool that merely integrates with an existing dynamic tool,

such as WinDbg or Immunity Debugger. To do so would be to detract from the necessary rigor

such a doctorate must demand. Thus, a static analysis approach is employed, even though a

dynamic approach with one of the aforementioned tools would reduce the workload tremendously.

By embarking on a static approach, many simple, reverse engineering problems that we would not

 20

need to be concerned with, had we taken the dynamic approach, then must have appropriate

solutions devised. The approach here is to endeavor to organically devise solutions to some of

these various problems, rather than relying on past work done by others. Some technical matters

are handled with libraries such as Pefile or Capstone, simply for convenience sake.

Assumptions

Research can aspire to be well done but often imperfections may arise, despite the best

efforts to have an approach that is flawless. As part of the process of research, we must make some

assumptions to proceed forward. For example, it is assumed that the binaries that are utilized for

testing purposes are representative of typical 32-bit PE files and there are not anomalies present.

They could, however highly improbable, be aberrations and negatively influence the design of this

program, leading to an artifact that is best equipped to deal with them, but not more representative

examples. It is assumed that once accuracy for disassembly, accuracy for addresses, and accuracy

for offsets is assured, and after testing provides verification in support this, that this will be true

for all normal PE files that are analyzed. There could be unexplained software problems that

somehow prevent this, but extensive efforts at verification of results would likely detect such. It is

assumed that the disassembly produced by the Capstone disassembly engine will be fully accurate

for the opcodes supplied. All preliminary testing done as part of this research has not turned up

any errors that could not be accounted for, and Capstone is very widely used by several hundred

leading reverse engineering tools, however, so its output likely can be trusted, and testing has

revealed no discrepancies (“Showcase”, n.d.). It is assumed that the Python library Pefile will be

accurate and work as intended, and Pefile is a frequently used, open source library, used as part of

countless reverse engineering tools (Carrera, n.d.). However, if the library were to somehow work

 21

improperly, it could result in false disassembly, wrong opcodes, wrong addresses, wrong offsets,

or other anomalies. Throughout preliminary investigations into Pefile, no problems have been

discovered.

Scope and Limitations

From the initial dissertation proposal, the scope has been narrowed down to focus

exclusively on JOP, one of the more widely known forms of advanced code-reuse attacks. All

others required complicated, difficult setup, and they fraught with their own unique set of

problems. Each would be worthy of exploration within a dissertation, but to group them together

would unnecessarily inflate the scope to an untenable level. Moreover, so doing would detract

from the clarity and focus needed to refine the JOP artifact iteratively, allowing it to become the

best tool that it can be.

Scope has also been focused specifically on 32-bit Windows PE files. Other architectures

are dissimilar, and it is impractical to generalize about platforms and architectures that differ so

widely. Because the scope is limited to 32-bit Windows, one limitation is scrutiny is not given to

the vast 64-bit landscape. There are countless 64-bit applications used on a daily basis, which could

lend themselves to exploitation with JOP. We also lose the ability to study how the new, expanded

64-bit registers and the Microsoft x64 calling convention may affect JOP, in terms of the number

of gadgets produced relative to each area of classification. How the new registers and the x64

calling convention affect the overall usefulness of JOP gadgets produced would be worthy of study

as well.

 22

Dissertation Organization

This dissertation is organized into chapters, adhering to conventions for DSR dissertations.

This first chapter has provided the reader with an introduction to the research problem, while

providing the reader introductory material on code-reuse attacks and other relevant topics pertinent

to this study. Chapter 1 has also introduced secondary research questions and discussed the

significance of this study; it introduces the theoretical framework, while delineating scope,

limitations, and assumptions. In chapter 2, the literature review will provide a more in-depth

background to all relevant topics concerning code-reuse attacks, including JOP, ROP, COOP,

DOP, as well as the prevalent mitigations in place, including ASLR, DEP, and various forms of

CFI. Chapter 3 will provide a discussion on the research methodology, while exploring some of

the design choices that will be made throughout the development of the tool, as it iterates through

the DSR cycle. Chapter 4 then will discuss the results of the framework, while highlighting many

of the contributions that are to be provided by this novel architecture. Chapter 4 additionally will

provide validation and evaluation of the tool. In the final chapter, conclusions and

recommendations are made for this research, while also proposing future work.

 23

CHAPTER 2

LITERATURE REVIEW

Chapter 2 will survey the literature surrounding this study, while providing the necessary

background on code-reuse attacks as well as other relevant topics. First, chapter 2 will give insights

into memory corruption bugs. It will provide a historical overview and then introduces many of

the most prevalent memory vulnerabilities, giving information on stack buffer overflow, heap

corruption, heap spraying, Use-After-Free, and Double-Free. While this is not an exhaustive list

of possible memory corruption bugs, knowledge of these topics is necessary, these vulnerabilities

and others are necessary to provide an attacker with that first opportunity to perform a code-reuse

attack. The literature review will provide insights into relevant topics for the most prevalent code-

reuse attacks; these include return-to-libc, return-oriented programming, Turing-complete

features, and jump-oriented programming.

Chapter 2 will provide discussion the numerous mitigations that have developed to respond

to memory corruption bugs as well as code-reuse attacks, such as Data Execution Prevention,

Address Space Layout Randomization, and the Enhanced Mitigation Experience Toolkit. Code-

reuse attacks are often used to bypass some of these protections, so knowledge of them is

important. Other countermeasures specific to ROP will be discussed, such as Kbouncer, ROPecker,

G-Free, and ROPGuard.

 Chapter 2 will then introduce the concept of control flow integrity. Control flow integrity

is important as a stronger, better solution against code-reuse attacks. Insights will be given into the

NSA’s control flow integrity solution, Control Flow Guard, Control-flow Enforcement

 24

Technology, Cryptographically Enhanced Control Flow, and Lockdown.

Code-reuse attacks and the many countermeasures that have evolved do not make for light

reading. To be truly fluent in code-reuse attacks, a deep understanding of these topics is necessary.

This literature review will introduce the important contributions from scholars who have worked

in this problem domain. The literature review can only provide a general survey of these topics;

interested readers are encouraged to investigate these topics further.

Memory Corruption

When performing code-reuse attacks, one is not able to simply decide to start doing ROP

or JOP at will. There must be a way to gain entry, to get one’s payload somehow be executed by

the CPU. This initial foothold is often accomplished via memory corruption. Having done that, an

attacker could then launch different varieties of attacks, e.g. ROP, return-to-libc, JOP, shellcode,

etc. This research does not examine extensively at how to accomplish these tasks, although it does

provide a gentle introduction. It is a given that an attack will necessitate having some means of

supplying input, often alongside some vulnerability.

Historical Perspective and Introduction

While credit is often given to this disclosure by Levy under his nom de plume, buffer

overflows were known as early as 1972, per a presentation of the Computer Security Technology

Planning Study. However, knowledge of buffer overflow remained unknown to the public, until

1995. It was at this time rediscovered and published on Bugtraq and then finally popularized by

Levy, writing as Aleph One in the hacking journal Phrack. Levy describes a buffer overflow as

follows:

On many C implementations it is possible to corrupt the execution stack by writing past

 25

the end of an array declared auto in a routine. Code that does this is said to smash the stack, and

can cause return from the routine to jump to a random address. This can produce some of the most

insidious data-dependent bugs known to mankind (1996).

In the years that have followed, the details of the buffer overflow have become well known.

At the heart of the buffer overflow, the stack is compromised, such that control flow can be

overcome to facilitate the execution of unintended, often malicious code. That is, when a process

is mapped to virtual memory, the stack is naturally used by programs and the instruction pointer,

so that stack frames can be pushed and popped onto the stack. The stack frames may include local

variables, function parameters, and more. The amount written to the buffer can exceed its intended

target, and that can result in an overflow, overwriting other values on the stack (1996). It had been

an effective way of placing arbitrary shellcode onto the stack, so that the instruction pointer could

flow there, thereby executing the payload. Indeed, for a period of time, the stack buffer overflow

as that simple, absent other mitigations.

 Following Levy's disclosure, the buffer overflow gained more widespread traction, and it

was widely used. Microsoft was slow to respond, but remediation efforts began in an earnest in

2004, with the first release of Data Execution Prevention as an opt-in choice for users in Windows

XP SP 2. There have been many variations of buffer overflows being exploited for exploitation.

Related techniques have involved heap-based buffer overflows, integer overflows, and

vulnerabilities in format string. The central theme is having the instruction pointer being overtaken

to allow flow of control to be placed under the direction of the attacker.

 Memory corruption can affect a wide number of operating systems and applications. The

two primary purposes for doing so are to modify data or to hijack control flow in order to execute

code. Data that has been modified may indirectly influence control flow, leading to a desired

 26

outcome that otherwise would not have been reached. If control flow can be overcome, it is

possible then to direct execution to shellcode, although whether or not it can be successfully

executed will depend upon different mitigations. Buffer overflows have also been used to leverage

information leakage, where the leaked data is the end game.

Stack Buffer Overflow

 At the forefront of memory corruption has been the stack buffer overflow, popularized by

Levy, in the seminal Phrack article. While these are often thought of as the beginnings of the buffer

overflow, it was first shared more than two decades earlier, although this was known only by few

until its 1990's rediscovery. In a 1972 Air Force report, the buffer overflow was disclosed, as

follows:

By supplying addresses outside the space allocated to the users programs, it is often

possible to get the monitor to obtain unauthorized data for that user, or at the very least, generate

a set of conditions in the monitor that causes a system crash (Meer, 2010, 9).

The report subsequently describes how this technique can be used to “inject” code and then

“seize control” of the computer. In 1988, Cornell graduate student Robert Tappan Morris created

the Morris Worm, launching it at MIT. Morris had hoped the worm would be attributed to MIT,

with which he was unaffiliated, although he later become a tenured professor there. The Morris

worm created a denial of service attack, and it was the first widespread use of the buffer overflow,

causing economic disruption and leading to Morris’ conviction.

Later, in late 1995 Peter “Mudge” Zatko wrote an informal document on writing buffer

overflows and shellcode (Zatko, 1995; Meer, 2010, 11). After the publication of Levy's work on

smashing the stack the next year, activity and writings on buffer overflows proliferated in great

 27

abundance.

 With the buffer overflow, a buffer is filled with data that exceeds the buffer’s boundaries,

causing the program to overwrite adjacent memory (Zatko, 1995; Levy, 1996). The buffer overflow

is perhaps the most well-known type of security vulnerability. Stack overflows were most relevant

for lower level languages closer to Assembly, such as C or C++, where programmers deal with

memory allocations and deallocations, and where there wis raw access to memory with pointers.

A buffer overflow could have many uses. For instance, the attack could place arbitrary

shellcode on the stack and then execute it, barring any mitigations, if a return address can be

overwritten. Often a stack pivot is performed, allowing for control flow to be subverted, so that it

returns to another location on the stack. This could then contain shellcode or ROP gadgets. These

ROP gadgets could help bypass a mitigation, and then direct execution to shellcode. All of this

could lead to arbitrary computation, benign or malicious. Other possibilities with buffer overflow

exist, such as overwriting local variables, a function pointer, or an exception handler.

 Initially, defenses against buffer overflows were weak, but mitigations have been

developed. These include stack cookies, such as Microsoft’s Stack Guard. Buffer overflows can

also be mitigated by checking the size of the data prior to writing. A programmer may do this by

using more secure programming techniques and choosing functions that are not vulnerable, or if

they use a vulnerable function, to do it in a safe and secure fashion. For instance, strcpy is a

vulnerable function, and while strncpy is a safer alternative, a programmer could write additional

error checking to be able to use strcpy in a secure fashion (Ye, et al., 2016).

Heap corruption

 The heap is fundamentally different than the stack, and it is controlled by memory

 28

management algorithms from the operating system. The heap also contains data regarding heap

attributes, not limited to its relationship to other memory blocks, linked list pointers, data about its

state, and other metadata such as vtables.

 Heap overflow is one type of corruption that can occur, and it can function as the result of

a buffer overflow. In environments with lower level programming languages, such as C or C++,

the programmer must explicitly manage memory through API function calls to allocate and

deallocate memory. Malloc is used to allocate memory in C, returning a pointer to an uninitialized

region of memory for the allocation. Heap overflows could overwrite critical areas, such as

vtables, to achieve arbitrary computation. Heap overflows that are effective and succeed are much

more complicated and may involve heap coalescing and other advanced heap techniques.

Heap spraying

 While not a form of memory corruption or an exploit, heap spraying has been one way by

which to more easily exploit a vulnerability. In the past it was possible to use heap spraying with

great effect. Heap spraying involves writing values to the heap at locations that can be found or

that may be predictable. Mitigations have arisen that have made this a lot more challenging in

some environments than was previously the case. Heap spraying has been used in browser exploits,

involving VBScript, Flash, and Javascript. In the past, heap spraying has been used as a way to

reach a specific target address, by placing NOP or similar instructions on the heap, thereby creating

in effect, a NOP sled. The NOP or similar instructions would have no effect, until it reached a

target address or shellcode.

Use-After-Free

 A use-after-free (UAF) vulnerability happens once an area of memory has been freed and

 29

then is used again after having been freed (Caballero, et al., 2012). Once the memory has been

freed, it is possible for an attacker to allocate to that previously freed memory location, filling it

with arbitrary data, such as shellcode, ROP gadgets, or changing functionality by modifying data.

Use-after-free can lead to several possibilities, such as achieving arbitrary computation or

modifying data. Recent mitigations such as deferred free and isolated heap in IE have eliminated

short-lived UAF bugs, although they do not affect long-lived UAF bugs (Bo Qu & Lu, 2014).

Double-Free

 The double free is a memory corruption in which an area of memory is freed twice at the

same allocated memory, a condition that has the potential to result in a buffer overflow attack

(Caballero, et al., 2012). Once memory is freed twice, the memory's data structures can become

corrupt. This could lead to the program crashing, or it could lead to a condition in which the next

two calls to malloc lead to the same pointer (“Doubly freeing,” 2018). This means an attacker

could try to create a situation in which he is given access to this pointer to memory that has been

double-freed. If it occurs, it is possible the attacker could subvert control flow or

Code-Reuse Attacks

Code-reuse attacks are often used by necessity in exploits, as a means of overcoming

countermeasures, which serve to harden binaries as well as operating systems, making what was

once trivial, now a more labor-intensive process. Code-reuse attacks in modern Windows often

address, at minimum, DEP or ASLR. This chapter will discuss in detail the relevant code-reuse

attacks that have evolved as well as the countermeasures in place to combat them. These attacks

have evolved in simplicity from return-to-libc, to JOP, and this chapter will provide a necessary

background to understand these topics.

 30

Return-to-libc

 ROP derived from an earlier attack, return-to-libc, as a vessel through which to skirt around

various OS safeguards. Return-to-libc (ret2libc) is a way of make simulated function calls with

attacker data from the stack being used as function parameters. Through ret2libc and return-

chaining multiple functions and parameters could be placed on the stack and then used, with the

"stack unwind[ing] upward" (Dai Zovi, 2010, 18). This could be achieved by performing a buffer

overflow and supplying an address for a function and appropriate parameters. Return-to-libc

allowed for some arbitrary execution, but was limited in its capabilities, relative to code-reuse

attacks that would arise later.

Return-Oriented Programming

Ret2libc provided the attacker with flexibility to subvert control flow, but Schacham had

found ret2libc to be based upon "false assumptions" and marred by various "shortcomings," and

he expanded upon it extensively, resulting in what he called return-oriented programming

(Schacham, 2007; Kornau, 2010, 10). Schacham points out an important distinction between

ret2libc and ROP. The former deals with entire functions calls that "perform substantial tasks," and

they may involve many lines of code, whereas ROP gadgets may be just one to a few lines of code

(Schacham, 2007, 5). ROP gadgets are not limited just to existing functions, but Assembly

instructions such as ADD, SUB, XOR, etc., can be used to modify values in registers or memory.

Each ROP gadget may perform only a small number of trivial actions that independently may mean

very little, but a chain of ROP gadgets from discontinuous locations in the virtual memory

collectively can result in arbitrary execution that enables a substantial task to be performed (Dai

 31

Zovi, 2010, 28). The RET instruction that each gadget ends in will ensure that execution will return

to the next location on the stack, thereby allowing for gadgets to be chained together.

 When creating a ROP chain, an attacker will need to create a plan for what values to load

where, what values to modify, etc., and the necessary gadgets will be found in the virtual memory.

If any attacker wishes to call an arbitrary function, he will need to discover the address of such and

create a ROP chain that will result in that function being executed with the correct parameters. The

attacker would need to be careful to ensure that registers being used to hold a value are not

inadvertently clobbered by other instructions in a ROP gadget. This could happen easily, as some

gadgets may consist of multiple lines of instructions, and some registers may be used repeatedly

in different instructions. Sometimes flexibility is necessary with ROP chains, and an attacker

sometimes may be able to find another ROP gadget to compensate from the effects of less than

desirable actions performed by a previous gadget.

 Roemer writes that ROP works on the principle that there is a flawed idea that “preventing

the introduction of malicious code is sufficient to prevent the introduction of malicious

computation" by taking and using borrowed chunks of code from the process image or modules

(Roemer, 2010, 2). A module or dynamic-link library (DLL) is a file extension in the PE file format,

that allows executable code to be imported and used by executables. Whether compromised of

code from module or the executable itself, ROP gadgets independently are neither benign nor

malicious. However, they can be used to thwart mitigations such as DEP, ASLR, etc., which may

lead to malicious computation.

The algorithm to discover ROP gadgets works by searching the process image and modules

for the opcode that designates a RET, which is C3, although others are possible, such as C2, C6,

CA (Kornau, 2010; Schacham, 2007). C3 is a near return, C2 imm16 is a near return with a stack

 32

unwind, CB is a far return, and CA imm16 is a far return with a stack unwind. Once a RET is

found, the algorithm can disassemble backwards, trying to discover useful instructions. A useful

ROP gadget is one that does not cause flow of control to escape by not reaching the RET

(Schacham, 2007). A C3 may be found in the middle of machine code for instructions that had not

been intended to contain a RET. That C3 would be recognized by the ROP discovery algorithm as

a RET, even though that was not what had been intended by the compiler. Disassembling

backwards from that C3 could produce a useful, valid ROP gadget. This would likely include new

Assembly instructions. Though unintended by the compiler, these instructions would be executed

if control flow were subverted there. Schacham refers to this as the "geometry" of a language,

where moving a byte can produce instructions that are valid instructions that are unintended

(Schacham, 2007). This technique of finding unintended instructions, known as opcode-splitting,

may vastly increasing the attack surface by producing many more ROP gadgets than would be

available otherwise. Opcode-splitting frequently leads to viable results in x86, where not just

words but whole sequences of words can be discovered (Schacham, 2007).

 Opcode-splitting works due to the nature of Intel x86 architecture. Because the Intel x86

architecture descends from the 8-bit 8088 processor that was used in the original IBM PC, it must

support many legacy features. One such legacy feature involves having memory access be

unaligned, allowing for the 8-bit and 16-bit portions of a 32-bit register to be referenced. The

length of instructions are also variable. This differs from an architecture like SPARC, where

instructions are not variable-length, but instead are fixed-width with enforced alignment.

 With x86 ISA, we also have an inherent flexibility not present in some other architectures,

where we are free to do as we like with regard to calling conventions, using the stack and calling

conventions without restrictions. whereas with SPARC there is much less flexibility, as various

 33

registers are typically used for calling conventions and function arguments. With x86 we also have

less registers than other architectures, which some might at first think of as a hindrance, but it is

more beneficial, because it makes it easier to coordinate data flow from various registers

throughout various instructions, all of which may come from different ROP gadgets (Roemer, et

al., 2012).

 There are several considerations to be aware when constructing ROP exploits. The size of

the binary and its loaded modules will limit the number of possible gadgets, as there may not be

enough useful instructions in sufficient quantity to perform desired actions. Alternatively, a

specific, desired instruction may be present, but there could be actions that occur in successive

lines that induce side effects to other registers, prior to the RET being reached. Those side effects

could render some potential gadgets unusable. Other problems could exist, such as losing control

flow, such as a conditional jump, which would make a gadget unusable.

 The success of ROP is reliant directly upon the amount of code size available. Certain

instructions may appear with less frequency, but after one reaches a certain threshold of code size,

the probability of having a usable number of gadgets available increases greatly. In some cases,

with sufficiently large amounts of instructions it may be possible to have Turing-complete sets of

gadgets, though some may be partial (Roemer, et al., 2012).

ROP: Turing-complete Features

 ROP has been proven to be Turing-complete in all architectures that have been

encountered, as will be discussed (Checkoway, et al., 2010). Thus, theoretically ROP is capable of

producing arbitrary computation in those environments purely by using only ROP gadgets,

although in practice that may not always be the case, if there is a limited number of gadgets

available. New defenses against code-reuse attacks could be evaluated from the standpoint of how

 34

they may adversely impact Turing-complete features. If a defense can completely block one

category of Turing-complete features, then from an evaluative standpoint we might say that the

defense is at least partially effective. If a binary can produce Turing-complete features, then the

argument has been that it is feasible to construct exploits allowing arbitrary computation, given a

binary with sufficient gadgets. This section will explore in detail what constitutes Turing-complete

features.

Turing-complete attributes can be broken down into the following categories: (1.) memory

load and store operations; (2.) arithmetic gadgets, which includes addition, subtraction, negation,

multiplication, and division; (3.) logical gadgets, which includes exclusive or, and, as well as or;

(4.) branching, which includes both conditional and unconditional jumps as well as loops; and (5.)

system calls.

Demonstrating ROP to be Turing-complete has been achieved on every architecture, thus

far, absent any mitigations. Many coarse-grained CFI solutions, such as ROPecker, kBouncer, CFI

for COTS binaries, EMET, and ROPGuard, etc. have claimed that they can stop ROP attacks and

that Turing-completeness had been eliminated, owing to the reduced codebase. Yet in spite of these

claims, Davi & Sadeghi were able to achieve a Turing-complete gadget set on all (Davi, 2014;

Davi, 2015). Many of these solutions, while they do indeed raise the bar for difficulty, also allow

for many more execution paths than are necessary, which a dedicated researcher can take

advantage of (Davi & Sadeghi, 2014, 402). Others have done advanced work with ROP; Roemer,

et al., have created a simple proof of concept compiler on the SPARC architecture. Using ROP,

this compiler can implement a "dedicated exploit programming language" (Roemer, et al., 2012,

28).

 35

Memory Load and Store Operations

Loading a constant is fairly straight forward, often accomplished via a POP, e.g. POP EDX

/ RET. It could also be accomplished through loading from memory, e.g. MOV EAX, EBX / RET.

The lods and stos instructions are other possibilities as well. Storing to registers is straightforward

as well, with instructions like MOV EAX, EDX. Writing values to a place in memory or the stack

is also possible. Other less obvious ways of memory load and store operations can be implemented

via ADD or SUB where an intermediate value is 0 (Homescu, et al., 2012).

Arithmetic Operations

Arithmetic operations are simple to perform. One needs to first load a value from memory

and then perform the desired arithmetic operation, whether it be addition, subtraction, negation,

multiplication, or division. The result must be stored to memory, if it is not already at the currently

desired location. Addition can be accomplished via instructions such as ADD EDX, EAX.

Subtraction can be accomplished via the SUB instruction, e.g. SUB EAX, EBX, or one could also

emulate it via addition. It is important to be aware of less desirable alternatives for addition or

subtraction, as ADD and SUB have same meaning as ADC and SBB, once the carry flag is cleared

(Homescu, et al., 2012). This could be useful with smaller binaries and limited options.

With negation, one could use NEG EAX, to give the opposite. It is also possible to use two's

complement and add one.

Multiplication can be accomplished via a similar process to addition or subtraction,

although multiplication can be somewhat rare at times. In fact, Roemer et al. found no way to do

multiplication in libc, though it was possible to emulate it with addition (Roemer, et al., 2012).

Looping was used to facilitate multiplication or division operations when they may not been

 36

otherwise available. Indeed, in the ARM architecture Davi used the ADDS or SUBS instructions

in a loop to achieve MUL and DIV functionality (Davi, et al., 2010).

Logical Operations

Logical gadgets are necessary to achieve Turing-complete status, but not all may be as

useful for ROP, with the exception of NOT. Exclusive Or is one that can be very useful, and it is

included among logical operations, represented by the XOR instruction, e.g. XOR EDX, EAX.

Others include AND, OR, as well as NOT. The use of NOT and AND can help achieve branching,

depending on one's modus operandi. Finally, shift and rotate instructions are possible as well.

Though it is interesting to note shift gadgets are not always included in Turing-complete gadget

sets (Davi, 2015). Clearly though shifting can also be used to help achieve multiplication or

division, although one is limited. On the whole, Davi found that logical gadgets were not quite as

commonplace as were arithmetic gadgets (Davi, 2015).

Branching Operations

As a whole, branching operations are not the simplest of operations. Unconditional

branching can be instructions such as XCHG REG, REG. Alternatively, a simple POP ESP; RET

may sufficient to get desired branching (Roemer, et al., 2012). Davi also suggested LEAVE for

unconditional branching, which will load ESP with a new address that had been previously loaded

into. Davi also suggested the possibility of simply adding an offset to ESP, such as ADD ESP, 0Ch

(Davi, 2015).Alternatively, one could load an address onto the stack or memory; whatever register

is being used for control flow could then be moved to that location.

While establishing branching was not difficult, doing the same with conditional branching proved

to be the most challenging of all the Turing-complete features to achieve using ROP (Roemer, et

 37

al., 2012). The conditional jump instructions are not useful for ROP, and many require certain

flags to be set. To achieve conditional branching, Davi required four instruction sequences:

negation of a register value, subtraction with carry of that value and itself, anding the value, and

LEAVE:

NEG EAX;

SBB EAX,

EAX;

AND EAX,[EBP-4];

LEAVE

The result is EAX would be the same as EBP-4 if EAX was zero, and if it was not, then EAX

would be zero.

There are other ways to achieve the conditional jump. Conditional jumps could also be

done with ADC. There would need to be two values in registers, then the ADC, add with carry,

could be used to give the sum of the operand as well as the carry flag. If the two operands were

zero, then the result would be either 0 or 1, which can be used to perturb a register, such as ESP

(Roemer, et al., 2012). Conditional branching could be achieved by using addition or logical

operations to set or clear a flag; PUSHFD could then be used to put EFLAGS onto the stack (Chen,

2011). One can extract the flag of interest from the stack through an arithmetic or logical operation.

Then, one can then use neg on the register containing the extracted value. It will be 0 or -1 (Chen,

2010). One then could set the offset to perturb as either 0 or whatever the original value was, based

on flag information (Chen, 2011). Various other ways can be used to achieve conditional

branching. Davi found more than a dozen possible ways of doing unconditional branching in

Kernel32 (Davi, 2015).

 38

System and Function Calls

System calls and function calls are important for exploits, as they allow for different

functions of the operating system to be performed, such as memory allocation, executing a file, or

changing memory protections, etc. In Linux, the system call is typically done via a software

interrupt, such as INT 0x80 or Syscall, for 32-bit and 64-bit Intel respectively, and the EAX

register to specify the system call (Davi, 2015). In Google Android, rather than using EAX for

system calls, the system call number would be in R7 (Davi, et al., 2010). On Windows, one

typically uses wrapper functions, such as the Windows API and the necessary parameters, to gain

access to system calls. For the attacker, system calls can be more time consuming to perform in

Windows, than in Linux. It is more straightforward to use syscall, to call on any of the numerous

system calls available in Linux1. For instance, in Linux the mprotectto function could make a page

writable and executable, and this would use syscall with 125 in EAX, as well as appropriate

parameters for EBX, ECX, AND EDX. Additionally, in Linux sys_execve can be used to

implement a function call from libc.

Other Useful Operations

Additional operations can help facilitate the smooth functioning of Turing-complete

features on the ISA-86, even though they outside their purview. For instance, in dealing with

function calls, NULL is sometimes required, and so having a NULL-byte gadget would be

advantageous. One illustrative function is strcpy, which stops coping data after a NULL, yet the

attacker is at an impasse, as a NULL would typically break a payload. One solution is the AND

instruction, which can be used to create a NULL, after strcpy had been used (Davi, 2015).

1 See Linux System Call Table at http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html for 190 system

calls and required register values.

http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html

 39

The Long-NOP gadget can be particularly useful in allowing a ROP gadget to stay viable.

Some behavioral heuristics can be set off with seven or more short gadgets, and having a Long-

NOP gadget is a way to do this. A long-NOP gadget could be one that is 20 or more instructions

that perform actions of no consequence to the attacker. Ideally, the Long-NOP is one that makes

use of few registers, helping ensure that the registers used for the attack are preserved. The Long-

NOP should be selected to ensure no side effects are caused for registers used by the ROP (Davi

& Sadeghi, 2014)

Beyond ROP

 While return-oriented programming was cutting edge a decade ago, there are presently

myriad defenses against with others in development. This has necessitated that attackers to

consider other possibilities. We must think beyond ROP, into the more general concept of code-

reuse attacks. Me may define these as attacks that subvert control flow by manipulating existing

code to be used in an unintended fashion (Davi, 2015, 9). We may view ROP as a subset of code-

reuse attacks. Code-reuse attacks need not confine itself simply to ROP or ret2libc; the possibilities

are limited only by the imagination of its creators. And there have been a number of variations,

some of which this research will discuss.

 As mitigations increased the difficulty of performing ROP, more advanced code-reuse

attacks were developed, as introduced by Checkoway & Shacham (2010, 2-3). The idea was the

same: use gadgets to modify the control flow and allow for execution of gadgets to achieve

arbitrary computation, chaining them together with some other element of control flow.

 One alternative subset of code-reuse attacks that emerged was Jump-Oriented

Programming (JOP). With JOP, instead of using RET instructions to chain together gadgets, an

indirect call or jump could be used to subvert control flow. Significant, additional complexity is

 40

also required for JOP.

 Different paradigms evolved for JOP, but the most useful of which was introduce by

Bletsch. This paradigm uses a dispatcher gadget in conjunction with a program counter to move

along control flow (Bletsch, et al., 2011). In a sense, a dispatcher gadget happens automatically on

the stack with ROP, due to the inherent nature of IA86. With JOP though, since RET is not being

used, it does not naturally unwind to the next location, and thus a special dispatcher gadget and

program counter are necessary to emulate the functionality of what happens with the stack. Most

current ROP mitigations do not work with JOP attacks, so that is a strong reason in favor of using

JOP. In actual practice, JOP is far more difficult to construct, due to absence of appropriate tools,

much higher complexity in implementing, and much fewer viable gadgets, relative to ROP.

Jump-Oriented Programming

 JOP may make use of many varieties of vulnerabilities, including heap over flow, buffer

overflow, use-after-free are vulnerabilities (Goktas, et al., 2014). ROP has been en vogue for some

time since its academic “discovery” in 2007, but JOP has not caught on nearly to the extent. Even

as of 2015, there have been claims there have been no real world JOP attacks (Qiao, et al., 2015).

That is not accurate, but they are very rare; the first real world JOP attacks were known to have

started in 2010, targeting Adobe PDF. In the literature, Erdődi demonstrated in a JOP attack which

added a user to Windows (Erdődi, "Attacking x86," 2013).

With JOP we can identify three distinct varieties of way of performing JOP. The first is the

"Bring your own pop jump (BYOPJ)" paradigm, as introduced by Checkoway and Shacham. The

second involves a method of setting up a dispatcher table, as introduced by Bletsch in 2011. Third,

there is a method that involves control gadgets and “combinational gadgets,” which we consider a

distinct category in its own right, although it could also be seen as a variation on Bletsch's

 41

dispatcher gadget paradigm (Chen, et al., 2011).

 There is a good reason JOP has not been used much. In the past, JOP simply was not

necessary, as DEP was not rigidly enforced, and ROP defenses were in their infancy (Davi, 2015).

ROP is far simpler and easier, and often inadequate defenses are in place to prevent ROP from

being performed. Why would someone want to spend hours in a manual process to discover JOP

gadgets, when there is a possibility there may not be sufficient JOP gadgets to mount an attack.

Clearly, ROP would be the better choice. However, as chapter 1 discussed, there can be times when

there are strong ROP defenses in place, but inadequate security for JOP. If countermeasures mean

there is a forced absence of ROP, which is a goal of many CFI implementations, then JOP would

be viable.

 Intel’s proposed CET is intended to make JOP impossible, although it may be years off,

and it would require hardware-based support. It would involve indirect branch tracking and a

shadow stack. CET would result in forced alignment to some extent, which would force the

absence of opcode-splitting (“Control-flow Enforcement,” 2017). This by itself would severely

reduce the attack surface, such that attacks likely would not be probable, purely on that reason.

Indirect branching would prevent attackers from entering in the middle of functions as well, which

would require longer gadgets. This would likely induce side effects, which would clobber values

that need to be preserved in some registers. These two features would have the effect of making

nearly all JOP gadgets unusable.

 Barring those restrictions from potential CFI solutions, JOP could present itself as a useful

code-reuse attack paradigm. As example of JOP's potential value, Chen et al. created a

sophisticated, kernel-level rootkit constructed out of JOP, using linux-2.6.15 to perform arbitrary

computation. This enabled them to evade most methods to check kernel integrity as well as the

 42

latest ROP detection schemes then present (Chen, et al., 2011).

Jump-Oriented Programming: Bring Your Own Pop Jump Paradigm

Checkoway and Shacham introduced a new type of code reuse attack, the first variety of

JOP attacks, bring your own pop jump (BYOPJ) or ROP without using return instructions. This

paradigm of JOP required a special sequence to initialize, though inconveniently it is not often

found naturally in code (Davi, 2015). Checkoway & Schacham used a POP X; JMP *X sequence,

with X being any register. This sequence shares attributes with RET, in that it both retrieves a value

at the top of the stack and sets the EIP to said value. In addition, an attacker could use POP X; JMP

*C(X), where C is a constant. Instead of placing a value of Y into X, the attack would simply then

do Y-C, to take into account the offset The POP X; JMP *X is not common; in fact, the POP X;

JMP *X sequence is so rare it is not found even once in libc. Thus, this paradigm is not highly

realistic for practical use in the wild. However, Checkoway & Shacham speculate it could be in

large enough binaries, and they point out the sequence of POP X; JMP *X is needed only once.

The rest can be JMP *Y with Y serving as a pointer to the POP X; JMP *X sequence. The register

holding the POP X; JMP *X address need not be static; that is to say, an attacker could be creative

and shuffle it from register to another, as long as it ends up going to the register containing the

address of the sequence. Other means can be used to load an address into *X, so only JMP X would

be necessary (Checkoway & Shacham, 2010).

Jump-Oriented Programming: Dispatcher Gadget Paradigm

With JOP, each gadget ends with an indirect jump. However, unlike ROP, JOP gadgets are

"uni-directional," and they keep going forward without an easy way to bring control back. The

solution to this impasse was the dispatcher gadgets to both "dispatch and execute" the gadgets,

 43

thereby serving to "govern control flow among various jump-oriented gadgets" (Bletsch, et al.,

2011). Bletsch, et al., had found that the BYOPJ paradigm difficult and cumbersome, and thus they

developed dispatcher gadgets. The logic is much the same as with the BYOPJ paradigm, but

instead of a rare sequence of POP X / JMP X, the dispatcher gadget is utilized instead. The

dispatcher gadget a will subvert control flow to "an internal dispatch table that explicitly specifies

the control flow of the functional gadgets" (Bletsch, et al., 2011).

The program counter is used in conjunction with the dispatcher gadget; it may be used to

point to the dispatcher table with be any register. With every invocation, the dispatch table

advances to the next functional JOP gadget and launches it. Given that the stack is not necessary

for JOP, the dispatcher can use potentially any memory, even that which is not contiguous, to begin

the dispatch table, absent any consideration for possible mitigations in place (Bletsch, et al., 2011).

With the JOP dispatcher, one register can hold the address to the dispatch table. Instead of the

stack, we have something that is predictable, such as adding or subtracting. The hacker have

appropriate gadgets in memory. If a constant such as 4 is used to advance the program counter,

then the table can be organized as an array, while if a memory deference occurs, it can be done

more in the manner of a linked list (Bletsch, et al., 2011).

 The functional gadgets in JOP are designed to go to code pointers that perform the

desired instructions, or what would be considered the just simply gadgets under ROP, only now

they end with an indirect jump (Bletsch, et al., 2011). The functional gadgets could be operations

such as Turing-complete features, loading system calls, etc., or any arbitrary computation. The

requirements of the functional gadgets are twofold. First, they must jump back to the dispatcher

table after executing the function. Second, they cannot have side effects that are destructive to

values within the dispatcher gadget (Erdődi, 2013, "Finding Dispatcher Gadgets"). It may be

 44

possible to have a functional gadget that could survive side effects, if needed registers were

moved to onother registers or places in memory and could then be restored. Such measures may

be necessary at times, given the paucity of functional gadgets available.

 Careful thought is required for selection of dispatcher gadgets. The dispatcher gadgets

should be as short as possible, because each register that is modified in other lines may not be able

to be used much, as that register would be clobbered endlessly. The more registers that are

clobbered, the less viable the dispatcher gadget candidate is. The only exception would be an

intermediate gadget to somehow restore the gadgets. A less commonly used register would be more

well suited as a dispatcher gadget, to state the obvious. Erdődi points out there are many possible

ways to change the pointer of dispatcher gadget, such as incrementing or decrementing a register,

adding or subtracting a value from a register, moving a constant value and a register to a register,

or moving a dereferenced register to a register (Erdődi, 2013). It is considered suboptimal to have

a conditional jump within the dispatcher gadget, even though it is feasible the EFLAGS value

would evaluate to false. Whilst it is certainly unfavorable, it is still potentially viable, though it

adds greater complexity both to the gadget searching and the JOP construction.

Jump-Oriented Programming: BLX Attack on ARM

JOP need not confine itself purely to one architecture. JOP is more limited on ARM. In his

dissertation and other work, Davi establishes one way to perform JOP on ARM using a BLX attack.

Davi's work with ARM included developing a Turing-complete gadget set for a BLX attack. Davi's

gadget catalogue included the following categories: memory operations (e.g. load and store), data

processing (e.g. arithmetic and logical operations), control flow (e.g. branching), and system and

functional calls (Davi, 2015).

The BLX jump-oriented attack centered around the indirect call instruction BLX, or

 45

Branch-Link-Exchange. Only the BLX will allow indirect function calls, accessing addresses of a

branch that may be held in a register, hence this instruction being pivotal to the attack (Davi, et al.,

2010). Davi faced hurdles because ARM has memory alignment, thereby significantly reducing

potential gadgets due to lack of opcode splicing (Davi, et al., 2010). Developing a BLX-based

JOP attack on ARM may be somewhat similar to developing an attack for the NSA CFI scheme,

due to the rigid memory alignment, thereby prohibiting opcode splicing and thus creating a paucity

of instructions. Davi was able to use a heap-overflow vulnerability in conjunction with JOP to

attack an Android app and thereby send SMS message (Davi, 2015).

Solutions and Countermeasures

 As buffer overflow attacks and later ROP became more prevalent, it was necessary to

employ different countermeasures. Two of the earliest and most well-known were DEP and ASLR,

although bypasses soon developed against both. Other detection and mitigation strategies employ

different techniques, tools, and heuristics in order to harden binaries against ROP. Some ROP

detection programs can identify and block ROP. With heuristics, it is possible to create a signature

of different attributes, such as what is referred to as length, or the number of memory address that

appear on the stack, one after the other. ROP attacks often are comprised of long sequences of

short gadgets. Thus, length can help find ROP as that attribute would not occur otherwise (Carlini,

et al., 2014).T he behavior of the binary can also be useful with heuristics in detecting ROP. Other

strategies such as control flow integrity can provide some degree of protection against code-reuse

attacks, although this varies greatly among implementations.

DEP

 Microsoft attempted to provide mitigation against shellcode attacks with Data Execution

 46

Prevention (DEP). This was in response to vulnerabilities that had arisen out of buffer overflows.

This dealt with memory pages, and it prevented code that was readable and writeable from also

being executable (“Data Execution Prevention,” 2009). With DEP in place, attempting to execute

memory protected by DEP will result in an access violation and program termination. With the

/NX used on a compiler, DEP could be utilized on binaries compiled with Visual Studio. As a

mitigation, DEP’s utility is limited, as various ways have been devised to bypass it, most

commonly involving ROP and function calls to VirtualAlloc or VirtualProtect. Once DEP has been

bypassed, then it is possible to have a region of memory that is both readable and writable as well

as executable, meaning an attacker could write and execute shellcode at the same location.

ASLR

 Address Space Layout Randomization (ASLR) was designed to provide a challenge against

ROP. ASLR randomizes the regions of memory, including the heap, parts of the stack, as well as

module base addresses. ASLR makes it unknowable where certain items will be in memory. Prior

to ASLR, these memory addresses would typically be predictable, based on different factors, such

as operating system, software version number, etc. ASLR was first deployed on Windows Vista

on, but it has evolved and subsequently been further hardened. There have been a couple problems

associated with ASLR. Memory disclosures can allow for it to be overcome; once a memory

disclosure is found, offsets can then be calculated to figure out addresses of desired functions or

gadgets, thereby negating the effect of ASLR. The second problem was low entropy in terms of

randomization for ASLR. This meant memory addresses were not predictable, but they could be

brute-forced. However, this has since been remediated by introducing high entropy ASLR with

x64 Windows 8 and up.

 47

EMET

 Microsoft’s EMET is a free security toolkit from Microsoft. For several years it was a

cutting-edge security tool, providing features to attempt to mitigate or stop different exploitation

strategies, including ROP. It contains several mitigations to provide protections, such as Caller

check, SimExecFlow check, LoadLibrary check, EAF check, MemProt check, and Stack Pivot

check. While these and others checks provide strong protection against ROP, they do not stop JOP.

EMET could best be viewed as a hodgepodge of various tricks and tools to try to limit the efficacy

of code-reuse attacks and other exploitation techniques. EMET provided strong defenses for

several years, but it soon became subject to a number of bypasses, most notably by DeMott (2015).

DeMott found several shortcomings in EMET that allowed a total bypass. As others created

bypasses, Microsoft continued to update the tool and mitigate against those bypasses. However, it

became clear that EMET would continuously be an arms race with attackers, with the different

protections that were to evolve serving as merely the next hacker challenge.

EMET is not a tool that enforces CFI. Control flow integrity was viewed by some as the

ultimate solution to ROP. After all, a perfect control flow graph would not allow the unintended

ROP gadgets to be reached in the first place. In actual practice, achieving this is fraught with

difficulty, some of which is detailed later in the literature review. Given EMET’s inherent

limitations, efforts were made to replace EMET with a more resilient tool that would be impervious

to bypasses. Microsoft worked to develop their own instantiation of control flow integrity, resulting

in Control Flow Guard (CFG).

Additionally, Windows 10 also provides similar functionality built into the operating

system, in the form of Process Mitigation Management Tool and Windows Defender Exploit Guard

(Bright, 2017; “ProcessMitigations,” 2018; “Windows Defender,” 2018).

 48

 While EMET has since been deprecated and is no longer supported as of July 2018, it still

may be used by those utilizing older operating systems that lack CFG and other defenses.

Control Flow Integrity Background

 Control flow integrity (CFI) could be used as a final solution to code-reuse attacks, given

the perfect yet at present unobtainable implementation. CFI refers to how an operating system may

implement the natural control flow graph for a program for which it was intended.

The principle behind CFI is to determine an application’s control flow graph before

program execution, allowing the control flow graph to be used to require that control flow adheres

to paths defined in the control flow graph. CFI can be either looser or stricter, i.e. fine-grained or

coarse-grained. Failure to follow said paths as set forth in the control flow graph generally results

in application termination. What makes up those paths is defined by different CFI solutions, with

varying levels of granularity (Davi & Sadeghi, 2014). Precision is important in a control flow

graph. In a fully-precise static control flow graph, an indirect control flow is permitted only when

there is a legitimate trace that follows the edge, avoids malicious attempts at control hijacking, and

does not limit functionality. Often real-world implementations rely upon static analysis to create

the control flow graph, and the result often is an overly loose, coarse-grained control flow graph

(Carlini, et al., 2015). A fine-grained defense is a closer attempt to fully-precise control flow graph,

but it can be overly restrictive, meaning it may block paths that are legitimate.

 According to Davi & Sadeghi, CFI can be broken into three categories of policies. The first

deals with rules for indirect branching. Second, there may be heuristics that attempt to capture

attributes of ROP behavior that may try to undermine CFI. The final category is when the

inspection occurs (Davi & Sadeghi, 2014, 404). The strength of CFI is in how precise the control

flow graph is, i.e. the hard limit for precision, as well as how precise run-time checks may be. If it

 49

is inadequately precise, then unintended control flow may occur (Payer, et al., 2015).

 In the control flow graph, there are basic blocks (BBLs) represented as nodes. A BBL is a

sequence of Assembly instructions and edges, which function to connect two nodes. Control flow

may occur directly or indirectly, as with return, jump, and call. To facilitate this, CFI often inserts

labels at the start of BBLs. CFI validates control flow transfers that occur at runtime, to ensure

indirect branches go to BBLs that have the appropriate label (Davi & Sadeghi, 2014). CFI that is

looser, in that it allows for fewer labels, may improve performance, but it results in a control flow

graph that is less precise. On the other hand, as far as practical implementations are concerned,

CFI that is based on a strict control flow graph could limit legitimate returns, so there is the

dichotomy of being too strict and causing potential exceptions with greater overhead, and then

being less strict with lower overhead but leaving more opportunity for exploitation (Goktas, et al.,

2014).

 When discussing CFI, it is important to be aware of the different protections that can be

offered to different types of attacks. Forward-edge CFI protects against indirect JMP or CALL

sites, while backward-edge CFI protects against RET instructions (Spisak, 2017).

 CFI needs to have a shadow stack in order to have a strong defense (Carlini, et al., 2015).

The shadow stack is merely one way to help implement some of the policies of CFI, though it is

one of the strongest ways of doing so. There can be a sharp cost though, as some CFI

implementations with shadow stacks can have performance overheads, with an average as high as

21% (Davi & Sadeghi, 2014). This clearly means that CFI without dedicated hardware is not quite

ready for widespread deployment. Dedicated hardware is not available, although Intel is working

on the forthcoming CET.

 One of the main efforts at restricting returns is performed via a shadow stack. The idea is

 50

that only legitimate return addresses, i.e. those placed on a shadow stack, can be returned to without

triggering an application termination. This helps prevent the arbitrary arrangement of code pointers

ending in ret from achieving a ROP payload. CFI with a shadow stack will typically limit an

attacker to just system calls that are available within the application (Carlini, et al., 2015). There

have been several drawbacks to previous efforts at shadow stacks. One is incompleteness, in that

they protect against code from compilers, but not so from hand-written assembly, potentially

leaving some third party libraries unprotected. There are also incompatibility issues, where

complex program may have returns that do not match calls, leading to false positives. These are

serious issues that need to be addressed, before any implementation should have widespread

deployment (Qiao, et al., 2015).

Control Flow Guard and Return Flow Guard

 Control Flow Guard (CFG) is Microsoft's attempt to prevent control flow to unintended

locations. It accomplishes this chiefly by storing valid addresses in a bitmap and performing a

check before every indirect call, in an effort to ensure the target address is valid. CFG offers

defense against ROP, though it is very coarse-grained. CFG does provide forward-edge CFI, so it

offers protection against indirect CALL or JMP sites. Microsoft’s Return Flow Guard (RFG)

provides complimentary support for backward-edge CFI, by providing a software-based shadow

stack. With RFG, protection is not assured for return addresses, as it is possible to call valid

functions out of context. It is also possible to corrupt return addresses on the stack. CFG willl

integrate with the proposed CET hardware enhancement from Intel, further hardening the CFI

protection offered. Many individuals have bypassed CFG and RFG (Wojtczuk & DeMott, 2015;

Spisak, 2017), and it is anticipated bypasses will continue to emerge.

 51

NSA's CFI Implementation

 The NSA developed a proposal for CFI that would do very well in mitigating both ROP

and JOP attacks. Their proposed implementation consists of a shadow stack, which is implemented

at the hardware level (NSA, 2015). The hardware for the shadow stack has not been prototyped,

and they left some questions as to how it would work up to the industry. For it to be adopted would

require considerable industry buy-in of the idea. It seems that Intel has taken notice, and they have

worked to develop a solution that offers similar functionality, CET. The second key part of the

NSA proposal was the addition of three landing point instructions to Assembly. These are for the

RET instruction and movement to CALL or JMP sites. That is, the compiler would produce these

landing point instructions at the start of the function. If a code-reuse attack attempted to enter a

function at a location other than the entry point, then there would be an exception, causing the

processor to abort the program. This would prevent opcode-splitting from being used additionally.

Currently, the opcodes for these landing point instructions would function as NOPs. The NSA's

proposed CFI scheme could function with just the landing point instructions, or it could function

with the landing point instructions and the hardware shadow stack. The work of several researchers

indicates it is feasible though very unlikely that the landing point instructions could be defeated in

any meaningful way, in the absence of the shadow stack, though some Turing-complete features

can be performed. The chances of doing an actual attack with landing point instructions present is

highly unlikely, and if it were possible to do so, it would take considerable effort and likely would

be very limited. With the presence of the proposed shadow stick, the chances of this CFI scheme

being compromised in any meaningful way are highly remote.

CET

 Intel and Microsoft have proposed a new technology to deal with CFI. Control-flow

 52

Enforcement Technology (CET) is a joint effort to rigidly enforce CFI (Intel, 2017). CET is

comprised of two elements, a hardware-based shadow stack and Indirect Branch Tracking. The

CET shadow stack is used only for control flow operations, such as control flow addresses and

shadow_stack_load and shadow_stack_store; no other values are kept there (Intel, 2017). It is held

in system RAM and protected by the CPU memory management unit (Williams, 2016). With

Indirect Branch Tracking, we have a new instruction, Endbranch. This is used to mark and keep

track of control flow targets that are valid. As with the NSA proposal, the opcode is otherwise a

NOP for legacy systems. Indirect Branch Tracking uses a sate machine, to keep track of calls and

jumps. If there is a JMP or a CALL, the state will go from IDLE to WAIT_FOR_ENDBRANCH.

If the endbranch is not forthcoming, there will be a fault. Thus, the endbranch instruction is able

to help find control flow violations. For CET to function, the processor needs to offer support for

it. CET is currently in preview. However, GCC and Microsoft Visual Studio both have begun

compiler support for CET. It is unknown when Intel will roll out CET.

 CET is similar in some respects to the efforts from the NSA Information Assurance

Directorate. Both involve a shadow stack for to implement backward-edge CFI. NSA's CFI scheme

is more fine-grained, however, with different landing point instructions. CET was influenced by

the NSA proposal, but it has taken a different approach. Both require hardware support, and as

such there are not implementations available as yet to researchers, though the NSA made compiled

ELF binaries publicly available to researchers on their GitHub.

Other ROP Solutions

While EMET, CFG, DEP, and ASLR all provide strong yet imperfect defense against ROP,

there are various other solutions that have been developed. A sampling of some other solutions to

 53

ROP are provided here. Some of these mitigations, while providing lower overhead and good

security, can be compromised (Carlini & Wagner, 20014).

Kbouncer

 Kbouncer can utilize hardware to examine a variety of indirect branches, to try to determine

if ROP is being attempted. If a system call is made, kBouncer can examine the history to verify

the call was valid and not part of a ROP gadget. Whenever a system call is made kBouncer, it will

utilize Last Branch Record to examine a history of 16 of the last indirect jumps, making sure that

they all return to only an address that was call-preceded. If kBouncer can detect that 8 of the last

memory addresses utilized are gadget-like, then it will kill the process. One behavioral heuristic is

to specifically check that each RET is preceded by a CALL instruction (Carlini, et al., 2014).

Another common heuristic is examining the histories of gadgets. If enough of what appears to be

ROP gadgets are used in a set period of intervals, then it could be flagged as ROP. While this is a

valid signature pattern, an attacker could still overcome it. For instances, the histories kBouncer

maintains only go so far before they are overwritten, and an attacker could exploit this. A history

flushing attack could be performed by making a 16 safe indirect jumps sufficient to wipe out

kBouncer's history (Carlini, et al., 2014).

ROPecker

 ROPecker is an extension available to kBouncer. ROPecker can look at different places for

an attack throughout the execution of a program (Carlini, et al., 2014). ROPecker performs its

inspections more frequently and in a more meticulous fashion. ROPecker additionally allows for

only a small number of pages to be executable. Thus, if there is an attempt to execute a page outside

this range, a page fault will occur. ROPecker will then commence searching for an attack. Like

 54

kBouncer, ROPecker also performs efforts at detection whenever a system call is made. If a page

fault occurs, not only will ROPecker look at the past history via the Last Branch Record, but it will

also look forward at what it is about to happen. With ROPecker, if 11 or more of what could be

considered gadgets that are less than six instructions in length occur back to back, then it will

terminate the process (Carlini, et al, 2014).

As with most ROP defenses, ROPecker is not impenetrable. One way is to use an evasion

attack and make use of a termination gadget after 10 or less gadgets; this would ensure that the

number of gadgets needed to trigger the process being terminated (11) is not reached. An attacker

would need to be careful choosing a termination gadget, to ensure that any registers that need to

be preserved are not clobbered.

G-Free

 G-Free is another tool that can help combat ROP (Onarlioglu, et al., 2010).

G-Free achieves its defensive capabilities through recompilation. How it accomplishes this is by

taking away unintended ret instructions and by also encrypting return addresses. It enhances this

security by going further and encrypting the return address with a random nonce at the function

entry point and then ensuring it is there at the function exit (Goktas, et al., 2014; Qiao, et al., 2015).

If recompilation is occurring, then the result will be that ROP gadgets are then made to be

challenging to use. Another of the ways in which G-Free can provide defense is through enforcing

alignment, which is critical in reducing the attack surface (Goktas, et al., 2014). One of the key

ways in which ROP is able to increase the attack surface is through opcode splicing, as IA-86 does

not enforce alignment; G-Free would mitigate this.

 55

ROPGuard

 ROPGuard is a tool to detect and prevent ROP, and it won second prize for Microsoft’s

BlueHat Prize contest. As part of that, some of its functionality was later baked into EMET.

ROPGuard works to ensure essential Windows API functions must have a call-preceded instruction

occur first. ROPGuard also checks that the word that precedes the return address is the true start

of an essential function. This will protect essential functions, but it does not offer the same

protection for non-critical functions. ROPGuard also provides additional security by examining

the stack to look for what could be other possible ROP gadgets, and if these are found, the program

then terminates. ROPGuard makes use of heuristics in order to check and see if a stack pointer

does not go beyond what is defined as the limits for the stack, thereby mitigating against attacks

on the heap (Davi & Sadeghi, 2014).

 ROPGuard offers no protection with respect to indirect jumps or calls, so while it may

provide defense against ROP, it does not provide defense against JOP.

Other CFI Solutions

Microsoft’s Control Flow Guard is the preeminent implementation of CFI, but there have

been many different CFI solutions that have been developed. Section examines some prominent

ones that have appeared in the academic literature.

Cryptographically Enhanced Control Flow

 Cryptography can be used to enhance CFI. The proposal for Cryptographically Enhanced

Control Flow still requires a fair amount of work to be effective, but it holds great promise. The

approach is to utilize message authentication codes (MAC) to provide assurance for vtable

pointers, return addresses, and function pointers, thereby greatly hardening the control flow

 56

(Mashtizadeh, et al., 2014). This provides a number of advantages. First, CCFI requires that in

order for an adversary to launch a ROP attacker, they must somehow observe a specific MAC that

it is utilized. Second, CCFI requires that a MAC can only be utilized with the pointer that it is

associated with. These two facts together can help avoid the need for an open, coarse-grained CFI,

as that assurance will be provided instead by the MACs.

 Whenever any objects pertaining to control flow are encountered, the return address is

placed on the stack alongside MACs generated using the return address and the frame pointer.

Subsequently, the MAC is verified in the epilogue before it is returned to the caller. This is key in

helping to avoid a hypothetical attack where the adversary would pop the upper stack frame, in

order to then move to different return addresses.

CCFI implements its cryptography by storing a random key in a dedicated register.

Utilizing a register can help prevent a memory disclosure. In addition, the MAC also includes

additional metadata to help mitigate against the threat of swapping pointers that could have been

leaked. CCFI also makes effort to mitigate against other emerging attacks. Thus, RELRO is utilized

to ensure that the GOT is made read-only, thus getting rid of an older attack that is seeing increased

use (Mashtizadeh, et al., 2014).

 CCFI is subject to criticism. Some programs required manual computations for MAC to be

inserted, which would be impractical for a real-world implementation. Other issues can arise, as

when void* is used for both arguments of memcpy. Most concerning of all is the high performance

overhead, which can range from a lower 3-18% to an unacceptably high 38%. It is also possible

the hashing may be too expensive an operation to perform for any real-world CFI implementation.

CCFI, while imperfect, is mentioned because of the innovation and the tremendous that hashing

may add.

 57

Lockdown

Lockdown is another prominent tool that provides a more fine-grained, dynamic approach

to CFI (Payer, et al., 2015). With Lockdown, import and export definitions are used to approximate

the jump targets, and target approximation can also occur at time of execution through dynamic

binary analysis, thereby dynamically changing the control flow graph for the process being

executed. Furthermore, the current object can only proceed to where it is dictated by the current

object imports and exports, thereby allowing for only valid functions to be reached (Payer, et al.,

2015). One of the more robust ways in which Lockdown enforces control flow integrity is through

the shadow stack. Thus, valid addresses from function calls to specific addresses are placed onto

a shadow stack. If there is an attempt made to reach an address that has not already been placed on

the shadow stack, then the program will fault. In addition, the shadow stack within Lockdown also

requires that control can only be given back to the caller or sometimes the previous caller, thereby

preventing many addresses for ROP gadgets (Payer, et al., 2015). Lockdown is fine-grained in its

approach to CFI, and it becomes increasingly more fine-grained when there are more modules or

libraries associated with a process. Thus, the more libraries there are, the more fine-grained the

CFI (Payer, et al., 2015). Lockdown also augments its defensive capabilities against ROP with

strong restrictions on intra-module indirect calls. Beyond these powerful capabilities, Lockdown

can analyze and make sense of symtab and dynsym information from ELF binaries to better restrict

boundaries for jumps (Payer, et al, 148-150).

Summary

Chapter 2 has explored the evolution of code reuse attacks from return-to-libc, to ROP, and

to JOP. Prominent forms of memory corruption have gently been introduced to the reader. There

 58

has been discussion on the different mitigations and countermeasures that have arisen, such as

DEP, ASLR, EMET, as well as various implementations of CFI, e.g. Microsoft’s CFG. Other

solutions to ROP and CFI have been examined. Chapter 2 will help provide a broad overview of

the necessary concepts one must grasp to be fluent in code-reuse attacks.

 59

CHAPTER 3

RESEARCH METHODS

Chapter 2 provided a broad overview of the literature that comprises the background

needed for this research. We were able to ascertain the current state of research with respect to

code-reuse attacks and the various mitigations in place that attempt to curtail their usage. In the

sections that are to follow, Chapter 3 will present the research methods that will be employed in

this study. In addition, this chapter will not only discuss how this framework works, but it will \

demonstrate why this framework is the inevitable result of a DSR inquiry into this research

question. This chapter will discuss how this research satisfies the design science guidelines of

both Wieringa (2014) and Hevner, et al. (2014). Finally, chapter 3 will define in detail the

requirements, development, as well as implementation of the framework.

We are reminded that purpose of this research broadly is to facilitate advanced code-reuse

attacks. More specifically, this research aims to develop a novel framework can greatly simplify

the process of constructing JOP exploits, making what was once a manual and potentially labor-

intensive process, into a far simpler and more fruitful activity.

Hypothesis

A hypothesis takes a clearly worded stance that predicts the behavior of different variables

within a system (Creswell, 2018). The hypothesis for this study is that a software tool can be

created to greatly reduce the effort required to construct a JOP exploit. This hypothesis will guide

the work that will be done in this study. Without the presence of this framework and its methods,

 60

the effort needed to construct JOP exploits would be significantly higher. This is a causal

explanation, describing how this framework will facilitate a possible occurrence.

The null hypothesis will be that a software tool cannot be created to greatly reduce the

effort required to construct a JOP exploit.

Research Approach

 This research will make use of design science methodology, and the resulting artifact, the

JOP ROCKET, will answer the research question. While Hevner, et al., are much more well-known

with design science, this research will pursue a DSR inquiry by looking at Wieringa, due to the

highly technical nature of this work. Wieringa’s approach to design science is better suited to this

study, as it is more apposite to software development, reverse engineering, and exploit

development. The JOP ROCKET is not intended for information systems or business use, but

because of its widespread use in design science, this chapter will endeavor wherever possible to

show how it not only follows Wieringa, but also meets the guidelines set forth by Hevner, et al.

 The problem, having been identified in chapter 1, is the need for a novel framework that

helps facilitate the discovery of JOP gadgets and simplify the construction of JOP exploits. The

motivation is the lack of available tools to provide this needed functionality and the difficulty and

potentially time-consuming nature of doing so without such a tool. As mentioned previously,

Roemer spent weeks finding just a couple dozen gadgets that met certain classification criteria for

Turing-complete features. This was work done by manually looking at disassembly from a Solaris

libc file, and it was using the far simpler ROP. Without proper tools, a manual undertaking seeking

JOP would be time-consuming effort.

This will employ the design science research methodology, and it will result in the creation

 61

of an artifact, the JOP ROCKET. According to Wieringa, design science entails performing both

the investigation and design of artifacts in a specific context. The artifacts in turn are designed to

address the problem context with an aim of improving it (Wieringa, 2014). DSR is intended to

develop a practical approach or method to allow the problem to be better understood, allowing for

the cycle of re-evaluation and improvement of design, to lead to a superior solution that satisfies

the research problem (Watts, 2009). Validation and evaluation are hallmarks of the DSR cycle, as

different iterations inevitably lead to a continuously improving artifact and bringing into focus

different DSR choices.

This research will adhere Hevner’s DSR guidelines. They assert design science is very

much concerned with the process of discovery through artifacts that have been created in order to

address certain problems (Hevner, et al., 2004). Design science, thus, can be fruitful and allow for

new and useful knowledge to emerge from the creation of an artifact, and that knowledge can pose

a significant contribution to the collective knowledge of the cyber security discipline.

Design science problems also demand a careful analysis of stakeholder goals (Wieringa,

2014). The stakeholders here can be identified as a security researcher engaged in exploit

development. The security researcher is one who wishes to have the ability to more easily discover

relevant JOP gadgets, classify them, and exclude those which have minimal value. To do this

through an automated tool would save a monumental effort that would need to be expended doing

it manually. Another stakeholder could be defenders; these could consist of individuals who might

devise or utilize defenses against JOP. The JOP ROCKET could perhaps lead to superior defenses.

The stakeholder goals will have been carefully considered when devising the requirements for the

artifact.

 62

Hevner’s Desigin Science Guidelines

 Hevner provides seven guidelines in their seminal piece on design science. These

guidelines are listed in Table 1, alongside both a description of the guideline and details as to how

the JOP ROCKET satisfies these guidelines (Hevner, et al., 2004).

Table 1. Hevner Design Science Guidelines

Guideline Definition Artifact

Design Science

as an Artifact

Design science should result in

creation of an artifact in the form of

model, construct, instantiation, or

method

JOP ROCKET will adheres t these

principles. It provides an instantiation

of a framework and five supporting

methods.

Problem

Relevance

Design science research is focused

on developing solutions to

important business and information

systems problems

JOP ROCKET will fully address the

problem of not having an automated

process to help construct JOP exploits.

This will eliminate what could be very

time-consuming, tedious work.

Design

Evaluation

The design artifact must be able to

withstand scrutiny from rigorous

evaluation to ensure sufficient

utility, quality, quality, and

effectiveness.

The accuracy and validity of its results

will be tested by making use of several

existing reverse engineering tools to

ensure accuracy. The artifact will be

developed in a protype environment

and made use of single-case

mechanism experiment (laboratory

 63

simulation), to demonstrate its

efficacy and utility.

Research

Contributions

The design science research must

provide verifiable contributions

with respect to design foundations,

design artifact, or design

methodologies.

JOP ROCKET provides contributions

to design science research, by

providing a sorely needed tool that is

highly useful for creating JOP exploits

or exploring the possibility of doing

so. Several of the novel methods could

be adapted and used in other reverse

engineering tools unrelated to JOP.

Research Rigor Rigorous methods must be used

both during the artifact’s

construction and evaluation.

JOP ROCKET will be subjected to a

cycle of testing throughout the entire

development cycle. A single-case

mechanism experiment will be used to

provide validation and evaluation of

the artifact.

Design as a

Search Process

Available means must be used

during the search for an effective

artifact, while also not violating

laws within the problem

environment

JOP ROCKET was developed through

a highly iterative cycle to help ensure

the best possible artifact apposite to

the task was created. Additionally,

other code-reuse attack tools relating

to ROP and more general-purpose

reverse engineering tools were

 64

examined closely, to determine what

was effective and what could be

improved.

Communication

of Research

Design science should be able to be

communicated effectively not only

to a technology-oriented audience,

but also to one that is managerial.

JOP ROCKET provides rich, detailed

information to the intended technical

audience. It generates files and

statistics on its findings, to be of use

to security researchers and technical

users. A managerial audience can

understand that it produces desired

results.

The DSR process inevitably is part of a cycle, with different iterations allowing for the design of

the artifact build to improve, while the problem can be closely examined and research methods

can be enhanced as needed.

Design as an Artifact

In the first guideline, the design research must yield a viable artifact that results in a

construct, a model, a method, or an instantiation (Hevner, 2004). Wieringa writes that an

instantiation of a software solution should be referred to simply as an artifact; both will be used

interchangeably in this chapter (2014). This research will produce an instantiation of a framework

that is designed to help facilitate exploit development. The JOP ROCKET will also encompass

several novel methods.

 65

Together the artifact and its methods will solve a problem that has hitherto remained

unsolved. This is achieved by creating a framework that allows for the discovery of JOP gadgets

in an innovative fashion. In addition, it expands upon and refines the algorithm for JOP gadget

discovery. Refinements on the algorithm will allow for considerably more gadgets to be found,

helping to ensure that potential gadgets are not missed.

Problem Relevance

Problem relevance asserts that DSR must yield technology-based solutions to important

and relevant business problems (Hevner, 2004). The JOP ROCKET will achieve such, by meeting

the needs of those in the business of exploit development, as well as by providing additional

motivation for enhanced cyber security to those play a defender role within organizations.

The primary problem relevance is the lack of supporting tools, as addressed in chapter 1.

Existing tools that make use of gadget discovery for PE Files only provide very minimal support

of JOP gadgets, such that they are of minimal utility. The Mona python script (Van Eeckhoutte,

n.d.) and ROPGadget (Salwan, n.d.). provide scant to barely existent coverage; this is certainly

understandable as these tools were designed to discover ROP gadgets. The only way to obtain the

needed information to construct a JOP exploit would require using multiple reverse engineering

tools, and it would be a time-intensive, manual process. Moreover, it would require a mastery of

those tools that many would-be users of JOP simply may not possess. Roemer, as described in

chapter 1, spent three weeks just manually searching for ROP gadgets in a Solaris libc file to find

gadgets for his Turing-complete features gadget catalog for SPARC, as there were no tools

available. JOP is a much more complicated process. This research will also provide a classification

of gadgets, as part of one of the methods, and that includes many Turing-complete features. This

classification will greatly simplify and enhance the process of constructing the JOP chains.

 66

By having a way to find JOP gadgets in an automated fashion, then JOP becomes viable as

an attack paradigm, which previously was not the case. This can allow JOP to then be used on

systems that may have strong defenses against ROP, but whose defenses would be inadequate for

JOP, as discussed in chapter 1. Exposing many systems to the threat of JOP underscores the need

for better CFI and enhanced cyber security. It motivates defenders to find solutions to JOP, or to

upgrade to operating systems that can provide defense.

Design Evaluation

The third guideline, that of design evaluation, asserts that the triad of efficacy, quality, and

utility must arise from the design artifact; furthermore, these attributes should be demonstrated via

well-executed evaluation methods (Hevner, 2004).

The framework will make abundant usage of validation techniques in the form of a single-

case mechanism experiment. According to Wieringa, single-case mechanism experiments are used

for implementation and evaluation of a design science artifact. This allows researchers to

investigate, in a lab or natural setting, the cause and effect of the object of the study within an

environment containing the intended context. The mechanism describes the interaction among the

various elements at play, showing the effect the artifact has on the natural phenomena in the real

world. The response can then be understood through the unique mechanisms intrinsic to the model

(Wieringa, 2014) . Single-case mechanism experiments can be done in two ways, either by

investigating an implementation in a natural, real world setting, or by making use of an artifact

protype in a laboratory environment (Wieringa, 2014). This research will pursue the latter.

Single-case mechanism experiments are highly effective in the validation of new

technologies, such as the JOP ROCKET, by performing evaluation of the utility and effectiveness

of the design. One of the most labor-intensive parts of the design cycle of the artifact will be in

 67

demonstrating these attributes. These experiments may respond to questions such as, can the

framework be used in a way that is useful to the practitioner? We will find this is likely to be the

case, as it will provide classification of JOP gadgets, using some Turning-complete features as

well as others that are useful for JOP. This ensures the gadgets were organized in a way that was

meaningful and useful to the practitioner. We will find that with this framework, the practitioner

will be able to be very granular and specific about the types of gadgets they are searching for, and

to get results that are specific to those needs. Additionally, gadgets that likely would be of little

use will be excluded, thereby saving the security researcher from the need to manually consider

each gadget for potential use.

If the artifacts are able to respond fully the research problem and the primary research

questions, there could be an argument that the JOP ROCKET has met evaluation criteria, if testing

with a single-case mechanism experiment is able to validate the technology. Each of the artifacts

have specific aims that will be described in chapter 4, and from a DSR standpoint, if this research

creates a tool that can satisfy all those goals, while producing the intended results without errors,

then the evaluation will be successful. As a very complex tool, the fact that it simply works and

does what it sets out to accomplish some very non-trivial tasks demonstrate it has met evaluation

criteria

 Tied closely to evaluation is the accuracy of the gadgets. While we can view this from a

more high level perspective, in that we need the artifact to meet various goals, if the accuracy is

off, then it cannot satisfy many of these goals. Widely used reverse engineering tools, such as IDA

Pro and WinDbg, will ensure accuracy of the gadgets. First, it will ensure the disassembly

produced is accurate. While this framework makes use of the Capstone disassembly engine, this

is not altogether straightforward. The JOP ROCKET is a static analysis tool, and is not looking at

 68

a process, but is working with code from the text section of the PE file, reading from disk, rather

than from process memory. If the disassembly begins at the wrong byte, then the disassembly that

it produces is not accurate. The resulting disassembly will be checked in IDA Pro or WinDbg as

appropriate, both at the Assembly mnemonic level and also looking at the opcodes.

 Second, the algorithm to find JOP gadgets will search for the desired indirect jump or call,

and then it will disassemble backwards to discover opcodes that could then become useful gadgets.

If the algorithm goes back 8 or 10 bytes to begin disassembly, this will cause opcode-splitting,

meaning the resulting disassembly could be different, depending on which byte the disassembly

starts at. Ensuring these results are accurate will be critical, if the JOP ROCKET is to have any

value.

 Third, while having accurate disassembly is necessary, having the correct virtual memory

addresses as well as the correct offsets is equally important. After all, an inaccurate address will

not allow us to reach the intended gadgets, and thus the gadgets would be of minimal value. Any

of the aforementioned reverse engineering tools can allow us to perform inspections to see if these

are correct.

Research Contribution

Guideline four states that an artifact needs to contribute to the province of design artifact,

potentially encompassing artifact design, design methodologies or design foundations (Hevner,

2004). This framework will contribute materially to the discipline, satisfying hitherto, unmet

needs. Because of the capabilities provided by this framework, exploit developers and security

researchers will all stand to benefit from the JOP ROCKET, as it helps simplify the necessary tasks

that otherwise would have had to been performed manually or semi-manually. This could be a

monumentally difficult and highly time-consuming task. It would require specialized knowledge

 69

and use of multiple tools, barring entry to many researchers to JOP. The value and importance of

having this tool for security researchers cannot be overstated. JOP ROCKET will enrich the area

of design artifact by providing a well-tested artifact that that provides a solution that has some

unique, novel methods. Some of the methods used, as will be described more fully in chapter 4,

independently could constitute worthy research contributions. Some could be taken and adapted

for more general-purpose reverse engineering tools. In sum, this artifact will utilize existing

knowledge in ways that are both innovative and novel, allowing for unanswered research problems

to be solved.

Research Rigor

The fifth guideline concerns research rigor, and it asserts that DSR should employ rigorous

methods not only during the construction of the design artifact, but during the evaluation (Hevner,

2004). This rigor has been achieved by iterating through the different stages of design science as

well as working to ensure that the results it produces are accurate and valid. The work accepts as

valid the results produced independently by different existing reverse engineering tools; producing

results that line up with those help to provide rigor. In one sense, the question of research rigor can

be addressed in an objective fashion by whether or not it achieves its stated aims. If it can do this

and those results can be verified, then it will have demonstrated research rigor. If the artifact is

able to provide classification of gadgets to enable security researchers to take a very fine-grained

approach to gadget discovery, that too will have made a contribution towards research rigor.

Design as a Search Process

Guideline six, which deals with design as a search process, states that the search for an

effective artifact requires making use of all possible means to reach an effective artifact, while

 70

satisfying the laws inherent in the problem environment (Hevner, 2004). This framework meets

these guidelines. This tool will be developed in a prototype environment, after multiple years of

studying code-reuse attacks, close examination of the literature, examination of existing reverse

engineering and exploitation tools, and through iterating through the design science cycle to help

achieve the most effective tool apposite to the research problem. The design science cycle by its

very nature is iterative, allowing for multiple cycles of development, validation, and improvement,

to achieve a superior tool.

Communication of Research

The final Hevner guideline, that of communicating research, asserts that DSR must be

presented not only to a technology-oriented audience, but also one that is managerial (2004). This

work is communicated effectively to a technical audience through this dissertation, which provides

abundant technical detail and discussion. Hevner’s DSR guidelines deals with information

systems, businesses, and the management that oversees those businesses, thereby necessitating that

part of the research be understandable by them. This is one of the guidelines where this study

follows Wieringa more. The communication of the results that will be created by this framework

will be readily understandable to the intended users, consisting of security researchers and exploit

developers. The JOP ROCKET is not intended to break down the results in layman’s terms for

management, as it is assumed that largely this work would be beyond their understanding. This

largely is one of the shortcomings of Hevner, since not all design research will be on a level that

is accessible to a management audience. However, the fact that the framework will produce results

in well documented files and provide statistics on the number of gadgets found is a form of

communication that a managerial audience may appreciate. They may recognize that it is doing

 71

what it sets out to do, generating JOP gadgets that can be used to construct a JOP exploit; any more

in-depth understanding would be unnecesary.

As has been alluded to, the intent is not to follow Hevner’s design principles, although we

find that, according to the above, these guidelines largely would have been satisfied. Because of

the highly technical nature of this framework, it instead follows DSR guidelines set forth by

Wieringa. His work, while much less widely known, seems more appropriate to creating software.

Wiering’a DSR model attempts to answer two types of research problems, design problems

as well as knowledge problems (2014). The first attempts to improve upon something, where utility

is a goal and knowledge is a side effect. The second attempts to discover knowledge, explaining,

predicting, and describing, with truth as the ultimate goal and utility as an inevitable side effect.

The algorithm for finding JOP has already been established, so this research does not endeavor to

rediscover the wheel, but it instead improves upon and expands previous research.

Wieringa’s Design Science Guidelines

Wieringa describes a scientific theory as a conceptual framework that can help frame a

research problem, allowing for phenomena to be both described and subjected to analysis, such

that generalizations can be formed, allowing for the structure of the artifact and its context to be

laid out (2014). These generalizations may help explain some the causes or reasons why the

phenomena are such. Having formed useful generalizations, these may be in turn used to help

provide the necessary justification for designs of artifacts that may arise. The framework can be

viewed, not just as a way of specifying an artifact, but a way of defining methods, asking questions,

and interpreting the specifications; it can be a way of discussing the architecture, as well as its

different capabilities and components (Wieringa, 2014).

 72

Wieringa writes that with an architectural framework, a system’s various components are

responsible for its behavior. Thus, we could view the proposed instantiation of the JOP ROCKET

as an architecture whose various components are responsible for its “system-level phenomena”

(Wieringa, 2014). As designers, we then can explore the various available options by attempting

different possibilities and observing the effect they have on system behavior (Wieringa, 2014).

With respect to the JOP ROCKET, we can abstract different parts of it, different methods, different

features, different algorithms, and explain the effect those have on the system phenomena. These

phenomena would include JOP gadgets, the opcodes, the disassembly, and the different

classifications. As we embark upon this research, the iterative process of design science will enable

us to observe the effects different methods may have on the results. By closely looking at these

effects and by making changes to enhance results, we can create the best artifact possible. Some

DSR activity through the iterative process may lead us to rethink or refine different algorithms,

variables, or methods, and this too will enhance the artifact.

Goals are used to help provide a definition to the research problem; these goals have been

enumerated in chapter 1. Design research can then address a design problem, which necessitates

an iterative process of designing an artifact in order to satisfy said goals. These design problems

stem from both the stakeholder’s goal as well as the problem’s context (Wieringa, 2014). The

artifact is the vehicle through which the stakeholder goals can be satisfied. This can be broken

down to the form of a template: “Improve <a problem context> by <(re)designing an artifact> that

satisfies <some requirements> in order to <help stakeholders achieve some goals> ” (Wieringa,

2014). This template could be applied to any design science problem. In the case of this research,

we will express the aim of this research as such: This research will improve the need for automated

tools for JOP discovery by designing a framework that satisfies both its stated technical and major

 73

functional requirements, in order to facilitate the development of advanced code-reuse attacks and

allow users to save significant time and effort.

According to Wieringa, the three primary phases of a design science engineering cycle

consist of problem investigation, treatment design, and treatment validation (Wieringa, 2014). The

problem has been thoroughly investigated in chapter 1. Treatment design consists of those

requirements that contribute to the goals of the implementation. These have been expressed

separately within this chapter, as technical requirements and major functional requirements.

Wieringa’s work on treatment validation will be addressed in chapter 4.

Objectives

The next task is in defining the objectives for the framework. These objectives are an

integral part of the design for this artifact:

It should identify all gadgets for each indirect call or indirect jump to a particular register.

These could form the foundation for the functional gadgets.

It should then use criteria to establish and discover potential dispatcher gadgets. These will

be few and far in between for ones that are viable, and good ones will be even more scarce.

It will use criteria to eliminate gadgets that are by likely to be of no practical use. These

can be identified through analysis and if found may be discarded before the analyst even

needs to look at them.

It will classify gadgets into different categories that roughly correspond to features of the Turing

catalogue as well as additional classifications that are practical in constructing a JOP exploit. Not

all Turing-complete features will be utilized, as they are beyond the scope of what this tool is

intended to do. Some, for practical purposes, would be very difficult to do with JOP in real-life,

 74

non-toy binaries. These will make extensive use of analysis to reject gadgets that most likely are

to be of marginal or no practical value, saving the analyst time that otherwise would be wasted.

This feature will be of tremendous utility to the security researcher, as instead of having to potential

comb through vast numbers of gadgets, they can look at the ones germane to the task at hand.

Because JOP in essence has its own stack-like structure, the dispatch table, which serves to order

control flow, many gadgets by their very nature may need to be discarded outright, so being able

to be very granular and specific will be immensely useful to the security researcher.

It will be a primarily static analysis tool, although some DLLs will be briefly loaded into

memory but not executed, so a handle can be obtained for the module, allowing for its file location

to be found. This is needed for its text section may be extracted for analysis. The reason for this is

because one of the overarching goals is to not have this tied down to an existing tool, such as a

script for WinDbg, Immunity, or IDA Pro, and for it to be its own standalone tool.

It will ensure that by working at both the opcode and assembly mnemonic level, that all

potential gadgets are found. With opcode-splitting, we increase the attack surface drastically by

changing where we begin disassembly, or eventually where the execution would begin in an

exploit. This is important because there is a paucity of available gadgets in comparison to ROP, so

we must make sure we enumerate all potential gadgets. Doing this can sometimes result in gadgets

that would be of very marginal value, simply because of what they do and registers used. Thus,

having strong criteria to exclude will enhance the utility of this framework. The JOP ROCKET

will make use of a technique to do this, and in addition, it will provide the user the ability to be

granular and specific with this, to increase or decrease the number of results.

The tool will allow the user to decide how many opcodes to go back from the desired

indirect jump or indirect call. It then will then iterate through and enumerate all the possibilities.

 75

Thus, if a user specified to go back 14 bytes, it would go back 14 bytes and then test it with all

possibilities at an opcode level, until at reached the minimum number of bytes, effectively ensuring

the whole of the attack surface is covered. This enhanced flexibility, rather than just hardcoded

defaults, can allow a user to narrow or widen results as needs dictate.

It will let the user be specific about the number of lines of other instructions that should be

able to exist between the desired operation (e.g.MOV or ADD to a desired register) and the

terminating indirect jump or indirect call to the target register. Having more lines in between can

certainly make some of these gadgets more difficult to use, as they might clobber needed registers,

but it may be necessary if there are limited gadgets otherwise. Likewise, a user may just want to

exclude all results that exceed a certain distance. As a practical tool, this framework will provide

the analyst with the ability to make those judgment calls if need be, but it will provide reasonable

defaults so that the novice user need not to be concerned with such details.

Artifacts of Design Science

DSR has an end product of artifacts that address the research problem. The artifacts created

should have utility and be effective at achieving an artifact’s purported aims. This design science

research inquiry is part of an effort to answer the research question, and it will result in the creation

of different artifacts. These artifacts can be immensely useful to the security researcher that wishes

to make use of JOP.

This research will culminate in the creation of two types of artifacts, a collection of methods

and an instantiation of a framework, the JOP ROCKET. Accurate requirements will be provided

to help provide assurances that the artifacts created fully address the all aspects of the research

question. Throughout review of the literature, an instantiation such as outlined below was not seen,

 76

nor were the methods as described here, although as mentioned before, some methods are

significant improvements upon existing algorithms.

Within the province of design science, we can regard a method as those operations, steps,

or algorithms involved in performing a task (March & Smith, 1995). The following methods will

be created during this research:

A method to discover JOP functional gadgets;

A method for discovering JOP dispatcher gadgets while applying exclusion criteria;

A method for printing the disassembly of gadgets found;

A method for classifying JOP gadgets into, while applying exclusion criteria;

A method for statically enumerating and obtaining modules in the import table and

obtaining their JOP gadgets, while applying exclusion criteria.

A method that utilizes an object-oriented approach for storing executable content, JOP

gadgets, and other bookkeeping information for the PE image and its modules.

The most significant contribution, the primary effort, is in creating an instantiation, which

embodies all the methods and serves as a practical tool that the user can employ to obtain the

desired information. According to March & Smith, we can regard an instantiation as the final

culmination of the artifact (1995). Throughout the research, the methods will be developed with

the notion of how they can be implemented effectively within the instantiation. The methods

provide the most benefit embodied in an instantiation, where collectively they can provide the

desired functionality needed to address the research question and provide utility to the security

researcher. Taken independently, some could be adopted and used for other, unrelated projects.

Requirements for Instantiation of the Artifact

The requirements for the instantiation are provided below in Table 2.

 77

Table 2. Requirements for Instantiation of the Artifact

Number Requirement

1. Must be portable across platforms, such that it is able to be run on all modern

Windows operating systems.

2. Must be portable across platforms, such that it is able to be run on Linux and

MacOS with limited functionality.

3. Must be able to run with minimal hardware specifications.

4. Must make use of only publicly available libraries as dependencies.

5. Must provide a user interface that is intuitive and that has an easily accessible help

sub-menu.

6. Must provide output to user in a manner that is logical and convenient.

7. Must provide the user with a high degree of freedom to customize the types of

gadgets obtained and how they are generated, by allowing them to change the

mechanics of how the gadgets are produced.

Assumptions and Limitations

This research has intentionally limited the scope of the framework instantiation to 32-bit

Microsoft Windows PE files. The reason for this is simple: developing a tool for another

architecture or for 64-bit would be non-trivial and would involve rewriting all the labyrinthine

rules for the numerous subroutines that use strict criteria to exclude gadgets. Testing each of these

subroutines to ensure accuracy can be a labor-intensive endeavor. Such effort is best left to future

work.

 78

 While 64-bit has become commonplace, a significant number of programs are still 32-bit

and simply run under SysWoW64, which provides compatibility on a 64-bt system for 32-bit

applications to be run natively (Kennedy & Satran, “File System,” 2018). 32-bit applications are

more prevalent and likely will remain so for a while, and so targeting these is more important. One

limitation of no examining the 64-bit binaries is that we do not gain an understanding of the nature

of JOP in that environment that could prove useful. Because of the nature of JOP, having more

available registers in theory could be highly beneficial. However, what that means in actual

practice will be another matter. Statistically, as this research will demonstrate, indirect jumps and

indirect calls to certain registers in 32-bit applications are much less plentiful, making some of

them even potentially difficult to use. Thus, it stands to reason that while there may be more

registers available to use, in actual practice some may not on average produce many practical JOP

gadgets. Nor would we gain an appreciation for how the x64 calling convention impacts the

efficacy of JOP in general and with specific registers. A more in depth study of JOP in 64-bit

programs could be fruitful. While one could produce anecdotal responses or conjectures to some

of the above, the JOP ROCKET produced highly detailed statistical information on the numbers

and types of gadgets produced for the binaries that it analyzes.

This framework does consider the matter of ASLR, but it does not provide the ability

exclude modules that utilize ASLR. The artifact provides information on different security

protections in place for each application and associated modules, such as ASLR, DEP, CFG, and

GS (Stack Guard). Providing the functionality to exclude them could be done without significant

effort, but they are included as the user may be aware of a memory disclosure to overcome ASLR

or other bypasses. The framework also conveniently provides offsets for all modules, in the users

has the ability to obtain a memory disclosure. It is assumed that the security researcher who uses

 79

this tool has a high level of sophistication and familiarity with more basic code-reuse attacks, e.g.

ROP, and they understand the ramifications of all protections.

This framework will be limited in the number of modules that it is able to enumerate and

thus obtain gadgets for. This is perhaps the most significant limitation. This is due to the limitation

of this being a static analysis tool. This is due to the fact that modules are loaded into a process in

a variety of ways. First, they may be imported. Some may be done dynamically during runtime, as

with a Windows API such as LoadLibrary and GetProcAddress, or through a malware technique

such as traversing the PEB to find desired modules and then desired Windows API functions.

Some modules will also call upon other DLLs as a dependency. Other dynamic methods of loading

libraries can include loading libraries for forwarded as well as delayed API calls. Thus, to be able

to enumerate all modules, one must make use of a dynamic approach, allowing the process to be

examined in memory, rather than from disk. As this is a static analysis tool, it does not provide

that functionality, and as such it will only enumerate those that are statically bound to the import

table, which is a limitation, since some modules may be missed. When one makes use of general-

purpose reverse engineering tools such as WinDbg, we may take it for granted that some libraries

are loaded through other means early on. The end result is that some libraries that are loaded

relatively early on are excluded. There does not seem to be an easy or simple way to statically

enumerate these via examination of the PE; dynamically loading the PE file as a process would

need to be a necessity to discover some of these libraries that are not loaded via the import table.

This research will identify other unique ways to obtain some likely modules that will be loaded

and that exist outside the IAT, but while this will be pragmatic, it will not be all inclusive.

Another limitation is that the user needs to establish the proper environment with necessary

dependencies, namely Python as well as the following Python libraries: Capstone, PEFile, and

 80

Pywin32. They will need an environment in which to make use of Python; the recommendation is

Cygwin, for convenience sake, although any environment would do. Setting up these dependencies

might take a moderate amount of effort, but it likely would be a trivial undertaking for the intended

users, who may already have some or all of these set up. By utilizing different existing libraries

and being a standalone tool, the JOP ROCKET avoids the need to have to integrate with an existing

reverse engineering tool, such as WinDbg or Immunity, making users reliant that tool. By having

a standalone framework, the user can quickly and easily make use of the artifact from a command

line interface to obtain the necessary data.

There is a limitation with respect to malformed PE files, as those may not be read properly.

It is possible have code in places other than the standard text section, and in such a case the code

would not be extracted, and thus it would be excluded from analysis. Indeed, any executable code

that may lie elsewhere in the PE file would be excluded. It is also possible the code could be self-

modifying in memory, behavior that is typically associated with malware. Were this the case, then

the gadgets generated may not be valid.

Another limitation is that this framework does not support long term storage of data that is

collected on the target PE file and its DLLs. This would be beneficial, but it is a feature left to

future work. It is anticipated that security researchers will make use of the tool to generate gadgets,

which will then be written to disk in appropriately named files, so that users can refer to the data

contained in the files as needed.

This framework will be created using the Python language to provide optimal portability,

allowing it potentially to run on Windows, Linux or MacOS. To enable this to occur, the

framework will make use of different existing Python libraries, namely PEFile, Capstone, and

Pywin32. There will be one limitation, however. While it is possible in the appropriate Linux or

 81

MacOS environment to read and extract gadgets from an executable, on those systems it will only

be able to extract gadgets from the executable image, not the modules. This is for two reasons.

First, Pywin32 is not supported on those systems. That library provides access to the Windows

API in a Python environment. Pywin32 is used on Windows to very briefly load libraries so that a

handle can be returned to modules, and this handle is used to help ascertain the file locations of all

DLLs in the import table. Thus, the Windows API is used to help facilitate the discovery of file

locations for DLLs in the import table, so that their text sections can be extracted and the subjected

to analysis. Outside of Windows, this will not be possible as the Windows API will not be present,

and even if it were, the necessary supporting DLLs would be absent in a Linux or MacOS

environment. Of course, individual modules could be loaded one by one, such as Windows DLLs,

but that would be very tedious to acquire all of them and individually analyze them.

Data Collection

The data that is of consequence here are the gadgets themselves. Data that is obtained by

the framework will be stored in hundreds of parallel lists that maintain the necessary data, that

enables the search, the classification of gadgets, the exclusion of impractical gadgets, and finally

the printing of gadgets. The data stored in the data structures will not be the gadgets themselves,

but bookkeeping information that can enable the gadgets to be generated immediately on the fly.

However, for purposes of data collection, we can think of the stored data as the gadgets.

The JOP ROCKET will utilize methods to obtain the gadgets and perform classification;

these methods serve as artifacts themselves, and the full implantation details will be discussed in

chapter 4. Thus, part of the data collection involves classification. Classification occurs

automatically as the algorithms are run. As a carved out, small chunk of code from the text section

 82

is analyzed, different features of that code might result in several different classifications. One

could be for ADD or one for MOV, etc., all ending in the same indirect jump or call. The gadgets

stored would be based on the classification, as the search algorithm will only produce the most

minimal form of the gadget. Thus, if ADD EAX, EBX appeared 3 lines back from the indirect

jump, and MOV EBX, EAX appeared 4 lines back, then if the classification was for addition, then

the gadget would begin at ADD EAX, EBX. Thus, we see the same data can manifest itself in

different gadgets, serving different purposes.

Prior to data collection, validity and reliability of data must be assured. The sample of

binaries to be analyzed will be processed through the framework, and some results will be

compared with various reverse engineering tools to ensure accuracy and reliability. These tasks

are discussed more fully under Validity and Reliability. Once those steps have been performed

successfully, it will be assumed that the data produced is valid and accurate. As such, data

collection will then concern itself with the collection of gadgets that are generated by the

framework. These are stored in data structures and are available to be immediately printed.

Immediately implies that no additional CPU time is required, other than the minimal amount

needed to print to terminal or save to disk. The latter will be the chief means of delivering the data;

the former is just a convenience to the analyst.

The development of the aforementioned algorithms and workflows will be iterated until all

errors have been corrected and the algorithms have been optimized. Once the design science

process has completed and the tool has achieved a high level of efficacy and utility, there will be

a single-case mechanism experiment that will be performed. This will be done to perform

validation, to ensure that the design science cycle has resulted in a tool rich with utility and

efficacy.

 83

Data collection adhering to quantitative methodology will also begin once the DSR cycle

has been completed. A single-case mechanism experiment will be done on 32 executables. These

will include a variety of both open source and commercial executables, ranging in size from small

to large. These executables will be run in the framework, and the data will be subjected to analysis

and classificaiton. The purpose here will be to demonstrate the utility and efficacy of the tool. It is

anticipated that a large number of gadgets will be able to be classified into appropriate categories.

Furthermore, a large number of potentially impractical gadgets will be able to be excluded. There

will be no data collected on the number of gadgets excluded, as they are silently discarded, as this

is a tool that is intended to be useful to analysts, not to perform an exhaustive study on the nature

of JOP in x86. The classification and exclusion of impractical gadgets will be a significant

contribution in the area of utility and efficacy. This will be discussed in the data analysis section

and then finally in the validation section.

Validity and Reliability

To provide assurances as to the validity and reliability of the gadgets produced, it will be

necessary to verify the results against those produced by general-purpose reverse engineering

tools. For instance, for gadgets produced by the framework, then the disassembly produced must

be verified as accurate, and both the virtual memory address and the offset must also be verified.

IDA Pro potentially can be used to validate some of the gadgets. However, if opcode splitting

occurs, then validating through IDA Pro may not be straightforward, because the disassembly will

be different. In that case, it is necessary to look at the opcodes and to see if those opcodes would

produce the disassembly offered by the framework. This is not a straightforward process, and it

would involve having to use other tools. The framework does not produce opcodes to the user.

 84

However, during the design of the tool, opcodes can directly viewed for debugging purposes.

Alternatively, one could use a simple utility or common web site to convert the disassembly

produced by the framework back into opcodes, thereby allowing for a comparison (Defuse, 2018).

In the case of opcode-splitting, the usage of IDA Pro can verify only that the address or offsets are

correct, not the disassembly. To validate the accuracy of the disassembly in view of opcode-

splitting, the most straightforward technique is simply to make use of WinDbg and the command

u [address], such as u 0x00435352 and then view the disassembly that results from un-assembling

at that location. It should be identical to that produced by the framework. Another option could be

to take the opcodes and use a utility, such as the online assembler and disassembler at Defuse, to

see if those opcodes produce the correct disassembly that the framework reports. That is a more

laborious process, but it can provide additional confirmation beyond WinDbg. These techniques

will be employed to ensure the accuracy of all gadgets produced.

Reliability also concerns the gadgets produced, beyond simply whether or not the

disassembly and addresses are correct. There should be no instructions on a gadget prior to the

target operation. Thus, if MOV were the target operation and it was at a distance of two lines from

the indirect jump, then the gadget should begin on the target operation, as anything before that

would be extraneous and irrelevant. Reliability can come into play with classification as well. If

gadgets are to end with an indirect jump to a specific register, then only those that do so must be

produced. Similarly, if gadgets are to modify only a certain register, then only those must be

produced. Similarly, if the user is searching for a specific operation, such as ADD or MOV, or

may be searching for a dispatcher gadget, then the results should include only those that fall under

those classifications. The framework will provide the capability for the user to be highly specific,

and the results must match what has been requested by the user.

 85

Reliability will ensure that the same results occur when comparisons are made from one

tool to another. Results will be checked with a minimum of two reverse engineering tools in

parallel. This provides assurance as to a higher degree of a reliability, as the results can be

reproducible from one tool, to the next.

Overview of Framework

At a high level, this framework will parse the PE file, extract the executable portion, and

then obtain the necessary JOP gadgets. First, the framework will extract the text section for the

target PE file in addition to all DLLs contained in the import table. An algorithm will then be run

to find the opcodes for all instructions for indirect jumps or indirect calls. Once these are found,

disassembly will be obtained for all possible combinations of opcodes that terminate in an indirect

jump or indirect call. The resulting Assembly will then be searched with classification being

performed according to strict criteria, to exclude gadgets that would otherwise be impractical.

Finally, the end result will be hundreds of parallel arrays populated with necessary data to create

the appropriate gadgets that the user may be seeking, based on whether it is an indirect call or

indirect jump, the registers in question, and the operation performed. In addition, the JOP

ROCKET will feature additional customization the user can perform, to be more granular and

specific as to what gadgets they wish to search for or print. This could increase or decrease the

number of gadgets, while at the same time having an effect of lowering or increasing the potential

quality of said gadgets. As to the matter of quality, we could regard a high quality gadget as one

where the target operation is close to the indirect jump or call, whereas a low quality gadget is

once where that distance is high. Thus, the ability for the user to identify specific criteria for the

functional or dispatcher gadgets they seek will add significant utility to the framework.

 86

The framework will be run on the command line. This will allow a user to more quickly

and easily make use of the artifact, if they will not need to waste time with a mouse or cursor. The

program is interactive, where the user supplies relatively brief keyboard commands to perform

operations. For ease of use, these commands are limited generally to one to three characters, and

a help sub-menu provides a brief explanation on how to use the different commands. The artifact

allows for a great deal of customization to be possible, so taking command line arguments would

be impractical, although there is a default command line option that will attempt everything with

reasonable settings. The user interface has reasonable default settings, so every setting need not be

set, but they can be adjusted with great flexibility as need be.

Specification of Major Functional Requirements

The functional requirements should provide explicit, detailed descriptions to aid in the

design of the application. Wieringa asserts, “The desirability of a requirement must be motivated

in terms of stakeholders goals by a so-called contribution argument” (2014). This research has had

its requirements motivated by these stakeholder goals. Wieringa defines as a requirement a

property that will be sought by a stakeholder, to be realized in the final implementation of the

artifact (2014). A functional requirement is one specific type of requirement, which Wieringa

defines as a requirement for some functions that will be sought from the artifact. All the primary

functional areas will be discussed with a detailed description of the proposed functionality.

Command Line Interface

For ease of use, this tool will be built with a command line interface. The purpose of this

will be to provide a versatile user interface for the user, one which does not require the use of a

 87

mouse. This will be the primary means through which the user enters commands and can interact

with and utilize the various algorithms and methods, to allow for effective use of the framework.

The command line interface needs to be run in an environment with Python support and

with the previously described dependencies, listed under Technical Specifications, and these

dependencies must be configured properly. On Windows, the ideal environment is Cygwin, and

the tool will be optimized for that. However, any environment with the dependencies is adequate.

User commands will be entered in one of three primary areas. The first will be the primary

screen, where input can be entered. The second will be a printing sub-menu. This will allow for

results to be printed to screen and saved to appropriately named files. There is a tremendous

amount of customization on the printing menu, with over 240 different combinations possible. At

this stage, all the results will have been stored in one of hundreds of data structures. It will be

simply a matter of providing the input needed to obtain the desired results. The final area will be

a sub-menu for searching for dispatcher gadgets. As with the printing sub-menu, this will allow

for a great deal of customization. Some additional screens will be able to be accessed, and these

will take some input but will be relatively straightforward. These will include a help sub-menu,

settings for extracting DLLs, and others.

User commands will be minimal, typically one to three characters, just enough for a quick

keystroke. The intent will be to minimize the typing the analyst must do. The commands all will

in some way have some mnemonic that can be connected to the operation that is being performed.

This will allow an experienced user to quickly enter these commands without the need to consult

the help sub-menu. To that end, reasonable default settings for some of the more esoteric settings

will be set, so that a user will be able to simply select from among various preset options, if they

do not wish to specific each individually. Because the intend will be for the tool to be very flexible

 88

with a high degree of customization available, there will not be a one-size-fits-all setting that will

be the standard default. Though the user will be able to simply select everything, it is assumed that

they will wish to customize their output by using some more specific preset options or even

specifying some options individually.

The commands are introduced alongside a description in Table 3 and Table 4. These will

describe the commands the user is able to enter in the main screen as well as the print screen. There

will be a simple interface to a very robust, powerful set of algorithms and methods. There is a

stakeholder goal in having a degree of usability, so this is felt to be preferable to something with

arguments supplied on the command line. With the level of customization that will be present in

this framework, the command line would be too limiting. Moreover, extracting and performing the

search does take a period of time, so the user may explore several options for printing after those

steps have been completed, and it would be highly inefficient for them to have to continuously

repeat the extraction and search. Once the extraction and search have been completed, it will only

take seconds to print the results, regardless of the level of customization applied.

Table 3. The main screen user interface commands.

Command Description

F This allows for the target PE file to be changed.

R This specifies the target 32-bit registers, delimited by commas, e.g. EAX,

EBX.

T This sets the target control flow, indirect target, e.g. JMP, CALL, or both.

P This allows for the user to configure the settings to print output according both

to target registers and target operations.

 89

Command Description

D This grants access to a sub-menu to provide settings for getting dispatcher

gadget.

M This enumerates all modules.

N This changes the number of opcodes to disassemble. This is done through an

iterative process, so the more that you have, the more gadgets you generate,

but the higher you go, the longer the resulting gadgets become.

L This changes the lines to go back when searching for a specific operation, e.g.

3 or 4 lines.

S This sets the scope to perform the search and subsequent printing of results.

The default is set to just the PE file itself, but the scope can be expanded to

include all modules in the import table.

G This gets gadgets. Once the settings have been set, the framework will search

through the extracted text section in order to discover the target gadgets,

perform classification, and perform exclusion.

C This clears all the data structures.

Table 4. The print screen user interface commands.

Command Description

R Set registers to print. The functional gadget classified by operation will print

only those that pertain to registers set here. For instance, if EAX was set and

ADD was selected, then only gadgets that somehow add to EAX/AX would

be included in results. All registers are possible as well as ALL.

 90

Command Description

J Print all JMP [REG]. This is done according to registers set.

Ja Print all JMP EAX. This is done according to registers set.

Jb Print all JMP EBX. This is done according to registers set.

Jc Print all JMP ECX. This is done according to registers set.

Jd Print all JMP EDX. This is done according to registers set.

Jdi Print all JMP EDI. This is done according to registers set.

Jsi Print all JMP ESI. This is done according to registers set.

Jbp Print all JMP EBP. This is done according to registers set.

C Print all CALL [REG]. This is done according to registers set.

Ca Print all CALL EAX. This is done according to registers set.

Cb Print all CALL EBX. This is done according to registers set.

Cc Print all CALL ECX. This is done according to registers set.

Cd Print all CALL EDX. This is done according to registers set.

Cdi Print all CALL EDI. This is done according to registers set.

Csi Print all CALL ESI. This is done according to registers set.

Cbp Print all CALL EBP. This is done according to registers set.

Ma Print all arithmetic (ADD, SUB, MUL, DIV). This is done according to

registers set.

A Print all ADD. This is done according to registers set. This is done according

to registers set.

S Print all SUB. This is done according to registers set.

M Print all MUL. This is done according to registers set.

 91

Command Description

D Print all DIV. This is done according to registers set.

Move Print all movement operations. This include all MOV, XCHG, and LEA. This

is done according to registers set.

Mov Print all MOV. This is done according to registers set.

Movv Print all MOV value, where a value is moved into a register. This is done

according to registers set.

Movs Print all MOV shuffle, where one register is shuffled to another. This is done

according to registers set.

L Print all LEA. This is done according to registers set.

Xc Print all XCHG. This is done according to registers set.

St Print all stack operations (POP, PUSH). This is done according to registers

set.

Po Print all POP. This is done according to registers set.

Pu Print all PUSH. This is done according to registers set.

Id Print all INC and DEC. This is done according to registers set.

Inc Print all INC. This is done according to registers set.

Dec Print all DEC. This is done according to registers set.

Bit Print all bitwise operations. This is done according to registers set.

Sl Print All Shift Left. No customization is available due to paucity of results

making it impractical.

Sr Print All Shift Left. No customization is available due to paucity of results

making it impractical.

 92

Command Description

Rr Print All Shift Left. No customization is available due to paucity of results

making it impractical.

Rl Print All Shift Left. No customization is available due to paucity of results

making it impractical.

All Print all options.

Rec Print only all Turing catalogue operations, the recommended setting for ease

of use and speed.

Parsing of Input

The command line will provide tremendous flexibility in terms of the commands that can

be input into the framework. Many of these commands will be settings that will change the results

that are printed. For instance, on the main screen there will be an option for which registers to

include in the search, or “get,” as in the language of the JOP ROCKET. This will specify the

registers that indirect jumps or calls should go to, as only some may be of interest to the security

researcher. To provide input for the registers to “get,” the user simply will need to enter the

command r and then provide the desired registers, delimited by commas. The input will then be

validated and then stored in a list. Once all other settings will have been finalized, the user then

will be able to enter the command g for get, thus starting the process of searching for JOP gadgets.

Similarly, in the printing sub-menu, the user will have an option to enter registers of interest for

printing. This will work utilizing data that has already been obtained. If the user had sought only

gadgets that end in JMP EAX or CALL EDX, then the registers entered on the printing sub-menu

would pertain to the operations performed on just those registers. Thus, if EBX was selected as a

 93

register to print, then gadgets such as MOV EBX, 5 / JMP EAX or MOV EBX, EDX / CALL EDX

would be printed. All of this allows the security researcher to be very granular and specific as to

exactly what they may be seeking.

Capture of Text Section

The framework will provide functionality to capture the text section. The text section is

traditionally where the executable section is contained. Traditionally, executable code exists in the

text section. The text section consists of the opcodes that provide the Assembly instructions to be

executed by the CPU, beginning at the entry point specified by the PE file. It is possible to have

the executable code be placed outside the text section or in multiple locations. This framework

will not consider these, as it will only consider traditional, well-formed PE files. In the case of

malicious programs or those with heavy obfuscation to protect intellectual property, there can be

a concerted effort to complicate analysis for researchers; these will not be considered.

The framework will utilize the Pefile library to help extract the executable image’s text

section. This is the best option for the language used, and this work does not endeavor to recreate

the wheel here, as these steps are well established. Once it has been extracted, other text sections

from DLLs will be extracted for analysis. As a static analysis tool, by default it will extract just

the executable image text section, but the user can select to add all DLLs. This may be useful if

ASLR is not on a specific DLL or if the researcher has a memory disclosure to allow for an ASLR

bypass. Then gadgets on those modules would be relevant. If the user decides to search the DLLs,

then the JOP ROCKET will iterate through and capture the text section for each module. It will

then perform a search for the specified target registers, storing the results in the appropriate data

structures for later usage.

 94

Search for opcodes

 This framework will utilize and improve upon existing ROP and JOP algorithms that seek

to find the opcode for a specific instruction, such as RET. Once found, it will disassemble

backwards, finding all possible gadgets. Thus, the artifact will search for and enumerate all

opcodes that produce the target indirect jump or call to a register. In x86 Assembly, there are three

combinations that produce this. For instance, for CALL EAX, it will search for the opcode for

CALL EAX, \xff\xd0, the opcode for CALL PTR EAX, \xff\x10, as well as the opcode for CALL

FAR EAX, \xff\x18. The latter two are much less common, but this framework will endeavor to

be comprehensive. With jump EAX, we have only one possibility to pursue, JMP EAX, or \xff\xe0.

There are no indirect jump conditionals that lead to a register; they do not exist. Once the opcodes

have been discovered, their location will be recorded in a data structure along with other necessary

data. These will be used subsequently by other algorithms as needed.

Disassemble and Search

Once opcodes have been found, they can then be disassembled and then allow for

searching. This has involved usage of the geometry of innocent flesh on the bone, as opcode-

splitting was referred to as in the seminal journal article introducing ROP (Shacham, 2007). Again,

this describes the unintended instructions that can be discovered due to the lack of forced alignment

on x86. This concept can be applied to JOP, where we might find a gadget terminating in CALL

EAX or JMP EAX. The JOP ROCKET must then discover all possible combinations.

To do this, it will address this problem in a novel fashion. It will start by generating a chunk

of opcodes as specified by the Number of Opcodes. It will disassemble this chunk and then subject

it to analysis. Once disassembly has been created for the chunk of opcodes, it will then be subjected

to analysis. This will take the form of hundreds of lines of complicated regular expressions to

 95

exclude gadgets that would be deemed impractical. Because opcode-splitting can produce a lot of

unintended gadgets, some end up being highly impractical. Without exclusion criteria, there could

be a significant number of useless gadgets. Having strict, carefully considered exclusion criteria

will help to ensure these are not present.

After that analysis has been completed, the number of opcodes will be decremented,

creating new chunk of opcodes ending in the terminating functional gadget, e.g. JMP EAX. This

will be disassembled and added to a data structure for further analysis. This decrementing will

continue until there are only 5 bytes of opcodes left. This process will be described more in chapter

4.

Search for Dispatcher Gadget

 A dispatcher gadget is absolutely essential, as it is a required first step for JOP. The

dispatcher gadget is a way to somehow advance or go backwards in the dispatch table in a

predictable pattern. With ROP, the security researcher does not need to worry about such matters,

as the nature of RET and the stack already provide want is tantamount to this functionality. When

the researcher must create their own stack-like structure, the dispatch table, it needs a special

gadget to direct control flow.

For this algorithm, the user will specify target registers to look for. For instance, the user

might try to find a dispatcher gadget that advances a dispatch table whose address is contained in

EAX. The search criteria would then try to find a gadget that ends in an indirect jump or call to

EAX. It must also advance it in a predictable fashion; it could be adding or subtracting. The amount

to be advanced is not as important, as padding can be used, within reason; the predictability is what

is key. This advancing operation should ideally occur very close to the indirect jump or call. Each

line of instruction between the ADD/SUB and the JMP [REG] runs the risk that other registers

 96

could be clobbered. These registers then might be made permenantly unusable for functional

gadgets or other purposes. Thus, the lines between should be kept minimal.

Practical dispatcher gadgets can be scarce. Therefore, the security researcher has the ability

to increase or decrease the number of lines between the advancing operation and the indirect jump

or call. This could be useful if an analyst needs to consider less desirable options if no other options

exist. Once dispatcher gadgets have been found, then additional exclusion criteria will be applied,

and those results will be stored in relevant data structures.

Data Structures

 There will be hundreds of different data structures in this framework, based on specific

classification criteria. This is necessary because when the search for gadgets operations is being

performed, it will automatically search for everything, all gadgets that meet all classification

criteria, storing the results in data structures, so that they are then ready to be of use immediately.

There are unique data structures for every operation for which there is classification. For every

operation there are data structures that hold all gadgets that perform that operation, and there are

also data structures for operations that modify each register. Thus, for one specific operation, such

as ADD, there will be different data structures for ADD operations that modify each register, as

well as one that is a catch-all for all ADD operations. Additionally, each operation that modifies a

particular register has four unique data structures associated with it, as described in the next

section, Save to Data Structures. Thus, for just the ADD operation, there will be a total of 32

different data structures.

At no time will any disassembly be saved to any data structures. Disassembly will be

generated as needed, whether for analysis or printing. The data structures only contain three

numerical values as well as the name of the module.

 97

Each data structure will belong to an object, and each object will be a part of a list of

objects. The object will correspond to an executable image or one of its modules, and for each

object, there will be distinct data structures maintained. The list of objects will correspond to the

PE file itself, including the executable and all its modules.

Save to Data Structures

 This framework will make extensive use of data structures. Because this will be a static

analysis tool that does not build off of an existing dynamic analysis tool, such as WinDbg or

Immunity, all that it has to go off of is a captured text section. Once the relevant opcodes have

been found, the disassembly has been performed, and the classification and exclusion have been

performed, then the JOP ROCKET will be read to save the necessary information to data

structures.

For this program, some will be stored in lists belonging to an object, while others will be

stored in lists that do not belong to an object, but primarily the former. Because of the nuances of

Python, given that it is not a compiled language, this rather than a more complex data structure

works best. The vast majority of data structures will belong to an object, and each object will

correspond to the executable image or one of its modules. For each gadget that is found, there will

be four parallel lists: listOP_Base, listOP_Base_CNT, listOP_Base_NumOps, and

listOP_Base_Module. ListOP_Base is the location in the text section of the target JMP [REG] or

CALL [REG]. This is the location where the chunk to be generated will end. ListOp_Base_CNT

indicates the number of lines of instructions to go back. This is important because gadgets will

come in many sizes. Having a gadget with a RET four lines before the JMP EAX would be

impractical; starting after the RET would make it a potentially usable gadget. The JOP ROCKET

whenever possible will reflect these nuances, so that the gadgets given to the user are clean.

 98

ListOP_Base_NumOps will specify the number of ops that the binary chunk to be generated should

be. This goes back to the idea of opcode-splitting, as different combinations of opcodes will

produce completely different Assembly instructions. Finally, the listOP_Base_Module contains

information on what module it is, whether it is the image executable itself or one of its DLLs, if

applicable. The data structures will not store or contain any disassembly, only bookkeeping

information so that the correct disassembly can be produced very quickly if requested by the user.

There will be helper functions that save all needed data to the appropriate data structures.

Provide Disassembly for Printing of Gadgets

 This framework will provide the disassembly in a novel fashion. It will employ helper

subroutines, disHereJmp and disHereCall, to generate a binary chunk according to the

bookkeeping information provided by the data structures. The gadgets then will be generated on

the fly using this bookkeeping data to carve out and disassemble small chunks from the text section

of whatever executable or module is needed. Disassembly as before will be performed by the

Capstone library, which has become an industry standard and is used in over 400 tools. While there

will be hundreds of data structures created, allowing for the security analyst to be granular and

specific about what gadgets they may wish to seek, many may be of no interest. They will all have

been populated, but the user may only be interested in a handful. They can provide input given

their needs. Once input has been provided, then only those requested gadgets meeting the requested

specifications will be printed. Given the number of registers and options, there are a couple

hundred unique combinations available.

The disassembly will be printed to the screen as well as saved in files. The files will be

classified according to operation and register. If an existing file of the same name exists, the

framework will maintain the existing file and created another one, incrementing the version

 99

number of the file. While printing to the screen is convenient, sometimes the sheer number of

gadgets will make this impractical, making files far more convenient.

Summary

 The JOP ROCKET will be constructed as part of a DSR inquiry into the research problem.

The iterative cycle and the results obtained throughout the DSR process will help to continuously

improve the artifact throughout development. This chapter has described the design of the

framework and delineated its various components and its architecture. It has described how

together they can allow for a novel, innovative solution to be found. The chapter has explained

how this design science research conforms to the guidelines set forth by Hevner, et al., as well as

Wieringa. The chapter has described how one goal of this research will be to employ classification

and exclusion criteria to ensure the JOP gadgets are more usable and pragmatic. It has shown how

the JOP ROCKET will allow for this to occur in an automated manner, via software, rather than

through an arduous, time-consuming manual process. This chapter has also introduced the use of

the single-case mechanism experiment as a means of demonstrating the utility and efficacy of this

framework. Finally, the chapter has addressed how validity and reliability will be assured, and how

validation will be performed.

 100

CHAPTER 4

RESULTS AND ANALYSIS

The primary goal of this dissertation is to provide a full-featured artifact to assist reverse

engineers and exploit developers in their ability to construct JOP gadgets, meeting a need for a

sophisticated toolset. A close examination of the literature had revealed that there were no publicly

available tools that provided this needed functionality, and this study effectively provides a

validated solution to the research problem. Because of the greater complexity of JOP relative to

ROP, creating a tool that can fully satisfy the needs of the exploit developer is much more

challenging than it would have been to have created one of the similar, already existing tools for

ROP. After all, it would be trivial to develop a tool that could search through disassembly to find

all gadgets that terminate in an indirect jump or indirect call. However, such a tool would be

severely lacking and be of only marginal use to the researcher, who would need much more help

to relieve some of the tedium inherent in their efforts. A fully developed JOP artifact, one which

has significant exclusion criteria, one that allows classification of gadgets, one that includes robust

searching for dispatcher gadgets, is a more labor-intensive project, one that is fraught with myriad

difficulties that need to be handled delicately. A high level of expertise is needed to carry such a

project to fruition, and chapter 4 will showcase the results of those efforts.

The artifact developed in this research fully satisfies those requirements, as well as those

set forth in the requirements specification. This chapter will discuss the results obtained by from

the research that was discussed in the previous chapter. The research contributions are discussed

in chapter 5.

 101

Evaluating the Instantiation

As an instantiation, the JOP ROCKET is an implementation in the Python programming

language of all the methods, brought together under a cohesive shell. It allows for different

methods that individually would only contribute to part of the puzzle, to come together and

collectively bring life to the instantiation. The JOP ROCKET follows what was set forth in the

requirements specification provided in chapter 4.

Performance, reliability, functionality, supportability, and usability are necessary

evaluation criteria (Wieringa, 2013). These attributes are used broadly as a way of determining

how robust an artifact is. Reliability in software indicates that it should conform to the guidelines

set forth in the requirement specification. In short, it describes whether the program works as the

author intends and as the user would expect. Functionality describes all the different features and

capabilities that a program can provide to its user. Functionality provides for an abundance of

features to meet the needs of the software. Chapter 3 laid out in detail numerous functions, which

were achieved in developing the instantiation. Additional functionality was also developed during

the iterative development of this artifact. Supportability describes how easily the program lends

itself to users or technical staff being able to troubleshoot issues that arise. The criterion of usability

describes how easily a human can interact with the system. The ROCKET has a clean, intuitive

interface with straightforward, simple language describing the features. Finally, performance

relates well the program works under different loads; i.e. its speed and memory usage. The

ROCKET does well with performance, although some large binaries with numerous modules

would require a 64-bit installation of Capstone and Python due to memory constraints in the 32-

bit version. As will be explored in greater detail below, this work does effectively embody all these

characteristics.

 102

When evaluating an instantiation, to try to identify the presence or absence of these

features, we can look at code inspection, testing, and verification. Code inspection is intended to

discover and allow for remediation of different defects that may exist in the source code. It can

involve looking at different parts of the code to try to determine if it meets the set specifications.

It also can address how robust the software is, looking at performance, usability, functionality,

supportability and reliability (Wieringa, 2014). This work did not follow a formal process of code

inspection with multiple individuals involved, but it utilized a more informal approach as adopted

by the author, as he endeavored to address many of the elements of code inspection. Code testing

is an important part of the process to ensure that the program works as intended and to ensure

reduction of software defects. This can encompass many areas, such as how it handles widely

differing input, whether it achieves stakeholder goals, whether it meets the requirements set forth,

whether it is usable, and if it can perform its functions in an adequate amount of time (Wieringa,

2014). Finally, code verification is an important feature as it ensures that the results produced are

accurate. Verification has been dealt with extensively elsewhere in this dissertation.

In looking at the five criteria for evaluating an instantiation, i.e. performance, usability,

reliability, supportability, and functionality, we will endeavor to discuss briefly how this artifact

measures up. We can assert that this artifact is relatively fast and efficient, in terms of its

performance. The typical user will be analyzing one binary at a time, not a vast multitude, and the

time frame for this is acceptable. When using Mona, a python script that can integrate with

WinDbg or Immunity, on some occasions in can take in excess of 40 minutes to process a binary;

others may take much less, and it depends upon system resources as well. Mona has many features,

so this also depends upon the commands being used. The JOP ROCKET performs different tasks,

but the time in which it does it is comparable, often taking 10 to 25 minutes to process a binary,

 103

depending on its size. This includes the image executable as well as all modules. Formal metrics

have not been used to measure the time, as it is felt that it is clearly well within an acceptable

range, and no additional benefit would be conferred for it to be much faster. Additional work to

improve speed would likely not amount to significant performance enhancements and would be of

negligible value.

Performance can be attributed to a few different areas. First, the tool does not need to

integrate with other software. Secondly, when it searches for different categories of gadgets, it is

all done concurrently. That is, there is just one pass made for each running of the search algorithm

for a specific indirect jump or call. The resulting bookkeeping information for all the gadgets are

stored in appropriate data structures. A portion of the time could be reduced if printing to the screen

was removed, as speed of terminal increases the time it takes, sometimes by as much as a few

minutes, if it is a very large binary. That time could be reduced to seconds with just printing to

files. Again, these numbers are all felt to be reasonable for the task at hand, so more rigorous

measuring of time is not pursued.

The JOP ROCKET provides a high degree of usability. The user interface (UI) is accessible

directly from the command line, thereby not requiring the use of a mouse, and the tool features a

minimalist design. Where possible, the shortest possible keystroke combinations were used,

provided they correspond to some sort of mnemonic. Thus, a frequent user effortlessly could

memorize various keystrokes, enabling them to perform the desired operations. Much attention

was placed on how to simplify how a user can interact with the program, accessing the needed

functionality, while presenting this in a UI that is clean, simple, and intuitive. Such a UI would

more likely correlate with a pleasant user experience (UE). A poor or broken UI can create a deeply

unpleasant user experience, and while JOP is a complicated topic, this tool provides an effective

 104

UI, allowing an interested user to successfully use the tool, even if they do not have a deep

understanding of all the various options available. If a tool lacks usability, even if it has a high

degree of functionality, then it may have little value, so efforts were made to ensure it was highly

usable. Once the user got the feel for the UI for the JOP ROCKET, then likely they would be able

to anticipate how certain features would be accessible. Whenever there was a doubt regarding how

to proceed, the user simply need type h to see possible commands. Finally, for users who want to

get all possible results with minimal UI interaction, the software provides them an opportunity to

obtain reasonable results for everything with just a single command.

This tool meets the criterion for supportability. Repeatedly throughout the artifact, there

are dozens and dozens of try catches, so that graceful degradation is handled; that is, the program

can recover safely from exceptions that otherwise would make the program crash, allowing for the

user to still get results and not have an interrupted experience. In a few cases, if less than desirable

behavior occurs, descriptive error messages are provided to the user. For instance, in very rare

cases when it cannot load a dll from its file location, it will provide output informing the user of

this error. Additionally, the UI provides documentation in the form of a help interface that is

implemented with straightforward, concise descriptions of different functionality.

Functionality is perhaps the most important criteria by which we judge a DSR artifact, and

this does well to embody everything that is laid out in the software requirements specification. The

need for some additional functionality also evolved over the course of the design cycle, and these

would be implemented as their need was ascertained. This was typically happened with various

helper functions and internal workings of the artifact. For instance, it was noticed that although

imports from a PE were loaded, there were additional imports that would load once the PE file

began execution. This is because the Pefile library only loads modules that are statically bound

 105

through the Import Address Table (IAT). Thus, creative ways to find some of these missing

modules were sought out, and this involved some slightly complicated logic that called for new

helper functions and internal structures to be implemented. Functionality does not just encompass

features, but it addresses how well these features work together and to what purpose. A feature

may be ineptly implemented or prone to serious errors; this is the opposite of one that works

flawlessly. Functionality was a chief consideration in designing the JOP ROCKET, and

considerable testing was performed to help remove all known defects and to ensure various

algorithms functioned smoothly without problems. If there was some, rare unusual case, the

artifact is designed to gracefully handle the error, simply passing an exception. Functionality can

also be measured by the quality and depth through which the JOP ROCKET meets its functional

requirements, and it does fully satisfy them.

Reliability of software is critical, as software must be able to run given optimistic

conditions, as well as those that are less so. To ensure reliability, a large number of test cases were

done with the JOP ROCKET, as a frequent part of the iterative design cycle. This allowed for

anomalies to be found, their causes discovered and then remediated. When it was not possible to

completely rule these out, they were gracefully handled with try catches. The test cases used fell

within the normal range, inclusive of both small and large PE files, with and without many DLLs.

Because the artifact is an interpreted Python script, we need not worry about software defects, such

as memory corruption bugs, that could be exploited, so from a reliability standpoint, such issues

need not be addressed. Additionally, occasional regression tests would be carried out to see if any

minor bug fixes or refinements may have introduced new defects, and when these had been

identified, they have been remediated. Input validation has also been employed to ensure that

 106

inaccurate user input doesn’t break the software. In some parts of the software, this has taken the

form of whitelisting acceptable input, with all other input being discarded.

Evaluating the Methods

This artifact is the realization not only of an instantiation, but also of several methods. As

such distinct criteria comes into play concerning the evaluation of methods. With methods, we can

look to consistency, completeness, and appropriateness as evaluation criteria. Completeness looks

at how complete the results produced are, and it looks to the completeness of the software

specification in terms of describing functionality. The specification must fully and completely

address all aspects regarding the algorithms, with nothing left unstated. Consistency is in reference

to the specifications not having any “internal contradictions” (Zowghi, etal., 2002). Correctness is

viewed as the presence of both consistency and completeness; satisfying the stakeholder goals can

also be described as correctness (Zowghi, et al., 2002). Those are the criteria, and they can be

demonstrated in a number of ways, such as laboratory research, case studies, surveys, etc. This

research will look to Hevner’s evaluation criteria for a design science artifact, i.e. efficacy, quality,

and utility. This will in part be demonstrated via validation techniques from Wieringa’s single-

case mechanism experiment.

Evaluation of the artifact’s instantiation and its methods will be performed jointly, as in

this artifact they are inseparable. To try to separate them for purposes of evaluation and validation

would be overly artificial, and it would introduce unnecessary redundancy.

Artifact 1: A Method to Discover JOP Functional Gadgets

As the literature indicates, previous methods to discover JOP gadgets already exist. As

chapter 2 discusses, there have been different paradigms for finding JOP, and the JOP ROCKET

 107

exclusively uses the JOP dispatcher gadget paradigm. This dissertation presents an original

approach to an existing algorithm. It is an enhanced variation on the algorithm for finding JOP.

With this approach, it searches for a combination of opcodes for a specific indirect jump or indirect

call. For instance, for CALL EAX, it would search for the opcodes for CALL EAX (FFD0), CALL

PTR EAX(FF10, and CALL FAR EAX (FF18); these are shown in Figure 3. It would then search

through the whole of the text section. Each time it found one of these combinations of opcodes, it

would carve out a chunk of a bytes to be analyzed. The default is 20 bytes, although this could be

changed to any arbitrary amount. For the opcodes carved out, it would search the resulting

disassembly, perform classification, and save necessary bookkeeping information. The tool then

would decrement the number of opcodes being searched, and the it would carve out those bytes,

create disassembly, and then perform classification. This method would continue as long as there

was at least six bytes of opcodes. After a point, there could sometimes be insufficient opcodes to

generate meaningful disassembly, and this was chosen as a safe value.

This method is an original reworking of a simpler JOP algorithm (Bletsch, et al., 2011).

The method presented in this artifact is more robust, and the inner workings of the method differ.

It is assured that discovery will occur for each possible permutation that could be formed with

chunks of binary that end in a desired indirect call or indirect jump. Because the attack surface

with JOP is very small relative to ROP, it is critical every conceivable gadget be located and

catalogued. The specific exclusion criteria and the usage of regular expressions is original as well.

Although this algorithm could include some redundancy, it ensured that no viable gadgets

were missed. While there is value in ensuring all practical gadgets are located, sometimes the

output generated would be highly impractical and of no value to an analyst, and accordingly

exclusion criteria prevented such gadgets from being saved. For instance, SBB BYTE PTR [EAX-

 108

0X5E5B10C4], AL would be of no use to an exploit developer. To deal with these, the tool makes

use of a series of extensive regular expressions to exclude unwanted results that were felt to be

nonsensical or far removed from the possibility of being useful. There is not functionality for the

user to change this in the UI, although they could modify the source code as needed, to add to or

detract from the exclusion criteria. Once desired gadgets were found, they were saved to

appropriate data structures that indicated the location in the array of text where the indirect jump

or indirect call was, the number of lines to go back, the number of opcodes to disassemble, and the

name of the module, as shown in Figure 4.

Figure 2. Function get_Op_JMP_EAX

Figure 3. Hexadecimal opcodes for various JMPs.

Another value that is important in this algorithm is the LinesGoBackFindOp. This is a

global variable that is utilized as part of the searching mechanism, and the UI allows the user to

easily change this as needed. LinesGoBackFindOp allows the analyst to specify the depth to search

 109

for gadgets. The depth refers to how many lines exist from the indirect call or jump to the target

operation. The further back a line is from the indirect jump or call, the greater the chance that other

instructions might be disruptive to registers that contain values that need to be preserved. Thus, by

either enlarging or reducing the LinesGoBackFindOp variable, the analyst can cast a broad net or

do the opposite.

 Figure 4. A diagram of method addListBaseAdd

Figure 5. The source code for method addListBaseAdd

Once the desired gadget is found, bookkeeping information is stored in specific data

structures, as shown in Figure 4 and Figure 5. There are three primary data structures as well as a

less important forth once; each is populated with information once a functional JOP gadget has

been discovered. The first three contain numerical values. The first is the location of the indirect

jump or call. The second is the number of lines to go back; this is in reference to the number of

lines between the target indirect jump or call and the target operation. The third is the numOps,

which is the number of opcodes needed to produce the desired disassembly. NumOps is important

because in x86, line enforced alignment does not exist, and therefore execution may begin in the

middle what would have been an intended instruction. There is a global value for numOps, so the

user can easily change this through the UI and affect the numOps in all the functions, while

 110

allowing a user to also modify the source code at the function level if need be. However, the

algorithm will discover all possible combinations of opcodes from the set amount of numOps,

down to 6. The printed results also list the number of opcodes associated with a gadget. Finally,

the forth parameter is the module name; this indicates the module that the gadget stemmed from.

Figure 6. The "carve out" portion of function disHereJmp

Now that we have a better understanding of some of what goes on in this method, we can

provide a broad overview of how the method is implemented. The algorithm consists of two

functions, a primary function and a helper function. The primary function, as show in Figure 2,

first searches through the entirety of the extracted text section, for the opcodes that correspond to

a target indirect jump or call. Once it finds an instance of one, it sends it to a helper function that

carves out a chunk of disassembly based on the number of opcodes, as shown in Figure 6. This

will then search for all the specific operations, of which there are dozens, and if found, it will

record the proper bookkeeping information. It will then decrement the number of opcodes, without

falling below 6, and iterate through a loop, generating all possible combinations of opcodes below

the NumOpsDis, and allowing the resulting disassembly to be searched for specific operations.

 111

 Figure 7. A diagram depicts the function get_OP_JMP_EAX

The method improved iteratively as it was subjected to a series of validation efforts.

Frequently nuanced reworkings would emerge as desirable, and over a period of time these resulted

in a profoundly improved version of the method.

 112

Artifact 2: A Method to Discover JOP Dispatcher Gadgets

This artifact is also a reworking of a previously extant algorithm to make it more robust

and useful. A dispatcher gadget is necessary as a critical first step in JOP. With ROP, we would

use the stack typically which integrates with RET instruction, which will return from the function

call and then execute the next operation or go to the next address on the stack. However, with JOP,

the luxury of using RET is not available; instead, a functional gadget would jump to the location

of the dispatcher gadget. The dispatcher gadget would then advance forward or backwards by a

predictable amount a location in the target dispatch table, which would be where the dispatcher

gadget would jump to, allowing us to reach the address for the next functional gadget. One very

convenient dispatcher gadget would be ADD EAX, 8 / JMP EAX, where EAX would contain the

location of the dispatch table. The dispatch table would then be populated with virtual memory

addresses for functional gadgets, as well as filler, as there often may be wide gaps in between the

addresses. Filler could consist of NOPs or functional NOPs. A functional NOP is one that

effectively does nothing of importance, preserving registers as they were and not affecting control

flow; an example would be MOV EDI, EDI, which Microsoft uses for runtime hot patching.

 Figure 8. Excerpt from function get_Dispatcher_G

 113

Figure 9. Excerpt from findDG_EAX function depicting the "carve out" portion

The JOP ROCKET’s method for finding dispatcher gadgets contains original

contributions, and it improves upon the existing algorithm. First, it utilizes an the method of

grabbing a chunk of binary to search and then iterating through all possible permutations, as partly

shown in Figure 8 and Figure 9; this is the same technique as used in the artifact to discover JOP

function gadgets. The method to discover a dispatcher gadget differs from the rest of the tool, in

that the search for these is not done concurrently with all other searches. Instead, this algorithm

works off of previously obtained results. This helps provide the analyst with much more flexibility,

and the dispatcher gadget finding method takes additional parameters to allow for this.

Rather than being overly permissive about possible dispatcher gadget candidates, the

algorithm has strict criteria for what is acceptable. For instance, with ADD or ADC, there is a

requirement that it must add only a register or a numerical value, as seen in Figure 10. While

others could possibly result in valid dispatcher gadget candidates, this helps reduce unacceptable

results, which could make results too unwieldy to wade through.

The algorithm provides classification of dispatcher gadgets, which is an original

contribution. First, it identifies all common, viable dispatcher gadgets. From this, it then

determines which of these would be best. An example of a best dispatcher gadget would be one

that adds only a small numerical value to the register that it will subsequently jump to. The best

dispatcher gadgets are scarce. Finally, it includes an Other Dispatcher Gadget category, which

 114

identifies some other gadgets that would be feasible but would require more careful, special

planning and set up and maintain.

 Figure 10. Excerpt from findDG_EAX function depicting regular expressions to find the primary

category of dispatcher gadgets

The Other category includes criteria for finding dispatcher gadgets, and this constitutes a

more significant, original contribution. Because the number of dispatcher gadgets produced can at

times be very slim or even non-existent, it is important to consider other less practical possibilities.

We can look to Appendix A to see the few dispatcher gadgets found, which average to 0, for many

of the registers, demonstrating the urgency to look at alternative sources for dispatcher gadgets.

Firstly, the method considers multiplication in the form of MUL and IMUL. It the multiplication

was a very small number, in some cases this would lend itself to a plausible dispatcher gadget

candidate. For instance, if an analyst were to start writing to the heap, and then multiplied it by 2

or even 3, potentially a few to several addresses then could be hit, given the right set up. At some

point, the numbers would increase too much, and there would be no way to go forward. However,

if one were to find another functional gadget that subtracted a large, appropriate value from the

register containing the location of the dispatch table, then the dispatcher gadget could then return

 115

again to an area of the heap under the attacker’s control. Of course, doing all this would require a

special set up and very careful planning, but it is feasible. Unfortunately, gadgets that do

multiplication are rare, so MUL and IMUL will be are rare, but they are considered in the code

because no stone should be left unturned. It is anticipated that being able to use them in this fashion

as a dispatcher gadget for a real-world application would be rare.

Figure 11. Excerpt from findDG_EAX function depicting regular expressions to find the “other” category of

dispatcher gadgets

What is more practical and could be found in the wild, are gadgets that do multiplication

or division through bitwise operations, namely shift left or shift right. Thus, the algorithm searches

for shift left and shift right by values or 1 or 2, as it is felt that anything higher is simply too

impractical, as can be illustrated in Figure 11. With shifting bitwise operations, the same logic can

apply. Traditionally, multiplication and division have not been considered as useful for dispatcher

gadgets, for obvious reasons. However, as previously explained, it is feasible that the attacker

could advance forward or backward a very limited number of times and then get a functional

gadget to subtract or add a large value from register containing the address of the dispatch table.

This also means shifting operations could be feasible if the attacker can gain control over a very

large area of the heap, because within the heap the dispatch table could be laid out with significant

distances between the addresses for functional gadgets. Because dispatcher gadgets are necessary

 116

for JOP to work, and due to the scarcity of these gadgets, being able to expand what is acceptable

for dispatcher gadgets candidates could potentially make some binaries now potentially viable.

These are binaries that otherwise may have been impractical due to paucity or absence of

dispatcher gadgets. With JOP the urgency of consider all possible gadgets is no more true than

with dispatcher gadgets.

The dispatcher gadget algorithm allows for needed flexibility for the analyst. Specifically,

the howDeep variable indicates the distances between the indirect call or jump and the desired

dispatcher opertion (e.g. add, sub, shift, etc.). Ideally, the howDeep should be within one or two

lines, because the greater the distance, the higher the chances that other registers could be made

un-usable or only usable on a limited basis. However, if no viable candidates can be found with

howDeep within 1 or 2 lines, that amount can be increased easily in the UI. After all, it is possible

gadgets may be found that would work in spite of a larger howDeep value. The default for this

parameter allows for only two lines of instructions, so as to not inundate the analyst with results

that mostly would be impractical.

In summary, this artifact is an original contribution due to its unique method of searching

to discover dispatcher gadgets. It is an original contribution also because of its expansion to include

other dispatcher operations, other than what had previously been used. It is an original contribution

because of its use of regular expressions to exclude unsuitable gadgets as well as to classify

dispatcher gadgets into distinct categories. Finally, it is an original contribution because of how

granular the analyst can be when searching for dispatcher gadgets, to either expand or narrow the

scope of what is acceptable.

 117

Artifact 3: A Method for Printing Disassembly for JOP Gadgets

This dissertation presents an entirely new method, not based on previous work, for the

printing of disassembly for JOP gadgets. Such a method could be extended to artifacts that make

use of other code-reuse attacks, such as ROP. The JOP discovery algorithms described above result

in pertinent bookkeeping information being saved to appropriately named data structures. There

are approximately 600 data structures that save bookkeeping information for each object that exists

in the list of objects. Each object holds all the information for one PE file, whether it is an

executable or one of its modules. The extracted text section for the executable image and each

module is also stored within each object. As described in previous sections, the contents of each

of these data structures consists primarily of just a few values used to carve out correctly sized

chunks of binary that are then disassembled. At no point are any opcodes or disassembly saved for

any gadget. This is useful for many reasons, as it allows enhanced ability to search, manipulate

data, and it does not waste memory storing many lines of gadgets, disassembly, or other printed

information. No other software that prints out disassembly for code-reuse gadgets using similar

methods is known to exist..

 118

 Figure 12. Excerpt from function printlistOP_CALL_EDI

Each specific operation has its own printing function, as can be illustrated in Figure 12. Each

operation has its own printing function because of the hundreds of different data structures used

for the many possibilities. This is easier and simpler to read and maintain than a few with much

more convoluted logic.

Each printing operation displays the disassembly both to screen as well as to disk. To utilize

a function, such as printing SUB, the register would be passed as a parameter. Thus, it could

retrieve all functional gadgets that perform SUB a specific register, such as EAX or EBX, or

alternatively it could simply retrieve all SUB operations. This parameter will allow the appropriate

data structures to be accessed to then print the desired output. Once the bookkeeping values were

obtained from the appropriate data structures, they are then provided to a helper function, as shown

in Figure 13, which then uses those values to obtain the necessary disassembly and then return it

as a string, to be printed to terminal and disk.

 119

 Figure 13. Excerpt from function disHereClean

Each operation is printed to an appropriately named file, with the output provided in a more

aesthetically pleasing manner; sample output can be found in Appendix B. Segregating the specific

operations to small text files named for the the operation in question is intended to make it easier

for an analyst to find the gadgets they need, as they would not be required to wade through one

large or even massive file. Representative, truncated output is included in Appendix B, for printed

results from dispatcher gadgets and functional gadgets. Each line of output has both the virtual

memory address location as well as the offset. In many cases, the offset will be more relevant, due

to ASLR and other factors that will allow for the virtual address memory to be unpredictable. Each

line in the output has both values, so the user can quickly obtain the needed offset, and not need to

spend 10 seconds calculating it. For experienced users, calculating an offset is a nominal effort,

but for more novice users, it could be another unnecessary source of confusion.

Other printing functions are simpler, if less data structures are involved, but all very similar

in that they obtain the necessary values from data structures, provide these values to an original

helper function, and then get strings of the disassembly returned.

The speed of printing output is fast. Depending on the size of the binary and its modules,

it could range from 5 to 20 seconds for a binary with a smaller number of results, to a few minutes,

for those with significant output. At the upper end, much of that time is in printing to terminal.

 120

Figure 14. Print sub-menu options

The user is able to go to a printing menu, as seen in Figure 14, to select exactly what they

wish to print, as there are numerous options with many variations. The user can easily enter input

in an intuitive UI, utilizing brief keystrokes. With a few more keystrokes, they can obtain the

highly customized results that they want. Again, emphasis here is on allowing the user to be very

granular and specific about what they need, rather than providing a one-size-fits-all option for

output. Thus, although all data has been obtained for all possibilities, they may wish to only print

output for certain operations or that jump or call a certain register. With output, sometimes less is

more, as time is not wasted on irrelevant data. Finally, the user can print a .csv file that shows the

 121

number gadgets generated for each of the various operations. This can allow an analyst at a glance

the opportunity to decide if a binary is likely to be useful for JOP and worthy of further

investigation.

Artifact 4: A Method for Classifying JOP Gadgets into Categories Based on Turing

Catalogue Features,

 Many studies on code-reuse attacks have demonstrated Turing-complete catalogue

features for ROP on various architectures. In fact, ROP has been demonstrated as a feasible in

some form on all architectures, even voting machines (Shacham, 2007). This tendency to

demonstrate Turning-complete features has lent itself to JOP as well. This research does not

attempt to exhaustively enumerate the presence of all Turing-complete features. There is no

interest for this research to enumerate gadgets that facilitate branching, nor are there any attempts

within the artifact made to enumerate these, as they are not relevant for the types of attacks being

envisioned. They certainly would be feasible, but they introduce a level of complexity that is

simply unnecessary for this type of work. Their use on real-world applications, given the relative

scarcity of JOP gadgets, would be highly minimal.

Finding or not finding Turning-complete features does not achieve any goals for this

research; there is no vested interest to demonstrate these features exist. However, for the analyst,

being able to rapidly access some of these as well as other classifications, in an organized, easy to

use fashion, will simplify their work. For example, if an analyst is interested in adding or

subtracting, they can quickly obtain the functionality that is relevant to them. They might be

interested in adding to a certain register for an indirect jump or call to a certain register.

 122

While many other tools have used methods to enumerate Turing features, it is believed this is the

first that is done so with respect to JOP while using Python and regular expressions for

classification and exclusion.

As previously described, the artifact searches for a specific indirect jump or call. To do

this, it first searches for the appropriate opcodes. Once it finds these opcodes, it then sends the

appropriate bookkeeping data to a helper function. This will carve out a binary chunk of opcodes

and then produce the relevant disassembly. For instance, 20 bytes of opcodes might produce 4 to

8 lines of disassembly. This disassembly would end in the target indirect jump or call. Once this

disassembly has been obtained in the helper function, it exists in the form of a list. The helper

function then iteratively combs through each line in the list. For both the disHereCall and

disHereJmp functions, there are approximately 800 lines of code, much of it regular expressions,

to facilitate searching the disassembly. Figure 15 depicts a search in the disHereJmp function for

adding to any register and adding to EAX.

 123

Figure 15. Excerpt from function disHereJmp pertaining to the operation of adding to EAX

For each operation, there are many regular expression filters to select target operations, and

additionally regular expressions are used heavily to discard results that would be regarded as

impractical. Because the tool engages in opcode-splitting, it can produce some unintended gadgets

that are simply irrelevant, such as SBB BYTE PTR [EAX-0X5E5B10C4],AL. Seeing similarly

outlandish results would have little value to the analyst, only wasting their time to wade through

such irrelevant results. With regular expressions, patterns for impractical gadgets can be

determined and excluded. These specific criteria vary widely from gadget to gadget. Each run

through this helper function iteratively subjects the list of lines of disassembly through all the

regular expressions. Once an appropriate instruction is discovered that corresponds to a desired

operation, all the relevant bookkeeping information is then saved to appropriate data structures, as

explained elsewhere. In all, there are approximately 600 data structures to save bookkeeping data

for all classifications.

In summary, this research includes an original method for classification of JOP gadgets.

Some of the classification categories are based on Turing-complete features, while others are

simply operations likely to be of interest for constructing a JOP exploit.

Faceted Classification

This research engages in faceted classification for software reuse by organizing knowledge

into very specific categories (Prieto-Diaz, 1990). Not only does faceted classification classify the

knowledge, in the form of gadgets, but it makes them available for near instantaneous retrieval

after the classification has been completed. This research does this in part by making limited use

of Turing-complete features, but it extends it further by adding additional, more granular

classifications. Some of these sub-categories, such as for JOP dispatcher gadgets, have a grouping

 124

that presents only the very best gadgets. These additional categories, outside the purview of

Turing-complete, make classifications based on registers used and other relevant functionality.

Faceted classification helps to make sense of the number of gadgets that may be generated.

One of the hallmarks of systems with faceted classification is that a user is able to very easily

navigate and search through vast amounts of data that match up with the different orderings as

provided by the facets. With adequate familiarity, users can intuitively circumnavigate the

established categories and subcategories to retrieve the desired data.

With faceted classification, under the facets, we then have what are described as items

(Zendler, et al., 2001). For dispatcher gadgets, we have 21 items. There are seven items belonging

to Dispatcher Gadgets, seven for Best Dispatcher Gadgets, and seven for Other Dispatcher

Gadgets, and each of these represents seven registers. The included registers are EAX, EBX, ECX,

EDX, ESI, EDI, and EBP. There are facets as well for each operation performed by functional

gadgets, such as ADD, SUB, MUL, DIV, etc., and each of these contains 8 items, each selected

specifically due to modification of EAX, EBX, ECX, EDX, ESI, EDI, or EBP. There is also a final

item that includes all the above. A user may aggregate queries from many different facets to obtain

the desired data that may be useful for their unique needs for analysis.

With faceted classification, having a baseline is important, as this is the standard by which

future efficacy of the experimented can clearly be demonstrated (Zendler, et al., 2001). There

should be repeated measurements that can help ensure that the baseline is consistent. In terms of

establishing a baseline, for this research we could look at it from two perspectives. First, we could

look at the total number of indirect jumps and calls that are made. Secondly, we can look at the

“all” item under each facet to get a baseline of the total number of gadgets found. From that, we

can see how these break down into individual items based on register. Some gadgets that may form

 125

a part of the baseline may not appear under items for specific registers due to exclusion criteria.

Additionally, we could look at the baseline, from the perspective of all possible gadgets that would

be found by a naïve implementation of a search for a particular operation, and then we could look

at the results from a more sophisticated, mature implementation. This tool does not have maintain

naïve implementations of different searches, as it would require significant extra work. Such data

is irrelevant to security researchers, who simply want to be able to construct JOP exploits as easily

as possible.

This research supports the idea that efficacy and utility can stem from the effective use of

faceted classification with JOP. Appendix B provides exhaustive results from 32 binaries that were

analyzed and classified by the JOP ROCKET. The total number of gadgets found under each item,

are provided, for each of the binaries analyzed. Results are provided for just an image of the

executable itself and collectively as the image and its associated modules.

Table 5. Faceted classification for gadgets that perform various operations

Dispatcher

Gadget

Best

Dispatcher

Gadget

Other

Dispatcher

Gadget

ADD

gadget

SUB gadget MUL

gadget

DIV gadget

EAX EAX EAX EAX EAX EAX EAX

EBX EBX EBX EBX EBX EBX

ECX ECX ECX ECX ECX ECX

EDX EDX EDX EDX EDX EDX EDX

EDI EDI EDI EDI EDI EDI

ESI ESI ESI ESI ESI ESI

EBP EBP EBP EBP EBP EBP

 126

ALL ALL ALL ALL ALL ALL ALL

Table 6. Faceted classification for gadgets that perform various operations

POP gadget PUSH

gadget

INC gadget DEC

gadget

MOV ALL

gadget

MOV

SHUFFLE

gadget

MOV

VALUE

gadget

EAX EAX EAX EAX EAX EAX EAX

EBX EBX EBX EBX EBX EBX EBX

ECX ECX ECX ECX ECX ECX ECX

EDX EDX EDX EDX EDX EDX EDX

EDI EDI EDI EDI EDI EDI EDI

ESI ESI ESI ESI ESI ESI ESI

EBP EBP EBP EBP EBP EBP EBP

ALL ALL ALL ALL ALL ALL ALL

Table 7. Faceted classification for gadgets that perform various operations

LEA gadget XCHG

gadget

SHIFT

LEFT

gadget

SHIFT

RIGHT

gadget

ROTATE

LEFT

gadget

ROTATE

RIGHT

gadget

EAX EAX

EBX EBX

ECX ECX

EDX EDX

EDI EDI

ESI ESI

 127

EBP EBP

ALL ALL ALL ALL ALL ALL

Table 8. Faceted classification for all gadgets that jump to specific registers

JUMP EAX JUMP EBX JUMP ECX JUMP EDX JUMP EDI JUMP ESI JUMP EBP

ALL ALL ALL ALL ALL ALL ALL

Table 9. Faceted classification for all gadgets that call specific registers

CALL EAX CALL EBX CALL ECX CALL EDX CALL EDI CALL ESI CALL EBP

ALL ALL ALL ALL ALL ALL ALL

Artifact 5: A Method for Statically Enumerating and obtaining modules in the import table

and obtaining their JOP gadgets, while applying exclusion criteria.

Design science is highly iterative, and this dissertation research has developed and refined

a method to statically enumerate all modules that will be loaded initially by a PE, including those

not in the Import Address Table (IAT), and to allow for their JOP gadgets to be obtained. As a

static analysis tool, it is difficult by its very nature to obtain all the modules that will be loaded by

a PE file. To do this is typically a task best left for dynamic analysis tools, as all modules will

already be loaded at the time of a search. With the JOP ROCKET, a static tool, the goal was to not

only identify modules that likely were to be active once the binary became a process, but to also

discover their respective file locations. This would allow the text section to be extracted from each

of these and then searched for JOP gadgets.

 128

A DLL can be loaded through implicit linking as an import from the IAT, and this is the

most common way DLLs are loaded. The Pefile library provides functionality to easily enumerate

these, but this would not include a number of modules loaded through other means. For instance,

some of these other modules would be present upon a binary being loaded in WinDbg, yet they

would not be present in the IAT. Additional ways to load DLLs include forwarded and delayed

imports. These are not able to be obtained through the functionality built into the Pefile library. A

forwarded library involves having the call to another function or library delegated to a different

library (Winitor, 2010). A forwarded library will look like a typical exported function, but in the

ordinal export table, it will indicate that it is forwarded. The end effect is a forwarded DLL will

not actually be loaded until or if it is called (Chen, 2006). A delay loaded library is similar and is

not loaded until they are actually called upon; these are not loaded as they are rarely needed

(Alexander, 2017).

Explicit linking is more dynamic in nature. This can concern techniques such as using

LoadLibraryEx and GetProcAddress to dynamically load it; such dynamically linked libraries

would not appear in the IAT. Additional malware techniques are possible for dynamic loading of

DLLs, such as utilizing the PEB and the PE file format to obtain the address for and load a specific

library and desired API functions (Stroschien, 2018). As a static analysis tool, this work does not

concern itself with enumerating modules loaded in a dynamic fashion. How some of this is done,

particularly with the former, can be highly obfuscated at times and often occurs in malware, which

is outside the purview of this work. The latter would be difficult and complex to discover purely

through a static analysis tool, such as this. It would be possible with a more sophisticated, dynamic

tool.

 129

There were several problems with getting the desired functionality to work for this tool.

First, Pefile would list only those DLLs inside the IAT, failing to enumerate others that would be

loaded very soon after a process was loaded. Second, there needed to be a way to obtain the file

locations for DLLs, so they could be loaded and have their text sections extracted. This

functionality was not provided by Pefile. Third, after finding a way to obtain the file locations for

modules, some location proved to be incorrect, with many returning the the Python module. This

was used for the artifact, since it is the language the JOP ROCKET is written in, but it is unrelated

to the target binary. Through the iterative DSR process, all of these problems were successfully

remediated.

To find the file location of the modules, so that their text section could be loaded, Windows

APIs were used to find the location of the DLL. First, LoadLibraryEx was used to load the DLL,

and then GetModuleHandleW was used to return a handle to the DLL. This handle was then used

with GetModuleFileNameW to obtain the module file location. When it would fail to return a

handle and would return null, then it would then return a handle for Python, the language of the

artifact. This was how Python was improperly enumerated with its JOP gadgets extracted. In those

cases, the JOP ROCKET searched in the directory of the target binary as well as in System32 or

SysWow64, based on whether or not it was a 32 or 64 bit binary, as seen in Figure 16. Additionally,

the application’s directory would be searched as well. More often than not, if it could not be found

through Windows APIs, it was able to be found this way. Occasionally, some modules could not

be found through the above means, and rather than risk getting improper results by having

something such as Python be inadvertently returned as a handle and thus loaded, these were simply

excluded. The user was provided with a notification the module was excluded from searching.

This was rare, and it stems from the limitation of working with a purely static analysis

 130

environment, while trying to do information that would typically be obtained in a dynamic

environment.

Figure 16. Excerpt from extractDLLNew function, illustrating its ability find DLL file locations when handle

module base is null

As a means of addressing some of these delayed imports, the artifact then extracted the

imports of other imports. As discussed previously, more libraries than what was in the IAT would

frequently be loaded immediately or soon thereafter, once a process was loaded. Once the imports

of the imports were obtained, these would then be added to a list of modules to be extracted and

searched. This initially gave the greater coverage, but it also included some DLLs that were not

likely to be loaded in the target binary. When tested in a dynamic environment, such as WinDbg,

it would be found that some of these modules would not appear. However, a commonality was

observed to help explain this. Numerous DLLs located in SysWow64/downlevel and

System32/downlevel that began with API-MS were among these that would be found through this

method, but they would not typically appear as a loaded binary. Results from downlevel were thus

 131

excluded, with the recognition that a static analysis tool has limitations, but that it is better to

exclude these than to present gadgets from unavailable DLLs to the analyst. In addition, many of

those DLLs were extremely small and likely to yield minimal if any gadgets.

Initially, prior to excluding downlevel modules, the number of modules could rapidly

increase, producing a very inappropriately high number of modules. Many of these came from api-

ms-win modules located in downlevel. On one testing machine, there were 111 of these api-ms-

win modules in the SysWOW64/downlevel directory. Excluding these results produced results that

were much more in line with reality, as they modules did not appear when examined in WinDbg

Figure 17. Excerpt from function noApi_MS, that drops APIs that will be represented by ucrtbase.dll

A final anomaly noted was that although various downlevel modules might be named in

the IAT, all beginning with api-ms-win, such as api-ms-win-core-debug-l1-1-0.dll, the handle for

these returned would always be ucrtbase.dll. Looking to WinDbg, it would be confirmed that it

was the ucrtbase.dll that was loaded instead of these tiny, numerous downlevel modules. It is

important to note also that ucrtbase.dll itself is located in the downlevel directory. This ucrtcase.dll

is nearly the file size of the 111 api-ms-win DLLs, with a difference of only about 200 KB between

ucrtcase.dll and all the api-ms-win DLLs. Without examining the content of each, it is likely safe

to conclude the entirety of these 111 are in ucrtbase.dll, and that the 200 KB difference is simply

related to bytes for the structure of the PE file across the various DLLs. Thus, given that Windows

returns a handle for ucrtbase.dll when these DLLs are in the IAT, extracting ucrtbase.dll instead

 132

of downlevel api-ms-win modules is the appropriate course of action and would be what was done

once the process was loaded. And again, indeed, this behavior mirrors what is seen in dynamic

analysis tools such as WinDbg. The JOP ROCKET has included logic so that if a handle is returned

for a different module, such as ucrtbase.dll, it will be accepted; this provides coverage for other

similar actions that may occur. DLLs that compromise part of ucrtbase.dll are excluded, as shown

in Figure 17.

Figure 18. Excerpt from function obtainAndExtractDlls, which drops extraneous modules

By using the above technique to provide expanded coverage to discover other modules

outside the IAT, some DLLS would be listed multiple times in the list. Accordingly, there is logic

to truncate the list, so that there would only be one instance of a module in the list, as illustrated

in Figure 18.

The above logic for static enumeration of modules is not perfect, but it provides for

improved and more accurate coverage, than what had been initially created in earlier forms of the

artifact, with missing modules or improper results, such as Python being loaded when the handle

returned was null. By remediating these issues through the iterative process, the JOP ROCKET is

now able to find additional modules and to ensure accuracy of file locations, allowing them to be

extracted and scanned for JOP gadgets. Logic was implemented to exclude modules whose correct

file location could not be found. This method of providing expanded coverage to statically find

additional DLLs outside of the IAT, while ensuring correct file locations are being returned, serves

 133

as an original contribution. This method could be adapted to other reverse engineering tools, for

many diverse purposes.

The JOP ROCKET provides the user with the opportunity to search the binary in three

ways. They can search for just the executable itself, the executable and only the modules contained

in the IAT, or the executable, the modules in the IAT, as well as expanded coverage of DLLs. This

final option is made possible by the original contribution that is this method, allowing for users to

get more realistic results. Without the presence of this method, users would frequently miss out on

modules that would be present when the binary loads, as some of these modules would not be in

the IAT. With the relative scarcity of JOP gadgets, it is critical that these modules be enumerated,

as this method has allowed, so that there JOP gadgets may be included among the results.

Artifact 6: An Instantiation of the Artifact

Perhaps the most important of the artifacts for this research is the instantiation itself, the

JOP ROCKET. It is the consummate realization of all ideals for the perfect JOP tool, and it

accomplishes this by adhering to the functional requirements specification. The instantiation is the

culmination of the DSR inquiry into the research problem, and it effectively brings to life all the

various methods, in the form of a tool that is accessible and usable, providing the desired

functionality to the user. The evolution of the artifact has been iteratively developed, while

following well-established design science principles set forth by Hevner, et al., as well as those

that were provided by Wieringa.

This instantiation was constructed to be portable, allowing for it to be used across multiple

platforms. Because the JOP ROCKET is written in Python, all that is necessary is an installation

of Python, access to the command line, as well as all dependencies. The primary dependencies are

 134

the Pefile and Capstone libraries, which are available across a variety of platforms. Sometimes it

can be complicated to install these in certain environments, but it is not a great level of difficulty.

Thus, the JOP ROCKET can be used to some degree on platforms other than Windows. The only

limitation, as previously explained in chapter 3, is that outside of Windows, the executable’s

modules cannot be scanned, only the image executable. This is due to the use of Windows API’s

in the artifact, which would be absent elsewhere, and because the DLLs would not be available in

their proper locations. A user of course can still scan individual DLLs, if they are running analysis

outside of Windows.

Verification of Disassembly

Verification of disassembly is paramount, as it is one of the key features of for the JOP

ROCKET, as it is the disassembly that is used for the JOP gadgets. From this, we can look at it

from two perspectives. First, there must be assurances that the addresses and offsets provided for

each line of gadgets is accurate. Occasionally during development, there were issues that crept up

with the address or offset not being properly aligned. Once it was noticed this was occurring,

corrections were made. Next, the principal concern was that the disassembly was correct,

regardless of address. This was especially true with opcode-splitting. After all, one could not

simply go and check in IDA Pro by attempting to look at the line prefix for the intended address,

as IDA Pro only displays disassembly for intended instructions, though it is possible to change

this. For greater simplicity and reproducibility of results by others, to verify that the addresses and

offsets were correct, both IDA Pro and WinDbg were made use of.

To ensure that the correct disassembly was produced, there were two primary approaches.

First, we could go to the location in IDA Pro and look at the opcodes to see if they aligned with

 135

what was in the Defuse Online x86 /x64 Assembler and Disassembler (Defuse, n.d.), as shown in

Figure 19 and Figure 20. Thus, it could be determined if the opcodes matched up, and one could

use the Defuse tool to see if the correct lines of opcodes produced the disassembly. Alternatively,

one could simply take the offset and the base address of the module in question, and enter u

[address] in WinDbg. That would indicate if the disassembly produced by the JOP ROCKET and

WinDbg were a match, as shown in Figure 21 and Figure 22.

Figure 19. IDA Pro confirms that these are unintended instructions.

Figure 20. Defuse Assembler and Disassembler confirms that those opcodes do produce the unintended

instructions provided by the JOP ROCKET.

Figure 21. The JOP ROCKET provides output for a gadget. The gadget is created using unintended

instructions.

Figure 22. By using the u command in WinDbg, we can see what Assembly instructions would be executed if

we began execution at the address provided.

 136

Throughout the development process, there were numerous changes to various functions,

structures, or helper functions that had an adverse effect on the disassembly, introducing different

complications that caused inaccurate disassembly. Once these were identified, they were

remediated. The JOP ROCKET in its current form is well tested and produces only accurate

disassembly for the gadgets, as shown in Figure 21. The verification methods leave no shadow of

a doubt as to the accuracy of the gadgets produced by ROCKET.

Validation

Validation is a necessity before a new technology can mature sufficiently to be able to be

of use in the market. New technologies such as the JOP ROCKET must be subjected to testing

with appropriate simulations that replicate similar conditions that would be used in a real-world

context (Wieringa, 2013). An empirical method for validation can be performed here with a single-

case mechanism experiment. With validation, we endeavor to simulate its use in a context similar

to what will be used, to see if it satisfies the needs of stakeholders.

Conceptual validation is the first stage of validation, where calculations and examples are

worked through to try to access the validity (Wieringa, 2013). Then comes the modelling stage,

where experiments are done with artifact. As the JOP ROCKET was being developed, significant

informal testing was performed. Finally, we get to real-world field testing. Here the JOP ROCKET

is used as intended on actual binaries.

For validation, we primarily focus on the single-case mechanism experiment as presented

by Wieringa (2013; 2014). Much of what we can do also can be demonstrated via the work with

Hevner, et al., and owing to their prominence, we discuss that later in chapter 4. For purposes of

validating software, other similar methods can be used to achieve the same ends. Zelkowitz and

 137

Wallace (1998) cover much of the same area in what they call a simulation or dynamic analysis,

while Glass et al. (2001) cover the same province with what they refer to as field experiment,

laboratory experiment – software, or simulation. While these other methods are appropriate to use

for validation, what Wieringa describes as the single-case mechanism experiment provides

significant potential overlap and is mutually consistent with the aforementioned validation

methods.

A validation model consisting of a model of the artifact and a model of the context if fully

validated should generalize to the implemented target as well as the intended real-world context

(Wieringa, 2013). As the single-case mechanism utilizes contexts going from idealized to more

realistic conditions, the artifact becomes more robust.

Single-Case Mechanism Experiment

Under both Wieringa and Hevner, et al., validation of new design science artifacts is

critical. Validation is provided using a single-case mechanism experiment, where a simulated use

of the JOP ROCKET is performed. The results it obtains are then evaluated for the applicability.

They show that the JOP ROCKET produces the desired results and output via a controlled

experiment. As this is very valuable information to have for a researcher wishing to do a JOP

exploit, it would strongly imply that the tool would be of immense value to such researchers.

Absent this tool, there would be no automated way to generate all the gadgets divided into

appropriate classifications. Thus, the idea of asking users or potential users if they find value in

the tool would be redundant, since without the tool, there would be no other options except for

laborious, tedious manual discovery of gadgets. Here we have performed validation of the methods

as well as the instantiation of the framework, and the results speak for themselves.

 138

This single-case mechanism experiment is often used as a means to perform validation,

according to Wieringa, and that has been the case here. With implementation evaluation, a tool

may be tested for purposes of being able to analyze the tool’s architecture. Algorithms may also

be tested with a real or simulated context (Wieringa, 2014). The research context is important for

the single-case mechanism experiment. We can view as part of the knowledge goals, within

specific target binaries, the need to determine what are the JOP dispatcher gadgets and the

functional gadgets. More broadly, the results of the single-case mechanism experiment may

provide insights into the prevalence or infrequency of certain categories of gadgets.

A single-case mechanism experiment is used with the knowledge goal of validating new

technology, along with the improvement goal of developing a new or better form of technology.

With this research, the improvement goal has been to develop new methods to facilitate the

discovery of JOP gadgets, or where some methods already exist, to iteratively develop better, more

accurate, more relevant versions of those methods. In validation research, a knowledge question

might concern whether or not the effects of the artifact prototype interacting with a simulation of

the context can satisfy the requirements laid out. The results obtained from the single-case

mechanism experiment clearly demonstrate this has been achieved with the JOP ROCKET.

JOP Dataset

The artifact was intended to allow exploit developers to analyze a target PE file, with the

intent to discover all useful JOP gadgets. As part of the validation effort, to demonstrate the

efficacy and utility of the artifact, it is necessary to test the tool on PE files. The PEs selected cover

a broad range, from small to large executables, each with a few to numerous modules. In all, 32

PE files were subjected to analysis. A broad range were examined, to try to mimic natural working

conditions. These included Windows system binaries, such as Notepad, as well as large and small

 139

binaries that were both commercial and open source. In the design of this artifact, the choice was

made for it to target 32-bit applications, and accordingly the 64-bit PE32+ files are excluded.

The research here does not seek to draw conclusions on specific categories of binaries, e.g. large

or small commercial binaries, binaries made using certain compilers, binaries that employ have

object-oriented C++, etc. The dataset exists simply to demonstrate the instantiation and its methods

work as intended and can contribute some practical utility to the intended user. Different research

efforts that employ quantitative research methods could perhaps make more relevant discoveries

on the nature of JOP in the 32-bit Windows environment, but that is outside our scope.

The number of viable JOP gadgets vis-à-vis ROP gadgets is much smaller, and for some

smaller or even large binaries, the attack surface may not be large enough to realistically mount an

attack. It is important to include these binaries in the dataset. Some binaries, due to their size, have

an attack surface that is simply too narrow to realistically accommodate an attack, as there may

not be enough strong gadgets in plentiful numbers. Because of the relatively small attack surface

that may be the case with JOP, the JOP ROCKET has gone to extreme lengths to make sure all

possible gadgets can be found, even those that while less than desirable, were still feasible.

Additionally, on the same note, the artifact has gone to great lengths to provide order and

classification, removing junk gadgets (some completely unrealistic, derived from opcode-

splitting), so that the good ones can be found, rather than they suffer the fate of a needle lost in a

haystack. After all, if there 8000 gadgets for jump to EAX and only a small number may be viable

for a specific purpose, it does no favors to the analyst, when there is no simple way to make sense

of the deluge of gadget and locate what is sought. Clearly, that would be suboptimal, and so this

artifact has eased that burden.

 140

The JOP ROCKET can be used in essentially three modes when searching for gadgets: the

PE file itself, the PE file and the imports contained in the IAT, and the PE file and expanded

imports. Having more modules than simply the executable itself potentially could greatly expand

available gadgets, or make available gadgets that may lack protections. It is important to consider

that many of these DLLs, as well as perhaps the PE file itself, may have protections in place, such

as DEP, ASLR, SAFESEH, or CFG, which may make them unsuitable, unless a bypass exists. A

bypass could include memory disclosures, to overcome ASLR, and then other protections

potentially could be overcome. This research does not consider these possibilities. Like many other

tools, it can indicate if a particular PE or module has any of these protections. The research is

undertaken from the perspective that even if all the protections were in place, potentially they

could be overcome by a dedicated attacker, given the right set of circumstances. In more practical

terms though, the presence of some of these protections may mean some attacks may not be viable

or the level or difficulty would be too high. Clearly, it would be impossible to tell if an attack

would be feasible from a static analysis tool such as this.

The artifact can generate a .csv with a breakdown of all the numbers of different gadgets,

which serves as a useful as a way of easily examining the results of the single-case mechanism

experiment. The results obtained from the dataset are representative of what may be commonplace

with typical PEs. Looking at the dataset for a binary may provide an indication whether or not JOP

may be potentially viable. Ultimately the only way to know for certain as to examine representative

gadgets. Looking at the .csv may allow an analyst to make an informed conjecture as to whether

or not a binary is likely to be feasible for JOP.

 141

Validation Model

In validation research, the Objects of Study (OoS) is the validation model. This consists of

the artifact prototype as well as a model of the context (Wieringa, 2013). In this wok, the artifact

prototype is the Python instantiation of the framework as well as the different methods. The context

used is a real-world context. Actual binaries that an exploit developer might target serves as the

real-world context. A simulated context would be toy binaries constructed solely for the purpose

of validation. With OoS, there is a need that the validation model satisfies the population predicate,

and in this research the validation efforts employ real-world contexts (Wieringa, 2013).

In order for a validation model to be valid, it should support inferences that are analogic,

descriptive, as well as abductive. The validity of these inferences are then assessed during the

empirical cycle. For descriptive inference, we must define the descriptive inference (Wieringa,

2013).

Validation requires that data preparation be addressed; there should be an answer as to

whether or not data prepared data represent the same phenomena as unprepared data (Wieringa,

2013). With the JOP ROCKET, we find that unprepared data would indeed represent the same

phenomena. However, it would be in a form where manual methods would need to find these,

whereas the JOP ROCKET provides the prepared data in an automated fashion, as files containing

gadget and as a .csv file that provides a summary of all the different JOP gadgets found, broken

down into specific classifications. We also must show if interpretations formed, e.g. classification

of gadgets, may be regarded as facts. Indeed, the JOP gadgets found and their classifications are

performed in a highly objective fashion, where there is no room for opinion.

Repeatability is also a necessity with validation. Other scientists also need to be able to

utilize this work to reproduce the validation (Wieringa, 2013). An analyst making use of this

 142

framework with the same binaries and the same options, would obtain the same results. Another,

independently formed tool would likely find the same results. Many of the results obtained have

been repeated numerous times throughout the testing cycle to ensure accuracy and as the artifact

has been improved, so there is no question as to repeatability.

Validation models additionally must support abductive inferences. This addresses whether

the data given can support the explanations provided. It should also address treatment control. That

is, it must show if the setup of the experiment or even the experiments themselves influence the

validation model (Wieringa, 2013). With respect to abductive inferences, with the JOP ROCKET,

the inferences drawn have been minimal and only used to better inform the design of the artifact.

There is little that needs to be done with respect to treatment control and concern with the

experiments influencing the validation model, because the results obtained can objectively and

decisively be determined as accurate and correct, and there appears to be no undue influence on

validation.

Sampling

The sampling is representative of many types and has been carefully selected, with only

relevant, modern PEs are selected. These are tested on a current, updated, Windows 10 PC outside

of virtualization. The results would be accurate on any operating system. The artifact is to be used

on a large representative sampling of PEs using all available options (all registers selected, all

dispatcher gadget registers found, printing all operations, and obtaining statistics in .csv format on

all the data obtained). This is performed with all the default settings, which are deemed reasonable.

Modification of defaults would produce different results, but the further we go from the defaults,

the less likely they are to be truly representative of the binary. The resulting binaries are then

searched for anomalies and errors in reliability.

 143

Context

In this validation, we have the instantiation and its methods as the artifacts, and the

treatment is subjected it to a realistic context—namely, actual, real PEs that feasibly would be used

in the wild. The treatment can be viewed as inserting an artifact into a context (Wieringa, 2013).

The treatment with this experiment is the request to identify relevant JOP gadgets in target binaries.

We could also view the treatment from the perspective of a security researcher investigating target

binaries (context) through the use of ROCKET. The measurement is the identification of these

gadgets and the precision and accuracy with which it is done, in the form of correct addresses and

offsets.

Throughout design, a variety of select real world PEs were repeatedly analyzed, some

having been run through various algorithms hundreds of times, as the instantiation and different

methods evolved and were continuously refined. Constructing a toy app would be tedious and

unnecessary. However, in some cases, certain classifications of gadgets were rare, and in the

development, these were treated with a simulated context, as finding a real-world context would

be challenging, particularly with respect to testing the many variations of acceptable gadgets, not

to mention implementing exclusion criteria. The simulated context consisted of real-world chunks

of disassembly that were then subjected to testing in a separate, small Python program with limited

functionality, whose only purpose was to test that the regular expressions worked exactly as

intended. This was often a highly iterative process, with many changes being made, until

refinements were made just right..

It should be stressed that the limited use of validation throughout the development process

with a simulated context was not intended to be repeatable by other researchers. Once the tool had

 144

matured and was refined, this testing was no longer necessary, and a real-world context, i.e. actual

PE files, was then used.

Execution of the Validation

Sample construction was routine. A large, representative sampling, meeting the

aforementioned loose criteria, was selected for final validation. Months of iterative validation had

gone on previously, both using real-world as well as simulated contexts, in order to arrive at this

point. A text file was used as input containing the file location for a target binary. This was run on

the command line with the command python prog.py input.txt. By default, all binaries supplied via

file is subjected to the most complete analysis possible, with all options selected, generating all

output.

Unexpected Events

Once the treatment was applied and the execution began, some unexpected events

occurred. A couple DLLs were included twice, and this had been overlooked. The source of the

error was found and rectified. This was part of the algorithms to expand coverage of DLLs beyond

what was in the IAT. There had been a reduction algorithm that removed repeated DLLs, but some

logic had not been considered, allowing for some DLLs to persist.

Prior to successful execution, some bugs from the latest revisions that had not been caught

were discovered. Throughout the iterative process, more and more features and functionality have

been continuously added, and some last-minute additions to help streamline the validation had

results in a couple minor bugs. These bugs stemmed from changes to facilitate streamlining the

validation efforts, and they did not pertain to core functions. Once these were corrected, execution

ran smoothly.

 145

For a few binaries that were to be tested, memory ran out. It is believed this is due to using

a 32-bit version of Capstone and Python, thus limiting available RAM. These were very large

binaries, each with more than 24 modules, some fairly large. Better memory management may

also alleviate this, but it is also possible they may reach the limits of what can be done with 32-bit.

It is believed that moving to a 64-bit version of Python and Capstone would eliminate this issue.

This would involve changes to the environment, changes that are not straightforward. As the JOP

ROCKET is being developed outside of a VM, this has been deferred to a later date.

Treatment Validation

Treatment validation can be achieved through a number of means, and this is an important

requirement that needs to be met under Wieringa’s theories on design science. Treatment

validation must determine if the context and artifact can produce the desired effects. With this

research, the question has been answered as to whether or not using the JOP ROCKET with actual

binaries in a simulated environment can create the necessary gadgets; this clearly has been

achieved. Additionally, treatment validation should address whether these effects can then satisfy

the requirements that were previously delineated in chapter 3, and indeed that has been the case.

Data Analysis

Having ran the tool against some 32 binaries, we can now engage in data analysis, by

looking at the key areas described by Wieringa for data analysis. Some representative data is

included in Appendix B, which will be useful to review while examining the data analysis.

While a much larger dataset could allow us to make more statistically sound generalizations about

the nature of JOP in modern 32-bit binaries, that is not the point of the research, as the overarching

goal here is to create a tool to facilitate pragmatic work with JOP for exploitation, not to perform

 146

an exhaustive, quantitative study on JOP. Given these constraints, we make only tentative, very

general speculations on the dataset.

Descriptions

Execution times would take up to 20 minutes or more for some binaries. This period of

time involved searching through many modules for gadgets, as well as searching imports in the

IAT. In some previous testing, some options were more limited, e.g. searching only for indirect

calls or jumps, or for only certain registers, and this resulted in less time.

The figures obtained from the framework were in line with expectations. Indirect jumps or

calls to certain registers were much more plentiful, whilst others were much less so. Those that

tended to be more or less plentiful tended to be so across multiple binaries that were tested.

Additionally, the application of faceted classification to the data resulted in some categories being

significantly more plentiful than others, and this as well is true across multiple binaries. Some

categories tend to have few or even no gadgets associated with them, due to general scarcity.

Looking at the dataset, it is speculated that across a number of binaries, many categories may exist

only in limited numbers. Additionally, it is to be noted that some modules have far fewer gadgets

than others.

JMP EAX is far and above the most plentiful of the indirect jumps, with an average of

413.9 gadgets per binary, while JMP EDX has the next highest at 77.9. JMP EBX as the least

plentiful of indirect jumps has an average of 1 gadget per binary, while indirect jumps to other

registers on average are in the single digits to low tens. Indirect calls, on average, are more

plentiful, with CALL EAX on average having 5276.9 and CALL EDX the next highest at 4684.5.

CALL EBX is still abundant at 1665.8, and CALL EDI and CALL ESI are as well, at 2112.2 and

2277.3 respectively. CALL ECX and CALL EBP are the least plentiful at 272.3 and 86.2. While

 147

some of the figures are relatively high, there can be wide variance across different binaries, where

one binary might have gadgets for a particular indirect call in the thousands, and another might

have them in the low hundreds. Some gadgets on average also tend to have very low numbers of

any indirect calls or jumps, while some outliers may have vastly more, with over tens of thousands

of gadgets.

Some operational gadgets are much more common, while others are much less so. Ones

that are plentiful include ADD, SUB, MOV, LEA, PUSH, POP. Ones that are much less frequent

but exist in sufficient quantities to be useful include INC, DEC, XCHG, shift left, and shift right.

Ones that are much more limited or even rare include MUL, DIV, rotate left, and rotate right. For

those operations identified as rare, there simply may be no viable gadgets in those facets, although

the functionality could be emulated in other ways, e.g. shifting left or shifting right.

Some dispatcher gadgets pertaining to certain registers were limited or rare. These are the

key gadgets to make JOP possible. In no case were any of the DG Best category found; these are

dispatcher gadgets that would be guaranteed to work with minimal effort and an ideal setup. The

DG Other subcategory also had limited numbers. Some dispatcher gadgets to certain registers had

little to no representation in smaller binaries.

Often there seems to be a relatively small number of functional gadgets, compared to ROP.

This coupled with the limited number of JOP dispatcher gadgets means the attack surface for JOP

is much more limited than it is for ROP.

In terms of the artifact itself, all algorithms and methods performed as intended. The JOP

ROCKET has been tested through repeated iterations of the design cycle; all programmatic

behavior appeared was as had been anticipated. Numerous instances of unwanted or unintended

behavior existed and were encountered often throughout the design cycle, but were all identified

 148

and corrected. These unexpected phenomena, e.g. software bugs, stem from unanticipated

mechanisms in the implementation (Wieringa, 2013). The only anomaly that occurred during the

single-case mechanism experiment was with a RAM memory error from Python that occurred with

a small number of very large binaries that were tested, and a reasonable explanation was provided.

Explanations

As described in descriptions, there exists a wide variance in the average number of gadgets

for certain indirect jumps or calls, and Appendix B provides the full details, showing the total

number of gadgets found for each of the categories. With some binaries represented in Appendix

B, some may be close to the average for a particular indirect jump or call, and others may be only

a fraction of the average, while a few outliers may instead of having have 5 to 10 times as many

gadgets as the average. Again, it must be reiterated that the testing done was just to demonstrate

efficacy and utility, so the dataset is not statistically large enough to make broad generalizations

that withstand scrutiny. A more comprehensive study would be needed to form accurate

generalizations, with respect to the nature of indirect jumps and calls across a broad spectrum.

However, we might speculate simply that there can be large variance, and that the size of

the binary can be tied to it, but that other factors may come into play. With these samples, the

binaries with the largest number of gadgets have been large commercial applications that were not

Microsoft products. Some of the results could be related to programming choices, languages or

compilers used, or whether object-oriented was employed, etc. Beyond simply size, there is

insufficient data to support further informed speculation. The fact that some modules have far

fewer gadgets than others can be tied to the size of the binary, as an increased size tends to correlate

with a higher number of gadgets, whilst the opposite remains true as well. A large number of

modules of greater size can increase the number of available gadgets as well, so this could

 149

contribute to the overall potential attack surface for a binary. Nonetheless, at least for this dataset,

there are some gadgets that are on average existing in much larger or smaller numbers than the

average.

The fact that some classifications of gadgets are more plentiful can be attributed to two

areas. First, some registers are used much more frequently, such as EAX, while others less so.

Some Assembly instructions are also more commonly used, such as ADD, MOV, and SUB. Thus,

some functional gadgets for certain operations produce more plentiful results because they are

used more frequently. There is also a tendency for some unintended instructions associated with

certain registers or certain operations to be more likely to result in meaningful instructions. We

can distinguish this from far more impractical specimens that would have little use in any

conceivable attack scenarios. This research does not have data to draw conclusions on whether

certain specific operational gadgets tend to be more plentiful purely on account of opcode-splitting,

but past work would lend support to this idea (Bletsch, 2011)

Some categories of gadgets have fewer numbers, and there are some categories of gadgets

that jump or call to certain registers much less than to others. This may seem on the surface to

preclude the use of certain registers, if a particular operation does not have appropriate gadgets

that modify a certain register. However, it bears pointing out that by utilizing one category of

functional gadgets, the move shuffle, it is possible to change a value from register that is more

commonplace, to one where there are no available gadets. The register holding the value sought

by the attacker can switched back and forth from multiple registers, as many as times as needed.

Some functional gadgets with careful planning can perform more than one key operation. Thus, a

move shuffle or adding a specific value to certain register could both occur in the same JOP gadget.

This allows for greater flexibility, but requires more careful planning.

 150

The number of available gadgets for a binary can be increased by scanning modules.

Although this would seem readily apparent, we state this nonetheless. As more modules are

analyzed, they will tend to produce more gadgets, thereby enlarging the attack surface. Thus, using

the option to scan all modules in the IAT will tend to increase the attack surface, while selecting

the option to include the IAT as well as expanded coverage will tend to increase it even further.

Some gadgets may not be accessible, however, if ASLR is in place and there is no memory

disclosure or other means to overcome it.

The fact that the category for Other DG had only limited numbers in some registers can be

explained in part because of the tendency for those shifting operations to be used more frequently

with EAX, and the fact that unintended combinations of opcodes involving some registers do not

tend to produce examples of Other DG gadgets. Thus, it seems the Other DG will typically only

be found in some registers if these instructions are intended, reducing the attack surface.

While there were not other programmatic errors encountered during the single-case

mechanism experiment, this is because they were previously addressed. These errors can come

from a variety of causes, such as carelessness, inadequate understanding of what we are doing, or

there may be unknown mechanisms that may interfere with our capacity to comprehend what we

programmed (Wieringa, 2013). Sometimes correction of errors was a time-consuming endeavor,

but careful measures were taken to ensure that the algorithms in place worked step by step as

intended. The anomaly with the MemoryError mentioned in discussion is due to available RAM

being exhausted for certain very large binaries with more than 24 modules. In this testing

environment, 32-bit Python and 32-bit Capstone are used. There is a hard limit of available RAM

for 32-bit, limited to 4 GB, of which 2 GB is reserved for kernel usage. This error only occurred

with some binaries that were very large and had an abnormally high number of gadgets. It is clear

 151

that due to the size of the binaries and their modules, that memory was apparently exhausted. It

does seem unusual that the binaries would consume that much memory, but there could be other

nuances of memory management at play, for either Capstone or Python. It is likely that a 64-bit

implementation of both Python and Capstone would resolve these.

The dataset is a testament to the utility of the framework, as the faceted classification has

produced a wide array of different gadgets, organized by function and by affected registers. The

high degree of understandability and learnability for users stems from the fact that the JOP

ROCKET provides a robust menu and help system. The help system should be adequate for those

familiar with code-reuse attacks, i.e. ROP. ROCKET trades on familiar ideas and similar territory.

For those who are not familiar, the tool and its usage likely would be beyond their understanding,

without previous exposure to code-reuse attacks. We can view knowledge of ROP as a necessary

prerequisite, and it is unlikely someone would attempt to utilize this without that knowledge.

Analogic Generalization

Using analogy to generalize as a form of analytic induction is a valid technique that can

allow statements to be made from a single case to extend to other similar cases (Yin, 2003). Thus,

we can assume that similar contexts as well as similar artifacts would tend to produce very similar

results. Those results from a single-case mechanism experiments could speak for many others

contexts.

A single-case mechanism experiment is often run in a laboratory environment. This

experiment was not run in a production environment with exploit developers using it for real-world

tasks in the development of actual exploits. Instead, a laboratory environment simulated that

context; this permitted various modern PE files to be subjected to analysis. All these PE files

feasibly could have been used as targets, as these are much the same binaries that an attacker might

 152

exploit, given a vulnerability. Thus, we can generalize that the efficacy and utility demonstrated

in this experiment would extend to the real-world usage as well. Accordingly, all the

generalizations derived from a laboratory simulation of the context likely would extend to real-

world usage of the framework (Wieringa, 2014). It is not likely that any situations or conditions

anticipated in the real world would cause any change whatsoever, as the binaries would remain

identical and thus produce the same dataset. Here we can also employ sample-based reasoning to

note that what was observed with the artifact prototype and the simulated context can be extended

and generalized to the real world, thereby establishing external validity (Wieringa, 2013).

Answers to Knowledge Questions

This work was intended to provide contributions towards the knowledge goals regarding

the best way in which to devise an instantiation along with appropriate methods to address the

research problem. The fact that the artifact works as intended serves as evidence that this goal was

satisfied. The answers to these questions are then the methods and instantiation themselves, as

these are the appropriate ways to realize the goal of constructing this artifact.

As supplemental research questions, this dissertation was intended to also some additional

research questions. These concerned (a.) the frequency of certain categories of gadgets, (b.) how

frequently gadgets could be eliminated as impractical, and (c.) the average breakdown of indirect

jumps or calls to specific registers. To reiterate, these were not knowledge questions that guided

this research, but they were felt to be an interesting by-product that would be useful to security

researchers.

The below diagrams illustrate the response to the first question. The second question does

not have evidence in support of a response, as this data was not collected. Owing to the sheer

volume of data structures, methods, and the size of the code itself, additional methods to collect

 153

this data would consume too much space. Additionally, it would add unnecessary complexity to

the logic and disrupt the flow of the results. Anecdotally, during testing, it did appear that a

reasonable number of gadgets were discarded. It is likely that a majority of those discarded were

unintended results. The third supplemental knowledge question (c.) can also be addressed by a

graph in Figure 23. This does show that indeed certain registers used in indirect jumps or calls to

registers tend to be much higher than others.

Figure 23. Average number of indirect jumps and indirect calls for the 32 binaries analyzed.

4
1

3
.9

7
.4

6
6

6
6

6
6

6
7

1
0

.3
6

6
6

6
6

6
7

7
7

.9

6
.8

6
6

6
6

6
6

6
7

9
.4

6
6

6
6

6
6

6
7

1

5
2

7
6

.9

1
6

6
5

.8

2
7

2
.3

3
3

3
3

3
3

4
6

8
4

.5

2
1

1
2

.2
6

6
6

6
7

2
2

7
7

.3
6

6
6

6
7

8
6

.2
3

3
3

3
3

3
3

J M P
E A X

J M P
E B X

J M P
E C X

J M P
E D X

J M P
E D I

J M P
E S I

J M P
E B P

C A L L
E A X

C A L L
E B X

C A L L
E C X

C A L L
E D X

C A L L
E D I

C A L L
E S I

C A L L
E B P

AVERAGE NUMBER OF INDIRECT CALLS
AND INDIRECT JUMPS

 154

 Figure 24. Selected averages for total number of operational gadgets for the 32 binaries analyzed.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
A

D
D

 a
ll

A
D

D
 E

B
X

A
D

D
 E

D
X

A
D

D
 E

SI

SU
B

 a
ll

SU
B

 E
B

X

SU
B

 E
D

X

SU
B

 E
SI

M
U

L
al

l

M
U

L
EB

X

M
U

L
ED

X

M
U

L
ES

I

D
IV

 a
ll

D
IV

 E
B

X

D
IV

 E
D

X

D
IV

 E
SI

M
O

V
 a

ll

M
O

V
 E

B
X

M
O

V
 E

D
X

M
O

V
 E

SI

M
O

V
 S

H
U

FF
LE

 a
ll

M
O

V
 S

H
U

FF
LE

 E
B

X

M
O

V
 S

H
U

FF
LE

 E
D

X

M
O

V
 S

H
U

FF
LE

 E
SI

M
O

V
 V

A
LU

E
al

l

M
O

V
 V

A
LU

E
EB

X

M
O

V
 V

A
LU

E
ED

X

M
O

V
 V

A
LU

E
ES

I

LE
A

 a
ll

LE
A

 E
B

X

LE
A

 E
D

X

LE
A

 E
SI

P
U

SH
 a

ll

P
U

SH
 E

B
X

P
U

SH
 E

D
X

P
U

SH
 E

SI

P
O

P
 a

ll

P
O

P
 E

B
X

P
O

P
 E

D
X

P
O

P
 E

SI

IN
C

 a
ll

IN
C

 E
B

X

IN
C

 E
D

X

IN
C

 E
SI

D
EC

 a
ll

D
EC

 E
B

X

D
EC

 E
D

X

D
EC

 E
SI

X
C

H
G

 a
ll

X
C

H
G

 E
B

X

X
C

H
G

 E
D

X

X
C

H
G

 E
SI

SH
IF

T
LE

FT

R
O

TA
TE

 L
EF

T

Average number of select operational gadgets

 155

Figure 25. The total number of indirect jumps and indirect calls for the 32 binaries analyzed

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

 windbg.exe

 vmware.exe

 filezilla.exe

 HxD.exe

 idag.exe

 ImmunityDebugger.exe

 iexplore.exe

 devenv.exe

 notepad++.exe

 soffice.exe

 PowerConverter.exe

 QuestionWriter.exe

 PEBrowsePro.exe

 Steam.exe

 Snagit32.exe

 SnagitEditor.exe

 Magnify.exe

 VUDUToGo.exe

 wmplayer.exe

 WinRAR.exe

 mspaint.exe

 explorer.exe

 certutil.exe

 Taskmgr.exe

 regedit.exe

 cmd.exe

 notepad.exe

 AcroRd32.exe

 BrLauncher.exe

 IcoFX2.exe

 Respond.exe

Total number of indirect jumps and indirect calls per binary

156

Implications for the Context

This work provides a contribution to the improvement goal. Some of these methods had

already existed in a more rudimentary form, but they lacked refinement and usage in a well-

developed tool. Additionally, this work serves as a contribution to the practice of exploit

development, by providing said tool to address the previously described unmet needs.

Discussion of Results

One of the ways in which a design science artifact can demonstrate its efficacy and utility

is by validation through a single-case mechanism experiment. These results show that the artifact

meets those two criteria. It produces an abundance of useful gadgets carefully classified into

relevant categories and sub-categories. The JOP ROCKET improves upon as well as introduces

new methods as artifacts, and their implementation has been successful as seen by the meticulously

ordered data that can be generated by the tool.

The results could be enlarged or narrowed by changing search criteria, such as the number

of opcodes to disassemble as well as the depth, or the to put it another way, the number of lines

between the target operation and the indirect jump or call. For the discovery of JOP dispatcher

gadget, additional search criteria could be modified, to further enlarge the results, though

increasing the depth here would produce inferior or unusable dispatcher gadgets. For obtained

gadgets in the dataset, the default settings had been employed. These settings were reasonable, but

could possibly exclude useful gadgets.

Single-case mechanism experiments are often useful for the testing of a prototype of an

artifact, allowing for not only the new technology to be validated, but for the evaluation of the

157

implementation. The results of this single-case mechanism experiment with this research does

satisfy all the stated objectives.

The Iterative Approach

 Hevner, et al., emphasize that design science is to be a highly iterative process, with a cycle

of evaluation allowing for the artifact to improve continuously and better address the research

question at hand. To simply build an artifact and declare that one is done with it, while not

subjecting it to multiple iterations of validation, is to fail at design science. Thus, a flurry of activity

occurred as different stages of the design cycle iterated repeatedly, to yield an artifact that

embodies correctness, consistency, and completeness.

As initial algorithms were created and implemented for the JOP ROCKET, the results

produced were carefully analyzed for accuracy, reliability, and appropriateness. At the most basic

level, the question of whether they were right and accurate was asked. Then other considerations

came into play, such as how to save and utilize the large dataset generated for each binary analyzed.

Initially, an object-oriented approach was started, but that was soon jettisoned for a naïve approach

that favored simpler data structures. Because of the ambitious nature of this project, it became

necessary to expand these simple data structures significantly, as their numbers grew into the

hundreds. Later, it came apparent that an object-oriented approach was indeed required due to the

complexity of the program with respect to how it used and manipulated data, and significant

reworking of the existing code occurred to facilitate this transformation. Thus, design science and

its iterative approach has significantly enhanced the JOP ROCKET, allowing for features to mature

and new features to be developed, resulting in a much stronger artifact.

158

Hevner’s Design Science Guidelines

 While this work was completed by following the design science principles of Wieringa, an

artifact completed in that fashion would lend itself to evaluation under Hevner’s design science

guidelines. We briefly review how it has satisfied Hevner’s guidelines. The first two of Hevner’s

guidelines, Design as an Artifact and Problem Relevance, have been previously in abundant detai;

having completed the design of the artifact does not change these. We will look more closely at

the latter five guidelines, Design Evaluation, Research Contributions, Research Rigor, Design as

a Search Process, and Communication of Research, in the sections that follow.

Design Evaluation

Hevner’s guidelines provide that the triad of utility, quality, and efficacy of the artifact

must be shown with rigor and the use of evaluative methods. This has been rigorously

demonstrated via single-case mechanism experiment. The single-case mechanism experiment has

shown that the gadgets are accurate, that they produce the appropriate offsets, that the UI is clean

and intuitive, and that the results are organized in a fashion that is useful and meaningful to the

analyst. According to Wieringa, single-case mechanism experiments are used to implement and

evaluate a design science artifact, permitting the researcher to explore the tool in a look at the

cause and effect of the object of the study in an environment with its intended context. Finally, the

single-case mechanism experiment also helps validate the design science artifact, serving to

demonstrate its utility and efficacy. This has been done by showing the numbers of gadgets that

can be classified into appropriate groupings.

159

Research Contributions

Design science, according to Hevner, should provide strong contributions in the area of the

design artifact. This has done so via providing a verifiable contribution in the form of design

artifact. The framework itself, as has been discussed in detail, is innovative and provides several

novel methods that can enrich the field of exploit development. This is seen through the five

artifacts that are methods as well as the primary focal point, the instantiation of the framework

itself. These amount to a significant contribution, answering a need that has been unmet. What’s

more is they can be used to help facilitate additional research by others in the area of JOP and

exploit development.

Research Rigor

According to Hevner, design science must employ rigorous methods during both the

construction and evaluation of the artifact. During the highly iterative development of this tool,

hundreds of tests were done to ensure the numerous different algorithms, helper functions, etc.,

worked as intended and to discover where changes needed to be made. This was no small task as

the tool grew to be over 14,000 lines of Python code, but rigor was a focal point. Much rigor could

have been eliminated if the author had taken the easy way and decided simply to integrate the JOP

ROCKET with an existing tool, like WinDbg or Immunity; numerous problems and programming

challenges would have been instantly eliminated. A reduced feature set and a more naïve approach

to JOP also would have lowered rigor and allowed for the artifact to be created more quickly .

However, rigor has been a point of pride with this dissertation research, and it would not be traded

away for convenience or ease, particularly as this work should be of a very high quality to satisfy

Ph.D. requirements. Additionally, this rigor has been demonstrated through validation efforts, and

rgor can be shown through the validity of the results the JOP ROCKET has produced. The simple

160

fact that it does what it purports to do and does so accurately is a testament to the necessary rigor

that the artifact has undergone. Accomplishing these benchmarks is no trivial task, given the level

of complexity inherent in this artifact, but that level of complexity is commensurate with what is

needed to fully address JOP.

Design as a Search Process

Hevner asserts that that the search for an artifact must employ all possible means to reach

a successful outcome, whilst satisfying guidelines in the problem realm. This process has been

actively engaged, as various other models were studied that were used to facilitate the discovery

of code-reuse attacks. These include the Mona Python script, which must integrate with WinDbg

or Immunity, or the ROPgadget python script by Jonathan Salwan, which can be run

independently. Other more generic reverse engineering tools were examined as well. This included

looking at the tools themselves as well as examining source code, where available. These were

helpful to some extent, but this work went in a completely different direction and involved subject

matter that was outside their scope. Mona and ROPgadget have very minimal JOP coverage, but

they are not developed and appear to be more a placeholder for future work.

Communication of Research

Communication of research is essential, as it must be presented to both a technical as well

as a management-oriented audience. This tool is highly specialized, and the relevance is quite

clearly communicated to the intended audience. In fact, it is presented in a way to make the content

as easily digestible as possible. As has been described, the fact that this tool is able to generate

well-organized groupings of gadgets to facilitate attacks should be clearly understandable by

management audiences. They need only understand that it produces the necessary gadgets that

161

potentially could be used for a JOP exploit. Additionally, as one of the means of fulfilling this

requirement of Hevner, publication or conference presentations will be pursued as an avenue to

communicate some of these findings to other researchers.

Summary

This chapter serves to detail the results obtained by this research. It confirms that the

artifacts have been created as described in the methodology section, by following rigorous design

science guidelines. It has been shown that this work has met the DSR guidelines established by

Hevner, et al., and it has conformed to Wierigina’s principles of design science. This chapter has

shown in great detail how it meets the guidelines or principles described by both Wierigina and

Hevner, et al. This research has culminated in the creation of six artifacts, including five new or

substantially reworked methods, alongside the crown jewel, the instantiation itself. This chapter

has explored each of these artifacts in detail, explaining what they do and the significance of their

contributions.

162

CHAPTER 5

CONCLUSION

At the heart of this research, the JOP ROCKET was developed as a versatile tool that can

confer strong benefits to security researchers wishing to do JOP exploits. Outside of doing JOP

just as a proof of concept, JOP can be a way to overcome heuristics that may look for certain ROP

behavioral patterns in a Windows 7 environment. Robust anti-ROP heuristics and defenses would

be unable to detect JOP, as that is outside their scope. Thus, these mitigations that might have been

too powerful for ROP to overcome, then could be defeated through JOP, making a potentially

secure system, now suddenly vulnerable to attacks that utilize JOP.

This work has focused on Windows 7, as it lacks Microsoft’s CFG, and so JOP can be done

freely without restrictions. However, this work could be extended to Windows 8.0, which also

lacks CFG, and it is important to be aware that while even Windows 10 has CFG, there are

vulnerabilities with CFG discovered, from time to time, which can allow attacks to be executed on

that system, and patching to remediate these can sometimes be delayed. The best defense would

be new computers with hardware support for Intel’s CET, but that could be years until it is out,

although Microsoft and GCC have already provided compiler support. While the theoretical CET

may offer protection, it too may be vulnerable to attacks, and some security researchers have

already pointed out inherent weaknesses (“Close, But No Cigar,” n.d.). CET would have similar

forward-edge defenses against indirect calls and jumps, by simply whitelisting a series of

acceptable targets. That would severely reduce the attack surface, but it would still permit JOP,

163

and other potential, to be discovered vulnerabilities, potentially could make more JOP attacks

possible.

This work focuses on Windows as it is the dominant operating system and more relevant.

While this work has focused on a Windows environment, there is nothing to stop it from being

modified to include Linux or other operating systems, which may lack support for JOP defenses.

In fact, much of the existing code and logic in the JOP ROCKET, after extracting executable

content, would be identical. The code was not adapted only because scope for this dissertation

research was limited. If the JOP ROCKET were to be adapted to Linux, it could increase its

relevancy and increase the total number of machines vulnerable to JOP. While Linux does provide

some limited, third party CFI solutions, such as Reuse Attack Protector (RAP) and Clang/LLVM,

these are limited in scope, and neither are widely deployed.

This chapter will provide a brief review of a few of the principal contributions that have

been made. Lessons learned from throughout the process are explained, and some of the limitations

inherent in the application are discussed. Recommendations are made, and finally this chapter

concludes with a discussion listing possible directions for future work.

Contributions

This research provides contributions in the form of an instantiation of a novel framework

and five distinct artifacts consisting of new or improved methods. These have already been

discussed at length in the previous chapter, so just a broad review of some of the more significant

contributions will be provided.

164

Faceted Classification for JOP Gadgets

This work provides a faceted classification for JOP functional gadgets. While Turing

complete features have often been used to demonstrate that different architectures can perform full

arbitrary computation, this research entails classification into new sub categories. The point here

is not to demonstrate that JOP is fully Turing-complete, but to use what is most relevant and to

extended it further for other practical uses. Thus, there is classification of gadgets based also on

the affected register or, as with the dispatcher gadgets, which gadgets might be perceived as best.

The method by which the classification is performed itself, with filtering via regular expressions,

is a novel addition.

Robust, Powerful Framework that can work across platforms

The most important contribution is the instantiation itself. To reiterate this tool addresses

a gaping hole that exists, where a versatile, resilient tool could allow an analyst to easily discover

JOP gadgets. In so doing, it provides a tremendous amount of granularity, allowing the user to be

flexible in how they customize searching, either enlarging or narrowing results. The instantiation

utilizes much exclusion filtering, so that the results obtained have been thoroughly sanitized to

eliminate useless or impractical gadgets.

This powerful framework exists in Python and is not reliant on other existing tools, and

this means it is highly portable across platforms. Thus, it can be used not only on multiple versions

of Windows, but on other architectures as well, although there are limitations on a non-Windows

OS.

165

Novel and Improved Methods

This work provided several novel or improved methods. In the case of improved methods,

the improvements are significant enough for them to be considered as design science artifacts.

Some of these methods are useful as part of algorithms that help provide necessary functionality

for the framework, and some could be feasibly be taken and used outside this work in other reverse

engineering tools.

One significant contribution is the method to discover dispatcher gadgets. This is the most

important element to forming JOP attacks, as without this central piece, it is not possible for the

JOP attack to occur. While the criteria needed for a JOP dispatcher gadget is not new, with a naïve

implementation, it could turn up significant, impractical results. Additionally, this research

proposes an entirely new method to form a dispatcher gadget. This is done by using shift left or

shift right by 1 or 2, achieving multiplication or division. With careful planning and a significant

area of the heap available, and the ability to find an intermediate operation to perform necessary

subtraction or addition to go backwards or forwards, then an exploit developer could make use of

this less than ideal set up. This could present options to make JOP feasible on some binaries, where

there would otherwise be none.

This research has provided a new way to discover JOP functional gadgets, reworking an

existing method to provide greater depth and coverage. Not only that, but it provides the user with

the ability to be specific and granular in terms of what they seek. It also supports strong exclusion

criteria to reduce gadgets that would not be likely to be of any value.

This work also presents a novel method for saving and recording information used to print

or reproduce the disassembly for JOP gadgets. This could be extended further and used with other

tools that produce any type of code-reuse attack gadgets. This work presents a multitude of data

166

structures, which maintains bookkeeping information for the different classifications of gadgets.

These data structures maintain only a few values, so that no opcodes or no disassembly needs to

be stored. Once the information for the gadgets have been saved, it can be manipulated or printed

in seconds. This keeps storage requirements minimal. The artifact also includes a print menu with

numerous options, allowing for flexibility.

Finally, this work presents an interesting variation on the method to statically enumerate

modules. While it is simple to use the Pefile library to discover the DLLs contained in the IAT,

there can be some shortcomings, as not all modules that will eventually be loaded when the PE

loads, will be present in the IAT. This could have made a static analysis tool such as the JOP

ROCKET not as relevant if it could not detect some of the modules outside the IAT. This work

provides additional logic to address finding file locations for modules when the Windows API fails

to return a handle, ensuring that nearly all DLLs can be loaded. This work utilizes Windows API’s

to load and obtain a handle for the module in question, which then can be used to obtain a file

location and then extract the module’s text section, to be analyzed for JOP gadgets.

Big Picture

In more practical terms we can view the contributions as a way of facilitating the

construction of JOP exploits. This is a type of code-reuse attack rarely used in the wild. A large

part of its difficulty is tied to the lack of dedicated tools, forcing the user to do it manually. By way

of an analogue, we could view this almost like trying to manually edit a PE file with just the raw

bytes, rather than using a template on a hex editor. A hex editor, such as 010, can allow a user to

parse and view the binary data of a computer file, presenting the data in a way that humans can

understand. Such a tool can map out clearly defined structures with members and values, enabling

the user to quickly find the desired values. Without using a template in a hex editor, the user would

167

simply see raw binary data and not have a way to make sense of it. The hex editor provides order

and clarity to what would otherwise be difficult to decipher, and the JOP ROCKET does much the

same with the JOP gadgets it generates. The JOP ROCKET could be viewed as a way of applying

a template to raw binary data, to extract something useful. The JOP gadgets would still be present

in the binary blob that is an application, but without a proper tool, we just would not have a way

to view them in a way that is meaningful for the intended purpose.

Ultimately, the JOP ROCKET may spur the use of JOP more in exploits, both in the wild

or in the academic literature, or we may see increased hobbyist usage, such as with Capture the

Flag (CTF) completions. The JOP ROCKET could do well to enhance the relevance of JOP, with

more people wanting to attempt to use it. This could lead to heightened awareness of the need for

strong CFI, while showcasing the shortcomings of operating systems that lack CFI, such as

Windows 7 and various other Linux operating systems.

Lessons Learned

From a programming standpoint, there were numerous lessons learned throughout this

research, and it would be tedious to recount them all, so we will touch on a few that standout as

more significant.

One lesson was learned was the need to stick with original plans if there is a good reason

for them in the first place. During development, there was some back and forth on the usage of

object-oriented programming (OOP). Originally, the intent had been for the framework to be

object-oriented in its approach, and for each module to be its own object, each with its own sets of

gadgets. The author had familiarity with OOP from using it in both C++ and Java, but not with

Python. With the JOP ROCKET, there was a need to figure out how to do some potentially

168

challenging work in a language not well designed for low-level code. This was complicated by the

fact that Python as a language had some limitations on how OOP is implemented, so it was decided

to largely abandon OOP, using it in a only a very limited sense. As such, some workarounds were

used to get some of the desired functionality. The development of this artifact was highly iterative

over a period of time, with the focus being on evolving the algorithms and data structures. During

much of this time, most of the work was done on just the executable image itself. Later, as the

artifact matured and modules were included, it became clear there was a necessity for the approach

to be OOP, if the artifact were to work as had been envisioned.

To provide one example of why this was the case, we can look at the printing of operations

based on faceted classification. This task was simple, when there was just the executable image to

process, but when there were also modules, it then became necessary to produce a separate output

for each module. This could quickly produce a staggering number of files. The reason for that was,

at that given time, all the various data structures were used to generate the needed gadgets and

disassembly on the fly, after they had been found through searching algorithims. With this tool,

everything is very modular, and so it would print out all of one operation at a time and move onto

the next operation to be printed.

The values in the data structure are used to carve out parts of the text section, which is also

stored in a data structure. Thus, we can see if there was only one data structure that could be

possible for each operation and gadget type and only one list, comprised of the text section, then

the program would need to loop through each of the DLLs. This was highly inefficient, resulting

in an unwanted deluge of many files. There was no storage mechanism in place to hold data for

more than one module, and appending modules to the same data structure would not work.

169

The only conceivable solution was to go back to the original plan for having objects for

each module and all the myriad data structures that would be associated with it, including the text

section for each module. This would seem like a simple solution, but at this point the code was

over 10,000 lines, and this meant rewriting larges portions of it to fully utilize OOP. This also

required additional, careful testing, to ensure all the many functions and helper functions worked

as intended. At the end, after OOP was fully implemented, the JOP ROCKET worked exactly as

intended. Now we could have one file for an operation with all modules contained in it; this was a

tremendous improvement.

Having a fully realized OOP approach came late into the maturation of the JOP ROCKET,

but once it did come, it did enable other minor improvements to more rapidly be implemented, and

it allowed for removing some less efficient code. The lesson learned here would have been to more

rigidly stick to the original functional requirements.

We will touch on final lesson learned. In hindsight, waiting to implement the UI until late

in the development of the tool was not the best choice. During much of the development, efforts

centered on getting algorithms and methods to work with no attention being given to UI. Once

many the appropriate functions and data structures were working well together, then energy was

expended on creating a UI. That is not to say the UI was a secondary consideration, as there had

been a clear idea of what was sought. It was left to be developed later because of the size of the

datasets and the operations being tested. Informal tests were not instantaneous, and they could take

a few minutes or more, so avoiding repetitive interaction with the UI was done to expedite

development. This also permitted focused testing on specific functions and their interactions with

different data structures as needed. When it came time to create the UI though, there were some

bugs to be worked out; these could have been avoided, if the UI had been built and tested

170

concurrently. Allowing the program to have a UI also provided clarity from the standpoint of how

the JOP ROCKET would look and feel for users. Once a UI was created, it helped give new insights

to different issues, some not previous considered, that come into play with how the user might

interact with the UI.

Limitations

Throughout the project various obstacles were encountered. These limitations must be

properly understood when looking at the results.

Time bore an influence on this research, as time was somewhat limited and there was a

desire to not unnecessarily prolong this research and to complete it quickly.

Some ideas were and thoughts were explored at great length, and some work and thoughts

were ultimately scrapped due to time constraints. Time was a factor with regard to scope, as

initially the intent had been to provide a hodgepodge of different code-reuse attack tools. Design

and evaluation efforts for the JOP artifact took so long, that this was impossible, unless graduation

would be delayed a year. Thus, it was decided to narrow the scope to work exclusively with a JOP

tool. Often with Ph.D. dissertation work, the goal is to be very narrow in scope, so this research is

in line with what is typical, and its contributions are significant. Of course, a tool could have had

greater utility if scope were broader and encompassed other areas, but doing so can greatly increase

the number of man hours if down properly.

One limitation, by design, is that the JOP ROCKET only processes 32-bit binaries. This

was a decision made early on. Extending this to both 64-bit and 32-bit would add unreasonable

complexity during development. Moreover, because there is a significant amount of regular

expressions used, a lot of those would need to be rewritten to accommodate 64-bit. A 32-bit

171

limitation seemed reasonable as many binaries are 32-bit, and that is far and above the most

prevalent architecture for ROP.

The author had curiosity about prevalence of other indirect jumps or indirect calls to the

new 64-bit registers, including r8 through r15, but there were very few found in some preliminary

tests. This was disappointing, as it had been hoped that unintended instructions possibly might

result in a large number of indirect jumps or calls to some of the new registers. This might give

JOP more flexibility and allow it to work better. After the completion of a significant portion of

the development for the JOP ROCKET, some time was spent attempting to create an alternate 64-

bit version. However, it soon became clear that adapting it to 64-bit would not be straightforward,

as even after some initial changes and small tests were made, there appeared to be serious issues

at play. These have yet to be worked through. Thus, it was concluded that it would be a much more

time-consuming endeavor to convert to 64-bit than had been anticipated.

It Is not presently known how JOP would work with 64-bit binaries. It is felt, however, that

even with the absence of increased attack surface on the new 64-bit registers, it was at least possible

that JOP might enjoy an increased attack surface in 64-bit. The x64 calling convention could also

introduce limitations that could affect the practicality of some registers. Without a tool to examine

it closely, only speculation would be possible.

Another minor limitation is that this work does not address binaries that are packed, heavily

obfuscated, or self-modifying. This work only addresses standard, well-formed PEs. Some

binaries, often malware, may exhibit some of the aforementioned characteristics to make analysis

more difficult. As this tool is intentionally restricted to static analysis, we cannot dynamically

access the memory of a PE that deobfuscates itself or has modified its memory, as we can only do

analysis on the text section as it exists on disk. Secondly, some of the imports might not be apparent

172

until dynamic analysis can occur, due to dynamic loading of modules via LoadLibrarayEx and

GetProcAddress, as well as other malware techniques, such as traversing the PE file format by

using the PEB. Unfortunately, a static analysis tool such as this could not provide functionality to

discover these, not without very significant efforts.

The limitations described above bring up the topic of dynamic analysis versus static

analysis, and this certainly is one of the most significant limitations present, for several reasons.

The type of work being done by this tool is better served by dynamic analysis, rather than static

analysis. This was not pursued because a dynamic analysis approach, while technically better,

would r with an require integration with an existing debugger, such as WinDbg or Immunity, and

there was a strong desire to avoid doing so. There was a desire to make this as much a standalone

tool as possible, and this certainly created a good deal more work and effort that could have been

avoided, if we had taken the simpler, easier choice of integrating with an existing tool. But, again,

it was felt that for doctoral research, integrating with an existing tool would be too easy. Thus,

with reluctance, we accepted the limitations inherent with static analysis.

One limitation lies in the fact that, although this tool provides the functionality to search

for functional gadgets that perform a specific operation, e.g. adding a value to the register EAX, it

is possible that the contents of EAX could be clobbered or destroyed in the next line of instruction.

This tool employs no logic to search for this behavior and then provide exclusion on the basis of

it. Additionally, if that clobbering were to occur, it is also possible the desired value in EAX could

have been moved to another register and then moved back to EAX, and logic could address this as

well. This would increase the complexity a great deal given the way that the artifact is designed

and operates. If there were more time available, likely this would have been implemented.

173

There is a limitation with respect to different platforms. Because the required dependencies

are just Python as well as the Pefile and Capstone libraries, this artifact can be used across

platforms other than Windows. As has been described more fully elsewhere in the dissertation, if

the JOP ROCKET is used outside of Windows, it will be unable to scan any of the DLLs, unless

loaded and scanned separately.

Perhaps the elephant in the room is that JOP is still limited in terms of practical application.

The JOP ROCKET cannot change that or somehow generate gadgets that do not exist. The simple

fact is often there is a dearth of JOP gadgets available, relative to ROP. This is in part why this

artifact has been so meticulous in its approach to provide all available assistance to the analyst,

such as discovering all possible gadgets, the use of faceted classification, and the exclusion of

impractical gadgets. The fact remains thought that despite these efforts, some binaries may not

have enough of the right gadgets for JOP to be feasible, or other protections in place such as DEP

or ASLR may make some needed gadgets unusable. There may not be obvious ways to overcome

these hurdles with certain binaries. One might just have to accept that with respect to certain

applications, JOP may not be practical.

Recommendations

The primary recommendation is that if individuals or enterprises by necessity or choice use

an operating system, such as Windows 7, that does not have protection against code-reuse attacks,

then they should make use of available tools. EMET reached end of life in July 2018, but it still

may be downloaded and used, offering some protection. Of course, much of its protections are

built into Windows 10, but we can regard that as a relatively secure operating system. EMET does

not, however, extend protection against JOP. If a user wishes to use an older operating system with

174

valuable assets, then they should consider an implementation of control flow integrity, depending

on the value of the target. The leading implementation of CFI available is Microsoft’s CFG, but

that is not available below Windows 8.1. Various other CFI solutions are available, some discussed

in the literature in chapter 2, some of which could offer some limited protection against JOP. Still,

many of these solutions have unacceptably high performance costs or are in some ways overly

limited or impractical. Thus, it may not be feasible or worthwhile to employ such limited CFI

solutions.

The only possible recommendation then can be that if an organization or individual must

use a Windows operating system unprotected by CFG, then they should greatly limit what is

available on that machine to only what is necessary. The least amount of privileges should be used.

Network isolation and segmentation should be employed, so that if the machine were compromised

using a code-reuse attack, then the attacker would be limited in their ability to do lateral movement

on the network. All other relevant precautions should take place. In short, the user should accept

that it is reasonable that such a machine could be unsafe, and they should act accordingly.

Recommendations for attackers are to attempt to utilize the JOP ROCKET. Some binaries,

as discussed, many not lend themselves as easily to JOP. That is not a limitation of the ROCKET,

but of JOP itself. The only want to get good at a new attack methodology is to try to utilize it and

understand it through study and practical experience. One should also understand that if ROP is

an option, because of lack of mitigations or because mitigations can be overcome, then it is going

to be the better choice.

175

Future Work

This research presents many opportunities for expansion and additional work to be

performed. The JOP ROCKET is powerful and versatile at the tasks it was designed to perform,

but if we were to go broader and look at code-reuse attacks, we might find other ways in which to

expand functionality and improve what is there.

The most obvious choice is to add functionality for 64-bit binaries. As it is, it is not known

how much easier or harder JOP would be with 64-bit, if there would even be any appreciable

difference in the level of difficulty. One hope is that with 64-bit the attack surface would be larger.

Even if this not the case, providing an artifact with the capability of finding gadgets with 64-bit

binaries would open many applications to potential exploitation with JOP.

This tool has been designed to work with JOP in the Windows environment. The tool could

be expanded to any other architecture where JOP exists. Doing this could involve significant new

work if the instruction set differs greatly. In one architecture, JOP is done in a very different

fashion, so this would involve little reuse of existing code. Adapting this to work with x86 Linux,

however, would likely not involve significant effort.

The framework could expand to cover other advanced code-reuse attacks, beyond simply

JOP. One area that would be far more promising than JOP for modern binaries is Counterfeit

Object-oriented Programming (Schuster, et al.,2015). This would enable a user to even overcome

CFI. Implementing this in a tool would be far more challenging than JOP, and likely it would need

to integrate with an existing tool, such as IDA Pro, as doing it as a standalone tool would not be

possible, even with supporting libraries. There also would be the question as to whether it would

be even feasible to automate parts of the process for constructing an exploit that utilizes Counterfeit

Object-oriented Programming.

176

Future work on the framework could include data persistence. This would avoid needing

to perform analysis each time there was an input file. This could be performed by saving the

contents of all data structures to a binary file. This binary file, properly delimited, could then be

parsed with its contents loaded into the data structures, thereby not requiring rescanning of the

binary or its modules. It is felt this would be a simple feature to implement, given the design of

the artifact.

On a related topic to implementation of the instantiation, we will discuss the prospect of a

GUI. It is often felt that a power user can be more adept at using merely just a keyboard and

keystroke shortcuts, to more quickly utilize a program. The GUI, rather than making work with

software easier, can slow down users, as they are forced to interact with the mouse, when it might

be more efficient to not do so. Even still, not all users will be power users, and for them a GUI

would be a more apposite choice for more novice users. A GUI can also provide convenient

functionality for drag and drop, which would be an excellent feature. Thus, if a user set reasonable

default settings, and they could drag and drop files. That arguably could be faster and more

efficient. Thus, there is a reasonable case for a GUI.

Future work could be done to add additional categories to the faceted classification.

Additional sub-categories for those that are presently exiting could allow the user to be more

granular still. To be very fine-grained, perhaps a user could even specify specific values or a range

of specific values that would be sought. While in theory that may sound useful, it could also be

unintentionally limiting, as the attack surface of JOP is far more restrictive than ROP, and it might

be better to rethink some attack strategies, rather than to limit a search unnecessarily to only a

certain range. Along these lines, future work could be given to thinking of alternative ways to

emulate some desired functionality, which may or may not be scarce. For instance, in this

177

dissertation research, we considered using left shift and right shift as part of a unique strategy to

expand viable dispatcher gadgets. Similar efforts could be applied elsewhere.

Finally, future work could involve rebuilding the artifact in C++. This language is much

better suited for low-level programming. Additionally, OOP is far less restrictive in C++ than with

Python. Python is useful for rapid development, but a compiled program that provides this

functionality, including an optional GUI, would make the artifact stronger. It would also eliminate

the need to have an environment with certain dependencies. There would be various programming

challenges associated with rebuilding the artifact in C++. Better and more efficient data structures

could be used than what is available with Python. Some present data structures are inefficient

owing to Pythonic limitations. Given the proposed changes, it is not believed that it would in any

way improve the results that would be found. It would just result in an application that would

otherwise be more pleasing.

Conclusions

This work constitutes a significant contribution to the discipline. The JOP ROCKET

enables the user to construct an exploit using a form of advanced code-reuse attacks rarely

encountered in the wild. This research adds to the overall body of knowledge as it pertains to code-

reuse attacks and exploit development. JOP was an area where there was limited knowledge and

limited academic publications, but there were not publicly available, well-developed tools

appropriate for JOP. Through this research, we have identified an important gap that exists with

lack of tooling available for JOP, and we have met that need.

178

One unstated goal has been to help make JOP more practical accessible to non-specialists.

It is hoped that other researchers can continue research in this vein, by developing other relevant,

fully-featured tools to help facilitate not just JOP, but other less used code-reuse attacks.

Summary

This chapter has provided a brief survey of the various contributions made by the JOP

ROCKET. Lessons learned have been discussed, as have opportunities for improvement that have

arisen throughout this research. Possibilities for future work were explored, as with a framework

such as the JOP ROCKET, there are numerous ways it could be improved or expanded. It was

discussed that some other advanced code-reuse attacks could be incorporated into the framework.

This could include the addition of an automated way to facilitate Counterfeit Object-oriented

Programming. Other possible future work included the additional coverage for 64-bit binaries,

expansion to other architectures or operating systems, adding additional categories or

subcategories to the faceted classification, and as the addition of a GUI. Next, recommendations

were made to users from both a defensive as well as an offensive standpoint. Finally, this chapter

concluded by reaffirming the contributions made by the JOP ROCKET.

179

REFERENCES

Abadi, M., Budiu, M., Erlingsson, Ú., & Ligatti, J. (2009). Control-flow integrity principles,

implementations, and applications. ACM Transactions on Information and System

Security (TISSEC), 13(1), 4.

Alexander, B. (2017, September). Abusing delay load dlls for remote code injection. Blog.

Retrieved from http://hatriot.github.io/blog/2017/09/19/abusing-delay-load-dll/

Bacchus, A. (2019, February 2). Here’s what it will cost to stay on Windows 7 when extended

support ends in 2020. Digital Trends. Retrieved from

https://www.digitaltrends.com/computing/microsoft-pricing-plan-staying-on-windows-7/

Bania, P. (2010). Security mitigations for return-oriented programming attacks. arXiv preprint

arXiv:1008.4099.

Bilge, L., & Dumitraş, T. (2012, October). Before we knew it: an empirical study of zero-day

attacks in the real world. In Proceedings of the 2012 ACM conference on Computer and

communications security (pp. 833-844). ACM.

Bletsch, T., Jiang, X., Freeh, V. W., & Liang, Z. (2011, March). Jump-oriented programming: a

new class of code-reuse attack. In Proceedings of the 6th ACM Symposium on

Information, Computer and Communications Security (pp. 30-40). ACM.

Bo Qu, T. & Lu, R. (2014, Jul. 16). Is it the beginning of the end for use-after-free exploitation?

Unit 42. Retrieved from https://unit42.paloaltonetworks.com/beginning-end-use-free-

exploitation/

http://hatriot.github.io/blog/2017/09/19/abusing-delay-load-dll/
https://www.digitaltrends.com/computing/microsoft-pricing-plan-staying-on-windows-7/
https://unit42.paloaltonetworks.com/beginning-end-use-free-exploitation/
https://unit42.paloaltonetworks.com/beginning-end-use-free-exploitation/

180

Brandon, J. (2016.). Control flow integrity gadget-finder. Retrieved from

https://github.com/jdbrandon/ControlFlowIntegrity/tree/master/gadget-finder

Bright, P. (2017, Jun. 27). Ars Technica. Retrieved from https://arstechnica.com/information-

technology/2017/06/microsoft-bringing-emet-back-as-a-built-in-part-of-windows-10/

Caballero, J., Grieco, G., Marron, M., & Nappa, A. (2012, July). Undangle: early detection of

dangling pointers in use-after-free and double-free vulnerabilities. In Proceedings of the

2012 International Symposium on Software Testing and Analysis (pp. 133-143). ACM.

Carlini, N., & Wagner, D. (2014). {ROP} is Still Dangerous: Breaking Modern Defenses. In

23rd {USENIX} Security Symposium ({USENIX} Security 14) (pp. 385-399).

Carlini, N., Barresi, A., Payer, M., Wagner, D., & Gross, T. R. (2015). Control-flow bending: On

the effectiveness of control-flow integrity. In 24th {USENIX} Security Symposium

({USENIX} Security 15) (pp. 161-176).

Carrera, E. (n.d.) Pefile. GitHub repository. Retrieved from https://github.com/erocarrera/pefile

Checkoway, S., & Shacham, H. (2010). Escape from return-oriented programming: Return-

oriented programming without returns (on the x86). [Department of Computer Science

and Engineering], University of California, San Diego.

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A. R., Shacham, H., & Winandy, M. (2010,

October). Return-oriented programming without returns. In Proceedings of the 17th ACM

conference on Computer and communications security (pp. 559-572). ACM.

https://github.com/jdbrandon/ControlFlowIntegrity/tree/master/gadget-finder
https://arstechnica.com/information-technology/2017/06/microsoft-bringing-emet-back-as-a-built-in-part-of-windows-10/
https://arstechnica.com/information-technology/2017/06/microsoft-bringing-emet-back-as-a-built-in-part-of-windows-10/
https://github.com/erocarrera/pefile

181

Chen, P., Xing, X., Mao, B., Xie, L., Shen, X., & Yin, X. (2011, March). Automatic construction

of jump-oriented programming shellcode (on the x86). In Proceedings of the 6th ACM

Symposium on Information, Computer and Communications Security (pp. 20-29). ACM.

Chen, R. (2006, July). Exported functions that are really forwarders. MSDN. Retrieved from

https://blogs.msdn.microsoft.com/oldnewthing/20060719-24/?p=30473

Close, but no cigar; on the effectiveness of Intel’s CET against code reuse attacks. (n.d.)

Grsecurity. Retrieved from

https://grsecurity.net/effectiveness_of_intel_cet_against_code_reuse_attacks.php

Doubly freeing memory. (2018, Dec. 29). OWASP. Retrieved from

https://www.owasp.org/index.php/Doubly_freeing_memory

Intel. Control-flow enforcement technology preview. (2017, Jun.) Retrieved from

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-

technology-preview.pdf

Creswell, J., & Creswell, J. (2018). Research design: Qualitative, quantitative, and mixed

methods approaches. Los Angeles. SAGE Publications, Inc.

Dai Zovi, D. (2010). Return-oriented exploitation. Black Hat.

Data execution prevention. (2009, Oct. 7). Retrieved from https://docs.microsoft.com/en-

us/previous-versions/windows/it-pro/windows-server-2003/cc738483(v=ws.10)

https://blogs.msdn.microsoft.com/oldnewthing/20060719-24/?p=30473
https://grsecurity.net/effectiveness_of_intel_cet_against_code_reuse_attacks.php
https://www.owasp.org/index.php/Doubly_freeing_memory
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc738483(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc738483(v=ws.10)

182

Davi, L. V. (2015). Code-reuse attacks and defenses (Doctoral dissertation, Technische

Universität).

Davi, L., Dmitrienko, A., Sadeghi, A. R., & Winandy, M. (2010). Return-oriented programming

without returns on ARM. Technical Report HGI-TR-2010-002, Ruhr-University Bochum.

Davi, L., Sadeghi, A. R., Lehmann, D., & Monrose, F. (2014). Stitching the gadgets: On the

ineffectiveness of coarse-grained control-flow integrity protection. In 23rd {USENIX}

Security Symposium ({USENIX} Security 14) (pp. 401-416).

de Clercq, R., & Verbauwhede, I. (2017). A survey of hardware-based control flow integrity

(CFI). arXiv preprint arXiv:1706.07257.

DeMott, J. (2015). Bypassing EMET 4.1. IEEE Security & Privacy, 13(4), 66-72.

Engebretson, P. (2013). The basics of hacking and penetration testing: ethical hacking and

penetration testing made easy. Elsevier.

Erdődi, L. (2013, June). Attacking x86 windows binaries by jump oriented programming. In

Intelligent Engineering Systems (INES), 2013 IEEE 17th International Conference on

(pp. 333-338). IEEE.

Erdődi, L. (2013, May). Finding dispatcher gadgets for jump oriented programming code reuse

attacks. In Applied Computational Intelligence and Informatics (SACI), 2013 IEEE 8th

International Symposium on (pp. 321-325). IEEE.

Erdődi, L. (2015). Applying Return Oriented and Jump Oriented Programming Exploitation

Techniques with Heap Spraying. Acta Polytechnica Hungarica, 12(5).

183

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley

Professional.

Glass, R. L., Vessey, I., & Ramesh, V. (2001). Research in software engineering: an empirical

study. Technical Report TR105-1, Information Systems Department, Indiana University.

Göktas, E., Athanasopoulos, E., Bos, H., & Portokalidis, G. (2014, May). Out of control:

Overcoming control-flow integrity. In 2014 IEEE Symposium on Security and Privacy

(pp. 575-589). IEEE.

Göktas, E., Athanasopoulos, E., Bos, H., & Portokalidis, G. (2014, May). Out of control:

Overcoming control-flow integrity. In 2014 IEEE Symposium on Security and Privacy

(pp. 575-589). IEEE.

Hevner, A., March, S. T., Park, J., & Ram, S. (2004). Design science research in information

systems. MIS quarterly, 28(1), 75-105.

Homescu, A., Stewart, M., Larsen, P., Brunthaler, S., & Franz, M. (2012, August).

Microgadgets: size does matter in turing-complete return-oriented programming. In

Proceedings of the 6th USENIX conference on Offensive Technologies (pp. 7-7).

USENIX Association.

Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., & Liang, Z. (2016, May). Data-oriented

programming: On the expressiveness of non-control data attacks. In 2016 IEEE

Symposium on Security and Privacy (SP) (pp. 969-986). IEEE.

184

Keizer, G. (2013, Oct. 18). Small biz admins squawk over Windows 8.1. updates. Retrieved from

https://www.computerworld.com/article/2486335/small-biz-admins-squawk-over-

windows-8-1-updates.html

Kennedy, J., & Satran, M. (2018, May 30.) Control flow guard. MSDN. Retrieved from

https://docs.microsoft.com/en-us/windows/desktop/SecBP/control-flow-guard

Kennedy, J., & Satran, M. (2018, May 30.) File system redirector. MSDN. Retrieved from

https://docs.microsoft.com/en-us/windows/desktop/WinProg64/file-system-redirector

Kornau, T. (2010). Return oriented programming for the ARM architecture (Doctoral

dissertation, Master’s thesis, Ruhr-Universität Bochum).

Krsul, I. V. (1998). Software vulnerability analysis. West Lafayette, IN: Purdue University.

March, S. T., & Smith, G. F. (1995). Design and natural science research on information

technology. Decision support systems, 15(4), 251-266.

Mashtizadeh, A. J., Bittau, A., Mazieres, D., & Boneh, D. (2014). Cryptographically enforced

control flow integrity. arXiv preprint arXiv:1408.1451.

Min, J. W., Jung, S. M., Lee, D. Y., & Chung, T. M. (2012). Jump oriented programming on

windows platform (on the x86). In Computational Science and Its Applications–ICCSA

2012 (pp. 376-390). Springer Berlin Heidelberg.

https://www.computerworld.com/article/2486335/small-biz-admins-squawk-over-windows-8-1-updates.html
https://www.computerworld.com/article/2486335/small-biz-admins-squawk-over-windows-8-1-updates.html
https://docs.microsoft.com/en-us/windows/desktop/SecBP/control-flow-guard
https://docs.microsoft.com/en-us/windows/desktop/WinProg64/file-system-redirector

185

Nelißen, J. (2002, May 1.) Buffer Overflows for Dummies. SANS Institute Information Security

Reading Room. Retreived from https://www.sans.org/reading-

room/whitepapers/threats/buffer-overflows-dummies-481

NSA. 2015. Hardware control flow integrity for an IT ecosystem. Retrieved from

https://github.com/nsacyber/Control-Flow-Integrity/tree/master/paper

Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., & Kirda, E. (2010, December). G-Free:

defeating return-oriented programming through gadget-less binaries. In Proceedings of

the 26th Annual Computer Security Applications Conference (pp. 49-58). ACM.

One, A. (1996). Smashing the stack for fun and profit. Phrack magazine, 7(49), 14-16.

Payer, M., Barresi, A., & Gross, T. R. (2015, July). Fine-grained control-flow integrity through

binary hardening. In International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment (pp. 144-164). Springer, Cham.

Prieto-Diaz, R. (1990, March). Implementing faceted classification for software reuse. In [1990]

Proceedings. 12th International Conference on Software Engineering (pp. 300-304).

IEEE.

ProcessMitigations. (2018.) Microsoft. Retrieved from https://docs.microsoft.com/en-

us/powershell/module/processmitigations/?view=win10-ps

Protect devices from exploits. (2018.) Microsoft. Retrieved from https://docs.microsoft.com/en-

us/windows/security/threat-protection/windows-defender-exploit-guard/exploit-

protection-exploit-guard

https://www.sans.org/reading-room/whitepapers/threats/buffer-overflows-dummies-481
https://www.sans.org/reading-room/whitepapers/threats/buffer-overflows-dummies-481
https://github.com/nsacyber/Control-Flow-Integrity/tree/master/paper
https://docs.microsoft.com/en-us/powershell/module/processmitigations/?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/processmitigations/?view=win10-ps
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/exploit-protection-exploit-guard
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/exploit-protection-exploit-guard
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/exploit-protection-exploit-guard

186

Qiao, R., Zhang, M., & Sekar, R. (2015, December). A Principled Approach for ROP Defense.

Proceedings of the 31st Annual Computer Security Applications Conference (pp. 101-

110).

Roemer, R. G. (2009). Finding the bad in good code: Automated return-oriented programming

exploit discovery (Doctoral dissertation, UC San Diego).

Roemer, R., Buchanan, E., Shacham, H., & Savage, S. (2012). Return-oriented programming:

Systems, languages, and applications. ACM Transactions on Information and System

Security (TISSEC), 15(1), 2.

Roemer, R., Buchanan, E., Shacham, H., & Savage, S. (2012). Return-oriented programming:

Systems, languages, and applications. ACM Transactions on Information and System

Security (TISSEC), 15(1), 2.

Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A. R., & Holz, T. (2015, May).

Counterfeit object-oriented programming: On the difficulty of preventing code reuse

attacks in C++ applications. In 2015 IEEE Symposium on Security and Privacy (pp. 745-

762). IEEE.

Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A. R., & Holz, T. (2015, May).

Counterfeit object-oriented programming: On the difficulty of preventing code reuse

attacks in C++ applications. In 2015 IEEE Symposium on Security and Privacy (pp. 745-

762). IEEE.

187

Shacham, H. (2007, October). The geometry of innocent flesh on the bone: return-into-libc

without function calls (on the x86). In ACM conference on Computer and

communications security (pp. 552-561).

Showcases – Capstone – The Ultimate Disassembler. Retrieved from https://www.capstone-

engine.org/showcase.html

Spisak, M. (2017, April 25). Disarming control flow guard using advanced code reuse attacks.

Endgame. Retrieved from https://www.endgame.com/blog/technical-blog/disarming-

control-flow-guard-using-advanced-code-reuse-attacks

Stroschein, J. (2017). Binary Analysis Framework (Doctoral dissertation, Dakota State

University).

Tang, J., & Team, T. M. T. S. (2015). Exploring control flow guard in windows 10. Retrieved

from https://sjc1-te-ftp.trendmicro.com/.../exploring-control-flow-guard-in-

windows10.pd

The enhanced mitigation experience toolkit. (2018). Microsoft Support. Retrieved from

https://support.microsoft.com/en-us/help/2458544/the-enhanced-mitigation-experience-

toolkit

Van Eeckhoutte, P. (2010, Jun. 16). Exploit writing tutorial part 10: chaining DEP with ROP –

the rubik’s[TM} cube. Corelan Team. Retrieved from

https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-

dep-with-rop-the-rubikstm-cube/

https://www.capstone-engine.org/showcase.html
https://www.capstone-engine.org/showcase.html
https://www.endgame.com/blog/technical-blog/disarming-control-flow-guard-using-advanced-code-reuse-attacks
https://www.endgame.com/blog/technical-blog/disarming-control-flow-guard-using-advanced-code-reuse-attacks
https://sjc1-te-ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
https://sjc1-te-ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
https://support.microsoft.com/en-us/help/2458544/the-enhanced-mitigation-experience-toolkit
https://support.microsoft.com/en-us/help/2458544/the-enhanced-mitigation-experience-toolkit
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/

188

Wieringa, R. (2013). Empirical research methods for technology validation: Scaling up to

practice. Journal of systems and software, 95, 19-31.

Wieringa, R. (2014). Design science methodology for information systems and software

engineering. Berlin: Springer.

Williams, C. (2016, Jun. 10). Rip ROP: Intel's cunning plot to kill stack-hopping exploits at CPU

level. The Register. Retrieved from

https://www.theregister.co.uk/2016/06/10/intel_control_flow_enforcement/

Winitor. (2010, November). Windows dynamic-link libraries. Retrieved from

https://winitor.com/pdf/DynamicLinkLibraries.pdf

Wojtczuk, R., & DeMott, J. (2015). Gadgets Zoo: Bypassing control flow guard in Windows 10.

Iron Geek. Retrieved from

http://www.irongeek.com/i.php?page=videos/derbycon5/break-me02-gadgets-zoo-

bypassing-control-flow-guard-in-windows-10-rafal-wojtczuk-jared-demott

Ye, T., Zhang, L., Wang, L., & Li, X. (2016, April). An empirical study on detecting and fixing

buffer overflow bugs. In 2016 IEEE International Conference on Software Testing,

Verification and Validation (ICST) (pp. 91-101). IEEE.

Yin, R. K. (2003). Case study research: design and methods, (3rd) Sage Publications. Thousand

Oaks, California.

Zatko, P. (1995, Oct. 20). How to write buffer overflows. Retrieved from

https://insecure.org/stf/mudge_buffer_overflow_tutorial.html

https://www.theregister.co.uk/2016/06/10/intel_control_flow_enforcement/
https://winitor.com/pdf/DynamicLinkLibraries.pdf
http://www.irongeek.com/i.php?page=videos/derbycon5/break-me02-gadgets-zoo-bypassing-control-flow-guard-in-windows-10-rafal-wojtczuk-jared-demott
http://www.irongeek.com/i.php?page=videos/derbycon5/break-me02-gadgets-zoo-bypassing-control-flow-guard-in-windows-10-rafal-wojtczuk-jared-demott

189

Zelkowitz, M. V., & Wallace, D. R. (1998). Experimental models for validating technology.

Computer, 31(5), 23-31.

Zendler, A., Horn, E., Schwärtzel, H., & Plödereder, E. (2001). Demonstrating the usage of

single-case designs in experimental software engineering. Information and Software

Technology, 43(12), 681-691.

Zendler, A., Horn, E., Schwärtzel, H., & Plödereder, E. (2001). Demonstrating the usage of

single-case designs in experimental software engineering. Information and Software

Technology, 43(12), 681-691.

Zetter, K. (2014). Countdown to Zero Day: Stuxnet and the launch of the world's first digital

weapon. Broadway books.

Zowghi, D., & Gervasi, V. (2002, September). The Three Cs of requirements: consistency,

completeness, and correctness. In International Workshop on Requirements Engineering:

Foundations for Software Quality, Essen, Germany: Essener Informatik Beitiage (pp.

155-164). Retrieved from http://islp.di.unipi.it/~gervasi/Papers/refsq02.pdf

http://islp.di.unipi.it/~gervasi/Papers/refsq02.pdf

190

APPENDIX A: FREQUENCY OF JOP GADGETS FOUND IN SELECT BINARIES

Binaries Tested

Table 10 depicts the binaries that were scanned for purposes of this research to enumerate the number of gadgets according to

classification.

Table 10. Select binaries scanned for JOP GADGETS

Acronym Software File Location

ACR Adobe Acrobat Reader C:\Program Files (x86)\Adobe\Reader 11.0\Reader\AcroRd32.exe

BRL BrLauncher.exe C:\Program Files (x86)\Brother\BrLauncher\BrLauncher.exe

WDB WinDbg C:\Program Files (x86)\Debugging Tools for Windows\windbg.exe

FLX Filezilla C:\Program Files (x86)\FileZilla FTP Client\filezilla.exe

HXD HxD C:\Program Files (x86)\HxD\HxD.exe

ICO IcoFX 2 C:\Program Files (x86)\IcoFX 2\IcoFX2.exe

IDA IDA Free C:\Program Files (x86)\IDA Free\idag.exe

IMM Immunity Debugger C:\Program Files (x86)\Immunity Inc\Immunity Debugger\ImmunityDebugger.exe

IEX Internet Explorer C:\Program Files (x86)\Internet Explorer\iexplore.exe

DEV Microsoft Visual Studio 14 C:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\IDE\devenv.exe

NOT Notepad++ C:\Program Files (x86)\Notepad++\notepad++.exe

SOFF Open Office 4 C:\Program Files (x86)\OpenOffice 4\program\soffice.exe

POW Power MP3 WMA Converter WMA

Converter

C:\Program Files (x86)\Power MP3 WMA Converter\PowerConverter.exe

QUE Question Writer HTML5 C:\Program Files (x86)\Question Writer HTML5\QuestionWriter.exe

191

Acronym Software File Location

PEB PEBrowse Pro PEBrowse Pro 86 C:\Program Files (x86)\SmidgeonSoft\PEBrowsePro\PEBrowsePro.exe

STA Steam C:\Program Files (x86)\Steam\Steam.exe

SNA TechSmith Snaggit C:\Program Files (x86)\TechSmith\Snagit 12\Snagit32.exe

SNE TechSmith Snaggit Editor C:\Program Files (x86)\TechSmith\Snagit 12\SnagitEditor.exe

VMW VMware Workstation C:\Program Files (x86)\VMware\VMware Workstation\vmware.exe

VUD VUDUToGo

VUDUToGo\VUDUTToGo

C:\Program Files (x86)\VUDUToGo\VUDUToGo.exe

WM Windows Media Player C:\Program Files (x86)\Windows Media Player\wmplayer.exe

WIN WinRARin WinRAR\WinRAR. C:\Program Files (x86)\WinRAR\WinRAR.exe

MSP Microsoft Paint C:\Windows\SysWOW64\mspaint.exe

EXP Explorer C:\Windows\SysWOW64\explorer.exe

CER Cert Util C:\Windows\SysWOW64\certutil.exe

TAS Task Manager C:\Windows\SysWOW64\Taskmgr.exe

MAG Magnify C:\Windows\SysWOW64\Magnify.exe

REG Regedit C:\Windows\SysWOW64\regedit.exe

CMD Cmd C:\Windows\SysWOW64\cmd.exe

NOT Notepad C:\Windows\SysWOW64\notepad.exe

RES Respondus C:\Program Files (x86)\RespondusCampus40\Respond.exe

JOP Gadgets for Scanned Applications – Image Only

 Table 11 and Table 12 depict the number of gadgets obtained from each of the binaries that was scanned; the results are spread across

two tables. The average number of gadgets from all binaries scanned is provided. Standard default settings were used. Had the settings been

modified, the numbers produced likely would increase or decrease.

192

Table 11. JOP Gadgets for 31 applications (image only) – Part 1.

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOF

F

POW QUE PEB STA SNA

JMP EAX 413.9 0 111 7560 291 18 635 12 18 25 0 100 2 245 331 1053

JMP EBX 7.466667 0 6 2 0 1 0 0 0 0 0 0 13 0 0 1

JMP ECX 10.36667 0 7 24 3 0 82 0 0 0 0 0 0 6 32 4

JMP EDX 77.9 0 0 412 7 0 113 0 0 0 0 25 7 8 10 912

JMP EDI 6.866667 0 0 22 0 0 0 0 0 3 0 0 6 0 0 0

JMP ESI 9.466667 6 0 9 0 0 7 0 0 6 0 6 2 18 11 2

JMP EBP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CALL EAX 5276.9 1524 2081 25690 984 120 1139 0 97 9607 0 2786 0 1039 6845 42757

CALL EBX 1665.8 0 4730 1033 65 40 239 0 173 4224 0 535 0 51 444 14863

CALL ECX 272.3333 571 377 263 31 52 123 0 0 1275 0 1427 0 20 562 1378

CALL EDX 4684.5 977 467 3183 11 83 459 0 8 41 0 2698 4 10 298 58547

CALL EDI 2112.267 0 4536 862 45 139 301 46 257 3847 0 1057 0 5 483 20777

CALL ESI 2277.367 23 9654 1147 20 220 227 7 323 8681 34 1074 14 15 737 10060

CALL EBP 86.23333 0 0 539 28 0 185 0 0 0 0 28 2 1 276 45

DG EAX 92.33333 0 217 412 272 5 152 0 23 29 0 37 0 217 134 264

DG EBX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG ECX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EDX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EBP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EAX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

193

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOF

F

POW QUE PEB STA SNA

DG BEST

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

EAX

0.533333 0 0 6 0 0 0 0 0 0 0 0 0 0 0 5

DG Other

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADD all 2379.633 217 4103 6053 517 89 824 15 189 3018 0 1448 13 418 1442 18249

ADD EAX 1183.8 154 1729 3328 376 42 528 13 103 1014 0 857 7 348 764 8013

ADD EBX 128.3333 2 131 1209 38 11 63 0 12 149 0 64 0 9 88 785

ADD ECX 198.1333 56 1445 201 31 4 50 0 9 203 0 119 5 8 108 1379

ADD EDX 497.2667 0 465 63 26 4 12 0 51 1217 0 261 0 29 202 4786

ADD EDI 122.1333 1 95 66 9 0 15 2 4 206 0 50 0 5 85 1176

ADD ESI 83.6 0 57 36 9 9 7 0 7 148 0 23 0 2 59 805

ADD EBP 20.03333 4 79 28 4 0 0 0 0 33 0 23 0 3 27 145

SUB all 486.5333 78 1261 1281 20 28 258 3 32 342 0 231 2 14 326 4425

SUB EAX 279.1667 9 621 692 9 17 226 2 27 220 0 137 2 5 218 2421

SUB EBX 81.53333 61 463 274 0 6 27 1 4 69 0 42 0 2 45 598

SUB ECX 33.7 19 17 57 9 1 26 0 1 53 0 25 0 7 11 303

SUB EDX 47.3 0 77 24 2 0 4 0 2 43 0 35 0 2 64 519

SUB EDI 13.56667 0 13 4 2 0 0 0 2 11 0 18 0 0 40 122

SUB ESI 15.8 50 8 0 0 4 4 0 0 10 0 22 0 0 27 129

194

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOF

F

POW QUE PEB STA SNA

SUB EBP 1.833333 0 0 1 0 0 0 0 0 3 0 3 0 0 1 11

MUL all 15.76667 0 4 5 12 0 35 0 4 0 0 25 1 5 17 67

MUL EAX 2.833333 0 2 2 0 0 23 0 0 0 0 7 0 0 9 17

MUL EBX 0.133333 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

MUL ECX 0.666667 0 0 0 0 0 2 0 0 0 0 0 0 0 2 2

MUL EDX 4.566667 0 2 0 0 0 0 0 0 0 0 5 0 0 0 16

MUL EDI 0.133333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MUL ESI 0.133333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MUL EBP 0.933333 0 1 0 0 0 4 0 0 0 0 0 0 0 0 3

DIV all 36.6 8 32 31 3 2 3 0 0 7 0 19 7 0 34 296

DIV EAX 36.6 8 32 31 3 2 3 0 0 7 0 19 7 0 34 296

DIV EBX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV ECX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV EDX 36.6 8 32 31 3 2 3 0 0 7 0 19 7 0 34 296

DIV EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV EBP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MOV all 9042.433 2737 3516 14379 160 273 2252 25 178 4331 7 6970 5 477 3144 93558

MOV EAX 2586.033 780 1041 4801 54 114 145 0 34 958 0 2203 0 207 2244 28555

MOV EBX 119.6333 4 146 193 16 23 47 0 11 245 0 74 5 12 51 972

MOV ECX 3278.167 965 1464 3097 4 20 8 23 7 2318 1 2288 0 219 540 32024

MOV EDX 2292.467 986 173 279 31 35 53 0 9 85 0 2086 0 10 77 27234

MOV EDI 152.4333 0 232 39 22 31 98 0 58 166 0 69 0 13 35 1524

MOV ESI 235.9333 0 299 47 3 25 113 2 24 451 0 100 0 6 90 2217

MOV EBP 10.6 2 18 23 10 10 16 0 0 10 0 22 0 0 8 48

MOV

SHUFFLE all

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

195

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOF

F

POW QUE PEB STA SNA

MOV

SHUFFLE

EAX

13.16667 0 7 134 15 31 4 0 3 10 0 4 0 4 6 45

MOV

SHUFFLE

EBX

59.1 0 93 89 11 20 26 0 7 79 0 25 0 8 11 470

MOV

SHUFFLE

ECX

2534.367 36 1119 2741 0 0 0 23 0 2106 0 608 0 0 414 24638

MOV

SHUFFLE

EDX

8.166667 0 0 10 19 11 9 0 0 0 0 0 0 6 0 79

MOV

SHUFFLE

EDI

88.4 0 164 14 7 28 12 0 7 120 0 54 0 3 14 901

MOV

SHUFFLE

ESI

130.2333 0 80 34 3 24 8 0 18 174 0 49 0 6 19 1509

MOV

SHUFFLE

EBP

4.466667 2 0 9 5 10 16 0 0 2 0 20 0 0 5 0

MOV

VALUE all

283.7333 11 292 2658 30 9 17 0 18 237 1 65 5 219 122 1847

MOV

VALUE EAX

166 11 174 2485 16 5 5 0 9 88 0 15 0 15 61 767

MOV

VALUE EBX

21.56667 0 8 27 0 0 0 0 1 58 0 22 5 1 20 168

MOV

VALUE ECX

25.16667 0 64 12 1 2 1 0 6 33 1 7 0 195 6 223

MOV

VALUE EDX

7.066667 0 7 30 0 1 2 0 0 22 0 3 0 1 9 43

MOV

VALUE EDI

13.46667 0 1 24 8 0 0 0 0 2 0 4 0 4 2 157

MOV

VALUE ESI

15.8 0 13 12 0 1 8 0 2 6 0 5 0 0 8 155

MOV

VALUE EBP

5.4 0 14 14 0 0 0 0 0 8 0 1 0 0 2 44

196

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOF

F

POW QUE PEB STA SNA

LEA all 2039.533 10 9313 2817 46 15 121 0 60 588 1 733 0 53 756 19056

LEA EAX 675.1 4 2410 57 40 12 48 0 51 389 1 364 0 53 499 5898

LEA EBX 10.5 0 11 22 0 0 0 0 0 8 0 6 0 0 0 79

LEA ECX 961.4 0 6799 124 0 0 30 0 8 148 0 260 0 0 167 9419

LEA EDX 280.1333 3 74 78 6 3 41 0 0 27 0 86 0 0 42 3387

LEA EDI 16.46667 0 7 3 0 0 0 0 0 3 0 4 0 0 28 190

LEA ESI 10.33333 0 11 11 0 0 2 0 1 13 0 0 0 0 15 77

LEA EBP 1.1 0 1 1 0 0 0 0 0 0 0 10 0 0 5 0

PUSH all 17677.07 1818 18457 997 619 587 269 8 1134 40861 30 13540 14 672 15531 166423

PUSH EAX 4085.867 470 5885 147 342 72 12 0 166 4172 4 1926 0 423 2104 42170

PUSH EBX 1002.5 8 1242 56 45 22 23 0 48 956 0 850 0 21 1246 8506

PUSH ECX 1848.967 489 545 3 5 36 3 0 11 280 0 1183 0 4 1001 22182

PUSH EDX 1333.333 523 278 38 4 70 17 0 1 126 0 842 0 2 509 16072

PUSH EDI 1189.5 7 613 7 12 177 0 0 131 1063 0 998 1 31 1386 11338

PUSH ESI 1057.367 0 498 11 30 14 0 0 77 980 0 2269 9 3 2981 9840

PUSH EBP 194.9 86 28 155 24 11 58 0 2 48 0 488 0 1 571 1369

POP all 1219.467 129 499 17164 70 15 765 28 57 2069 3 330 7 54 283 6273

POP EAX 67 18 43 156 16 1 3 0 1 501 0 15 0 6 20 388

POP EBX 160.5 0 12 4111 8 3 110 0 0 174 0 10 0 4 1 221

POP ECX 43.6 0 4 5 0 2 0 12 14 55 3 141 0 3 1 177

POP EDX 37.03333 0 2 2 12 1 0 12 14 100 0 40 0 10 1 189

POP EDI 141.2667 0 0 3327 3 2 34 0 0 43 0 9 0 3 96 495

POP ESI 181.5333 87 83 3588 8 3 38 0 5 24 0 12 0 5 18 943

POP EBP 282.1 0 120 5748 10 2 540 0 4 23 0 14 0 5 51 838

INC all 1014.267 183 1453 6531 173 58 422 0 32 849 3 651 4 105 958 7143

INC EAX 167.3667 11 93 1671 52 12 52 0 3 106 1 113 0 25 302 1002

INC EBX 27.5 0 32 44 7 7 28 0 3 59 0 18 0 17 37 181

INC ECX 23.63333 29 20 20 23 6 1 0 0 36 0 57 3 1 103 92

197

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOF

F

POW QUE PEB STA SNA

INC EDX 87.7 15 20 111 7 0 12 0 0 30 0 105 0 0 13 752

INC EDI 64.7 0 52 400 1 1 4 0 4 94 0 36 0 9 78 364

INC ESI 85.33333 0 217 20 8 6 5 0 2 244 0 76 0 5 208 679

INC EBP 361.8667 105 963 2517 48 22 54 0 15 188 2 171 0 37 63 2742

DEC all 657.2667 270 1573 1035 155 39 86 0 13 343 0 356 6 130 290 5940

DEC EAX 116.1333 29 331 154 6 1 5 0 0 84 0 43 0 0 94 986

DEC EBX 14.6 0 43 6 6 2 3 0 0 11 0 6 0 20 8 100

DEC ECX 22.83333 8 271 15 26 0 2 0 0 9 0 4 0 9 8 126

DEC EDX 22.3 23 106 2 0 4 1 0 0 20 0 14 2 3 6 151

DEC EDI 32.43333 5 77 3 3 0 3 0 0 13 0 13 2 1 3 272

DEC ESI 53.53333 0 37 5 2 3 0 0 0 104 0 41 0 1 14 592

DEC EBP 209.0333 168 504 139 97 16 18 0 1 45 0 132 0 82 31 2078

XCHG all 202.4333 25 88 136 11 21 14 0 5 219 0 87 11 6 82 2290

XCHG EAX 126.3333 25 36 95 9 20 5 0 4 90 0 30 5 4 38 1295

XCHG EBX 12.83333 0 2 13 0 0 0 0 0 9 0 0 0 4 2 166

XCHG ECX 5.666667 5 7 7 0 0 0 0 0 11 0 8 0 0 18 58

XCHG EDX 46.76667 0 8 25 0 2 1 0 0 5 0 2 5 0 6 546

XCHG EDI 18.63333 0 15 12 0 0 6 0 0 41 0 2 0 2 0 287

XCHG ESI 12.5 0 3 11 0 1 0 0 0 5 0 19 0 0 0 196

XCHG EBP 12.83333 17 2 16 2 0 4 0 2 10 0 5 0 0 5 129

SHIFT LEFT 126.6333 3 1034 37 0 3 3 0 36 375 5 117 6 0 113 696

SHIFT

RIGHT

51.23333 3 163 131 0 0 0 2 0 45 0 36 6 4 16 437

ROTATE

LEFT

37.93333 10 89 66 14 2 0 0 1 66 0 20 0 2 65 332

ROTATE

RIGHT

16.43333 0 13 15 1 0 5 0 6 40 0 11 0 6 42 148

198

Table 12. JOP Gadgets for 31 applications (image only) – Part 2

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CMD NOT ACR BRL ICO RES

JMP EAX 413.9 907 0 0 10 25 3 181 42 144 3 10 0 183 35 473 332

JMP EBX 7.466667 6 0 0 0 0 0 0 0 3 0 0 0 0 0 192 11

JMP ECX 10.36667 6 0 0 0 0 0 0 0 0 0 0 0 0 0 147 41

JMP EDX 77.9 661 0 0 0 0 0 5 0 0 0 0 0 3 0 174 20

JMP EDI 6.866667 0 0 0 0 0 0 0 7 0 0 0 0 0 0 168 15

JMP ESI 9.466667 4 0 6 0 6 3 17 0 1 0 0 3 6 6 165 9

JMP EBP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CALL

EAX

5276.9 54623 0 41 0 1283 0 8 0 7 0 3 0 4896 1505 1272 36913

CALL

EBX

1665.8 16180 2 44 5 2806 14 195 19 76 0 2 0 1310 2338 586 2143

CALL

ECX

272.3333 937 1 6 0 57 0 10 15 0 0 9 0 776 61 219 732

CALL

EDX

4684.5 69574 0 0 0 51 0 1 0 0 0 0 0 3601 363 159 11471

CALL

EDI

2112.267 20088 14 24 1 1752 96 376 73 143 0 2 0 2272 5716 456 1324

CALL

ESI

2277.367 9955 736 242 1 5206 5465 2594 1161 3084 1139 14 70 1694 4324 400 2025

CALL

EBP

86.23333 45 0 0 0 1233 8 3 0 0 0 0 0 0 0 194 1279

DG EAX 92.33333 487 0 4 0 20 0 11 0 5 0 1 0 87 40 353 1192

DG EBX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG ECX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EDX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EBP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EAX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

199

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CMD NOT ACR BRL ICO RES

DG BEST

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

EAX

0.533333 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 3

DG Other

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADD all 2379.633 20627 165 39 13 2656 1102 1625 399 760 257 11 55 1933 1655 3497 5947

ADD

EAX

1183.8 8757 164 21 11 1192 1091 1582 367 736 256 10 55 854 636 2506 3256

ADD

EBX

128.3333 760 0 2 0 183 4 16 11 4 0 0 0 98 125 86 110

ADD

ECX

198.1333 1873 0 6 0 170 3 7 1 8 1 1 0 110 96 50 1571

ADD

EDX

497.2667 5484 0 0 0 652 0 0 1 5 0 0 0 514 455 691 284

ADD EDI 122.1333 1349 1 3 2 187 4 7 19 4 0 0 0 127 177 70 185

ADD ESI 83.6 960 0 0 0 112 0 5 0 1 0 0 0 96 102 70 99

ADD EBP 20.03333 159 0 1 0 36 0 0 0 1 0 0 0 18 26 14 43

200

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CMD NOT ACR BRL ICO RES

SUB all 486.5333 5008 9 11 1 355 25 27 3 32 10 0 0 350 389 75 530

SUB EAX 279.1667 2874 9 8 1 227 25 18 2 32 10 0 0 265 246 52 433

SUB EBX 81.53333 682 0 1 0 89 0 6 0 0 0 0 0 33 36 7 43

SUB ECX 33.7 398 0 0 0 22 0 5 0 0 0 0 0 7 33 17 25

SUB EDX 47.3 485 0 3 0 43 0 3 1 0 0 0 0 48 63 1 40

SUB EDI 13.56667 140 0 1 0 12 0 3 0 0 0 0 0 3 36 0 13

SUB ESI 15.8 139 0 0 0 40 0 0 0 0 0 0 0 13 28 0 30

SUB EBP 1.833333 19 0 0 0 7 0 0 0 0 0 0 0 3 2 5 0

MUL all 15.76667 78 0 0 0 77 0 1 41 0 0 0 0 18 16 67 13

MUL

EAX

2.833333 20 0 0 0 2 0 0 0 0 0 0 0 2 0 1 0

MUL

EBX

0.133333 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3

MUL

ECX

0.666667 2 0 0 0 1 0 0 0 0 0 0 0 0 4 7 0

MUL

EDX

4.566667 16 0 0 0 47 0 0 41 0 0 0 0 9 1 0 0

MUL EDI 0.133333 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

MUL ESI 0.133333 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

MUL

EBP

0.933333 0 0 0 0 0 0 0 0 0 0 0 0 1 0 19 0

DIV all 36.6 288 0 0 0 28 0 63 2 0 0 0 6 201 62 6 30

DIV EAX 36.6 288 0 0 0 28 0 63 2 0 0 0 6 201 62 6 30

DIV EBX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV ECX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV EDX 36.6 288 0 0 0 28 0 63 2 0 0 0 6 201 62 6 30

DIV EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV EBP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MOV all 9042.433 108322 717 37 0 2063 5167 1801 993 3013 1221 23 20 1058

2

4263 1039 61431

201

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CMD NOT ACR BRL ICO RES

MOV

EAX

2586.033 30965 0 0 0 744 1 28 3 5 0 0 0 3041 1135 523 15402

MOV

EBX

119.6333 1202 4 5 0 119 2 5 0 1 0 0 0 156 226 70 105

MOV

ECX

3278.167 38139 662 0 0 385 4922 1696 894 2954 1092 21 18 3240 1239 105 23902

MOV

EDX

2292.467 32771 0 1 0 101 0 0 2 2 0 0 0 3621 1080 138 21363

MOV EDI 152.4333 1709 1 4 0 110 9 4 0 0 0 0 0 143 241 65 178

MOV ESI 235.9333 2540 50 0 0 129 233 49 88 47 129 2 2 218 189 25 129

MOV

EBP

10.6 53 0 2 0 70 0 2 6 0 0 0 0 11 5 2 16

MOV

SHUFFL

E all

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MOV

SHUFFL

E EAX

13.16667 47 0 0 0 2 0 0 0 0 0 0 0 19 5 59 14

MOV

SHUFFL

E EBX

59.1 592 0 0 0 61 0 0 0 0 0 0 0 79 154 48 44

MOV

SHUFFL

E ECX

2534.367 30289 632 0 0 315 4832 1673 864 2854 1092 16 18 1226 527 8 267

MOV

SHUFFL

E EDX

8.166667 88 0 0 0 0 0 0 0 0 0 0 0 0 0 23 28

MOV

SHUFFL

E EDI

88.4 985 0 0 0 88 0 0 0 0 0 0 0 90 151 14 94

MOV

SHUFFL

E ESI

130.2333 1684 0 0 0 91 0 0 0 0 0 0 0 84 103 21 85

MOV

SHUFFL

E EBP

4.466667 0 0 2 0 58 0 0 0 0 0 0 0 2 2 1 11

202

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CMD NOT ACR BRL ICO RES

MOV

VALUE

all

283.7333 2040 8 7 0 171 2 48 6 10 0 0 0 253 233 203 196

MOV

VALUE

EAX

166 979 0 0 0 56 1 25 0 4 0 0 0 84 68 112 128

MOV

VALUE

EBX

21.56667 191 4 5 0 41 1 5 0 0 0 0 0 40 42 8 4

MOV

VALUE

ECX

25.16667 137 4 0 0 13 0 4 0 0 0 0 0 7 7 32 6

MOV

VALUE

EDX

7.066667 42 0 0 0 8 0 0 0 2 0 0 0 22 5 15 3

MOV

VALUE

EDI

13.46667 123 0 0 0 5 0 1 0 0 0 0 0 7 49 17 8

MOV

VALUE

ESI

15.8 164 0 0 0 19 0 0 0 0 0 0 0 41 38 2 3

MOV

VALUE

EBP

5.4 48 0 0 0 11 0 2 6 0 0 0 0 9 3 0 5

LEA all 2039.533 22766 10 16 0 861 20 86 0 27 0 0 0 1322 2114 395 2048

LEA EAX 675.1 7288 0 6 0 697 0 0 0 0 0 0 0 371 1883 182 981

LEA EBX 10.5 109 0 0 0 2 0 0 0 0 0 0 0 65 12 1 1

LEA ECX 961.4 10975 10 10 0 123 20 86 0 27 0 0 0 466 149 21 573

LEA EDX 280.1333 4091 0 0 0 13 0 0 0 0 0 0 0 344 20 189 457

LEA EDI 16.46667 204 0 0 0 3 0 0 0 0 0 0 0 20 31 1 13

LEA ESI 10.33333 95 0 0 0 10 0 0 0 0 0 0 0 56 19 0 10

LEA EBP 1.1 2 0 0 0 13 0 0 0 0 0 0 0 0 0 1 12

PUSH all 17677.07 195840 12 618 3 24893 140 135 47 131 41 3 3 2316

0

22976 1350 29801

PUSH

EAX

4085.867 49791 9 91 0 3501 40 37 0 18 0 0 0 6098 4416 682 6409

203

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CMD NOT ACR BRL ICO RES

PUSH

EBX

1002.5 10712 0 63 0 2226 1 12 0 4 37 0 0 1672 2273 52 1206

PUSH

ECX

1848.967 25408 1 19 0 855 8 2 4 3 0 0 0 2623 772 32 3368

PUSH

EDX

1333.333 18847 0 0 0 90 5 3 23 8 0 0 3 2312 194 33 2748

PUSH

EDI

1189.5 12800 0 90 0 4020 2 5 0 12 3 1 0 1791 1162 35 1675

PUSH

ESI

1057.367 10541 0 26 0 1430 2 3 0 0 0 0 0 2018 923 66 3491

PUSH

EBP

194.9 1532 0 0 0 978 0 12 2 0 0 0 0 429 26 27 3238

POP all 1219.467 6567 4 20 12 317 52 324 75 264 6 13 4 461 361 358 233

POP EAX 67 502 0 1 0 67 9 1 2 15 0 0 0 59 141 45 61

POP EBX 160.5 128 0 0 0 5 0 0 0 0 0 0 0 7 6 15 1

POP ECX 43.6 287 0 17 6 72 3 165 36 125 3 6 0 74 77 20 21

POP EDX 37.03333 313 0 0 6 8 3 143 36 119 3 6 0 58 6 27 4

POP EDI 141.2667 170 0 0 0 13 0 1 0 0 0 0 0 20 14 8 4

POP ESI 181.5333 583 0 0 0 8 0 0 0 0 0 0 0 8 2 31 8

POP EBP 282.1 934 0 0 0 20 1 1 0 1 0 0 0 101 36 14 31

INC all 1014.267 8411 5 16 2 687 37 187 15 17 0 5 6 804 923 748 5004

INC EAX 167.3667 1133 0 16 1 97 22 110 4 3 0 0 0 70 60 62 238

INC EBX 27.5 307 0 0 0 11 0 9 1 0 0 0 0 22 25 17 37

INC ECX 23.63333 160 0 0 0 13 0 6 0 0 0 0 6 51 62 20 89

INC EDX 87.7 1086 0 0 0 1 0 1 7 5 0 4 0 134 57 271 84

INC EDI 64.7 754 0 0 0 29 1 4 1 0 0 0 0 14 81 14 100

INC ESI 85.33333 805 0 0 0 29 0 4 0 0 0 1 0 106 95 50 204

INC EBP 361.8667 2963 0 0 1 63 2 12 2 1 0 0 0 340 437 108 3835

DEC all 657.2667 7563 2 3 0 257 83 46 5 49 0 4 1 570 540 359 5672

DEC

EAX

116.1333 1480 1 1 0 31 6 5 0 11 0 0 0 33 172 11 122

DEC EBX 14.6 175 0 0 0 12 1 1 0 26 0 0 0 2 5 11 4

204

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CMD NOT ACR BRL ICO RES

DEC ECX 22.83333 136 0 0 0 7 0 0 0 0 0 0 0 13 30 21 16

DEC

EDX

22.3 139 0 0 0 6 13 7 0 0 0 0 0 28 90 54 17

DEC EDI 32.43333 537 0 0 0 4 0 0 0 1 0 0 0 18 16 2 12

DEC ESI 53.53333 695 0 0 0 26 0 0 0 0 0 0 0 43 33 10 19

DEC EBP 209.0333 2546 0 1 0 26 28 0 1 0 0 0 0 258 57 43 5164

XCHG all 202.4333 2407 0 4 0 283 0 3 0 0 0 0 0 82 157 142 294

XCHG

EAX

126.3333 1686 0 0 0 247 0 3 0 0 0 0 0 38 67 93 186

XCHG

EBX

12.83333 176 0 0 0 2 0 0 0 0 0 0 0 1 0 10 6

XCHG

ECX

5.666667 41 0 0 0 1 0 0 0 0 0 0 0 5 1 8 33

XCHG

EDX

46.76667 731 0 2 0 15 0 3 0 0 0 0 0 4 12 36 18

XCHG

EDI

18.63333 165 0 0 0 6 0 0 0 0 0 0 0 3 2 18 8

XCHG

ESI

12.5 115 0 0 0 1 0 0 0 0 0 0 0 7 0 17 19

XCHG

EBP

12.83333 70 0 0 0 93 0 0 0 0 0 0 0 9 1 20 2

SHIFT

LEFT

126.6333 625 0 10 0 393 1 0 0 0 0 0 0 82 242 18 142

SHIFT

RIGHT

51.23333 488 0 3 0 56 0 0 0 12 0 0 0 31 92 12 50

ROTATE

LEFT

37.93333 408 0 4 0 20 0 0 1 4 0 1 0 22 9 2 41

ROTATE

RIGHT

16.43333 177 0 0 0 11 0 0 1 0 0 0 0 3 12 2 49

205

JOP Gadgets for Scanned Applications, Image and Modules

Table 13 and Table 14 present the results obtained from scanning different binaries and their modules; the results are spread across two

tables. The average number of gadgets from all binaries scanned is provided. Results have been aggregated for all the gadgets obtained from the

image along with each binary’s modules, with one number representing the total gadgets found from each. Standard default settings were used.

Had the settings been modified, the numbers produced likely would increase or decrease.

Table 13. JOP Gadgets for 31 applications (image and associated modules) – Part 1.

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOFF POW QUE PEB STA SNA

JMP EAX 2417.533 1138 23077 9049 1913 1672 1890 198 1351 1863 860 2620 42 1698 1363 3182

JMP EBX 21.33333 20 57 21 8 2 19 22 9 2 13 1 13 1 1 31

JMP ECX 25 34 77 24 16 9 89 25 0 0 0 42 0 6 32 79

JMP EDX 101.4667 23 53 435 15 34 136 36 22 2 15 82 7 10 11 1022

JMP EDI 26.06667 34 38 42 21 13 23 54 20 16 21 13 6 13 13 17

JMP ESI 49.33333 60 69 57 46 32 49 36 38 35 31 55 8 57 40 51

JMP EBP 13.5 5 27 5 56 13 8 9 7 5 5 5 1 5 5 9

CALL EAX 8058.567 12044 42154 25796 1061 1124 12928 78 198 9678 194 4442 14 2152 6905 53684

CALL EBX 4403.933 502 55035 1301 715 525 1968 246 687 4605 372 2250 18 478 660 23812

CALL ECX 1257.167 5189 7828 382 181 198 10202 64 103 1367 63 2028 12 450 635 4424

CALL EDX 7359.967 6478 4007 3321 145 290 18072 176 160 179 135 3172 4 845 424 67728

CALL EDI 6600.133 976 65618 2013 1316 965 4591 507 1335 7585 878 3909 24 1001 1485 38659

CALL ESI 27484.43 11250 238800 16146 19155 11356 15095 1895 28351 37409 10603 22672 643 16773 13297 42386

CALL EBP 131.4333 3 65 543 39 18 185 20 4 0 0 272 2 47 280 673

DG EAX 195 101 1684 431 300 21 531 13 39 85 19 225 1 232 145 470

DG EBX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

206

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOFF POW QUE PEB STA SNA

DG ECX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EDX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EBP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EAX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG BEST EBP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other EAX 1.2 0 16 6 0 0 0 0 0 0 0 1 0 0 0 8

DG Other EBX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other ECX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other EDX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other EBP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADD all 10837.8 5260 73224 10621 6216 4101 12599 1190 7875 11845 3384 9124 358 5380 5244 34224

ADD EAX 7370.8 4291 27238 7626 5692 3577 7586 1007 7400 9267 3195 7078 338 4883 4379 18165

ADD EBX 287.9667 86 1976 1245 121 50 624 28 56 190 17 165 3 67 109 1275

ADD ECX 552.1 543 7985 272 115 78 376 25 197 312 58 286 7 77 167 2030

ADD EDX 834.9667 150 5740 92 83 230 318 23 89 1282 32 559 0 134 226 6406

ADD EDI 561.9333 110 7326 185 144 72 1433 100 110 550 67 343 5 130 162 1824

ADD ESI 225.2333 19 1168 53 34 28 1727 2 17 162 7 75 4 20 69 1445

ADD EBP 50.23333 54 605 33 8 7 19 6 8 40 3 47 0 8 28 250

207

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOFF POW QUE PEB STA SNA

SUB all 1550.3 621 13699 1657 461 860 2018 80 829 935 346 1048 7 443 672 7324

SUB EAX 981.7667 482 7982 1038 404 794 1098 51 558 748 330 672 6 404 553 3892

SUB EBX 250.6333 112 2506 292 31 26 97 18 235 103 10 77 0 27 57 1507

SUB ECX 79.63333 46 507 61 13 11 49 4 5 60 2 204 1 9 12 535

SUB EDX 155.3667 19 1660 45 24 13 57 22 15 66 13 90 0 18 71 1121

SUB EDI 86.43333 8 1051 17 23 12 28 2 10 28 7 36 0 14 46 552

SUB ESI 74.9 57 435 2 3 4 10 2 225 10 2 24 0 0 27 451

SUB EBP 4.6 0 42 1 6 0 1 0 0 3 0 3 0 0 1 17

MUL all 483.9 592 858 597 598 612 638 11 591 588 586 653 2 590 602 123

MUL EAX 7.066667 0 42 2 0 0 27 1 2 0 0 20 0 0 9 27

MUL EBX 0.8 0 12 0 0 0 2 0 0 0 0 2 0 0 0 3

MUL ECX 16.36667 19 42 19 19 20 22 0 19 19 19 22 0 19 21 6

MUL EDX 6.133333 0 29 0 0 0 0 1 0 0 0 7 0 0 0 27

MUL EDI 2.266667 1 32 1 1 3 1 0 1 1 1 1 0 1 1 4

MUL ESI 2.266667 1 32 1 1 3 1 0 1 1 1 1 0 1 1 4

MUL EBP 301.7333 391 402 391 391 391 395 6 391 391 391 391 0 391 391 3

DIV all 94.63333 86 550 64 37 32 65 0 29 45 21 76 8 38 64 576

DIV EAX 94.63333 86 550 64 37 32 65 0 29 45 21 76 8 38 64 576

DIV EBX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV ECX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV EDX 94.63333 86 550 64 37 32 65 0 29 45 21 76 8 38 64 576

DIV EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV EBP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MOV all 31935.83 31479 127408 26679 16322 10147 48028 1550 25944 32618 9086 26259 267 15510 14236 129953

MOV EAX 5005.233 6783 27894 4902 202 330 11225 104 169 1057 85 2475 2 646 2316 35178

MOV EBX 465.8667 68 6714 212 49 57 402 4 44 297 30 152 7 44 62 1744

MOV ECX 20179.2 16139 78291 14406 14972 8929 22844 1246 23751 28989 8364 18153 230 13185 10804 51900

MOV EDX 4152.567 7914 4682 395 153 232 10015 99 157 216 97 2303 0 701 175 32016

208

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOFF POW QUE PEB STA SNA

MOV EDI 359.2333 51 2809 89 65 91 816 18 94 294 49 196 0 69 83 2410

MOV ESI 1112.3 401 4598 676 813 411 801 25 1621 1608 354 1009 19 765 667 3933

MOV EBP 49.96667 50 216 63 23 37 59 37 25 25 24 56 2 11 14 171

MOV

SHUFFLE all

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MOV

SHUFFLE

EAX

51.1 34 200 134 15 59 788 0 3 10 1 4 0 4 6 124

MOV

SHUFFLE

EBX

143.2667 7 1646 89 11 35 290 0 7 79 10 38 0 12 11 839

MOV

SHUFFLE

ECX

16799.93 9460 35694 13711 14123 8700 9587 1144 23066 28151 8198 15765 226 11982 10363 41523

MOV

SHUFFLE

EDX

20.2 0 26 10 21 32 25 0 10 0 0 0 0 6 0 134

MOV

SHUFFLE EDI

183.5667 17 1513 19 12 46 561 2 12 125 14 77 0 9 19 1368

MOV

SHUFFLE ESI

208.4333 0 1411 34 3 28 167 0 18 174 1 79 0 7 19 2023

MOV

SHUFFLE

EBP

15.8 18 14 21 15 34 26 6 8 8 6 30 2 10 11 47

MOV VALUE

all

3926.433 386 53829 2933 430 338 4055 244 270 512 231 565 9 572 314 2796

MOV VALUE

EAX

1124.7 139 7902 2567 130 110 1535 90 83 167 68 125 0 85 125 980

MOV VALUE

EBX

184.5333 25 3964 38 24 8 32 2 26 87 11 73 5 16 26 328

MOV VALUE

ECX

1327.8 6 37015 35 122 34 115 6 9 55 2 144 4 316 8 332

MOV VALUE

EDX

1095.5 93 3347 121 92 131 2233 92 96 118 89 103 0 91 98 165

MOV VALUE

EDI

39.6 27 93 39 34 24 31 16 14 18 23 39 0 35 17 255

209

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOFF POW QUE PEB STA SNA

MOV VALUE

ESI

29.36667 2 157 13 0 7 46 0 3 6 0 23 0 0 8 256

MOV VALUE

EBP

31.6 32 176 42 3 3 33 31 17 17 18 13 0 1 2 99

LEA all 7558.167 535 146078 3357 701 520 1688 20 816 1419 537 1724 0 976 1185 26951

LEA EAX 7558.167 535 146078 3357 701 520 1688 20 816 1419 537 1724 0 976 1185 26951

LEA EBX 19.1 0 132 22 0 0 0 0 0 8 0 6 0 0 0 170

LEA ECX 5132.5 486 115140 654 641 460 823 17 751 946 441 1031 0 673 591 11020

LEA EDX 418.9333 15 2192 78 9 14 424 0 2 27 0 134 0 201 42 4520

LEA EDI 33.06667 4 192 7 4 4 16 0 4 8 4 8 0 8 32 332

LEA ESI 22.66667 3 163 11 0 0 28 0 1 13 0 0 0 0 15 209

LEA EBP 4.3 3 15 2 0 0 1 1 2 0 1 16 0 0 5 52

PUSH all 36746.2 16255 307395 2877 2726 2366 58244 253 2456 43408 2716 21084 32 7277 16087 266054

PUSH EAX 8259.567 4767 75670 293 583 345 14067 34 389 4604 407 2881 0 2098 2195 61506

PUSH EBX 2207.833 131 16801 92 83 133 4298 13 88 1025 243 1431 1 200 1273 16569

PUSH ECX 2726 3906 10207 48 63 110 1854 0 92 321 71 1560 0 385 1041 29148

PUSH EDX 2414.7 4464 6477 993 974 143 2459 0 47 1106 41 1957 0 1457 527 22757

PUSH EDI 2290.8 247 12734 59 51 228 6637 29 189 1133 221 1563 6 480 1413 18867

PUSH ESI 2669.2 212 17826 27 38 64 15314 8 119 1022 351 2728 15 682 2989 18639

PUSH EBP 353.8 874 949 167 36 38 131 7 41 66 12 622 0 117 582 3098

POP all 5302.233 2790 43268 20256 3349 2792 4595 739 2787 5297 1857 5003 65 3240 2551 10972

POP EAX 161.2333 279 1121 181 79 37 64 1 40 541 18 140 0 74 30 597

POP EBX 305.3 153 801 4268 175 171 273 0 8 354 16 345 0 161 158 429

POP ECX 1147.633 1020 1752 1361 1460 1023 1141 178 1185 1379 874 1813 27 1439 994 1143

POP EDX 1105.1 1025 1797 1357 1451 1013 1163 184 1180 1423 809 1600 25 1294 992 796

POP EDI 212.2667 2 823 3333 8 7 50 10 6 73 1 243 0 8 98 933

POP ESI 409.8667 96 6384 3602 16 19 68 21 13 40 10 165 0 13 26 1024

POP EBP 1046.4 17 20187 5761 20 22 562 281 40 56 19 368 5 20 61 2067

INC all 3007.4 1822 39342 6655 414 699 1910 88 251 1220 147 1459 11 372 1043 11861

INC EAX 350.8333 218 2297 1704 161 512 244 15 66 187 40 263 0 81 329 1610

210

Op. Average WDB VMW FLX HXD IDA IMM IEX DEV NOT SOFF POW QUE PEB STA SNA

INC EBX 100.6 11 1360 50 12 23 329 0 8 74 6 78 0 28 42 352

INC ECX 70.1 94 860 25 55 12 40 3 5 42 6 74 3 13 108 233

INC EDX 139.0333 244 726 122 9 3 48 12 10 34 8 168 0 2 15 987

INC EDI 166.4667 13 1533 412 9 19 91 8 29 242 10 143 2 14 81 934

INC ESI 402.0333 20 2819 29 20 15 190 7 12 258 11 136 0 16 217 1233

INC EBP 1376.267 1117 27814 2549 82 64 318 13 62 232 46 276 5 72 84 3566

DEC all 2172.4 2523 19812 1475 1181 482 1263 75 381 763 203 1602 17 962 626 9288

DEC EAX 224.8667 205 1597 170 36 17 102 4 52 141 12 107 0 24 105 1472

DEC EBX 140.7667 18 1388 26 39 20 229 0 18 29 16 36 0 38 24 254

DEC ECX 75.7 93 1100 18 29 42 47 1 8 18 3 20 0 12 11 258

DEC EDX 53.93333 82 730 7 7 13 22 0 12 26 4 22 2 8 10 209

DEC EDI 139.7333 25 1982 69 74 20 71 7 26 33 18 82 2 62 27 582

DEC ESI 122.2 9 1103 13 33 12 196 20 9 117 7 57 0 9 21 997

DEC EBP 638.6333 1489 9306 259 214 240 210 11 74 116 56 295 0 158 139 2332

XCHG all 651.2667 354 3947 316 215 210 431 19 41 409 31 351 11 225 251 3177

XCHG EAX 264.1667 198 2447 115 40 39 222 14 29 120 14 109 5 28 52 1514

XCHG EBX 34.13333 4 298 16 10 3 13 2 3 14 3 27 0 7 5 185

XCHG ECX 34.36667 122 249 18 11 11 172 10 13 22 11 20 0 11 29 87

XCHG EDX 61.9 3 235 26 4 4 8 0 2 10 3 5 5 3 7 620

XCHG EDI 34.03333 1 342 13 7 1 27 0 3 42 1 5 0 3 1 314

XCHG ESI 32.8 0 414 11 7 2 5 0 2 5 0 21 0 0 0 300

XCHG EBP 25.1 36 255 17 3 1 11 1 4 11 1 7 0 1 6 152

SHIFT LEFT 784.9 48 17696 63 26 206 120 76 60 390 33 271 10 38 128 1748

SHIFT RIGHT 154.8 50 2090 159 11 14 44 25 22 53 23 84 8 14 25 723

ROTATE

LEFT

100.6 52 1183 71 25 14 28 13 5 74 2 91 0 13 66 510

ROTATE

RIGHT

40.8 13 448 16 2 2 31 0 12 41 2 17 0 7 43 230

211

Table 14. JOP Gadgets for 31 applications (image and associated modules) – Part 2.

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CM

D

NOT ACR BRL ICO RES

JMP EAX 2417.533 1735 1631 904 122 1446 1665 2026 1843 1816 1546 22 1731 390 1621 2112 2319

JMP EBX 21.33333 34 9 1 0 3 19 26 20 31 19 18 19 0 3 218 21

JMP ECX 25 60 7 1 7 5 7 25 7 12 12 7 7 0 0 160 59

JMP EDX 101.4667 701 18 1 0 6 23 37 37 40 27 21 22 3 2 203 32

JMP EDI 26.06667 7 23 14 3 13 23 32 30 25 26 10 23 0 13 196 36

JMP ESI 49.33333 56 42 29 20 41 57 70 57 52 48 13 52 20 47 212 56

JMP EBP 13.5 7 10 10 4 14 10 68 11 15 15 4 8 1 7 56 65

CALL

EAX

8058.567 57507 108 85 43 1344 209 206 219 1396 113 60 128 4927 1566 1394 37031

CALL

EBX

4403.93

3

21284 1278 730 34 3356 1084 1952 468 908 440 43 1665 1330 2991 1381 4621

CALL

ECX

1257.16

7

1887 138 64 56 156 126 177 167 215 111 33 110 811 169 369 900

CALL

EDX

7359.96

7

71019 3508 127 3496 180 3498 1192

3

3510 3524 3501 337

2

3498 3725 489 293 1160

8

CALL

EDI

6600.13

3

33238 2833 939 436 3003 2666 3805 1972 3368 1210 38 2176 2350 7116 1992 5010

CALL

ESI

27484.4

3

26749 4581

2

1224

3

1032 3223

2

3961

9

2605

7

1983

2

3666

1

1848

0

253 1972

1

2305 3551

1

2219

5

4080

5

CALL

EBP

131.433

3

246 11 4 0 1246 13 24 4 20 9 0 6 0 4 205 1708

DG EAX 195 654 34 13 9 34 31 76 29 87 19 6 25 95 55 386 1222

DG EBX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG ECX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EDX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG EBP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

212

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CM

D

NOT ACR BRL ICO RES

DG

BEST

EAX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

EAX

1.2 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 3

DG Other

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG Other

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

213

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CM

D

NOT ACR BRL ICO RES

DG Other

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADD all 10837.8 27050 1423

6

6091 1132 1034

8

1097

9

1157

9

7519 1098

0

5701 522 5850 2501 1032

0

9681 1735

6

ADD

EAX

7370.8 12900 1366

6

5564 935 8584 1044

3

1072

9

7035 9912 5264 373 5385 1361 8965 8286 1360

8

ADD

EBX

287.966

7

1036 111 125 42 212 93 177 90 101 59 36 89 104 183 169 225

ADD

ECX

552.1 2181 193 64 23 238 138 211 121 231 93 28 100 111 163 140 1669

ADD

EDX

834.966

7

6289 60 71 14 694 61 115 39 422 88 9 53 519 503 748 427

ADD

EDI

561.933

3

1693 155 185 79 334 169 210 167 228 157 41 163 175 321 220 426

ADD ESI 225.233

3

1168 19 73 10 130 26 52 17 65 19 6 29 97 120 96 545

ADD

EBP

50.2333

3

235 9 4 2 40 8 6 6 3 5 1 5 19 30 18 47

SUB all 1550.3 6690 1009 497 88 1124 609 739 514 867 497 67 713 404 1156 535 1624

SUB

EAX

981.766

7

3695 725 447 83 720 531 610 421 788 430 56 456 292 737 450 1021

SUB

EBX

250.633

3

1257 244 21 7 331 38 56 22 30 25 4 34 35 277 40 313

SUB

ECX

79.6333

3

502 15 2 2 23 6 17 41 9 6 3 169 7 40 28 199

SUB

EDX

155.366

7

946 14 22 1 63 29 58 19 31 27 7 51 49 79 31 97

SUB EDI 86.4333

3

533 10 12 1 31 15 23 7 17 18 0 15 4 51 22 44

SUB ESI 74.9 217 224 0 0 261 2 5 5 8 2 2 2 13 249 5 254

SUB

EBP

4.6 24 0 0 0 7 8 7 1 1 0 0 0 3 2 11 6

MUL all 483.9 104 594 586 14 663 593 609 634 595 593 6 603 27 601 654 611

214

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CM

D

NOT ACR BRL ICO RES

MUL

EAX

7.06666

7

24 7 0 4 2 4 6 4 5 4 4 15 2 0 1 11

MUL

EBX

0.8 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3

MUL

ECX

16.3666

7

4 19 19 0 20 19 19 19 19 19 0 19 0 23 26 19

MUL

EDX

6.13333

3

17 1 0 0 47 0 4 41 0 0 0 0 9 1 0 0

MUL

EDI

2.26666

7

7 1 1 0 2 1 1 1 1 1 0 1 0 1 1 1

MUL ESI 2.26666

7

7 1 1 0 2 1 1 1 1 1 0 1 0 1 1 1

MUL

EBP

301.733

3

0 391 391 6 391 392 392 391 391 391 0 392 7 391 410 391

DIV all 94.6333

3

366 38 20 0 65 37 89 39 82 31 0 40 201 100 40 68

DIV

EAX

94.6333

3

366 38 20 0 65 37 89 39 82 31 0 40 201 100 40 68

DIV

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV

EDX

94.6333

3

366 38 20 0 65 37 89 39 82 31 0 40 201 100 40 68

DIV EDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV ESI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV EBP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MOV all 31935.8

3

11891

7

4624

0

9665 4416 2633

1

3829

1

3609

0

2088

9

3642

4

1970

5

385

4

1920

1

1094

5

3191

7

1970

4

9605

6

MOV

EAX

5005.23

3

32618 1705 143 1502 852 1563 5267 1566 1924 1599 145

7

1558 3105 1239 691 1560

4

MOV

EBX

465.866

7

1789 69 52 16 378 55 313 84 490 257 14 49 158 263 103 382

215

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CM

D

NOT ACR BRL ICO RES

MOV

ECX

20179.2 43494 3964

7

8907 575 2268

7

3301

8

2156

7

1591

9

2998

3

1470

6

174 1459

5

3400 2701

5

1748

6

5604

2

MOV

EDX

4152.56

7

33809 2338 102 2223 263 2318 7760 2314 2416 2258 213

2

2271 3718 1237 263 2155

7

MOV

EDI

359.233

3

2325 75 31 44 159 60 83 45 172 47 5 41 159 287 110 273

MOV

ESI

1112.3 3124 2315 363 35 1471 1163 959 826 1328 738 17 578 224 1668 859 1754

MOV

EBP

49.9666

7

115 31 11 10 86 53 58 59 48 49 35 47 19 23 42 38

MOV

SHUFFL

E all

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MOV

SHUFFL

E EAX

51.1 60 0 0 0 2 6 0 0 0 0 0 0 19 5 59 14

MOV

SHUFFL

E EBX

143.266

7

881 1 0 0 61 0 0 0 0 0 0 0 79 154 48 44

MOV

SHUFFL

E ECX

16799.9

3

34808 3841

3

8714 416 2185

2

3207

8

2036

8

1536

1

2870

5

1417

7

84 1394

3

1384 2547

4

1652

8

3072

8

MOV

SHUFFL

E EDX

20.2 122 16 0 6 10 41 43 40 10 6 6 7 0 10 25 40

MOV

SHUFFL

E EDI

183.566

7

1284 8 5 5 93 8 8 8 8 8 3 8 92 156 19 99

MOV

SHUFFL

E ESI

208.433

3

1981 0 0 0 91 3 3 0 0 0 0 3 84 103 21 85

MOV

SHUFFL

E EBP

15.8 31 10 6 6 64 14 10 14 10 10 4 10 6 12 11 17

216

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CM

D

NOT ACR BRL ICO RES

MOV

VALUE

all

3926.43

3

2701 4071 318 3810 447 3971 1313

5

3992 4390 4023 368

6

4088 427 605 645 698

MOV

VALUE

EAX

1124.7 1115 1640 132 1484 129 1512 5184 1523 1874 1561 143

4

1523 145 142 237 262

MOV

VALUE

EBX

184.533

3

313 44 45 11 76 27 63 38 48 28 11 25 40 70 32 56

MOV

VALUE

ECX

1327.8 228 104 3 78 37 125 102 95 142 128 78 222 7 129 153 145

MOV

VALUE

EDX

1095.5 135 2219 93 2211 105 2222 7672 2222 2224 2220 212

4

2224 115 101 109 107

MOV

VALUE

EDI

39.6 192 17 14 16 20 19 24 18 22 17 2 27 21 71 43 36

MOV

VALUE

ESI

29.3666

7

225 2 1 2 20 3 4 3 11 3 2 3 41 38 2 5

MOV

VALUE

EBP

31.6 79 21 5 4 21 39 48 45 38 39 31 37 13 11 30 21

LEA all 7558.16

7

27307 951 448 12 1634 1115 681 532 749 671 7 688 1322 3035 1086 3136

LEA

EAX

7558.16

7

27307 951 448 12 1634 1115 681 532 749 671 7 688 1322 3035 1086 3136

LEA

EBX

19.1 155 0 0 0 2 0 0 0 0 0 0 0 65 12 1 8

LEA

ECX

5132.5 11485 925 437 11 883 1096 653 519 731 660 5 677 466 1056 697 1582

LEA

EDX

418.933

3

4303 10 0 0 15 4 11 4 5 0 0 0 344 22 192 480

217

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CM

D

NOT ACR BRL ICO RES

LEA EDI 33.0666

7

270 4 4 0 7 4 4 4 4 4 0 4 20 35 5 26

LEA ESI 22.6666

7

152 0 0 0 10 0 0 0 0 0 0 0 56 19 0 10

LEA

EBP

4.3 8 1 0 0 13 1 1 1 1 1 1 1 0 0 2 12

PUSH all 36746.2 25523

1

1803 1130 167 2707

1

3099 1636 1353 4620 2590 192 2206 2322

6

2527

3

3559 3686

4

PUSH

EAX

8259.56

7

60507 281 146 17 3723 407 261 161 246 182 30 248 6098 4701 940 7890

PUSH

EBX

2207.83

3

16297 97 88 12 2265 92 80 52 598 85 16 87 1675 2314 96 1439

PUSH

ECX

2726 27688 94 33 2 909 111 102 85 314 31 2 44 2623 840 96 3603

PUSH

EDX

2414.7 20147 65 14 8 1073 1003 88 79 89 962 8 1014 2312 1174 1003 3875

PUSH

EDI

2290.8 16579 107 114 24 4073 141 119 94 327 75 44 66 1795 1212 97 2009

PUSH

ESI

2669.2 14383 31 33 3 1443 32 43 23 481 505 10 21 2018 934 82 4331

PUSH

EBP

353.8 2093 32 19 2 993 36 55 65 23 14 3 27 429 42 41 3305

POP all 5302.23

3

9262 3476 1866 283 3428 3604 4172 3882 3910 3862 104 3587 800 3593 3677 4409

POP

EAX

161.233

3

653 106 12 3 110 86 70 35 81 34 2 92 60 183 108 215

POP

EBX

305.3 289 163 32 2 162 165 41 160 161 155 2 163 7 163 182 171

POP

ECX

1147.63

3

1165 1461 854 112 1342 1475 1756 1679 1603 1381 9 1569 244 1507 1483 1769

POP

EDX

1105.1 852 1454 826 115 1272 1459 1694 1759 1564 1379 18 1533 220 1424 1475 1701

POP EDI 212.266

7

591 14 2 9 19 13 19 10 10 11 8 11 20 23 13 17

218

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CM

D

NOT ACR BRL ICO RES

POP ESI 409.866

7

623 11 8 2 23 10 16 14 12 11 2 10 8 10 39 19

POP EBP 1046.4 1009 33 23 3 37 24 20 17 23 514 4 20 101 53 25 55

INC all 3007.4 10910 322 154 46 891 2120 2442 256 357 260 56 2073 818 1212 1011 5567

INC

EAX

350.833

3

1475 93 49 7 169 87 241 42 69 125 6 63 70 131 171 412

INC EBX 100.6 389 11 5 3 17 14 27 67 12 8 3 13 22 31 23 46

INC ECX 70.1 207 17 5 4 18 10 48 9 10 7 2 21 53 67 52 149

INC

EDX

139.033

3

1146 14 3 4 7 18 24 21 20 13 15 17 136 63 282 90

INC EDI 166.466

7

982 27 6 2 43 25 36 31 23 17 10 17 17 188 30 221

INC ESI 402.033

3

1040 19 10 7 38 1871 1887 16 19 15 7 1876 107 104 62 222

INC EBP 1376.26

7

3543 57 31 13 95 42 63 43 71 29 7 31 346 471 146 3887

DEC all 2172.4 8782 1264 207 324 659 2015 2258 821 1715 570 232 2062 607 1510 1493 7040

DEC

EAX

224.866

7

1675 54 26 3 78 51 53 25 363 33 3 36 40 220 42 203

DEC

EBX

140.766

7

184 195 16 178 31 203 221 194 220 196 178 202 2 24 44 39

DEC

ECX

75.7 210 26 8 19 15 30 96 26 26 26 18 30 19 38 24 24

DEC

EDX

53.9333

3

165 13 4 2 11 24 24 7 11 7 2 10 28 95 61 25

DEC EDI 139.733

3

585 31 18 7 30 91 57 43 28 22 2 25 18 86 69 49

DEC ESI 122.2 763 11 10 2 35 19 46 17 11 10 2 11 43 42 41 62

DEC

EBP

638.633

3

2667 130 49 48 97 126 148 77 180 78 9 94 262 128 167 5326

XCHG

all

651.266

7

2851 2210 28 30 466 244 233 225 2039 201 19 224 93 340 347 513

219

Op. Average SNE MAG VUD WM WIN MSP EXP CER TAS REG CM

D

NOT ACR BRL ICO RES

XCHG

EAX

264.166

7

1775 216 19 22 269 60 170 58 45 32 11 41 49 88 124 224

XCHG

EBX

34.1333

3

184 76 3 3 5 11 97 9 5 5 2 9 2 3 20 18

XCHG

ECX

34.3666

7

55 15 11 12 12 14 20 16 15 13 2 14 15 12 19 44

XCHG

EDX

61.9 749 28 3 3 18 7 27 4 10 5 3 7 4 14 40 24

XCHG

EDI

34.0333

3

170 4 1 2 7 7 18 4 3 4 2 8 3 3 25 17

XCHG

ESI

32.8 126 2 0 2 1 11 25 2 2 2 2 11 7 0 24 26

XCHG

EBP

25.1 81 3 3 2 94 5 10 4 3 3 2 5 9 2 21 5

SHIFT

LEFT

784.9 1391 28 22 13 418 41 46 32 95 30 8 108 90 269 43 267

SHIFT

RIGHT

154.8 697 46 14 4 72 43 45 35 74 29 20 35 33 109 43 71

ROTATE

LEFT

100.6 559 18 4 12 26 19 45 65 23 16 13 21 22 15 13 70

ROTATE

RIGHT

40.8 269 7 2 0 22 4 9 7 9 6 0 1 3 18 3 60

JOP Gadgets Results from Two Applications

Table 15, Table 16, Table 17, and Table present the results obtained from scanning two sample applications, Snaggit and

Filezilla, and their modules; the results are spread across two tables. Here we see the results for the image and all its modules, the

results for the image itself, and the results for each individual module. The intent with these tables is to provide a representative

220

sample of how the full results may appear. Both Snaggit and Filezilla present a higher than average number of gadgets. Standard

default settings were used. Had the settings been modified, the numbers produced likely would increase or decrease.

Table 15. JOP Gadgets for Snaggit.exe and its associated modules – Part 1

Op. Snagit3

2.exe all

Snagi

t

32.ex

e

gdiplu

s.dll

imagehl

p.dll

CRYPT3

2.dll

shlwap

i.dll

Opencv

_core24

9.dll

PDFLi

b.dll

KERNEL3

2.DLL

IMM32.

DLL

Scrolling

Capture.

dll

MSVCP1

00.dll

IPHLPAPI

.DLL

mfc100

u.dll

JMP

EAX

3182 1053 14 19 63 123 1097 113 0 19 13 5 53 72

JMP

EBX

31 1 2 0 0 0 0 0 0 0 0 0 0 16

JMP

ECX

79 4 0 0 0 0 0 21 0 0 0 0 0 1

JMP

EDX

1022 912 0 0 0 0 0 77 0 0 0 0 0 5

JMP

EDI

17 0 0 0 0 0 10 0 0 0 0 0 0 0

JMP

ESI

51 2 0 0 0 0 0 0 6 6 0 0 3 8

JMP

EBP

9 1 2 0 0 0 0 0 0 0 0 0 0 3

CALL

EAX

53684 4275

7

0 13 0 0 1715 5651 9 0 217 19 0 506

CALL

EBX

23812 1486

3

255 0 3 14 95 2415 3 13 0 50 3 4058

CALL

ECX

4424 1378 6 0 8 0 202 1330 16 6 0 0 1 205

CALL

EDX

67728 5854

7

0 0 12 0 2105 5284 96 0 261 0 0 49

CALL

EDI

38659 2077

7

344 4 9 1 229 2373 5 1 92 82 7 10401

CALL

ESI

42386 1006

0

11967 14 31 38 125 1528 60 23 264 168 61 9206

221

Op. Snagit3

2.exe all

Snagi

t

32.ex

e

gdiplu

s.dll

imagehl

p.dll

CRYPT3

2.dll

shlwap

i.dll

Opencv

_core24

9.dll

PDFLi

b.dll

KERNEL3

2.DLL

IMM32.

DLL

Scrolling

Capture.

dll

MSVCP1

00.dll

IPHLPAPI

.DLL

mfc100

u.dll

CALL

EBP

673 45 0 0 0 0 0 66 0 0 0 0 0 5

DG

EAX

470 264 0 3 1 0 22 54 3 0 22 0 0 5

DG

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EAX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0 0

222

Op. Snagit3

2.exe all

Snagi

t

32.ex

e

gdiplu

s.dll

imagehl

p.dll

CRYPT3

2.dll

shlwap

i.dll

Opencv

_core24

9.dll

PDFLi

b.dll

KERNEL3

2.DLL

IMM32.

DLL

Scrolling

Capture.

dll

MSVCP1

00.dll

IPHLPAPI

.DLL

mfc100

u.dll

DG

BEST

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

EAX

8 5 0 0 0 0 0 3 0 0 0 0 0 0

DG

Other

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADD

all

34224 1824

9

3317 29 48 30 604 3425 81 41 100 72 87 2785

ADD

EAX

18165 8013 3276 23 43 30 192 1716 75 35 55 50 80 1419

ADD

EBX

1275 785 5 0 4 0 32 85 2 3 1 0 0 212

ADD

ECX

2030 1379 4 0 0 0 99 185 0 0 8 3 0 173

ADD

EDX

6406 4786 11 0 0 0 183 365 1 0 16 0 7 486

ADD

EDI

1824 1176 17 4 0 0 15 182 2 2 2 2 0 231

223

Op. Snagit3

2.exe all

Snagi

t

32.ex

e

gdiplu

s.dll

imagehl

p.dll

CRYPT3

2.dll

shlwap

i.dll

Opencv

_core24

9.dll

PDFLi

b.dll

KERNEL3

2.DLL

IMM32.

DLL

Scrolling

Capture.

dll

MSVCP1

00.dll

IPHLPAPI

.DLL

mfc100

u.dll

ADD

ESI

1445 805 3 0 0 0 21 147 1 0 1 2 0 118

ADD

EBP

250 145 0 0 1 0 7 14 0 0 12 1 0 24

SUB

all

7324 4425 360 0 2 26 71 672 3 1 25 12 3 1265

SUB

EAX

3892 2421 137 0 0 1 21 469 3 1 25 9 3 554

SUB

EBX

1507 598 222 0 0 0 17 68 0 0 0 3 3 475

SUB

ECX

535 303 0 0 2 0 17 71 0 0 0 3 0 81

SUB

EDX

1121 519 1 0 0 0 26 74 0 0 0 0 0 428

SUB

EDI

552 122 1 0 0 0 7 20 0 0 0 0 0 380

SUB

ESI

451 129 221 0 0 0 0 12 0 0 0 0 0 69

SUB

EBP

17 11 0 0 0 0 0 1 0 0 0 0 0 3

MUL

all

123 67 0 0 0 0 8 21 0 0 0 0 0 23

MUL

EAX

27 17 0 0 0 0 4 1 0 0 0 0 0 4

MUL

EBX

3 0 0 0 0 0 0 0 0 0 0 0 0 3

MUL

ECX

6 2 0 0 0 0 0 2 0 0 0 0 0 2

MUL

EDX

27 16 0 0 0 0 3 7 0 0 0 0 0 1

MUL

EDI

4 0 0 0 0 0 0 0 0 0 0 0 0 4

MUL

ESI

4 0 0 0 0 0 0 0 0 0 0 0 0 4

224

Op. Snagit3

2.exe all

Snagi

t

32.ex

e

gdiplu

s.dll

imagehl

p.dll

CRYPT3

2.dll

shlwap

i.dll

Opencv

_core24

9.dll

PDFLi

b.dll

KERNEL3

2.DLL

IMM32.

DLL

Scrolling

Capture.

dll

MSVCP1

00.dll

IPHLPAPI

.DLL

mfc100

u.dll

MUL

EBP

3 3 0 0 0 0 0 0 0 0 0 0 0 0

DIV

all

576 296 4 0 0 0 39 141 0 0 0 0 0 59

DIV

EAX

576 296 4 0 0 0 39 141 0 0 0 0 0 59

DIV

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV

EDX

576 296 4 0 0 0 39 141 0 0 0 0 0 59

DIV

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0 0

MOV

all

129953 9355

8

11771 1 9 51 3305 10774 126 2 643 44 1 2491

MOV

EAX

35178 2855

5

23 1 1 0 856 4213 44 0 238 5 0 530

MOV

EBX

1744 972 20 0 0 0 21 135 2 0 2 10 1 481

MOV

ECX

51900 3202

4

10956 0 6 33 776 2712 7 0 203 7 0 311

MOV

EDX

32016 2723

4

37 0 0 4 648 3264 69 0 173 3 0 85

MOV

EDI

2410 1524 10 0 0 0 48 160 0 0 4 8 0 466

MOV

ESI

3933 2217 719 0 0 2 67 239 0 0 11 3 0 351

MOV

EBP

171 48 3 0 0 4 14 9 2 2 0 0 0 7

225

Op. Snagit3

2.exe all

Snagi

t

32.ex

e

gdiplu

s.dll

imagehl

p.dll

CRYPT3

2.dll

shlwap

i.dll

Opencv

_core24

9.dll

PDFLi

b.dll

KERNEL3

2.DLL

IMM32.

DLL

Scrolling

Capture.

dll

MSVCP1

00.dll

IPHLPAPI

.DLL

mfc100

u.dll

MOV

SHUF

FLE

all

0 0 0 0 0 0 0 0 0 0 0 0 0 0

MOV

SHUF

FLE

EAX

124 45 0 0 0 0 3 50 0 0 0 0 0 7

MOV

SHUF

FLE

EBX

839 470 0 0 0 0 7 69 0 0 0 0 0 229

MOV

SHUF

FLE

ECX

41523 2463

8

10522 0 6 33 708 1205 7 0 203 0 0 118

MOV

SHUF

FLE

EDX

134 79 10 0 0 0 0 0 0 0 0 0 0 0

MOV

SHUF

FLE

EDI

1368 901 0 0 0 0 38 88 0 0 1 1 0 261

MOV

SHUF

FLE

ESI

2023 1509 0 0 0 0 43 118 0 0 11 1 0 234

MOV

SHUF

FLE

EBP

47 0 0 0 0 0 0 2 2 2 0 0 0 1

MOV

VALU

E all

2796 1847 32 1 2 8 35 181 112 0 6 2 1 398

226

Op. Snagit3

2.exe all

Snagi

t

32.ex

e

gdiplu

s.dll

imagehl

p.dll

CRYPT3

2.dll

shlwap

i.dll

Opencv

_core24

9.dll

PDFLi

b.dll

KERNEL3

2.DLL

IMM32.

DLL

Scrolling

Capture.

dll

MSVCP1

00.dll

IPHLPAPI

.DLL

mfc100

u.dll

MOV

VALU

E EAX

980 767 4 1 0 0 6 53 42 0 0 0 0 62

MOV

VALU

E EBX

328 168 19 0 0 0 4 11 0 0 0 0 1 107

MOV

VALU

E ECX

332 223 1 0 0 0 0 17 0 0 0 0 0 69

MOV

VALU

E EDX

165 43 3 0 0 4 0 25 68 0 0 0 0 2

MOV

VALU

E EDI

255 157 0 0 0 0 0 21 0 0 0 0 0 53

MOV

VALU

E ESI

256 155 0 0 0 0 8 27 0 0 0 1 0 51

MOV

VALU

E EBP

99 44 3 0 0 4 14 6 0 0 0 0 0 6

LEA

all

26951 1905

6

240 0 0 0 1035 1155 0 0 178 49 0 3621

LEA

EAX

26951 5898 2 0 0 0 411 434 0 0 18 19 0 3220

LEA

EBX

170 79 0 0 0 0 5 17 0 0 0 0 0 39

LEA

ECX

11020 9419 236 0 0 0 240 274 0 0 126 30 0 185

LEA

EDX

4520 3387 2 0 0 0 347 334 0 0 26 0 0 60

LEA

EDI

332 190 0 0 0 0 23 36 0 0 0 0 0 60

LEA

ESI

209 77 0 0 0 0 3 56 0 0 8 0 0 57

227

Op. Snagit3

2.exe all

Snagi

t

32.ex

e

gdiplu

s.dll

imagehl

p.dll

CRYPT3

2.dll

shlwap

i.dll

Opencv

_core24

9.dll

PDFLi

b.dll

KERNEL3

2.DLL

IMM32.

DLL

Scrolling

Capture.

dll

MSVCP1

00.dll

IPHLPAPI

.DLL

mfc100

u.dll

LEA

EBP

52 0 0 0 0 0 6 4 0 0 0 0 0 0

PUSH

all

266054 1664

23

377 47 15 26 6594 21071 5 8 628 321 10 41855

PUSH

EAX

61506 4217

0

89 0 0 0 1540 4268 0 1 167 78 0 7977

PUSH

EBX

16569 8506 12 26 0 0 281 1372 1 1 52 40 0 3326

PUSH

ECX

29148 2218

2

12 0 0 0 1020 1995 0 0 81 10 0 1030

PUSH

EDX

22757 1607

2

25 0 0 0 1195 2260 0 0 51 0 3 296

PUSH

EDI

18867 1133

8

21 7 0 0 420 2418 2 0 53 53 0 2021

PUSH

ESI

18639 9840 3 12 0 0 511 3039 0 0 32 34 0 1618

PUSH

EBP

3098 1369 4 0 0 0 52 489 0 0 3 9 0 31

POP

all

10972 6273 83 24 137 171 1165 594 2 36 14 29 83 1206

POP

EAX

597 388 17 0 0 0 9 29 1 0 0 4 0 105

POP

EBX

429 221 0 0 0 0 0 42 0 0 0 0 0 4

POP

ECX

1143 177 12 7 60 89 3 9 0 18 2 23 40 294

POP

EDX

796 189 15 5 60 81 0 8 0 18 0 0 40 60

POP

EDI

933 495 4 0 0 0 0 13 0 0 0 0 0 406

POP

ESI

1024 943 0 0 0 0 7 26 0 0 7 0 0 16

POP

EBP

2067 838 7 12 2 0 1078 69 0 0 0 2 0 35

228

Op. Snagit3

2.exe all

Snagi

t

32.ex

e

gdiplu

s.dll

imagehl

p.dll

CRYPT3

2.dll

shlwap

i.dll

Opencv

_core24

9.dll

PDFLi

b.dll

KERNEL3

2.DLL

IMM32.

DLL

Scrolling

Capture.

dll

MSVCP1

00.dll

IPHLPAPI

.DLL

mfc100

u.dll

INC

all

11861 7143 92 0 5 3 304 1462 4 0 26 36 13 1843

INC

EAX

1610 1002 34 0 0 0 67 145 0 0 5 1 5 243

INC

EBX

352 181 0 0 0 0 5 79 0 0 0 0 0 54

INC

ECX

233 92 0 0 0 0 21 37 0 0 1 0 0 40

INC

EDX

987 752 4 0 0 0 64 97 0 0 0 0 0 32

INC

EDI

934 364 7 0 0 3 5 320 0 0 0 6 0 45

INC

ESI

1233 679 0 0 0 0 43 244 1 0 9 22 0 162

INC

EBP

3566 2742 11 0 5 0 68 160 3 0 2 3 0 459

DEC

all

9288 5940 66 1 8 12 365 1351 4 4 44 2 4 540

DEC

EAX

1472 986 24 0 0 7 48 187 0 0 0 0 0 148

DEC

EBX

254 100 1 0 0 0 9 125 0 0 0 0 0 5

DEC

ECX

258 126 0 0 0 5 2 69 1 0 0 0 0 39

DEC

EDX

209 151 0 0 0 0 1 15 0 0 0 0 0 2

DEC

EDI

582 272 5 0 0 0 2 255 0 4 0 0 0 15

DEC

ESI

997 592 1 0 0 0 22 301 0 0 0 0 0 23

DEC

EBP

2332 2078 0 0 0 0 22 104 0 0 0 1 0 70

XCHG

all

3177 2290 2 0 0 0 17 199 0 0 7 0 0 217

229

Op. Snagit3

2.exe all

Snagi

t

32.ex

e

gdiplu

s.dll

imagehl

p.dll

CRYPT3

2.dll

shlwap

i.dll

Opencv

_core24

9.dll

PDFLi

b.dll

KERNEL3

2.DLL

IMM32.

DLL

Scrolling

Capture.

dll

MSVCP1

00.dll

IPHLPAPI

.DLL

mfc100

u.dll

XCHG

EAX

1514 1295 1 0 0 0 7 96 0 0 7 0 0 60

XCHG

EBX

185 166 0 0 0 0 0 1 0 0 0 0 0 4

XCHG

ECX

87 58 0 0 0 0 0 15 0 0 0 0 0 7

XCHG

EDX

620 546 1 0 0 0 0 57 0 0 0 0 0 9

XCHG

EDI

314 287 0 0 0 0 1 7 0 0 0 0 0 3

XCHG

ESI

300 196 0 0 0 0 9 31 0 0 0 0 0 11

XCHG

EBP

152 129 0 0 0 0 4 8 0 0 0 0 0 11

SHIFT

LEFT

1748 696 4 0 0 0 19 100 4 4 10 9 0 570

SHIFT

RIGH

T

723 437 8 0 0 0 12 50 2 0 1 0 0 153

ROTA

TE

LEFT

510 332 1 0 0 0 7 30 0 0 20 1 0 49

ROTA

TE

RIGH

T

230 148 5 0 0 0 4 12 0 0 11 1 0 21

230

Table 16. JOP Gadgets for Snaggit.exe and its associated modules – Part 2

Op. Ltkrn15

u.dll

WINTRU

ST.dll

Lttwn15

u.dll

VideoCom

mon.dll

RPCRT

4.dll

COMCTL

32.dll

Ltdis15

u.dll

Trackerbi

rd.dll

GDI3

2.dll

Ltimgclr1

5u.dll

ADVAPI

32.dll

MSVCR1

00.dll

MSIMG

32.dll

JMP

EAX

28 49 5 21 43 0 3 155 154 0 57 23 0

JMP

EBX

0 0 0 0 0 0 0 0 0 0 0 12 0

JMP

ECX

0 0 0 0 0 0 0 53 0 0 0 0 0

JMP

EDX

0 0 0 0 0 0 0 14 0 0 0 14 0

JMP

EDI

0 0 0 0 0 0 0 0 0 0 0 7 0

JMP

ESI

0 0 0 0 6 6 0 6 0 0 0 8 0

JMP

EBP

0 0 0 0 2 0 0 1 0 0 0 0 0

CALL

EAX

291 0 472 204 71 7 226 1177 0 25 4 320 0

CALL

EBX

585 60 213 14 143 7 253 500 0 61 0 204 0

CALL

ECX

162 0 301 6 6 8 104 640 0 0 4 41 0

CALL

EDX

133 0 236 96 0 0 185 682 0 19 0 23 0

CALL

EDI

1104 73 226 14 935 23 381 915 0 69 3 591 0

CALL

ESI

1624 387 93 116 4077 228 224 1047 0 103 39 903 0

CALL

EBP

241 0 13 0 0 0 79 196 0 28 0 0 0

DG

EAX

8 0 20 7 6 1 1 18 0 0 1 34 0

DG

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0

231

Op. Ltkrn15

u.dll

WINTRU

ST.dll

Lttwn15

u.dll

VideoCom

mon.dll

RPCRT

4.dll

COMCTL

32.dll

Ltdis15

u.dll

Trackerbi

rd.dll

GDI3

2.dll

Ltimgclr1

5u.dll

ADVAPI

32.dll

MSVCR1

00.dll

MSIMG

32.dll

DG

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EAX

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

BEST

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

EAX

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0

232

Op. Ltkrn15

u.dll

WINTRU

ST.dll

Lttwn15

u.dll

VideoCom

mon.dll

RPCRT

4.dll

COMCTL

32.dll

Ltdis15

u.dll

Trackerbi

rd.dll

GDI3

2.dll

Ltimgclr1

5u.dll

ADVAPI

32.dll

MSVCR1

00.dll

MSIMG

32.dll

DG

Other

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0

DG

Other

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0

ADD

all

1554 126 395 99 1803 61 244 770 0 48 47 209 0

ADD

EAX

430 111 223 75 1744 56 90 224 0 20 43 142 0

ADD

EBX

56 0 9 3 5 5 27 31 0 0 2 8 0

ADD

ECX

35 8 12 1 26 0 10 70 0 0 0 17 0

ADD

EDX

135 5 67 15 3 0 93 213 0 10 0 10 0

ADD

EDI

64 2 26 3 4 0 6 68 0 2 2 14 0

ADD

ESI

206 0 35 0 0 0 15 73 0 11 0 7 0

ADD

EBP

8 0 22 0 0 0 2 10 0 2 0 2 0

SUB

all

97 5 29 9 19 3 81 183 0 6 1 26 0

SUB

EAX

64 1 20 3 14 1 32 96 0 1 0 16 0

SUB

EBX

11 0 5 2 4 2 8 85 0 0 1 3 0

SUB

ECX

9 0 3 0 1 0 24 15 0 5 0 1 0

233

Op. Ltkrn15

u.dll

WINTRU

ST.dll

Lttwn15

u.dll

VideoCom

mon.dll

RPCRT

4.dll

COMCTL

32.dll

Ltdis15

u.dll

Trackerbi

rd.dll

GDI3

2.dll

Ltimgclr1

5u.dll

ADVAPI

32.dll

MSVCR1

00.dll

MSIMG

32.dll

SUB

EDX

14 4 5 0 3 0 22 20 0 0 1 4 0

SUB

EDI

7 4 0 0 0 0 2 6 0 0 1 2 0

SUB

ESI

9 0 1 4 0 0 1 3 0 0 0 2 0

SUB

EBP

0 0 0 0 1 0 0 1 0 0 0 0 0

MUL

all

0 0 0 0 1 0 1 2 0 0 0 0 0

MUL

EAX

0 0 0 0 0 0 1 0 0 0 0 0 0

MUL

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0

MUL

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0

MUL

EDX

0 0 0 0 0 0 0 0 0 0 0 0 0

MUL

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0

MUL

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0

MUL

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0

DIV all 16 0 0 1 2 8 3 5 0 1 0 1 0

DIV

EAX

16 0 0 1 2 8 3 5 0 1 0 1 0

DIV

EBX

0 0 0 0 0 0 0 0 0 0 0 0 0

DIV

ECX

0 0 0 0 0 0 0 0 0 0 0 0 0

DIV

EDX

16 0 0 1 2 8 3 5 0 1 0 1 0

DIV

EDI

0 0 0 0 0 0 0 0 0 0 0 0 0

DIV

ESI

0 0 0 0 0 0 0 0 0 0 0 0 0

234

Op. Ltkrn15

u.dll

WINTRU

ST.dll

Lttwn15

u.dll

VideoCom

mon.dll

RPCRT

4.dll

COMCTL

32.dll

Ltdis15

u.dll

Trackerbi

rd.dll

GDI3

2.dll

Ltimgclr1

5u.dll

ADVAPI

32.dll

MSVCR1

00.dll

MSIMG

32.dll

DIV

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0

MOV

all

261 362 329 355 3947 88 361 941 0 8 2 523 0

MOV

EAX

52 1 164 107 6 0 70 266 0 0 0 46 0

MOV

EBX

14 1 3 2 3 0 8 30 0 0 0 39 0

MOV

ECX

37 354 41 126 3787 79 91 215 0 2 2 131 0

MOV

EDX

52 0 71 101 42 0 70 149 0 0 0 14 0

MOV

EDI

29 0 0 4 11 1 39 59 0 0 0 47 0

MOV

ESI

37 6 2 4 95 6 70 80 0 0 0 24 0

MOV

EBP

25 0 5 0 3 2 7 20 0 0 0 20 0

MOV

SHUFF

LE all

0 0 0 0 0 0 0 0 0 0 0 0 0

MOV

SHUFF

LE

EAX

2 0 3 0 0 0 8 4 0 0 0 2 0

MOV

SHUFF

LE

EBX

12 0 0 0 0 0 7 26 0 0 0 19 0

MOV

SHUFF

LE

ECX

9 354 4 21 3609 79 0 5 0 0 2 0 0

MOV

SHUFF

LE

EDX

0 0 4 0 34 0 7 0 0 0 0 0 0

235

Op. Ltkrn15

u.dll

WINTRU

ST.dll

Lttwn15

u.dll

VideoCom

mon.dll

RPCRT

4.dll

COMCTL

32.dll

Ltdis15

u.dll

Trackerbi

rd.dll

GDI3

2.dll

Ltimgclr1

5u.dll

ADVAPI

32.dll

MSVCR1

00.dll

MSIMG

32.dll

MOV

SHUFF

LE EDI

19 0 0 0 0 0 29 13 0 0 0 17 0

MOV

SHUFF

LE ESI

15 0 0 4 0 0 30 55 0 0 0 3 0

MOV

SHUFF

LE

EBP

10 0 0 0 2 2 6 18 0 0 0 2 0

MOV

VALU

E all

15 1 7 21 6 1 12 43 0 0 0 65 0

MOV

VALU

E EAX

9 1 2 0 0 0 4 24 0 0 0 5 0

MOV

VALU

E EBX

0 0 3 0 2 0 0 1 0 0 0 12 0

MOV

VALU

E ECX

0 0 0 19 0 0 0 0 0 0 0 3 0

MOV

VALU

E EDX

1 0 0 0 2 0 0 3 0 0 0 14 0

MOV

VALU

E EDI

0 0 0 0 0 1 8 9 0 0 0 6 0

MOV

VALU

E ESI

3 0 2 0 1 0 0 4 0 0 0 4 0

MOV

VALU

E EBP

1 0 0 0 1 0 0 2 0 0 0 18 0

LEA

all

194 0 447 33 66 0 120 444 0 1 0 312 0

LEA

EAX

40 0 162 5 0 0 43 146 0 1 0 243 0

236

Op. Ltkrn15

u.dll

WINTRU

ST.dll

Lttwn15

u.dll

VideoCom

mon.dll

RPCRT

4.dll

COMCTL

32.dll

Ltdis15

u.dll

Trackerbi

rd.dll

GDI3

2.dll

Ltimgclr1

5u.dll

ADVAPI

32.dll

MSVCR1

00.dll

MSIMG

32.dll

LEA

EBX

0 0 22 0 0 0 1 0 0 0 0 7 0

LEA

ECX

95 0 99 22 62 0 26 172 0 0 0 34 0

LEA

EDX

46 0 118 6 4 0 48 119 0 0 0 23 0

LEA

EDI

5 0 10 0 0 0 2 2 0 0 0 4 0

LEA

ESI

8 0 0 0 0 0 0 0 0 0 0 0 0

LEA

EBP

0 0 36 0 0 0 0 5 0 0 0 1 0

PUSH

all

5900 23 3478 669 168 19 2809 11864 22 438 13 3271 0

PUSH

EAX

1665 0 502 163 17 0 407 1589 0 118 0 755 0

PUSH

EBX

406 0 227 38 8 1 235 1451 0 60 1 525 0

PUSH

ECX

852 0 310 60 37 0 382 992 0 61 0 124 0

PUSH

EDX

919 0 476 39 20 0 432 894 0 31 0 44 0

PUSH

EDI

404 0 241 66 20 0 296 1222 0 37 0 248 0

PUSH

ESI

571 0 431 73 6 0 414 1704 0 45 0 306 0

PUSH

EBP

214 0 323 6 4 0 75 473 0 13 0 33 0

POP all 76 98 24 42 91 153 27 75 308 17 116 128 0

POP

EAX

4 4 0 0 7 0 5 9 0 1 0 14 0

POP

EBX

2 3 0 0 0 150 3 4 0 0 0 0 0

POP

ECX

9 44 9 21 32 0 9 20 154 9 57 45 0

POP

EDX

2 46 0 17 32 0 3 1 154 0 57 8 0

237

Op. Ltkrn15

u.dll

WINTRU

ST.dll

Lttwn15

u.dll

VideoCom

mon.dll

RPCRT

4.dll

COMCTL

32.dll

Ltdis15

u.dll

Trackerbi

rd.dll

GDI3

2.dll

Ltimgclr1

5u.dll

ADVAPI

32.dll

MSVCR1

00.dll

MSIMG

32.dll

POP

EDI

0 1 0 0 0 0 0 3 0 0 0 11 0

POP

ESI

8 0 0 0 0 0 0 8 0 0 0 9 0

POP

EBP

1 0 0 3 0 0 1 7 0 0 0 12 0

INC all 180 153 80 21 18 2 53 299 0 34 0 90 0

INC

EAX

9 8 2 1 3 0 2 60 0 4 0 19 0

INC

EBX

0 0 0 7 0 0 5 20 0 0 0 1 0

INC

ECX

0 1 35 0 1 0 0 4 0 0 0 1 0

INC

EDX

8 0 2 6 1 0 1 14 0 0 0 6 0

INC

EDI

6 139 1 2 5 0 4 19 0 0 0 8 0

INC

ESI

22 2 0 0 0 0 4 39 0 0 0 6 0

INC

EBP

2 1 4 4 2 2 7 45 0 2 0 44 0

DEC

all

197 80 38 18 253 9 55 186 22 31 16 42 0

DEC

EAX

14 4 1 2 2 1 17 26 0 1 0 4 0

DEC

EBX

4 0 0 1 0 0 6 2 0 0 0 1 0

DEC

ECX

1 1 0 4 0 0 0 10 0 0 0 0 0

DEC

EDX

2 0 16 7 1 0 0 14 0 0 0 0 0

DEC

EDI

0 0 0 0 22 0 0 7 0 0 0 0 0

DEC

ESI

7 0 1 1 7 0 5 25 0 0 0 12 0

DEC

EBP

2 0 0 3 1 0 6 13 22 0 0 10 0

238

Op. Ltkrn15

u.dll

WINTRU

ST.dll

Lttwn15

u.dll

VideoCom

mon.dll

RPCRT

4.dll

COMCTL

32.dll

Ltdis15

u.dll

Trackerbi

rd.dll

GDI3

2.dll

Ltimgclr1

5u.dll

ADVAPI

32.dll

MSVCR1

00.dll

MSIMG

32.dll

XCHG

all

88 0 139 0 10 150 6 28 0 0 0 24 0

XCHG

EAX

6 0 16 0 8 0 1 13 0 0 0 4 0

XCHG

EBX

2 0 8 0 4 0 0 0 0 0 0 0 0

XCHG

ECX

0 0 0 0 0 0 0 7 0 0 0 0 0

XCHG

EDX

0 0 0 0 0 0 0 3 0 0 0 4 0

XCHG

EDI

0 0 14 0 1 0 0 1 0 0 0 0 0

XCHG

ESI

1 0 52 0 0 0 0 0 0 0 0 0 0

XCHG

EBP

0 0 0 0 0 0 0 0 0 0 0 0 0

SHIFT

LEFT

162 0 8 9 5 3 12 68 0 4 0 61 0

SHIFT

RIGHT

7 0 2 0 7 0 4 23 0 0 0 17 0

ROTA

TE

LEFT

37 0 2 0 1 0 1 22 0 7 0 0 0

ROTA

TE

RIGHT

2 0 4 1 3 0 2 16 0 0 0 0 0

239

Table 17. JOP Gadgets for Filezilla.exe and its associated modules – Part 1

Op. filezilla.exe

all

filezilla.ex

e

COMCTL32.D

LL

MPR.DL

L

COMDLG32.D

LL

WINMM.DL

L

GDI32.d

ll

ADVAPI32.d

ll

KERNEL32.D

LL

msvcrt.d

ll

JMP EAX 9049 7560 0 15 154 66 154 57 0 12

JMP EBX 21 2 0 0 0 0 0 0 0 18

JMP ECX 24 24 0 0 0 0 0 0 0 0

JMP EDX 435 412 0 0 0 0 0 0 0 21

JMP EDI 42 22 0 0 0 0 0 0 0 7

JMP ESI 57 9 6 6 0 6 0 0 6 7

JMP EBP 5 1 0 0 0 0 0 0 0 0

CALL EAX 25796 25690 7 0 0 0 0 4 9 45

CALL EBX 1301 1033 7 0 8 1 0 0 3 27

CALL ECX 382 263 8 9 9 6 0 4 16 6

CALL EDX 3321 3183 0 0 0 0 0 0 96 0

CALL EDI 2013 862 23 44 25 4 0 3 5 9

CALL ESI 16146 1147 228 19 1534 86 0 39 60 107

CALL EBP 543 539 0 0 0 0 0 0 0 0

DG EAX 431 412 1 0 3 0 0 1 3 4

DG EBX 0 0 0 0 0 0 0 0 0 0

DG ECX 0 0 0 0 0 0 0 0 0 0

DG EDX 0 0 0 0 0 0 0 0 0 0

DG EDI 0 0 0 0 0 0 0 0 0 0

DG ESI 0 0 0 0 0 0 0 0 0 0

DG EBP 0 0 0 0 0 0 0 0 0 0

DG BEST

EAX

0 0 0 0 0 0 0 0 0 0

DG BEST

EBX

0 0 0 0 0 0 0 0 0 0

DG BEST

ECX

0 0 0 0 0 0 0 0 0 0

DG BEST

EDX

0 0 0 0 0 0 0 0 0 0

240

Op. filezilla.exe

all

filezilla.ex

e

COMCTL32.D

LL

MPR.DL

L

COMDLG32.D

LL

WINMM.DL

L

GDI32.d

ll

ADVAPI32.d

ll

KERNEL32.D

LL

msvcrt.d

ll

DG BEST

EDI

0 0 0 0 0 0 0 0 0 0

DG BEST

ESI

0 0 0 0 0 0 0 0 0 0

DG BEST

EBP

0 0 0 0 0 0 0 0 0 0

DG Other

EAX

6 6 0 0 0 0 0 0 0 0

DG Other

EBX

0 0 0 0 0 0 0 0 0 0

DG Other

ECX

0 0 0 0 0 0 0 0 0 0

DG Other

EDX

0 0 0 0 0 0 0 0 0 0

DG Other

EDI

0 0 0 0 0 0 0 0 0 0

DG Other

ESI

0 0 0 0 0 0 0 0 0 0

DG Other

EBP

0 0 0 0 0 0 0 0 0 0

ADD all 10621 6053 61 31 220 94 0 47 81 94

ADD EAX 7626 3328 56 28 189 84 0 43 75 75

ADD EBX 1245 1209 5 2 1 6 0 2 2 0

ADD ECX 272 201 0 1 0 1 0 0 0 6

ADD EDX 92 63 0 1 3 0 0 0 1 0

ADD EDI 185 66 0 0 20 3 0 2 2 13

ADD ESI 53 36 0 0 7 0 0 0 1 0

ADD EBP 33 28 0 0 0 0 0 0 0 0

SUB all 1657 1281 3 0 14 0 0 1 3 9

SUB EAX 1038 692 1 0 6 0 0 0 3 1

SUB EBX 292 274 2 0 6 0 0 1 0 0

SUB ECX 61 57 0 0 0 0 0 0 0 1

SUB EDX 45 24 0 0 6 0 0 1 0 7

241

Op. filezilla.exe

all

filezilla.ex

e

COMCTL32.D

LL

MPR.DL

L

COMDLG32.D

LL

WINMM.DL

L

GDI32.d

ll

ADVAPI32.d

ll

KERNEL32.D

LL

msvcrt.d

ll

SUB EDI 17 4 0 0 6 0 0 1 0 0

SUB ESI 2 0 0 0 0 0 0 0 0 2

SUB EBP 1 1 0 0 0 0 0 0 0 0

MUL all 597 5 0 6 0 0 0 0 0 1

MUL EAX 2 2 0 0 0 0 0 0 0 0

MUL EBX 0 0 0 0 0 0 0 0 0 0

MUL ECX 19 0 0 0 0 0 0 0 0 0

MUL EDX 0 0 0 0 0 0 0 0 0 0

MUL EDI 1 0 0 0 0 0 0 0 0 0

MUL ESI 1 0 0 0 0 0 0 0 0 0

MUL EBP 391 0 0 0 0 0 0 0 0 0

DIV all 64 31 8 0 3 0 0 0 0 0

DIV EAX 64 31 8 0 3 0 0 0 0 0

DIV EBX 0 0 0 0 0 0 0 0 0 0

DIV ECX 0 0 0 0 0 0 0 0 0 0

DIV EDX 64 31 8 0 3 0 0 0 0 0

DIV EDI 0 0 0 0 0 0 0 0 0 0

DIV ESI 0 0 0 0 0 0 0 0 0 0

DIV EBP 0 0 0 0 0 0 0 0 0 0

MOV all 26679 14379 88 12 580 7 0 2 126 140

MOV EAX 4902 4801 0 1 5 1 0 0 44 19

MOV EBX 212 193 0 2 6 0 0 0 2 0

MOV ECX 14406 3097 79 6 544 0 0 2 7 66

MOV EDX 395 279 0 0 7 0 0 0 69 2

MOV EDI 89 39 1 0 0 0 0 0 0 0

MOV ESI 676 47 6 1 15 0 0 0 0 13

MOV EBP 63 23 2 2 0 2 0 0 2 29

242

Op. filezilla.exe

all

filezilla.ex

e

COMCTL32.D

LL

MPR.DL

L

COMDLG32.D

LL

WINMM.DL

L

GDI32.d

ll

ADVAPI32.d

ll

KERNEL32.D

LL

msvcrt.d

ll

MOV

SHUFFLE

all

0 0 0 0 0 0 0 0 0 0

MOV

SHUFFLE

EAX

134 134 0 0 0 0 0 0 0 0

MOV

SHUFFLE

EBX

89 89 0 0 0 0 0 0 0 0

MOV

SHUFFLE

ECX

13711 2741 79 6 520 0 0 2 7 66

MOV

SHUFFLE

EDX

10 10 0 0 0 0 0 0 0 0

MOV

SHUFFLE

EDI

19 14 0 0 0 0 0 0 0 0

MOV

SHUFFLE

ESI

34 34 0 0 0 0 0 0 0 0

MOV

SHUFFLE

EBP

21 9 2 2 0 2 0 0 2 2

MOV

VALUE all

2933 2658 1 4 32 2 0 0 112 42

MOV

VALUE

EAX

2567 2485 0 1 5 1 0 0 42 11

MOV

VALUE

EBX

38 27 0 2 3 0 0 0 0 0

MOV

VALUE

ECX

35 12 0 0 21 0 0 0 0 0

MOV

VALUE

EDX

121 30 0 0 0 0 0 0 68 2

243

Op. filezilla.exe

all

filezilla.ex

e

COMCTL32.D

LL

MPR.DL

L

COMDLG32.D

LL

WINMM.DL

L

GDI32.d

ll

ADVAPI32.d

ll

KERNEL32.D

LL

msvcrt.d

ll

MOV

VALUE

EDI

39 24 1 0 0 0 0 0 0 0

MOV

VALUE ESI

13 12 0 1 0 0 0 0 0 0

MOV

VALUE

EBP

42 14 0 0 0 0 0 0 0 27

LEA all 3357 2817 0 0 74 0 0 0 0 1

LEA EAX 3357 57 0 0 2 0 0 0 0 0

LEA EBX 22 22 0 0 0 0 0 0 0 0

LEA ECX 654 124 0 0 72 0 0 0 0 0

LEA EDX 78 78 0 0 0 0 0 0 0 0

LEA EDI 7 3 0 0 0 0 0 0 0 0

LEA ESI 11 11 0 0 0 0 0 0 0 0

LEA EBP 2 1 0 0 0 0 0 0 0 1

PUSH all 2877 997 19 9 999 20 22 13 5 71

PUSH EAX 293 147 0 0 20 0 0 0 0 13

PUSH EBX 92 56 1 1 0 1 0 1 1 7

PUSH ECX 48 3 0 0 0 5 0 0 0 0

PUSH EDX 993 38 0 0 937 0 0 0 0 0

PUSH EDI 59 7 0 0 2 0 0 0 2 23

PUSH ESI 27 11 0 0 0 0 0 0 0 8

PUSH EBP 167 155 0 0 0 0 0 0 0 1

POP all 20256 17164 153 30 261 121 308 116 2 36

POP EAX 181 156 0 0 5 0 0 0 1 0

POP EBX 4268 4111 150 0 0 0 0 0 0 0

POP ECX 1361 5 0 14 121 60 154 57 0 1

POP EDX 1357 2 0 14 118 57 154 57 0 7

POP EDI 3333 3327 0 0 0 3 0 0 0 0

244

Op. filezilla.exe

all

filezilla.ex

e

COMCTL32.D

LL

MPR.DL

L

COMDLG32.D

LL

WINMM.DL

L

GDI32.d

ll

ADVAPI32.d

ll

KERNEL32.D

LL

msvcrt.d

ll

POP ESI 3602 3588 0 0 0 0 0 0 0 0

POP EBP 5761 5748 0 0 0 0 0 0 0 1

INC all 6655 6531 2 1 7 0 0 0 4 20

INC EAX 1704 1671 0 0 4 0 0 0 0 0

INC EBX 50 44 0 0 0 0 0 0 0 0

INC ECX 25 20 0 0 0 0 0 0 0 0

INC EDX 122 111 0 0 0 0 0 0 0 9

INC EDI 412 400 0 0 0 0 0 0 0 8

INC ESI 29 20 0 0 0 0 0 0 1 0

INC EBP 2549 2517 2 1 1 0 0 0 3 3

DEC all 1475 1035 9 7 21 45 22 16 4 10

DEC EAX 170 154 1 0 4 0 0 0 0 0

DEC EBX 26 6 0 2 2 0 0 0 0 0

DEC ECX 18 15 0 0 0 0 0 0 1 0

DEC EDX 7 2 0 0 1 0 0 0 0 0

DEC EDI 69 3 0 0 2 40 0 0 0 0

DEC ESI 13 5 0 0 0 0 0 0 0 0

DEC EBP 259 139 0 0 3 0 22 0 0 7

XCHG all 316 136 150 0 7 0 0 0 0 0

XCHG EAX 115 95 0 0 2 0 0 0 0 0

XCHG EBX 16 13 0 0 0 0 0 0 0 0

XCHG ECX 18 7 0 0 0 0 0 0 0 0

XCHG EDX 26 25 0 0 0 0 0 0 0 0

XCHG EDI 13 12 0 0 0 0 0 0 0 0

XCHG ESI 11 11 0 0 0 0 0 0 0 0

XCHG EBP 17 16 0 0 0 0 0 0 0 0

SHIFT

LEFT

63 37 3 4 0 4 0 0 4 3

245

Op. filezilla.exe

all

filezilla.ex

e

COMCTL32.D

LL

MPR.DL

L

COMDLG32.D

LL

WINMM.DL

L

GDI32.d

ll

ADVAPI32.d

ll

KERNEL32.D

LL

msvcrt.d

ll

SHIFT

RIGHT

159 131 0 0 0 0 0 0 2 19

ROTATE

LEFT

71 66 0 0 4 0 0 0 0 0

ROTATE

RIGHT

16 15 0 0 0 0 0 0 0 0

246

Table 18. JOP Gadgets for Filezilla.exe and its associated modules – Part 2

Op. WSOCK32

. DLL

NETAPI32

. dll

powrprof.dll SHELL32.dl

l

Normaliz.dl

l

ole32.dll CRYPT32.dl

l

WS2_32.dl

l

USER32.dl

l

OLEAUT32.dl

l

JMP EAX 0 56 21 753 0 70 63 28 27 13

JMP EBX 0 0 0 1 0 0 0 0 0 0

JMP ECX 0 0 0 0 0 0 0 0 0 0

JMP EDX 0 0 0 1 0 1 0 0 0 0

JMP EDI 0 0 0 13 0 0 0 0 0 0

JMP ESI 0 0 0 9 0 0 0 0 8 0

JMP EBP 0 0 0 4 0 0 0 0 0 0

CALL EAX 0 0 0 17 0 1 0 0 18 5

CALL EBX 0 0 0 183 0 13 3 9 3 11

CALL ECX 0 0 3 19 0 5 8 3 15 8

CALL EDX 0 0 0 2 0 0 12 0 28 0

CALL EDI 0 0 2 520 0 56 9 331 69 51

CALL ESI 0 1 8 9462 0 653 31 326 474 1971

CALL EBP 0 0 0 0 0 0 0 0 0 4

DG EAX 0 0 0 1 0 0 1 0 4 1

DG EBX 0 0 0 0 0 0 0 0 0 0

DG ECX 0 0 0 0 0 0 0 0 0 0

DG EDX 0 0 0 0 0 0 0 0 0 0

DG EDI 0 0 0 0 0 0 0 0 0 0

DG ESI 0 0 0 0 0 0 0 0 0 0

DG EBP 0 0 0 0 0 0 0 0 0 0

DG BEST EAX 0 0 0 0 0 0 0 0 0 0

DG BEST EBX 0 0 0 0 0 0 0 0 0 0

DG BEST ECX 0 0 0 0 0 0 0 0 0 0

DG BEST EDX 0 0 0 0 0 0 0 0 0 0

DG BEST EDI 0 0 0 0 0 0 0 0 0 0

DG BEST ESI 0 0 0 0 0 0 0 0 0 0

247

Op. WSOCK32

. DLL

NETAPI32

. dll

powrprof.dll SHELL32.dl

l

Normaliz.dl

l

ole32.dll CRYPT32.dl

l

WS2_32.dl

l

USER32.dl

l

OLEAUT32.dl

l

DG BEST EBP 0 0 0 0 0 0 0 0 0 0

DG Other EAX 0 0 0 0 0 0 0 0 0 0

DG Other EBX 0 0 0 0 0 0 0 0 0 0

DG Other ECX 0 0 0 0 0 0 0 0 0 0

DG Other EDX 0 0 0 0 0 0 0 0 0 0

DG Other EDI 0 0 0 0 0 0 0 0 0 0

DG Other ESI 0 0 0 0 0 0 0 0 0 0

DG Other EBP 0 0 0 0 0 0 0 0 0 0

ADD all 0 2 12 2733 0 265 48 164 410 306

ADD EAX 0 2 12 2643 0 250 43 159 359 280

ADD EBX 0 0 0 9 0 2 4 0 2 1

ADD ECX 0 0 0 53 0 4 0 1 1 4

ADD EDX 0 0 0 17 0 1 0 0 4 2

ADD EDI 0 0 0 11 0 6 0 1 44 17

ADD ESI 0 0 0 4 0 0 0 3 0 2

ADD EBP 0 0 0 0 0 3 1 0 1 0

SUB all 0 0 0 299 0 5 2 1 24 15

SUB EAX 0 0 0 292 0 4 0 1 23 15

SUB EBX 0 0 0 7 0 0 0 1 1 0

SUB ECX 0 0 0 1 0 0 2 0 0 0

SUB EDX 0 0 0 6 0 1 0 0 0 0

SUB EDI 0 0 0 5 0 1 0 0 0 0

SUB ESI 0 0 0 0 0 0 0 0 0 0

SUB EBP 0 0 0 0 0 0 0 0 0 0

MUL all 0 0 0 576 0 0 0 0 9 0

MUL EAX 0 0 0 0 0 0 0 0 0 0

MUL EBX 0 0 0 0 0 0 0 0 0 0

MUL ECX 0 0 0 19 0 0 0 0 0 0

248

Op. WSOCK32

. DLL

NETAPI32

. dll

powrprof.dll SHELL32.dl

l

Normaliz.dl

l

ole32.dll CRYPT32.dl

l

WS2_32.dl

l

USER32.dl

l

OLEAUT32.dl

l

MUL EDX 0 0 0 0 0 0 0 0 0 0

MUL EDI 0 0 0 1 0 0 0 0 0 0

MUL ESI 0 0 0 1 0 0 0 0 0 0

MUL EBP 0 0 0 385 0 0 0 0 6 0

DIV all 0 0 0 20 0 0 0 0 0 2

DIV EAX 0 0 0 20 0 0 0 0 0 2

DIV EBX 0 0 0 0 0 0 0 0 0 0

DIV ECX 0 0 0 0 0 0 0 0 0 0

DIV EDX 0 0 0 20 0 0 0 0 0 2

DIV EDI 0 0 0 0 0 0 0 0 0 0

DIV ESI 0 0 0 0 0 0 0 0 0 0

DIV EBP 0 0 0 0 0 0 0 0 0 0

MOV all 0 0 0 8619 0 460 9 413 184 1660

MOV EAX 0 0 0 6 0 2 1 0 20 2

MOV EBX 0 0 0 9 0 0 0 0 0 0

MOV ECX 0 0 0 8236 0 423 6 361 118 1461

MOV EDX 0 0 0 4 0 9 0 0 24 1

MOV EDI 0 0 0 8 0 2 0 23 16 0

MOV ESI 0 0 0 342 0 23 0 29 4 196

MOV EBP 0 0 0 0 0 1 0 0 2 0

MOV

SHUFFLE all

0 0 0 0 0 0 0 0 0 0

MOV

SHUFFLE

EAX

0 0 0 0 0 0 0 0 0 0

MOV

SHUFFLE

EBX

0 0 0 0 0 0 0 0 0 0

MOV

SHUFFLE

ECX

0 0 0 8073 0 423 6 289 116 1383

249

Op. WSOCK32

. DLL

NETAPI32

. dll

powrprof.dll SHELL32.dl

l

Normaliz.dl

l

ole32.dll CRYPT32.dl

l

WS2_32.dl

l

USER32.dl

l

OLEAUT32.dl

l

MOV

SHUFFLE

EDX

0 0 0 0 0 0 0 0 0 0

MOV

SHUFFLE EDI

0 0 0 3 0 0 0 0 2 0

MOV

SHUFFLE ESI

0 0 0 0 0 0 0 0 0 0

MOV

SHUFFLE EBP

0 0 0 0 0 0 0 0 2 0

MOV VALUE

all

0 0 0 24 0 1 2 0 54 1

MOV VALUE

EAX

0 0 0 3 0 0 0 0 19 0

MOV VALUE

EBX

0 0 0 6 0 0 0 0 0 0

MOV VALUE

ECX

0 0 0 1 0 0 0 0 0 1

MOV VALUE

EDX

0 0 0 0 0 0 0 0 21 0

MOV VALUE

EDI

0 0 0 0 0 0 0 0 14 0

MOV VALUE

ESI

0 0 0 0 0 0 0 0 0 0

MOV VALUE

EBP

0 0 0 0 0 1 0 0 0 0

LEA all 0 0 0 423 0 36 0 6 0 0

LEA EAX 0 0 0 1 0 2 0 0 0 0

LEA EBX 0 0 0 0 0 0 0 0 0 0

LEA ECX 0 0 0 418 0 34 0 6 0 0

LEA EDX 0 0 0 0 0 0 0 0 0 0

LEA EDI 0 0 0 4 0 0 0 0 0 0

LEA ESI 0 0 0 0 0 0 0 0 0 0

LEA EBP 0 0 0 0 0 0 0 0 0 0

PUSH all 0 8 3 388 0 199 15 6 22 81

250

Op. WSOCK32

. DLL

NETAPI32

. dll

powrprof.dll SHELL32.dl

l

Normaliz.dl

l

ole32.dll CRYPT32.dl

l

WS2_32.dl

l

USER32.dl

l

OLEAUT32.dl

l

PUSH EAX 0 0 0 54 0 22 0 0 0 37

PUSH EBX 0 0 0 22 0 0 0 0 1 1

PUSH ECX 0 0 0 14 0 0 0 0 0 26

PUSH EDX 0 0 0 14 0 0 0 0 0 4

PUSH EDI 0 0 0 15 0 0 0 0 2 8

PUSH ESI 0 0 0 7 0 0 0 1 0 0

PUSH EBP 0 0 0 11 0 0 0 0 0 0

POP all 0 114 48 1556 0 77 137 48 50 35

POP EAX 0 0 0 9 0 10 0 0 0 0

POP EBX 0 0 0 3 0 0 0 0 0 4

POP ECX 0 56 21 723 0 30 60 23 24 12

POP EDX 0 56 21 721 0 31 60 23 24 12

POP EDI 0 0 0 1 0 1 0 1 0 0

POP ESI 0 0 6 8 0 0 0 0 0 0

POP EBP 0 0 0 9 0 0 2 0 0 1

INC all 0 1 1 66 0 4 5 2 7 4

INC EAX 0 0 0 27 0 2 0 0 0 0

INC EBX 0 0 1 5 0 0 0 0 0 0

INC ECX 0 0 0 3 0 0 0 0 2 0

INC EDX 0 0 0 0 0 0 0 0 2 0

INC EDI 0 0 0 3 0 1 0 0 0 0

INC ESI 0 0 0 8 0 0 0 0 0 0

INC EBP 0 0 0 7 0 1 5 2 3 4

DEC all 0 8 3 159 0 2 8 81 5 40

DEC EAX 0 0 0 10 0 1 0 0 0 0

DEC EBX 0 0 0 16 0 0 0 0 0 0

DEC ECX 0 0 0 2 0 0 0 0 0 0

DEC EDX 0 0 0 4 0 0 0 0 0 0

251

Op. WSOCK32

. DLL

NETAPI32

. dll

powrprof.dll SHELL32.dl

l

Normaliz.dl

l

ole32.dll CRYPT32.dl

l

WS2_32.dl

l

USER32.dl

l

OLEAUT32.dl

l

DEC EDI 0 0 0 18 0 0 0 5 0 1

DEC ESI 0 0 0 7 0 1 0 0 0 0

DEC EBP 0 0 2 40 0 0 0 42 4 0

XCHG all 0 0 0 8 0 4 0 0 11 0

XCHG EAX 0 0 0 3 0 4 0 0 11 0

XCHG EBX 0 0 0 2 0 0 0 0 1 0

XCHG ECX 0 0 0 1 0 0 0 0 10 0

XCHG EDX 0 0 0 1 0 0 0 0 0 0

XCHG EDI 0 0 0 1 0 0 0 0 0 0

XCHG ESI 0 0 0 0 0 0 0 0 0 0

XCHG EBP 0 0 0 1 0 0 0 0 0 0

SHIFT LEFT 0 0 0 3 0 0 0 0 4 1

SHIFT RIGHT 0 0 0 6 0 0 0 1 0 0

ROTATE

LEFT

0 0 0 0 0 0 0 0 0 1

ROTATE

RIGHT

0 0 0 1 0 0 0 0 0 0

252

APPENDIX B: SAMPLE OUTPUT OF GADGETS

Appendix B provides sample output of gadgets for different operations. The purpose of

Appendix B is simply to provide an illustration of how the output may appear. The examples

chosen are brief or truncated, whereas in actual practice the quantity of gadgets produced could

number in the hundreds or thousands. Figure 1 illustrates MOV Val output from WinRAR.exe,

where EDI is the target for the MOV operation. Figure 2 depicts JMP EDX output from

Respond.exe.

Figures 3 and 4 showcase dispatcher gadget output. Dispatcher gadgets are necessities for

JOP to function, and both depict excellent gadgets, although EAX is the least desirable register

for dispatcher gadgets. This is because EAX is the most commonly used register. Figure 3

illustrates truncated Dispatcher Gadget EAX output from Snagit.exe, while figure 4 depicts

Dispatcher Gadget Other EAX output from Filezilla.exe.

Figure 26. MOV Val EDI output from WinRAR.exe .

@MOV Val*^

#1 Ops: 13 Mod: WinRAR.exe

mov edi, 0x8b000001 0x4abd87 (offset 0xa9d87)

sbb eax, 0x516608 0x4abd8c (offset 0xa9d8c)

push 0x65 0x4abd91 (offset 0xa9d91)

push ebp 0x4abd93 (offset 0xa9d93)

call ebx 0x4abd94 (offset 0xa9d94)

@MOV Val*^

#2 Ops: 13 Mod: WinRAR.exe

mov edi, 1 0x40c981 (offset 0xa981)

253

push 0x69 0x40c986 (offset 0xa986)

push ebx 0x40c988 (offset 0xa988)

call esi 0x40c989 (offset 0xa989)

@MOV Val*^

#3 Ops: 12 Mod: WinRAR.exe

mov edi, 1 0x40c981 (offset 0xa981)

push 0x69 0x40c986 (offset 0xa986)

push ebx 0x40c988 (offset 0xa988)

call esi 0x40c989 (offset 0xa989)

@MOV Val*^

#4 Ops: 10 Mod: WinRAR.exe

mov edi, 1 0x40c981 (offset 0xa981)

push 0x69 0x40c986 (offset 0xa986)

push ebx 0x40c988 (offset 0xa988)

call esi 0x40c989 (offset 0xa989)

@MOV Val*^

#5 Ops: 8 Mod: WinRAR.exe

mov edi, 1 0x40c981 (offset 0xa981)

push 0x69 0x40c986 (offset 0xa986)

push ebx 0x40c988 (offset 0xa988)

call esi 0x40c989 (offset 0xa989)

@MOV Val*^

#6 Ops: 10 Mod: COMCTL32.dll

mov edi, 0xff5750c3 0x5bfb7d1b (offset 0x35d1b)

adc eax, 0x5bff8654 0x5bfb7d20 (offset 0x35d20)

call esi 0x5bfb7d25 (offset 0x35d25)

254

@MOV Val*^

#7 Ops: 13 Mod: USER32.dll

mov edi, 0x448b69e9 0x69e8038d (offset 0x7e38d)

and al, 0x20 0x69e80392 (offset 0x7e392)

call eax 0x69e80394 (offset 0x7e394)

@MOV Val*^

#8 Ops: 11 Mod: USER32.dll

mov edi, 0x448b69e9 0x69e8038d (offset 0x7e38d)

and al, 0x20 0x69e80392 (offset 0x7e392)

call eax 0x69e80394 (offset 0x7e394)

@MOV Val*^

#9 Ops: 8 Mod: USER32.dll

mov edi, 0x448b69e9 0x69e8038c (offset 0x7e38c)

and al, 0x20 0x69e80392 (offset 0x7e392)

call eax 0x69e80394 (offset 0x7e394)

@MOV Val*^

#10 Ops: 7 Mod: USER32.dll

mov edi, 0x448b69e9 0x69e8038d (offset 0x7e38d)

and al, 0x20 0x69e80392 (offset 0x7e392)

call eax 0x69e80394 (offset 0x7e394)

@MOV Val*^

#11 Ops: 12 Mod: USER32.dll

mov edi, 0x4d8b69e9 0x69e87512 (offset 0x85512)

or byte ptr [ebx + 0x98b0451], cl 0x69e87518 (offset 0x85518)

call esi 0x69e8751e (offset 0x8551e)

@MOV Val*^

255

#12 Ops: 11 Mod: USER32.dll

mov edi, 0xcf8b69e9 0x69e590f0 (offset 0x570f0)

call esi 0x69e590f5 (offset 0x570f5)

@MOV Val*^

#13 Ops: 11 Mod: USER32.dll

mov edi, 0xcf8b69e9 0x69e59160 (offset 0x57160)

call esi 0x69e59165 (offset 0x57165)

@MOV Val*^

#14 Ops: 11 Mod: USER32.dll

mov edi, 0xcf8b69e9 0x69e591d0 (offset 0x571d0)

call esi 0x69e591d5 (offset 0x571d5)

@MOV Val*^

#15 Ops: 11 Mod: USER32.dll

mov edi, 0xcf8b69e9 0x69e59315 (offset 0x57315)

call esi 0x69e5931a (offset 0x5731a)

@MOV Val*^

#16 Ops: 11 Mod: USER32.dll

mov edi, 0xcf8b69e9 0x69e595a1 (offset 0x575a1)

call esi 0x69e595a6 (offset 0x575a6)

@MOV Val*^

#17 Ops: 11 Mod: USER32.dll

mov edi, 0xcf8b69e9 0x69e59621 (offset 0x57621)

call esi 0x69e59626 (offset 0x57626)

@MOV Val*^

#18 Ops: 11 Mod: USER32.dll

256

mov edi, 0xcf8b69e9 0x69e596a1 (offset 0x576a1)

call esi 0x69e596a6 (offset 0x576a6)

@MOV Val*^

#19 Ops: 11 Mod: USER32.dll

mov edi, 0xcf8b69e9 0x69e5977b (offset 0x5777b)

call esi 0x69e59780 (offset 0x57780)

@MOV Val*^

#20 Ops: 11 Mod: USER32.dll

mov edi, 0x4d8b69e9 0x69e87513 (offset 0x85513)

or byte ptr [ebx + 0x98b0451], cl 0x69e87518 (offset 0x85518)

call esi 0x69e8751e (offset 0x8551e)

MOV Value EDI WinRAR.exe total: 5

MOV Value EDI COMCTL32.dll total: 1

MOV Value EDI USER32.dll total: 14

Grand total MOV Value EDI : 20

Figure 27. JMP EDX output from Respond.exe

*^

#1 Ops: 13 Mod: Respond.exe

push ecx 0x5c165a (offset 0x1bf65a)

or byte ptr [ecx - 0x1276b], cl 0x5c165b (offset 0x1bf65b)

inc dword ptr [ecx - 0x12743] 0x5c1661 (offset 0x1bf661)

jmp edx 0x5c1667 (offset 0x1bf667)

*^

#2 Ops: 13 Mod: Respond.exe

inc edx 0x5c214d (offset 0x1c014d)

or byte ptr [ecx - 0x1237b], cl 0x5c214e (offset 0x1c014e)

257

inc dword ptr [ecx - 0x12343] 0x5c2154 (offset 0x1c0154)

jmp edx 0x5c215a (offset 0x1c015a)

*^

#3 Ops: 13 Mod: Respond.exe

push ecx 0x5c2a6a (offset 0x1c0a6a)

or byte ptr [ecx - 0x11f6b], cl 0x5c2a6b (offset 0x1c0a6b)

inc dword ptr [ecx - 0x11f43] 0x5c2a71 (offset 0x1c0a71)

jmp edx 0x5c2a77 (offset 0x1c0a77)

*^

#4 Ops: 13 Mod: Respond.exe

mov dword ptr [esp + 4], ecx 0xc923ed (offset 0x8903ed)

jmp edx 0xc923f1 (offset 0x8903f1)

*^

#5 Ops: 12 Mod: Respond.exe

or byte ptr [ecx - 0x1276b], cl 0x5c165b (offset 0x1bf65b)

inc dword ptr [ecx - 0x12743] 0x5c1661 (offset 0x1bf661)

jmp edx 0x5c1667 (offset 0x1bf667)

*^

#6 Ops: 12 Mod: Respond.exe

or byte ptr [ecx - 0x1237b], cl 0x5c214e (offset 0x1c014e)

inc dword ptr [ecx - 0x12343] 0x5c2154 (offset 0x1c0154)

jmp edx 0x5c215a (offset 0x1c015a)

*^

#7 Ops: 12 Mod: Respond.exe

or byte ptr [ecx - 0x11f6b], cl 0x5c2a6b (offset 0x1c0a6b)

inc dword ptr [ecx - 0x11f43] 0x5c2a71 (offset 0x1c0a71)

258

jmp edx 0x5c2a77 (offset 0x1c0a77)

*^

#8 Ops: 12 Mod: Respond.exe

ror byte ptr [edi], cl 0x6c9241 (offset 0x2c7241)

test dword ptr [ebp - 0x73000000], ecx 0x6c9243 (offset

0x2c7243)

dec ebp 0x6c9249 (offset 0x2c7249)

shr al, 1 0x6c924a (offset 0x2c724a)

push eax 0x6c924c (offset 0x2c724c)

jmp edx 0x6c924d (offset 0x2c724d)

*^

#9 Ops: 12 Mod: Respond.exe

add dword ptr [ebx - 0x2d7ad7b0], ecx 0xc923e5 (offset

0x8903e5)

je 0x8903f3 0xc923eb (offset 0x8903eb)

mov dword ptr [esp + 4], ecx 0xc923ed (offset 0x8903ed)

jmp edx 0xc923f1 (offset 0x8903f1)

*^

#10 Ops: 12 Mod: Respond.exe

rcl dword ptr [edx - 0x17aa0000], 0x53 0xd6ac91 (offset

0x968c91)

arpl word ptr [eax], ax 0xd6ac98 (offset 0x968c98)

add byte ptr [esi - 0x18], dl 0xd6ac9a (offset 0x968c9a)

jmp edx 0xd6ac9d (offset 0x968c9d)

*^

#11 Ops: 11 Mod: Respond.exe

mov dword ptr [esp + 4], ecx 0xc923ed (offset 0x8903ed)

259

jmp edx 0xc923f1 (offset 0x8903f1)

*^

#12 Ops: 10 Mod: Respond.exe

test dword ptr [ebp - 0x73000000], ecx 0x6c9243 (offset

0x2c7243)

dec ebp 0x6c9249 (offset 0x2c7249)

shr al, 1 0x6c924a (offset 0x2c724a)

push eax 0x6c924c (offset 0x2c724c)

jmp edx 0x6c924d (offset 0x2c724d)

*^

#13 Ops: 10 Mod: Respond.exe

push eax 0xc923e7 (offset 0x8903e7)

sub byte ptr [ebp - 0x76f98b2e], al 0xc923e8 (offset 0x8903e8)

dec esp 0xc923ee (offset 0x8903ee)

and al, 4 0xc923ef (offset 0x8903ef)

jmp edx 0xc923f1 (offset 0x8903f1)

*^

#14 Ops: 9 Mod: Respond.exe

sub byte ptr [ebp - 0x76f98b2e], al 0xc923e8 (offset 0x8903e8)

dec esp 0xc923ee (offset 0x8903ee)

and al, 4 0xc923ef (offset 0x8903ef)

jmp edx 0xc923f1 (offset 0x8903f1)

*^

#15 Ops: 9 Mod: Respond.exe

add byte ptr [esi - 0x18], dl 0xd6ac94 (offset 0x968c94)

push ebx 0xd6ac97 (offset 0x968c97)

arpl word ptr [eax], ax 0xd6ac98 (offset 0x968c98)

260

add byte ptr [esi - 0x18], dl 0xd6ac9a (offset 0x968c9a)

jmp edx 0xd6ac9d (offset 0x968c9d)

*^

#16 Ops: 8 Mod: Respond.exe

add byte ptr [eax], al 0x6c91d3 (offset 0x2c71d3)

add byte ptr [ebp - 0x3d1733b3], cl 0x6c91d5 (offset 0x2c71d5)

jmp edx 0x6c91db (offset 0x2c71db)

*^

#17 Ops: 8 Mod: Respond.exe

add byte ptr [eax], al 0x6c9232 (offset 0x2c7232)

add byte ptr [ebp + 0x63e8cc4d], cl 0x6c9234 (offset 0x2c7234)

jmp edx 0x6c923a (offset 0x2c723a)

*^

#18 Ops: 8 Mod: Respond.exe

add byte ptr [eax], al 0x6c9245 (offset 0x2c7245)

add byte ptr [ebp + 0x50e8d04d], cl 0x6c9247 (offset 0x2c7247)

jmp edx 0x6c924d (offset 0x2c724d)

*^

#19 Ops: 8 Mod: Respond.exe

test edx, edx 0xc923e9 (offset 0x8903e9)

je 0x8903f3 0xc923eb (offset 0x8903eb)

mov dword ptr [esp + 4], ecx 0xc923ed (offset 0x8903ed)

jmp edx 0xc923f1 (offset 0x8903f1)

*^

#20 Ops: 7 Mod: Respond.exe

sal byte ptr [esi + eax - 0x77], cl 0xc923ea (offset 0x8903ea)

261

dec esp 0xc923ee (offset 0x8903ee)

and al, 4 0xc923ef (offset 0x8903ef)

jmp edx 0xc923f1 (offset 0x8903f1)

JMP EDX total: 20

*^

#1 Ops: 12 Mod: UxTheme.dll

jmp eax 0x71b3839e (offset 0x3639e)

add al, byte ptr [eax] 0x71b383a0 (offset 0x363a0)

add byte ptr [edi], cl 0x71b383a2 (offset 0x363a2)

test byte ptr [ebp - 0x7efffffd], bl 0x71b383a4 (offset 0x363a4)

jmp edx 0x71b383aa (offset 0x363aa)

*^

#2 Ops: 10 Mod: UxTheme.dll

add al, byte ptr [eax] 0x71b383a0 (offset 0x363a0)

add byte ptr [edi], cl 0x71b383a2 (offset 0x363a2)

test byte ptr [ebp - 0x7efffffd], bl 0x71b383a4 (offset 0x363a4)

jmp edx 0x71b383aa (offset 0x363aa)

*^

#3 Ops: 8 Mod: UxTheme.dll

jmp dword ptr [esi - 0x2d001f3e] 0x71b0888b (offset 0x688b)

loope 0x6883 0x71b08891 (offset 0x6891)

jmp edx 0x71b08893 (offset 0x6893)

*^

#4 Ops: 8 Mod: UxTheme.dll

add byte ptr [edi], cl 0x71b383a2 (offset 0x363a2)

test byte ptr [ebp - 0x7efffffd], bl 0x71b383a4 (offset 0x363a4)

jmp edx 0x71b383aa (offset 0x363aa)

262

JMP EDX total: 4

*^

#1 Ops: 13 Mod: WININET.dll

cmp ebp, dword ptr [edx] 0x631ad3ac (offset 0x1ab3ac)

add byte ptr [eax], al 0x631ad3ae (offset 0x1ab3ae)

lcall 0x2a:0x3c3be2ab 0x631ad3b0 (offset 0x1ab3b0)

add byte ptr [ecx], bl 0x631ad3b7 (offset 0x1ab3b7)

jmp edx 0x631ad3b9 (offset 0x1ab3b9)

*^

#2 Ops: 12 Mod: WININET.dll

sub al, byte ptr [eax] 0x631ad3ad (offset 0x1ab3ad)

add byte ptr [edx + 0x3c3be2ab], bl 0x631ad3af (offset 0x1ab3af)

sub al, byte ptr [eax] 0x631ad3b5 (offset 0x1ab3b5)

add byte ptr [ecx], bl 0x631ad3b7 (offset 0x1ab3b7)

jmp edx 0x631ad3b9 (offset 0x1ab3b9)

*^

#3 Ops: 11 Mod: WININET.dll

add byte ptr [eax], al 0x631ad3ae (offset 0x1ab3ae)

lcall 0x2a:0x3c3be2ab 0x631ad3b0 (offset 0x1ab3b0)

add byte ptr [ecx], bl 0x631ad3b7 (offset 0x1ab3b7)

jmp edx 0x631ad3b9 (offset 0x1ab3b9)

*^

#4 Ops: 10 Mod: WININET.dll

add byte ptr [edx + 0x3c3be2ab], bl 0x631ad3af (offset 0x1ab3af)

sub al, byte ptr [eax] 0x631ad3b5 (offset 0x1ab3b5)

add byte ptr [ecx], bl 0x631ad3b7 (offset 0x1ab3b7)

jmp edx 0x631ad3b9 (offset 0x1ab3b9)

263

*^

#5 Ops: 9 Mod: WININET.dll

lcall 0x2a:0x3c3be2ab 0x631ad3b0 (offset 0x1ab3b0)

add byte ptr [ecx], bl 0x631ad3b7 (offset 0x1ab3b7)

jmp edx 0x631ad3b9 (offset 0x1ab3b9)

*^

#6 Ops: 7 Mod: WININET.dll

loope 0x1ee886 0x631f08d4 (offset 0x1ee8d4)

add byte ptr [eax], al 0x631f08d6 (offset 0x1ee8d6)

jmp dword ptr [eax] 0x631f08d8 (offset 0x1ee8d8)

push edi 0x631f08da (offset 0x1ee8da)

jmp edx 0x631f08db (offset 0x1ee8db)

JMP EDX total: 6

*^

#1 Ops: 8 Mod: SHELL32.dll

in eax, 0xe2 0x69a69dfd (offset 0x267dfd)

dec dword ptr [ebp - 0x1a17ebb2] 0x69a69dff (offset 0x267dff)

jmp edx 0x69a69e05 (offset 0x267e05)

JMP EDX total: 1

*^

#1 Ops: 8 Mod: ole32.dll

add byte ptr [edi], cl 0x68f2699f (offset 0x2499f)

test dword ptr [edx - 0x7efffec2], edi 0x68f269a1 (offset 0x249a1)

jmp edx 0x68f269a7 (offset 0x249a7)

JMP EDX total: 1

Grand total JMP EDX total: 32

264

Figure 28. Truncated Dispatcher Gadget EAX output from Snagit.exe

*^

#1 Ops: 9 Mod: Snagit32.exe

or cl, byte ptr [ebx - 0x743774f0] 0x6fff8b (offset 0x2fdf8b)

inc edx 0x6fff91 (offset 0x2fdf91)

sub al, 0x5e 0x6fff92 (offset 0x2fdf92)

jmp eax 0x6fff94 (offset 0x2fdf94)

*^

#2 Ops: 8 Mod: Snagit32.exe

add al, ch 0x7fac19 (offset 0x3f8c19)

and bh, byte ptr [edx + 0x595affdc] 0x7fac1b (offset 0x3f8c1b)

jmp eax 0x7fac21 (offset 0x3f8c21)

*^

#3 Ops: 8 Mod: Snagit32.exe

add al, ch 0x88c3d8 (offset 0x48a3d8)

arpl word ptr [edx + 0x595affd3], sp 0x88c3da (offset 0x48a3da)

jmp eax 0x88c3e0 (offset 0x48a3e0)

*^

#4 Ops: 8 Mod: Snagit32.exe

add al, ch 0x88c4af (offset 0x48a4af)

mov word ptr [ecx + 0x595affd3], fs 0x88c4b1 (offset 0x48a4b1)

jmp eax 0x88c4b7 (offset 0x48a4b7)

*^

#5 Ops: 13 Mod: Snagit32.exe

sal byte ptr [ebx + ebx - 0x75], 0x4b 0x404ea0 (offset 0x2ea0)

add al, 0x8b 0x404ea5 (offset 0x2ea5)

adc dword ptr [ebx + 0x6a0442], ecx 0x404ea7 (offset 0x2ea7)

265

call eax 0x404ead (offset 0x2ead)

*^

#6 Ops: 13 Mod: Snagit32.exe

add al, byte ptr [ebx - 0x3074fb3c] 0x409ce9 (offset 0x7ce9)

mov dword ptr [ebp - 0x1c], 0 0x409cef (offset 0x7cef)

call eax 0x409cf6 (offset 0x7cf6)

*^

#7 Ops: 13 Mod: Snagit32.exe

test ecx, ecx 0x44177a (offset 0x3f77a)

add dword ptr [eax], eax 0x44177c (offset 0x3f77c)

add byte ptr [eax + 0x428b178b], dl 0x44177e (offset 0x3f77e)

add al, 0x8b 0x441784 (offset 0x3f784)

iretd 0x441786 (offset 0x3f786)

call eax 0x441787 (offset 0x3f787)

*^

#8 Ops: 13 Mod: Snagit32.exe

adc byte ptr [ebx - 0x3474c9], cl 0x46292b (offset 0x6092b)

rcl byte ptr [eax - 0x75], cl 0x462931 (offset 0x60931)

inc esi 0x462934 (offset 0x60934)

add al, 0x8b 0x462935 (offset 0x60935)

iretd 0x462937 (offset 0x60937)

call eax 0x462938 (offset 0x60938)

*^

#9 Ops: 13 Mod: Snagit32.exe

dec dword ptr [ebx + 0x5411e8d8] 0x4fccc7 (offset 0xfacc7)

sti 0x4fcccd (offset 0xfaccd)

call dword ptr [eax - 0x75] 0x4fccce (offset 0xfacce)

266

inc edi 0x4fccd1 (offset 0xfacd1)

sbb al, 0x53 0x4fccd2 (offset 0xfacd2)

call eax 0x4fccd4 (offset 0xfacd4)

[truncated]

Dispatcher Gadgets for EAX Snagit32.exe total: 264

Dispatcher Gadgets for EAX imagehlp.dll total: 3

Dispatcher Gadgets for EAX CRYPT32.dll total: 1

Dispatcher Gadgets for EAX opencv_core249.dll total: 22

Dispatcher Gadgets for EAX PDFLib.dll total: 54

Dispatcher Gadgets for EAX KERNEL32.DLL total: 3

Dispatcher Gadgets for EAX ScrollingCapture.dll total: 22

Dispatcher Gadgets for EAX mfc100u.dll total: 5

Dispatcher Gadgets for EAX Ltkrn15u.dll total: 8

Dispatcher Gadgets for EAX Lttwn15u.dll total: 20

Dispatcher Gadgets for EAX VideoCommon.dll total: 7

Dispatcher Gadgets for EAX RPCRT4.dll total: 6

Dispatcher Gadgets for EAX COMCTL32.dll total: 1

Dispatcher Gadgets for EAX Ltdis15u.dll total: 1

Dispatcher Gadgets for EAX Trackerbird.dll total: 18

Dispatcher Gadgets for EAX ADVAPI32.dll total: 1

Dispatcher Gadgets for EAX MSVCR100.dll total: 34

Grand total Dispatcher Gadgets for EAX: 470

Figure 29. Dispatcher Gadget Other EAX output from Filezilla.exe

*^

#1 Ops: 13 Mod: filezilla.exe

pop es 0x7a02d7 (offset 0x39e2d7)

shl eax, 2 0x7a02d8 (offset 0x39e2d8)

267

lea eax, dword ptr [eax + eax*2 + 0x7a02f2] 0x7a02db (offset

0x39e2db)

shr edx, 1 0x7a02e2 (offset 0x39e2e2)

jmp eax 0x7a02e4 (offset 0x39e2e4)

*^

#2 Ops: 13 Mod: filezilla.exe

pop es 0x7a0387 (offset 0x39e387)

shl eax, 2 0x7a0388 (offset 0x39e388)

lea eax, dword ptr [eax + eax*2 + 0x7a03a2] 0x7a038b (offset

0x39e38b)

shr edx, 1 0x7a0392 (offset 0x39e392)

jmp eax 0x7a0394 (offset 0x39e394)

*^

#3 Ops: 12 Mod: filezilla.exe

shl eax, 2 0x7a02d8 (offset 0x39e2d8)

lea eax, dword ptr [eax + eax*2 + 0x7a02f2] 0x7a02db (offset

0x39e2db)

shr edx, 1 0x7a02e2 (offset 0x39e2e2)

jmp eax 0x7a02e4 (offset 0x39e2e4)

*^

#4 Ops: 12 Mod: filezilla.exe

shl eax, 2 0x7a0388 (offset 0x39e388)

lea eax, dword ptr [eax + eax*2 + 0x7a03a2] 0x7a038b (offset

0x39e38b)

shr edx, 1 0x7a0392 (offset 0x39e392)

jmp eax 0x7a0394 (offset 0x39e394)

*^

268

#5 Ops: 12 Mod: filezilla.exe

shr al, 1 0xd8d116 (offset 0x98b116)

and eax, 1 0xd8d118 (offset 0x98b118)

ret 0xd8d11b (offset 0x98b11b)

lea esi, dword ptr [esi] 0xd8d11c (offset 0x98b11c)

jmp eax 0xd8d120 (offset 0x98b120)

269

APPENDIX C: DEFINITIONS

Code-Reuse Attack: A code-reuse attack makes use of existing instructions in the process

virtual memory in an unintended fashion. An attacker can utilize ROP or JOP gadgets to achieve

arbitrary computation, to disable protections, or to set up shellcode to be executed

JOP: JOP is short for Jump-Oriented Programming. It is an advanced code-reuse attack

that makes use of chunks of instructions existing in the virtual memory of the process that end

with an indirect jump or call. JOP requires a dispatch table and both dispatcher and functional

gadgets.

ROP: ROP is short for Return Oriented Programming. It is a code-reuse attack that makes

use of chunks of instructions existing in the virtual memory of a process that terminates with a

RET instruction or return. The return functions as the “glue” that binds the instructions together,

allowing for control flow to be ordered.

Gadget: A gadget is a carefully selected chunk of instructions that terminates in a control

flow instruction, such as a ret or an indirect jump or call. These are “strung” together to allow for

an attacker to execute arbitrary computation.

Dispatcher Gadget: The dispatcher gadget is a carefully selected gadget that modifies the

dispatch table in a predictable manner. This allows an attacker to order the control flow in a JOP

exploit. Functional gadgets will typically go to the dispatcher gadget, which then will move the

instruction pointer to the next functional gadget within the dispatch table.

Dispatch Table: The dispatch table provides the virtual memory addresses for all

functional gadgets used in JOP.

Disassembly: Disassembly is the end result of machine language being translated into

Assembly language.

270

Assembly: Assembly is a low-level programming language that is specific to the

architecture it is to be run on.

Opcodes: Opcodes are representations of machine code that exist in hexadecimal format.

Opcode-splitting: Opcode-splitting is the process of starting execution in the middle of a

line of machine code instructions on architectures that lack alignment. This can result in machine

code being executed in a manner unintended by the compiler, resulting in unintended Assembly

instructions being executed.

	Dakota State University
	Beadle Scholar
	Spring 3-2019

	Advanced Code-reuse Attacks: A Novel Framework for JOP
	Bramwell J. Brizendine
	Recommended Citation

	tmp.1557497361.pdf.8FEMg

