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ABSTRACT 

Cyber systems are ubiquitous in all aspects of society. At the same time, breaches to 

cyber systems continue to be front-page news (Calfas, 2018; Equifax, 2017) and, despite more 

than a decade of heightened focus on cybersecurity, the threat continues to evolve and grow, 

costing globally up to $575 billion annually (Center for Strategic and International Studies, 

2014; Gosler & Von Thaer, 2013; Microsoft, 2016; Verizon, 2017). To address possible impacts 

due to cyber threats, information system (IS) stakeholders must assess the risks they face. 

Following a risk assessment, the next step is to determine mitigations to counter the threats that 

pose unacceptably high risks. The literature contains a robust collection of studies on optimizing 

mitigation selections, but they universally assume that the starting list of appropriate mitigations 

for specific threats exists from which to down-select. In current practice, producing this starting 

list is largely a manual process and it is challenging because it requires detailed cybersecurity 

knowledge from highly decentralized sources, is often deeply technical in nature, and is 

primarily described in textual form, leading to dependence on human experts to interpret the 

knowledge for each specific context. At the same time cybersecurity experts remain in short 

supply relative to the demand, while the delta between supply and demand continues to grow 

(Center for Cyber Safety and Education, 2017; Kauflin, 2017; Libicki, Senty, & Pollak, 2014). 

Thus, an approach is needed to help cybersecurity experts (CSE) cut through the volume of 

available mitigations to select those which are potentially viable to offset specific threats.  

This dissertation explores the application of machine learning and text retrieval 

techniques to automate matching of relevant mitigations to cyber threats, where both are 

expressed as unstructured or semi-structured English language text. Using the Design Science 

Research Methodology (Hevner & March, 2004; Peffers, Tuunanen, Rothenberger, & 

Chatterjee, 2007), we consider a number of possible designs for the matcher, ultimately 

selecting a supervised machine learning approach that combines two techniques: support vector 

machine classification and latent semantic analysis. The selected approach demonstrates high 

recall for mitigation documents in the relevant class, bolstering confidence that potentially 

viable mitigations will not be overlooked. It also has a strong ability to discern documents in 

the non-relevant class, allowing approximately 97% of non-relevant mitigations to be excluded 

automatically, greatly reducing the CSE’s workload over purely manual matching. A false 
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positive rate of up to 3% prevents totally automated mitigation selection and requires the CSE 

to reject a few false positives. 

This research contributes to theory a method for automatically mapping mitigations to 

threats when both are expressed as English language text documents. This artifact represents a 

novel machine learning approach to threat-mitigation mapping. The research also contributes 

an instantiation of the artifact for demonstration and evaluation. From a practical perspective 

the artifact benefits all threat-informed cyber risk assessment approaches, whether formal or ad 

hoc, by aiding decision-making for cybersecurity experts whose job it is to mitigate the 

identified cyber threats. In addition, an automated approach makes mitigation selection more 

repeatable, facilitates knowledge reuse, extends the reach of cybersecurity experts, and is 

extensible to accommodate the continued evolution of both cyber threats and mitigations. 

Moreover, the selection of mitigations applicable to each threat can serve as inputs into 

multifactor analyses of alternatives, both automated and manual, thereby bridging the gap 

between cyber risk assessment and final mitigation selection. 
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CHAPTER 1 

INTRODUCTION 

Background 

Cyber systems1 are ubiquitous in all aspects of society. At the same time, breaches to 

cyber systems continue to be front-page news (Calfas, 2018; Equifax, 2017) and, despite more 

than a decade of heightened focus on cybersecurity, the threat continues to evolve and grow, 

costing globally up to $575 billion annually (Center for Strategic and International Studies, 

2014; Gosler & Von Thaer, 2013; Microsoft, 2016; Verizon, 2017). Symantec reported that 

“Cyber attackers revealed new levels of ambition in 2016, a year marked by extraordinary 

attacks, including multi-million-dollar virtual bank heists, overt attempts to disrupt the US 

electoral process by state-sponsored groups, and some of the biggest distributed denial of 

service (DDoS) attacks on record powered by a botnet of Internet of Things (IoT) devices” 

(Chandrasekar et al., 2017).  

Regrettably, subsequent years have not been less exciting on the cybersecurity front 

(Symantec, 2019; Verizon, 2017). The Cisco 2018 Annual Cybersecurity Report identifies a 

number of recent changes in the threat landscape which continue to impact growth of the 

mitigation landscape. For example, self-propagating malware has moved to the network where 

it can spread very rapidly. In addition, adversaries continue to improve their abilities to evade 

existing security measures. Also, supply chain threats are on the rise and mitigation strategies 

against them are immature. Moreover, the years 2017 and 2018 saw a dramatic rise in 

ransomware along with rapid adoption of cloud and Internet of Things technologies for which 

mitigation strategies remain in the early stages (Cisco Systems, 2018).  

To address possible impacts due to cyber threats, information system (IS) stakeholders 

must assess the risks they face. To that end, there is an extensive body of research and practice 

in the cyber risk assessment discipline. Many mature organizations employ formal risk 

                                                 

1
 Definitions of cyber terms are provided in Appendix A. In this paper, we use the term “mitigation” 

synonymously with “countermeasure” and “security control” to mean a tool or technique that may counter a 
cyber threat. 
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assessment methodologies in an attempt to achieve rigor, although ad hoc approaches are also 

used. We briefly discuss a selection of risk assessment methods in the Literature Review section 

below. These methods help stakeholders identify and prioritize cyber risks. After completing 

the risk assessment, in whatever form, stakeholders may have a better understanding of threats 

to their mission-critical IS assets. 

Following risk assessment, the next step is to determine mitigations to counter the 

threats that pose unacceptably high risk, but this is challenging for several reasons. First, cyber 

threats and the means to counter them continue to proliferate (Center for Strategic and 

International Studies, 2014; Gosler & Von Thaer, 2013; Microsoft, 2016; Verizon, 2017). 

Consequently, the universe of documents describing cyber threats and potential mitigations is 

quite large and continually growing but there is currently no comprehensive source of threat-

mitigation mappings. For example, NIST 800-53 (National Institute of Standards and 

Technology, 2017) is a well-known catalog of security control documents often referenced 

during the mitigation stage of cyber risk assessment. While it contains valuable knowledge, 

NIST 800-53 does not relate mitigations to specific threats, and thus, does not deter application 

of mitigations that over- or under-address the actual threats. On the other hand, the National 

Intelligence Cyber Threat Framework is a comprehensive threat framework, but it does not 

currently offer mitigation mappings (National Security Agency, 2018). The Common Attack 

Pattern Enumeration and Classification (CAPEC) is another threat framework (MITRE, 2017a). 

While CAPEC does contain a few representative mappings of mitigations to threats, these have 

been manually generated by cybersecurity experts, they are not all-inclusive, and mitigation 

selection is not the primary intent of the CAPEC framework. Second, over-applying mitigations 

wastes resources while under-applying or incorrectly applying mitigations, leaves residual risk 

and can result in a false sense of security. Third, to propose sensible mitigations one must 

acquire detailed cybersecurity knowledge. In current practice, knowledge about mitigations and 

threats is primarily contained in documents. This knowledge resides in numerous, highly 

decentralized sources, which are often deeply technical in nature and are primarily described in 

textual form, resulting in dependence on human experts to interpret the knowledge for the 

specific context.  

To date, manual selection by cyber security experts continues to be the de facto method 

for identifying mitigations to cyber threats. Several issues arise from reliance solely on manual 
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selection by experts for cybersecurity mitigation decisions. First, cybersecurity experts continue 

to be in short supply relative to the demand, while the delta between supply and demand 

continues to grow (Center for Cyber Safety and Education, 2017; Kauflin, 2017; Libicki et al., 

2014). In addition, the time-consuming nature of manual matching necessarily limits the 

number of sources of possible mitigations that can be consulted during any cyber risk 

assessment. Moreover, human variation in expertise and in sources consulted can lead to uneven 

and non-repeatable application of the available knowledge (Bolger & Wright, 1994; Hallberg, 

Bengtsson, Hallberg, Karlzén, & Sommestad, 2017; Holm, Sommestad, Ekstedt, & Honeth, 

2014).  

Problem Statement and Research Gap 

 

Figure 1. Research Gap 

In this research, we set out to fill the research gap illustrated in Figure 1 by devising a 

method for matching mitigations to cyber threats expressed as English language text documents 

using machine learning and text retrieval techniques in support of cyber risk assessment. A 

fundamental goal of all cyber risk assessments, whether methodical or ad hoc, is to identify the 

threats faced in a particular environment with enough detail that specific, applicable mitigations 

can be determined, prioritized, and implemented. The first step in a cyber risk assessment is to 



4 

assess the cyber risk of the system by considering the threats against it. The output of this step 

is a list of high priority threats to be mitigated. The next step is to determine candidate 

mitigations to address the threats. As discussed above, this is difficult and has inherent issues 

of scalability, consistency, and repeatability because, absent automation to help match 

mitigations to threats, mitigation selection is primarily a manual process done by human experts 

using disparate textual sources. There are two dimensions to the mitigation selection problem. 

The first is a technical dimension, that is, for each threat, enumerating a set of possible 

mitigations that are capable of countering it. The second, optimizing mitigations, is an 

organizational dimension where budgetary and other organizational constraints necessitate 

winnowing the list of potentially applicable mitigations to those that are organizationally 

feasible. Our research focuses on the first dimension and is distinct from the second dimension.  

The literature contains abundant research on the second dimension, herein referred to as 

mitigation optimization but also sometimes called trade space or analysis of alternatives. We 

briefly discuss a selection of mitigation optimization methods in the Literature Review section 

below. These approaches universally assume that the applicable set of potential mitigations for 

input into the mitigation optimization analysis has already been determined; however, cyber 

risk assessment approaches stop short of providing this list of potential mitigations leaving 

a gap. This dissertation addresses the gap by developing an automated method for matching 

mitigations to threats to obtain the initial set of potentially relevant mitigations. It is distinct 

from the mitigation optimization problem which commences after the initial list is made and 

forms the reservoir from which downstream risk-informed mitigation and mitigation 

optimization analyses can draw.  

Objectives and Intended Contributions of the Project 

The objective of this research project is to investigate the application of machine 

learning and text retrieval techniques for matching mitigations to cyber threats where both are 

expressed as unstructured or semi-structured English language text.  We hypothesize that we 

can devise an automated or semi-automated method that has the potential to reduce workload 

for the CSE by recommending possible mitigations for a given threat when both are English 

language documents. We use Fedorowicz’s definition of “document” as “a chunk of 

information, usually dealing with a relatively limited topic or subject area.” (Fedorowicz, 1996)  
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Significant research exists both in threat-informed cyber risk assessment methodologies 

and mitigation optimization techniques. This research project addresses the gap between these 

two areas as described in the prior section. To that end, we investigate applicable text mining 

techniques from the machine learning and document-driven decision support systems (DSS) 

disciplines, assess to what degree these techniques apply to the domain of cyber threats and 

mitigations, look for domain-specific peculiarities, and recommend changes in how 

cybersecurity practitioners describe threats and mitigations to support the use of automated, 

document-matching schemes.  

The primary contribution of this research to theory is the artifact, a novel machine 

learning method for matching mitigations documents to threats. We also provide instantiations 

of the method for demonstration. From a practical perspective, an automated approach to 

matching mitigations to threats benefits all threat-informed cyber risk assessment approaches 

by aiding decision-making and reducing workload for cybersecurity experts whose job it is to 

mitigate the identified cyber threats. Moreover, an automated approach can support 

development and maintenance of a knowledge base to make mitigation selection more 

repeatable, facilitate knowledge reuse, and extend the reach of cybersecurity experts. The 

approach will be extensible to accommodate the continued evolution of both cyber threats and 

mitigations. The selection of mitigations applicable to each of the threats can serve as inputs 

into mitigation optimization approaches thereby bridging the gap between cyber risk 

assessment and final mitigation selection.  

The remainder of this paper is organized as follows. In Chapter 2, we discuss related 

literature in three domains: cyber risk assessment, mitigation optimization analysis, and 

document-driven decision supports systems. In Chapter 3, we discuss our research 

methodology, which is grounded in the principles of the Design Science Research Methodology 

(DSRM) (Hevner & March, 2004; Peffers et al., 2007), seeking tangible IS solutions to “wicked 

problems” (Vaishnavi & Kuechler, 2004). Per the DSRM, we identify objectives of a solution 

to our stated research problem, then we discuss the design and development of the solution 

artifact drawing from the knowledge base of applicable theory. We also discuss our approach 

to demonstrating the use of the artifact to solve a real-life problem and the evaluation criteria 

used to measure the success of the artifact. In Chapter 4, we discuss our results and assess the 
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validity of our research. Finally, in Chapter 5 we discuss conclusions and limitations of the 

present research and propose future work. 
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CHAPTER 2 

LITERATURE REVIEW 

A solution to the problem of automatically selecting mitigations pertinent to a given 

threat lies at the nexus of threat-informed cyber risk assessment methodologies and mitigation 

optimization analysis. We investigate literature in these two domains to ensure that our solution 

broadly supports existing methodologies. We also survey existing threat taxonomies and 

control catalogs to further delineate the gap. Despite an extensive search of the literature, we 

did not find any published research dealing specifically with automated matching of mitigations 

to cyber threats; hence, the DSS section of this literature review considers research that we 

consider analogous to our research problem. 

Cyber Risk Assessment Methodologies 

A number of threat-informed cyber risk assessment methodologies are described in the 

literature and in use today. They include AURUM (Fenz, Ekelhart, & Neubauer, 2011),  BluGen 

(Llanso, McNeil, Pearson, & Moore, 2017), Crown Jewels Analysis and Threat Assessment 

and Remediation Analysis  (CJA+TARA) (MITRE, 2015), Mission Information Risk Analysis 

(MIRA) (Llanso, Hamilton, & Silberglitt, 2012; Llanso, Tally, Silberglitt, & Anderson, 2013), 

NIST SP 800-30 (National Institute of Standards and Technology, 2012), Operationally Critical 

Threat, Asset, and Vulnerability Evaluation (OCTAVE) (Caralli, Stevens, Young, & Wilson, 

2007), and Risk IT (ISACA, 2009; Schmittling, 2010). These methods are representative of 

approaches in use by organizations that employ structured threat-informed cyber risk 

assessment and their descriptions are available in open literature. This is not an exhaustive 

survey, and in particular does not include proprietary and other closed-source methodologies. 

The approaches mentioned here, which are described in more detail in Appendix E, have several 

themes in common, including an enumeration of the critical IT assets and data, consideration 

of threats (e.g. in terms of vulnerabilities, adverse events, or adversary capabilities), expert 

scoring (e.g. estimated likelihood of event occurrence, level of adversary effort to cause the 

effect, consequence/mission event impact), and methods which combine the scores in order to 
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identify high priority threats. For purposes of the research gap we seek to fill, the key take-away 

about threat-informed cyber risk assessment is this: most existing cyber risk assessment 

methods stop short of recommending mitigations. 

Mitigation Optimization Analysis 

A number of authors have tackled the problem of mitigation optimization analysis; that 

is, taking a longer list of possible mitigations and prioritizing or down-selecting to a shorter list 

based on a set of defined objectives. These methods are summarized below and described in 

more detail in Appendix F.   

Multi-criteria decision-making (MCDM), also known as multiple-criteria decision 

analysis (MCDA), is widely applied to security portfolio2 selection (Barnard & von Solms, 

2000; Fenz et al., 2011; Patterson, Nutaro, Allgood, Kuruganti, & Fugate, 2013; Sawik, 2013; 

Schilling & Werners, 2016; Weishäupl, 2017; Yevseyeva, Basto-Fernandes, Emmerich, & Van 

Moorsel, 2015). MCDM is used to analyze problems where measures of costs and benefits exist 

and can be traded off to arrive at the best solution under the given constraints. Some MCDM 

techniques applied to mitigation optimization include or are based on fuzzy set theory (Otero, 

2014), multi-attribute utility theory (i.e. value functions, knapsack strategy) (Fielder, Panaousis, 

Malacaria, Hankin, & Smeraldi, 2016; Panaousis, Fielder, Malacaria, Hankin, & Smeraldi, 

2014; Shapasand, Shajari, Golpaygani, & Ghavamipoor, 2015; Smeraldi & Malacaria, 2014), 

evolutionary multi-objective optimization (EMO) also known as genetic algorithms (Gupta, 

Rees, Chaturvedi, & Chi, 2006; Kiesling, Ekelhart, Grill, Strauss, & Stummer, 2016; Kiesling, 

Strauß, & Stummer, 2012; Rees, Deane, Rakes, & Baker, 2011; Sarala, Zayaraz, & 

Vijayalakshmi, 2016; Viduto, Maple, Huang, & López-Peréz, 2012), analytic hierarchy process 

(AHP) (El-Gayar & Fritz, 2010), grey relational analysis (GRA) (Breier & Hudec, 2013), 

simple additive weighting (SAW) (Llanso, 2012; Llansó, McNeil, & Noteboom, 2019), the 

technique for order preference by similarity to ideal solution (TOPSIS) (Breier & Hudec, 2013), 

and preference ranking organization method for enrichment evaluation (PROMETHEE) (Lv, 

Zhou, & Wang, 2011). In addition, several authors combine game theory with MCDM 

techniques for security portfolio selection (Fielder et al., 2016; Panaousis et al., 2014; Wang & 

                                                 

2 An organization’s chosen list of mitigations is often referred to as a security portfolio. 
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Zhu, 2016). For purposes of the research gap we seek to fill the key take-away about mitigation 

optimization analyses is this: These approaches all assume that a starting set of possible 

mitigations exists on which to apply the prioritization/selection method; however, as we noted 

above, cyber risk assessment methods stop short of providing this data. A method to produce 

this initial mapping of potential mitigations to threats is the gap the current research seeks to 

fill. 

Threat Taxonomies and Control Catalogs 

A number of control catalogs exist in practice today, such as the Payment Card Industry 

Data Security Standards (PCI-DSS) (PCI Security Standards Council, 2015), HIPPA Security 

Standards (Centers for Medicare and Medicaid Services, 2007), and NIST Security and Privacy 

Controls for Federal Systems (National Institute of Standards and Technology, 2012). These 

catalogs are intended to prescribe controls for compliance with security mandates, however, 

they do not map the controls to the specific threats they counter. Likewise, a number of threat 

frameworks exist in practice, including the Common Attack Pattern Enumeration and 

Classification  (MITRE, 2017a), Carnegie-Mellon taxonomy of operational cyber security risks 

(Cebula, Popeck, & Young, 2014),  National Intelligence Cyber Threat Framework (National 

Security Agency, 2018), Open Threat Taxonomy (Enclave Security, 2015), and others 

(European Union Agency For Network And Information Security, 2016; Launius, 2018; 

Simmons, Shiva, Bedi, & Dasgupta, 2014). Of these, the CAPEC and Carnegie-Mellon 

frameworks contain representative mappings of threats to mitigations, but there is currently no 

published comprehensive source of threat-mitigation mappings.  

Document-Driven Decision Support Systems 

Casting our research problem as an information retrieval (IR) problem gives rise to three 

veins of DSS research for investigation: (1) using classification to judge whether each item in 

the mitigation corpus should be included in or excluded from a particular threat’s mitigation 

set, (2) using a retrieval/ranking model such as commonly used in search engines to enumerate 

mitigations ranked according to their likelihood of relevance to the threat, and (3) some 

combination of the two. Lacking existing research dealing specifically with automated 
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matching of mitigations to cyber threats, our discussion here considers supportive analogous 

research. 

Classification. Classification is a supervised machine learning technique in which a 

new item is assigned to its appropriate category by a classifier, an algorithm or model which 

has been trained to make such decisions after learning from training data consisting of items 

whose categories are already known. Classification-based document selection has been 

researched extensively in the context of the medical systematic reviews (SRs) underpinning 

evidence-based medicine. A number of studies have demonstrated the viability of using 

supervised machine learning classification to reduce manual workload in the abstract triage 

process for updating existing SRs (Aphinyanaphongs & Aliferis, 2003; Bañez et al., 2016; 

Bekhuis & Demner-Fushman, 2012; Bekhuis, Tseytlin, Mitchell, & Demner-Fushman, 2014; 

Cohen, Hersh, Peterson, & Yen, 2006; Frunza, Inkpen, & Matwin, 2010; García Adeva, Pikatza 

Atxa, Ubeda Carrillo, & Ansuategi Zengotitabengoa, 2014; Howard et al., 2016; Liu, Timsina, 

& El-Gayar, 2016; Matwin, Kouznetsov, Inkpen, Frunza, & O’Blenis, 2010; Mo, Kontonatsios, 

& Ananiadou, 2015; Shemilt et al., 2014; Timsina, Liu, & El-Gayar, 2016). Updating SRs has 

historically entailed a labor-intensive, time-consuming, multi-step process in which subject 

matter experts attempt to identify and down-select from the massive corpus of medical research 

all research pertinent to a particular medical question so that the research can be synthesized to 

answer the question. During the initial stage in the selection process, known as broad screening 

or abstract triage, human experts must review and make relevant/not-relevant judgments on 

many thousands of abstracts returned by an initial keyword search. The goal of the triage stage 

is to exclude those abstracts that are obviously irrelevant, but include the rest for further 

consideration in the second stage. The triage stage demands high recall3 (>95% (Cohen et al., 

2006)) to ensure all relevant research is considered, but is less stringent about precision, 

tolerating a few false positives. This reflects the customs of the problem domain: It is 

unacceptable to overlook research relevant to the problem for this could impact the overall 

quality of the SR. On the other hand, it is tolerable to include some potentially irrelevant 

documents because these will be screened out by human reviewers in the next stage of the 

                                                 

3 Recall is the ratio of relevant records retrieved to the total relevant records in the corpus. Precision is the ratio 

of relevant records retrieved to total records retrieved (Singhal, 2001). 
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process (Matwin et al., 2010). Comprehensiveness and currency of SRs is confounded by the 

large, continually-evolving, and highly technical nature of medical literature. In addition, SRs 

typically operate on a large corpus of candidate studies where only a small percentage (e.g. 

<15%) will ultimately be true positives selected for inclusion in the synthesis (Kontonatsios et 

al., 2017; Shemilt et al., 2014), a condition known as imbalance.  

The document selection process for SRs bears stark similarities to our research problem 

in which we have a large corpus of continually-evolving, highly technical cybersecurity 

literature and we want to present mitigation documents for a given threat while omitting those 

that are extraneous. Moreover, like SRs, threat-mitigation matching operates on an imbalanced 

corpus of candidate mitigations where only a small percentage are relevant to any particular 

threat. A key similarity between selecting literature for a SR and selecting mitigations for a 

threat may be the value judgment that high recall is more important than high precision. We 

elect to favor recall in the precision-recall tradeoff for the same reason this choice was made in 

the case of medical SRs and we assume that a few false positives can be manually screened out, 

if necessary.  

Ranked Retrieval. Commonly used in search engines, ranked retrieval considers 

relevance between a query and a document, not as a binary concept, but as a matter of degree. 

A retrieval model assigns a relevance score to each query-document pair via a ranking function. 

When ordered in descending sequence by the relevance score, those documents at the top of the 

list are the documents deemed to be most relevant to the query. Unfortunately, for purposes of 

making binary relevant/non-relevant decisions using ranked results, one must determine a cut-

off point in the ordered list. This is a challenging problem because, in general, the number of 

relevant results expected  is not known a-priori (Manning, Raghavan, & Schutze, 2009). 

Similarity-based text retrieval models judge the relevance of document to a query in a 

manner that does not require all the words in the query to be present in the document. The 

Vector Space Model is a well-known document representation scheme in text retrieval. Each 

document is represented as a vector of the document words or terms where each word has a 

weight indicating its overall importance in the document. Some common weighting schemes 

are binary (term presence or absence), term frequency (TF, the number of times the term appears 

in the document), and term frequency/inverse document frequency (TFIDF), a technique that 

counterbalances the term frequency with a factor accounting for the total number of documents 
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that contain the term. When aggregated, the document vectors form a term-document matrix 

that can be manipulated using matrix mathematics. The Vector Space Model represents the 

corpus of document vectors in a common vector space in which the similarity between two 

documents or between a document and a query can be calculated via a distance measure known 

as cosine similarity (Manning et al., 2009; Turtle & Croft, 1992). The result of testing the 

similarity of a query to a corpus of documents will be a ranked ordering of the documents from 

most to least similar based on the individual words in the documents. 

Latent semantic analysis (LSA) (also called latent semantic indexing (LSI) in some 

contexts) is another similarity-based retrieval model. It a statistical technique that attempts to 

address language complexity, such as synonymy, by considering the term-document 

relationships as a statistical distribution representing an “underlying latent structure” of the 

document corpus (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990). In LSA, the 

term-document matrix is transformed via singular-value decomposition (SVD) resulting in a 

semantic space representing the “major associative patterns” (Deerwester et al., 1990) in the 

corpus. This semantic space contains the “best K orthogonal factors” (Foltz, 1990) which 

approximate the original document matrix and, importantly, the most closely associated terms 

and documents are clustered near one another such that terms that did not appear in a given 

document (e.g. synonyms) may still be located near the document due to overall word 

association patterns. Deerwester et al. observed substantial improvement for LSA-based text 

retrieval over keyword-based retrieval. They also noted as a practical matter that the 

transformed matrix is substantially smaller than the original term-document matrix, requiring 

only 50-150 factors compared with the hundreds or thousands of words typical of a large 

document corpus.  

Several studies analogous to our present research utilized similarity-based ranked 

retrieval to perform technical document matching, two based on keywords and one based on 

LSA. Swanson et al. (Swanson & Smalheiser, 1997) developed an automated method based on 

keyword searching for linking complementary sets of articles in the MEDLINE database. In 

another study, Goldrich et al. (Goldrich et al., 2014) applied search engine technology, 

including Apache Lucene (Apache Foundation, 2018), keyword matching, key phrases, query 

expansion with synonyms, and the WordNet lexical database (Miller, 1995; Princeton 

University, 2017) to match cybersecurity requirements stated as text to descriptions of research 
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projects in order to point out research aligned with the requirements. Finally, Foltz (Foltz, 1990) 

applied LSA to find new relevant documents in a corpus based on an existing profile of 

documents that had been previously deemed relevant. Foltz first constructed a semantic space 

of articles a priori deemed relevant. To determine if a new document was relevant, it was first 

transformed to the semantic space of relevant articles. Then, if its nearest neighbor was another 

relevant document or if it was neighbors with more relevant articles than non-relevant articles 

it was relevant. Using the nearest neighbor approach and averaging the precision at 3 levels of 

recall (.25, .5, and .75), Foltz’s LSA-based method demonstrated between 13% and 25% 

improvement in retrieval results on three data sets over keyword matching based on 190-240 

dimensions.  

Hybrid Approaches. A few authors have explored the combined use of classification 

and ranked retrieval techniques in text mining. For example, Manning et al. (Manning et al., 

2009) discussed an approach for machine-learned relevance scoring where each training data 

instance consists of query terms (q), a document (d) reference, a binary judgment of the 

relevance of d to q, the cosine similarity (s) of d and q and the query term proximity between d 

and q. Nakamoto (Nakamoto, 2011) discussed a concept similar to Manning et al., except using 

Okapi BM25 (Robertson, Walker, Jones, Hancock-Beaulieu, & Gatford, 1994) and PageRank 

scores as features (instead of relevance and cosine similarity) and returning a relevance ranking 

instead of a binary decision. Wiener et al. (Wiener, Pedersen, & Weigend, 1995) utilized LSI 

for feature reduction instead of term selection (picking a representative subset of the original 

terms) to identify topics using a neural network classifier in a corpus consisting of more than 

11,000 unique terms. Gee (Gee, 2003) described a method for classifying email as spam or not-

spam using an  “LSI-inspired” ensemble classifier implemented in three stages, where the stages 

are similar to Foltz (Foltz, 1990). Gee’s method achieved very high (>0.98) precision and recall 

on both the spam and not-spam classes when tested using just the nearest neighbor classification 

strategy, just the majority strategy, and the two strategies in ensemble with the tie-breaker logic. 

IR Evaluation. The ability to evaluate the effectiveness of a machine learning approach 

is crucial to ensuring that the results are useful and not just a manifestation of chance. As we 

have cast our research as an information retrieval problem, we now consider IR evaluation 

methods. The documents in the corpus will fall into one of four categories at the conclusion of 

a particular query: retrieved and relevant or true positive (TP), retrieved but not relevant or false 
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positive (FP), not retrieved but relevant or false negative (FN), and not retrieved/not relevant 

or true negative (TN). Accuracy, precision, and recall are the most common measures of 

effectiveness in IR. They are all proportions with values between 0 and 1 inclusive based on 

the above categorization of retrieval results (Manning et al., 2009). Powers points out a bias in 

that these common measures tend to understate a method’s ability to correctly identify non-

relevant instances (Powers, 2007). The ability to rule out non-relevant instances can be a useful 

measure of workload reduction. 

Accuracy is the proportion of correctly classified items (TP + TN) to all items (TP + TN 

+ FP + FN). It is generally a poor measure of IR effectiveness because it does not distinguish 

success between the relevant (R) and non-relevant (NR) document classes. In particular, 

accuracy is heavily swayed in cases where the data is imbalanced, which is almost always the 

situation in IR. For example, a method that arbitrarily classifies all documents as NR would 

appear highly accurate in a corpus with 90% NR documents (Manning et al., 2009) even though 

it would incorrectly classify all the R documents. 

Precision is the proportion of retrieved and relevant items (TP) to all retrieved items 

(TP + FP) also called confidence in some fields. Recall is the proportion of retrieved and 

relevant items (TP) to all relevant items (TP + FN) also called true positive rate or sensitivity. 

There is an inverse relationship between precision and recall such that when one goes up the 

other goes down. The weighted harmonic mean of precision and recall (F-measure) is a measure 

used to trade-off precision and recall. The balanced F measure weights precision and recall 

equally but weights can be set to emphasize one over the other if desired. The area under a 

precision-recall curve (AUC) and the balanced F-measure are often used as measures of IR 

effectiveness when balanced performance is sought (Manning et al., 2009; Powers, 2007; 

Raghavan, Jung, & Bollman, 1989).  

Because an IR query commonly results in a ranked list of retrieved results, the expected 

number of which is not known in advance, computation of a single overall precision and 

especially recall can be challenging. In IR precision/recall data points can instead be considered 

at each new relevant document in the ranked list. This gives rise to measures such as R-precision 

or precision at a selected recall value (P@R or P(R), e.g. P(R=0.9)), and precision at rank (P@K 

or P(K)), which is the precision calculated assuming a cut-off at a fixed location in the ranked 

list. In user-facing search applications, it is widely accepted that the user generally only looks 
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at the first page of search results; hence, P@K is often used to measure search effectiveness in 

user-facing search applications. Because of the arbitrary fixed cut-off, P@K does not take into 

account the variability in number of relevant results and thus it can be skewed when the actual 

number of relevant entries is much greater or less than the fixed cut-off. R-precision 

compensates for this weakness of P@K, essentially by computing P@K where K is the number 

of relevant entries that must be returned to achieve the desired recall (Manning et al., 2009; 

Raghavan et al., 1989). 

Sensitivity and specificity are measures used in fields such medicine and behavioral 

science to judge the effectiveness of diagnostic tests. Sensitivity (or equivalently, true positive 

rate, recall, probability of detection) is the proportion of true positives to all positive instances 

or the extent to which actual positive instances are not ignored. In contexts where the objective 

is to correctly identify all positives, such as medicine, recall is a primary evaluation metric 

(Powers, 2007). Specificity (true negative rate) is the proportion of true negatives to all negative 

instances or the extent to which actual negative instances are classified as such  (Altman & 

Bland, 1994). In contexts where the objective is to rule out large swaths of negative instances, 

such as SRs, specificity can be an effective evaluation measure. The fallout (or false positive 

rate) is the proportion of false positives to all negative instances, i.e. the probability that a non-

relevant document will be retrieved. 

The best evaluation measures can only be chosen by considering the requirements of 

the particular IR scenario. We discuss the evaluation methods we have chosen for our research 

in Chapter 3. In some applications, recall may be more important than precision (e.g. medical 

SRs and threat-mitigation matching) or vice versa. Recall should be emphasized when it is 

essential not to miss any relevant documents and some false positives can be tolerated. On the 

other hand, precision should be emphasized when a subset of documents is sufficient to answer 

the request (Manning et al., 2009). Finally, according to Raghavan et al. the “usefulness of a 

retrieval system is determined to a great extent by how closely it can characterize the 

dichotomy” of relevant vs non-relevant documents for its intended purpose (Raghavan et al., 

1989). 
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Summary 

In the Literature Review we discussed threat-informed cyber risk assessment and 

mitigation selection optimization approaches to delineate the boundaries of the gap that our 

research addresses. Casting the research problem as an information retrieval problem, we 

identified pertinent research upon which to build. This includes a robust body of work applying 

classification techniques to medical systematic reviews, a modest body of work applying 

similarity-based techniques to technical document matching, and examples of combining the 

two. Finally, we explored the literature supporting evaluation methods in DSS and IR. In 

subsequent chapters we will refer back to this existing theory as a basis for our research. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

Design Science Research 

We selected the Design Science Research Model (DSRM) (Hevner & March, 2004; 

Peffers et al., 2007) as the research framework within which to organize our research. DSRM  

attempts to solve so-called “wicked problems” through the development and evaluation of IT 

artifacts (Vaishnavi & Kuechler, 2004).  

 

Figure 2. DSRM Model from (Peffers et al., 2007) 

Peffers et al. describe an iterative process with six stages as illustrated in Figure 2. In 

Table 1, we enumerate the DSRM stages and demonstrate the alignment of our research to 

them. The DSRM is appropriate for this research because we want to create an IT artifact to 

solve a challenging problem for which a solution will contribute to theory and practice.  

Table 1. DSRM Stages and Alignment 

Stage  Alignment 

1 Identify and 

motivate the 

problem 

In Chapter 1 we identified and motivated the threat-

mitigation matching problem and discussed our proposed 

contributions. These are crucial steps in the DSRM because 
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Stage  Alignment 

they establish problem relevance, where relevance is judged 

in the context of a “heretofore unsolved and important” 

problem for a “constituent community” of IS practitioners 

(Hevner & March, 2004). 

2 Define objectives of 

a solution 

In Chapter 3 (this chapter) we define the objectives of a 

solution to our research problem. The objectives provide a 

preview of the desired end state and set the stage for artifact 

evaluation. 

3 Design and develop 

the artifact 

iteratively and based 

on existing theory 

In Chapter 2, we discussed pertinent literature. The DSRM 

requires that we draw upon existing research as the basis for 

the artifact; the Literature Review paved the way for doing 

so. Later in Chapter 3 (this chapter) we discuss our iterative 

approach to design and development, synthesizing from the 

cyber and DSS domains. 

4 Demonstrate the 

artifact by using it to 

solve an instance of 

the problem 

In Chapter 4, we describe the artifact (method) and discuss 

the results of applying instantiations of the method to solve 

five test instances of the problem. 

5 Evaluate how well 

the artifact solves 

the problem; iterate 

back to design 

In Chapter 4, we evaluate the effectiveness of the artifact 

using evaluation measures drawn from the literature. In 

Chapter 5, we summarize our contributions and propose 

future work. These discussions set the stage for future 

iterations of design in the spirit of the DSRM. 

6 Communicate results 

to scholarly and 

practitioner 

communities 

This dissertation and the associated defense presentation 

satisfy the DSRM requirement for communication. We 

designed the artifact using rigorous, practitioner-accepted 

modeling techniques to facilitate communication to both 

scholarly and practitioner communities. 
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Objectives of a Solution 

Defining the objectives of a solution to the research problem at hand is an important 

predecessor to artifact design because it previews the desired end state. Objectives also provide 

the foundation on which to build an evaluation strategy. A solution to our research problem 

described above will: 

• Process existing English language text documents where each separately describes 

either a threat or a mitigation (e.g. threat models, practice manuals, control catalogs, 

vendor product white papers) 

• Provide an automated method for recommending (matching) relevant mitigations when 

presented with a threat 

• Match a high percentage of relevant mitigations for a given threat while avoiding 

selection of non-relevant mitigations 

• Accommodate (be extensible to) new and evolving threats and mitigations,  

• Provide utility to cybersecurity experts in mitigation selection, and 

• Be able to be used in a system that allows for reuse of the artifact and the matches 

produced by the artifact. 

Theoretical Background 

The DSRM emphasizes design and evaluation rigor through building upon existing 

research from the literature. Because knowledge about threats and mitigations is largely 

expressed in unstructured or semi-structured text documents, our idea is to cast the threat-

mitigation problem as an information retrieval problem, using the threat as a query and the 

mitigation documents as the corpus to be searched, and then build on applicable DSS research. 

Applying techniques described in the literature we considered artifact designs from three 

categories for the threat-mitigation matcher: 

1. Classification. Drawing from the medical SRs research, approaches based on 

classifying mitigation documents as relevant or not relevant to a given threat 

2. Ranked Retrieval. Drawing from (Swanson & Smalheiser, 1997), (Goldrich et al., 

2014), and Foltz (Foltz, 1990), approaches based on ranked retrieval, and 
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3. Hybrid. Drawing from (Manning et al., 2009), (Nakamoto, 2011), and (Gee, 2003), 

hybrid approaches that combine techniques from ranked retrieval in conjunction with 

classification. 

In Chapter 4, we describe an iterative process wherein we experiment with several 

artifact instantiations in each design category. We discuss the results of these trials, which 

instantiations we decided to advance, which we left behind, and why, with evaluation criteria 

drawn from the theoretical bases discussed in the Evaluation section of the Literature Review. 

Design and Development of the Artifact 

The nature of design is best described as a cycle consisting of brainstorming ideas and 

testing them against the solution objectives (Simon, 1997), continuously refining ideas until the 

desired end state is reached. Prototyping, solution validation, and feedback are emphasized, 

aligning with the iterative nature of Design Science Research and, importantly, helps 

distinguish Design Science Research from routine professional design (Hevner & Chatterjee, 

2010). In Chapter 4, we discuss highlights of the iterative design process we followed during 

development of our artifact. 

The DSRM requires that artifact be constructed and evaluated with rigor (Hevner & 

March, 2004). To promote design rigor, we have drawn from research and practice in the cyber 

risk assessment, mitigation optimization analysis, and DSS domains, as discussed in the 

preceding Literature Review. Moreover, we represented design using the unified modeling 

language (UML) (Booch, Rumbaugh, & Jacobson, 2000) and entity-relationship drawings 

(ERD) (Chen, 1976). These are rigorous methods for modeling software that are commonly 

accepted and understood in the IS practitioner community. In addition, we designed the artifact 

using object-oriented software practices intended to increase modularity, improve quality, and 

make designs and software more resilient to evolution. The artifact produced by this research 

is described in Chapter 4. An architecture for the practical use of the artifact is described in 

Appendix C. We touch on evaluation rigor briefly here and more fully in Chapter 4. 
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Demonstration and Evaluation Plan 

In the DSRM, demonstration and evaluation work together to show that the artifact 

effectively solves the problem. Hevner and March state a number of evaluation methods that 

top the rigor threshold, classifying them into the following categories: observational (e.g. case 

or field study), analytical (e.g. quantitative comparisons, such as of time or cost), experiment 

or simulation, testing, and descriptive (e.g. argument or scenarios) (Hevner & March, 2004). In 

the present research, we demonstrate instantiations of the artifact by applying them to a corpus 

based on the Common Attack Pattern Enumeration and Classification (CAPEC) dataset version 

2.11 (MITRE, 2017a). Table 2 summarizes our evaluation plan, including artifact evaluation 

criteria aligned with the solution objectives. To ensure evaluation rigor, the evaluation methods 

are drawn from among those given by Hevner and specific performance measures are drawn 

from the DSS and IR domains. Note that the most important objective is the third one as the 

others are only germane after the artifact achieves satisfactory matching performance. Utility is 

also important as we wish to solve a practical problem. The results of artifact evaluation are 

discussed in Chapter 4. 

Table 2. Solution Objectives with Evaluation Methods and Criteria 

 

Objective Evaluation Criteria 

Process existing English language text 

documents where each separately 

describes either a threat or a mitigation. 

Testing: Demonstrate that the instantiated 

artifact accepts English language text 

documents about threats and mitigations. 

Provide an automated method for 

recommending (matching) relevant 

mitigations when presented with a threat. 

Testing: Demonstrate that the instantiated 

artifact will propose matching mitigations 

when a threat is given. 

Match all or nearly all of the relevant 

mitigations for a given threat while 

avoiding selection of non-relevant 

mitigations. 

Analytical: Achieve acceptable performance 

measures on test data. We emphasize high 

recall to retrieve nearly all relevant 

mitigations. We emphasize moderate to high 

precision and low false positives to avoid 

selecting non-relevant mitigations. 
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Objective Evaluation Criteria 

Accommodate (be extensible to) new and 

evolving threats and mitigations. 

Descriptive: Describe how the artifact is 

extensible for future threats and mitigations 

Analytical: Achieve acceptable performance 

measures on test data. 

Provide utility to cybersecurity experts in 

mitigation selection. 

Descriptive: Integrate results of performance, 

extensibility, and reuse evaluations to make a 

logical argument about utility. We emphasize 

high sensitivity to rule out most non-relevant 

mitigations leading to reduced workload for 

the CSE. 

Be able to be used in a system that allows 

for reuse of the artifact and the matches 

produced by the artifact. 

Descriptive: Describe how the artifact is 

reusable and how the knowledge produced by 

the artifact is reusable. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

Data Source Description 

We used version 2.11 of the Common Attack Pattern Enumeration and Classification 

(CAPEC) dataset (MITRE, 2017a) as the data source for this research. The CAPEC dataset is 

available for download and can also be browsed online (MITRE, 2017b). CAPEC is an existing 

corpus of attach patterns (i.e. threats) expressed in English language documents packaged in an 

XML structure. Although mitigation mapping is not the focus of CAPEC, some attack patterns 

include illustrative mitigations. CAPEC contains a hierarchical representation of attack 

patterns, where the highest level consists of meta attack patterns. These are architecture/design-

focused and not based on specific technologies or implementations. Each meta pattern 

decomposes into several standard attack patterns, which are more detailed and include 

information about the goal of and technique used in the attack. Each standard pattern 

decomposes into detailed patterns, which are the most granular. For our purpose, we focus on 

the standard patterns, which strike a good middle ground between the meta and detailed patterns 

and are most representative of the level of specificity for threats in the cyber risk assessment 

domain. There are 127 standard threats in CAPEC. There are approximately 600 mitigation 

texts in the corpus. The number of mitigations mapped to each standard threat varies from 0 to 

about 10. These mappings are intended to be representative and not comprehensive as threat-

mitigation mapping is not the intent of CAPEC. 

CAPEC has existed in the cybersecurity community since 2007. We consider the 

CAPEC threat-mitigation mappings to be ground truth and we recognize that the quality of the 

data is key to our results. While we do not have objective evidence of the quality of the CAPEC 

threats, mitigations, and mappings, we accept CAPEC’s heritage as an indicator of sufficient 

quality for this proof of concept research. By personal inspection, we searched CAPEC for 

threats which had at least a paragraph of descriptive text and about 10 relevant mitigations for 

use as labeled data. We were able to find five threats and associated mitigations which are 
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suitable test cases for our purpose. We also found some weaknesses in this data source, which 

we discuss below. 

We used XML parsing to decompose CAPEC into its component threat documents, 

mitigation documents, and mappings between the two. During parsing, we preserved selected 

information from the document structure (e.g. title, description, threat category) per related 

work (Cohen, 2008; Matwin et al., 2010; Mo et al., 2015; Small, Wallace, Brodley, & 

Trikalinos, 2011) which suggests that certain parts of the document may yield impactful 

features for classification. The following data was extracted from CAPEC for threat documents: 

• ID # 

• Title (free text) 

• Description (free text) 

• Abstraction level (meta, standard, detailed) 

• Domain of attack 

• Mechanism of attack 

• Parent attack pattern 

• Immediate children attack patterns 

The following data was extracted from CAPEC for mitigation documents: 

• ID # 

• Title (constructed by taking first 75 characters of the description) 

• Description (free text) 

The following data was extracted from CAPEC for existing threat-mitigation mappings. 

A subset of these mappings was used as labeled data for training models and the rest was used 

for testing. 

• Threat ID # 

• Mitigation ID # 

• Relevant/not relevant indicator 
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Strengths of the CAPEC data for our purpose include detailed threat descriptions, 

metadata including categorical and hierarchical relationships, open4 accessibility, and available 

threat-mitigation mappings. The CAPEC data has several key weaknesses when considered for 

our application. We highlight those weaknesses and the work-arounds we implemented here. 

First, the threat documents are more robust in length and content than the mitigation documents. 

Since we want to treat the threat as a query, the opposite situation would have been better. 

Second, the data is imbalanced; that is, there are a relatively small number of relevant mitigation 

instances per threat compared to non-relevant instances. We lessened this weakness by drawing 

in some additional mitigations from other sources. Third, and perhaps most concerning, the 

quality and style of the prose within the threat and mitigation documents varies significantly 

from one document to the next. For document-driven DSS methods to produce good threat-

mitigation matches, the threats and mitigations must both be well-described. We addressed this 

weakness by selecting a handful of the best quality threat documents from CAPEC to use as 

our demonstration cases. Fourth, we found a few situations where, due to human error, the 

mappings were erroneous. Since we rely on the mappings as ground truth, we corrected the 

errors manually. Finally, we had initially hoped to utilize the Domain of Attack and/or 

Mechanism of Attack metadata in CAPEC as features to support classification in a manner 

similar to the way the Medical Subject Headings (MeSH) (Lowe & Barnett, 1994) support 

classification for medical SRs (Timsina et al., 2016). Unfortunately, the existence of this 

metadata within the CAPEC proved to be insufficient for our purpose, so we had to abandon 

this idea.  

Although the CAPEC weaknesses represent minor inconveniences, they do not 

invalidate our research because our research is not specifically about the CAPEC data; it is 

more generally about the concept of threat-mitigation document matching. CAPEC is simply a 

vehicle, a convenient source of labeled data (the only non-proprietary source we could find). 

Finally, we note that none of the above criticism is meant to detract from the value of the 

CAPEC data for its original intended purpose. We acknowledge their efforts to produce it and 

thank them for making their work openly available for use. 

                                                 

4
 “The MITRE Corporation (MITRE) hereby grants you a non-exclusive, royalty-free license to use Common 

Attack Pattern Enumeration and Classification (CAPEC™) for research, development, and commercial purposes. 
Any copy you make for such purposes is authorized provided that you reproduce MITRE’s copyright designation 
and this license in any such copy.” (MITRE, 2017a) 
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Iterative Design 

In this section, we discuss highlights of the iterative design and experimentation that led 

to our artifact and instantiations.  At the outset, we had three design concepts for the threat-

mitigation matcher: classification, ranked retrieval, and a hybrid of the two. We explored a 

number of designs, including various classifiers, feature sets, and feature reduction techniques. 

Details of the design iterations are contained in Appendix D and summarized in the next few 

sections.  

We used precision, recall, and the rate of false positives to judge the merits of each 

design. We chose these measures because they are among the ones most commonly used to 

compare text classifiers and retrieval models. In mitigation selection, omitting a relevant 

mitigation (recall error or false negative) means a useful mitigation could be overlooked. On 

the other hand, including a non-relevant mitigation (precision error or false positive) means the 

CSE may be presented with a mitigation that does not actually protect against the threat. While 

both are undesirable situations, we emphasize recall (i.e. to present all relevant mitigations) in 

our artifact with the assumption that a few false positives are tolerable and we can rely on the 

CSE to reject them during the screening phase (similar to the process for medical SRs).  

Tool Choices 

For some of the classification designs, we used the Waikato Environment for 

Knowledge Analysis (Weka) data mining toolkit presented by the University of Waikato 

(Kaluža, 2013). We selected this toolkit because it is well-known in data mining, remains under 

active development and use, has a robust user interface for experimentation, and also has a Java 

application programming interface (API) which we found attractive for practical purposes. In 

particular, we used the Weka SMO classifier, which implements the sequential minimal 

optimization algorithm for training a support vector classifier as described in (Platt, 1998). We 

also utilized scikit-learn, a Python machine learning environment (Pedregosa, Weiss, & 

Brucher, 2011) developed under the auspices of INRIA (“About us,” 2019) for some 

classification trials. We selected this toolkit because it is well-known in data mining, remains 

under active development and use, is well-documented, has a robust API, and supports some 

additional evaluation methods beyond what we could obtain from Weka. In scikit-learn we used 
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C-support vector classification (SVC). Both Weka SMO and scikit-learn SVC are based on 

LIBSVM (Chang & Lin, 2018), the most common SVM library. 

For the keyword/phrase-based designs, we used the keyword/phrase extraction library 

implemented by Paco Nathan (Nathan, 2010). It is based on the TextRank algorithm described 

in (Mihalcea & Tarau, 2004).  

For some of the ranked retrieval designs, we used the Apache Lucene (Apache 

Foundation, 2013) implementation of the Vector Space Model. We selected Apache Lucene 

because it is well-known, actively developed, well-documented, and has a robust Java API. For 

other ranked retrieval trials, we used the Gensim topic modeling toolkit presented by Radim 

Rehurek (Rehurek, 2018). We selected Gensim primarily for its LSA implementation. It is well-

known, actively developed, and well-documented. It is implemented in Python and has a robust 

API that facilitates integration into an overall architecture. 

 “One for All” Designs 

We initially wondered if there was a way to implement a “one for all” approach where 

a single matcher would determine relevant mitigations for any threat contained in the corpus. 

We explored this concept in two hybrid designs, a SVM classifier based on LSA features and a 

three-stage voting classifier also based on LSA (Gee, 2003). These are discussed in more detail 

in Appendix D. Neither of the “one for all” designs produced results better than random 

guessing. Intuition suggests that the relationship between one threat and its relevant mitigations 

may be different from the next threat/mitigations, such that combining many such relationships 

in a single semantic space may dilute the relationships. Thus, we abandoned the “one for all” 

avenue of investigation and proceeded on the “per threat” route.  

“Per Threats” Designs 

Following the medical SR literature discussed in the Literature Review, we started with 

a single threat and some labeled mitigation data that contained instances relevant and not 

relevant to the threat. We had an intuition that the best approach for one threat would also work 

for other threats. In order for the “per threat” approach to solve the problem at hand, we would 

have to eventually train a classifier for each existing threat and likewise for new threats that 
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come along; however, this does not seem like an unreasonable requirement. First, while new 

threats do come along, the set of known threats is relatively stable over time. In the ten months 

since we started this research, the CAPEC dataset has undergone two subsequent releases but 

only two new standard threats have been added to CAPEC in that time. Second, building the 

classifiers can eventually be automated using the API provided by the machine learning toolkits. 

By browsing threats using the online version of the CAPEC dataset (MITRE, 2017b), 

we selected threat 49, password brute force guessing, as our first test case. We selected this 

threat because it had robust descriptive text and at least 10 relevant mitigations in the labeled 

data. Figure 3 shows a summary of the precision, recall, and false positive rates (cross-

validation statistics) for several “per threat” designs. The bracketed [C], [TR], and [H] in the 

design names indicate the design concept: classification, text retrieval, or hybrid. For the 

classification and hybrid approaches, we show the cross-validation statistics for both the R and 

NR class. For the text retrieval designs, it is customary to evaluate based just on relevant results 

retrieved.  

 

Figure 3. Summary of “Per Threat” Iterations 
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“Per Threat” Classification 

We initially tested several classifiers before finally deciding to go forward with SVM. 

SVM has been shown to perform favorably for text classification, especially when the number 

of positive instances per category is small (Platt, 1998) and the feature set is large (Joachims, 

1998).  We discuss our selection of SVM further in the upcoming Artifact Design and Rationale 

sections. We experimented with two classification strategies for the “per threat” approach, one 

using the full text of the mitigations and the other using threat keywords/phrases. 

Full text strategy. We investigated SVM classification of the full mitigation text. We 

performed tokenization of the text, removed numbers and punctuation, converted the text to 

lower case, stemmed, removed stop words, and retained the most frequent 1,000 words as 

TFIDF features plus the R/NR label. The corpus consisted of about 600 mitigation instances, 9 

of which were relevant. We evaluated models with and without an information gain filter for 

feature reduction. As shown in Figure 3, the best of full text models had high precision (0.92), 

no false positives, but unacceptably low recall (0.48) on the R class. On the NR class, precision 

and recall were very high (>0.99) but with a 50% false positive rate. The model was very good 

at correctly classifying non-relevant instances, partially due to the class imbalance in the data, 

but it was not good at correctly classifying relevant instances, likely for the same reason. It 

became apparent that it was necessary to do something about the class imbalance. In addition, 

note that this approach does not utilize any information from the threat; thus, such an approach 

may not generalize to other threats.  

Keywords/phrases strategy. An inspection of the mitigation text for the relevant 

examples revealed that those which were correctly classified in the full-text strategy have in 

common some words from threat 49 suggesting keywords/phrases as a possible way to 

introduce information from the threat text into the approach, while also potentially improving 

the classification results. We used an implementation of TextRank (Nathan, 2010) to 

automatically extract keywords/phrases from the threat text. Some of these keywords/phrases 

were rather rough, so we decided to clean them up manually. Then we converted the 

keywords/phrases to lower case and removed stop words. We made an intentional decision not 

to stem the keywords/phrases, but in some cases we included important variances as keywords 

in their own right. Next, we investigated techniques to address the class imbalance in the data 
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(Cohen et al., 2006; Miwa, Thomas, O’Mara-Eves, & Ananiadou, 2014; Timsina et al., 2016). 

The most obvious solution was to supplement the relevant mitigations, so we extracted about a 

dozen additional documents relevant to threat 49 from the Internet and added them to the data. 

We also performed two-thirds random undersampling of the dominant (NR) class to reduce the 

NR instances and 100% Synthetic Minority Oversampling Technique (SMOTE) (He & Garcia, 

2009; Liu et al., 2016) of the R class to increase the R instances. The SMOTE technique creates 

new instances of the minority class by drawing features from the K (e.g., 5) nearest minority 

neighbors based on Euclidean distance in the feature space. Undersampling can result in 

information loss while oversampling can lead to overfitting; however, due to the extreme 

imbalance, these were risks worth taking. 

For this trial, the features consisted of threat 49 keyword/phrase counts. After balancing, 

the corpus consisted of about 220 mitigation instances, 20 of which were relevant. We used 

several different methods for determining the keyword/phrase counts, including a simple count 

of the times a keyword/phrase appeared in the mitigation document (TF), TFIDF, TF divided 

by the total number of words in the document, and 0 or 1 to indicate the keyword/phrase is 

present or absent in the document. Of these, the presence/absence approach yielded the best 

model. As shown in Figure 3, the best of the keyword/phrase models had high precision (0.97), 

no false positives, and improved recall (0.74) on the R class. On the NR class, precision and 

recall were very high (>0.99) but with a 24% false positive rate. Two important disadvantages 

of this design are as follows: manual intervention is required to extract the threat 

keywords/phrases and recall is still too low. 

We were curious about the potential impact of additional under- and oversampling, so 

we experimented with 3/4 undersampling of the NR class, and 200% oversampling of the R 

class for threat 49. When comparing 3/4 undersampling versus 2/3 undersampling of the NR 

class for the same oversampling percentage (100%) of the R class, the precision, recall, and F-

measure for 2/3 undersampling was better. When we increased oversampling of the R class to 

200%, recall of the R class seemed to improve overall but with a small toll on precision. In the 

200% oversampling case, the model failed to properly classify test samples. These results 

suggest that 3/4 NR undersampling was too much and, when combined with 200% R 

oversampling, the model was becoming overfit to the training data. 
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“Per Threat” Ranked Retrieval 

As a possible alternative to classification, we investigated two ranked retrieval 

approaches to matching relevant mitigations for a given threat similar to (Foltz, 1990; Goldrich 

et al., 2014; Swanson & Smalheiser, 1997). First, we investigated ranking based on the Vector 

Space Model as implemented in Apache Lucene. We also investigated ranking based on Latent 

Semantic Analysis (Deerwester et al., 1990) as implemented in Gensim  (Rehurek, 2018). The 

corpus consisted of about 600 mitigation instances, 25 of which were relevant. As expected per 

the Literature Review, LSA outperformed the Vector Space Model, retrieving 23 of 25 relevant 

items versus 15 of 25. To calculate precision and recall, we cut the ranked list at 25 and used 

the formulas discussed in the Literature Review. The main issue with this approach was lack of 

a general strategy for implementing the R vs NR cut-off point in the ranked list. While the 

number of R instances is known in the training data, it is unknown in the real world, making it 

challenging to choose a generalized cut-off point. 

“Per Threat” Hybrid 

Drawing from (Manning et al., 2009), (Nakamoto, 2011), and (Gee, 2003), we 

experimented with two hybrid approaches that combine ranked retrieval and classification. In 

one approach we used features from an LSA transform of the mitigation text plus the R/NR 

label in conjunction with the SVM classifier. This design was ultimately the one we selected 

for our artifact. We discuss it in greater detail in the upcoming Artifact Design section.  

In the other hybrid approach, we developed a method inspired by Gee (Gee, 2003) and 

Foltz (Foltz, 1990) for classifying mitigations relevant/non-relevant to a given threat. First, we 

used LSA to create a semantic space from a training set of labeled mitigation documents and 

constructed an external index to maintain the known relevance status of each mitigation with 

regard to the threat. Each new mitigation document, Mn, was used as a query against the 

semantic space, returning a ranked list of other mitigation documents similar to Mn from most 

similar to least. The classifier used the ranked list to classify Mn in three stages. First, it was 

classified according to the class of its nearest neighbor in the space (i.e. the existing mitigation 

document whose similarity score is highest). Next, Mn was classified according to class of the 

majority of all results in the ranked list truncated at an arbitrary cut-off, C. Finally, if the 
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majority and nearest neighbor stages agreed, Mn was deemed to be of the nearest neighbor’s 

class. If the majority and nearest neighbor stages did not agree, the dispute was settled by the 

third stage which attempts to detect the skew of Mn towards one class or the other. We 

implemented the first 2 stages using an arbitrary cut-off of top 5, but for the tie-breaker we took 

a simple default. This method yielded precision of 0.63 and recall of 0.83 with 3% false 

positives on the R class and 0.99/0.97/17% for the NR class. Two ties were encountered in the 

NR class indicating the need to consider better tie-breaker logic, but on further experimentation 

we did not observe viable tie-breaking logic so we removed the design from further 

consideration.  

The best of the hybrid models was the design that combined SVM with LSA. This is the 

design on which we ultimately based our artifact. It is discussed in detail in the Artifact Design 

section. The corpus consisted of about 600 mitigation instances before balancing and 100 

instances after balancing, 25 of which were relevant. For threat 49, the method yielded precision 

of 0.95 and recall of 0.76 with 1% false positives on the R class and 0.93/0.99/24% for the NR 

class. Recall was still too low, so we looked to the text to determine options for improvement. 

Analysis of Text 

Success in classifying textual data is heavily influenced by the characteristics of the text 

itself. Having experimented with a few variations, it made sense to pause and look closely at 

the text of threat 49 to gain insights on the matching successes and failures. In the training 

corpus, there were 25 known relevant mitigations for threat 49. Using diagnostic tools, we 

identified the mitigations commonly misclassified in the trials. We investigated these false 

positives (FP) and false negatives (FN) to better understand how they differed from the correctly 

classified instances. One thing the correctly classified instances had in common was that they 

contained text explaining how the mitigation addresses the threat. The false negatives lacked 

this explanatory text. The false positives fell into two categories: (a) some dealt with password 

vulnerabilities but not specifically password brute force guessing and (b) others dealt with brute 

force guessing but not of passwords. We hypothesized that improving the mitigation texts to 

include an explanation of how each one addresses the threat would improve the match results 

by reducing the FNs. Doing so also has practical benefits, allowing the CSE to better understand 

the reason a mitigation is relevant to the threat, to determine its applicability in context, and to 
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better convey the rationale to the decision-makers who fund mitigations. In some applications 

of text mining (e.g. ratings, surveys, news articles), the text “is what it is” and we have to use 

what we find. For threat-mitigation matching, it may be possible to influence the problem space; 

thus, we do have the luxury of recommending improvements to the threat and mitigation 

documents to better support automated matching in the future. With that in mind, we augmented 

the text of the FNs from other sources and then reran selected trials. A comparison of the cross-

validation statistics for models trained on the unimproved and improved text is shown in Figure 

5 and discussed below. In general, models trained with the improved text demonstrated better 

precision and recall in cross-validation statistics than models trained on the unimproved text. 

For threat 49 on the improved text, the method yielded precision of 0.96 and recall of 0.92 with 

1% false positives on the R class and 0.97/0.99/8% for the NR class, leading us to select this 

design as the selected approach for our artifact.  

Artifact Design 

Our artifact is designed to leverage SVM classification and LSA ranked retrieval. The 

selected approach uses as features the R/NR label plus 200 features derived from an LSA 

transform of the mitigation text. Using LSA affords a feature reduction from 1,500 unique 

words in the plain text to 200 LSA topics. Model building is a three-step process, indexing, 

balancing, and training, as illustrated in Figure 4. Note that a model is built for each threat; thus, 

the mitigation documents input into the indexing stage are labeled as R/NR to the specific threat. 

The corpus consisted of about 600 mitigation instances before balancing and 100 instances after 

balancing, 25 of which were relevant. 

In the indexing stage, for each mitigation text, stop words are removed, then the text is 

tokenized, lower-cased, and stemmed. A TFIDF representation of the corpus is computed then 

transformed using Gensim to an LSA semantic space or Latent Semantic Index retaining 200 

topics. This is slightly higher than the number of standard threats in CAPEC and fits with 

optimal LSI dimensionality findings in (Bradford, 2008). Bradford observed favorable results 

when the number of topics was between 200 and 500 for a corpus with millions of documents. 

We selected the low end of Bradford’s range because our corpus is much smaller. The LSA 

semantic space and an index containing the labels are saved for use in similarity queries.  
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During iterative design, we observed that the corpus was highly imbalanced in favor of 

NR instances. In the balancing stage, we utilize LSA similarity scores as a means to balance 

the training data. We query the mitigation LSA space using the full text of the threat document 

(tokenized, stemmed, lower-cased, and transformed to the semantic space) as a query. Then, 

we truncate the training data after the 100th ranked result, retaining the top 100 mitigation entries 

based on similarity to the threat text. This balances the data that will be input into training by 

reducing the number of NR instances. We intuit that this approach is better than simply 

undersampling at random and over-sampling with SMOTE for the following reasons. 

Undersampling at random could drop relevant entries of which we already have too few. 

Oversampling with SMOTE adds new instances to the corpus, but no new knowledge. Because 

the similarity score imparts some knowledge about the semantics of the entries, ingesting the 

most similar entries during training will keep most of the relevant entries and in addition the 

non-relevant entries that are most difficult to discriminate.  

 

Figure 4. Artifact Design and Flow 

In the training stage, we build an SVM classifier using scikit-learn for threat 49 (and 

later for other threats), inputting the top 100 most similar mitigations from the balancing stage 

for threat 49 and their labels into the learning process. The features consist of the LSA 
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representation of each mitigation (200 features) plus the R/NR indicator. We save the models 

for later use to predict the classes of new unlabeled mitigations.  

We utilize the saved model in the predicting stage to classify new potential mitigations 

as relevant or not relevant to the threat associated with the model. First, the text is transformed 

to LSA features relative to the saved LSA space. Then the saved threat-specific classifier is 

applied to label the LSA-transformed mitigations.  Evaluation of the model based on new test 

data is discussed in the upcoming Demonstration and Evaluation section. 

Rationale for Selected Approach 

In this section we discuss our rationale for the design of the selected method. We explain 

why we explored LSA, classification, and a combination of the two, why we selected SVM, 

and why we selected this approach as our method. 

Why LSA? As we saw in the Literature Review section, Latent Semantic Analysis has 

been shown to improve retrieval of relevant documents from a corpus when compared to 

keyword search because LSA accounts for inherent complexities of natural language, including 

synonymy, by evaluating the entire corpus for recurring word patterns. These word patterns are 

used to construct a semantic space (a set of LSA topics) representing the corpus. Each document 

in the corpus is represented according to its degree of similarity with the topics of the space. In 

the literature, LSA is regarded as superior to keyword-based matching. In our experiments, we 

observed that LSA improved the matching of mitigations to threats over keyword-based 

matching, likely due to the cyber documents’ complex word patterns. 

Why Classification? Supervised machine learning classification, is a statistical 

approach for predicting the label or class of a new instance based on a model trained using 

existing instances whose classes are known. The instances are represented by features 

(independent variables) which are used to predict the label (dependent variable). The training 

process analyzes the features and associated labels and detects relationships that allow the class 

to be predicted for new instances represented according to the same features. Two-class 

classification of text documents has been successfully demonstrated in the literature for 

updating medical SRs as well as in our experiments for threat-mitigation matching. Moreover, 

classification does not suffer from the ambiguous cut-off problem encountered in matching by 

text retrieval. 
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Why SVM? SVM has been shown to perform favorably for text classification, 

especially when the number of positive instances per category is small (Platt, 1998). According 

to Joachims (Joachims, 1998), SVM is well-suited to text classification because many topics 

are linearly separable, the typical corpus has high dimensionality but few irrelevant features, 

and each document vector is sparse. Joachims provided experimental evidence that SVM 

“consistently achieved good performance on text classification,” tolerated large feature sets 

without a need for reduction techniques, and did not require parameter tuning. None of our early 

experiments with SVM and other classifiers gave us reason to go against Platt’s and Joachim’s 

findings.   

Why combine LSA and SVM? We used LSA in combination with SVM in our artifact 

for three reasons: (1) to reduce the tendency of the NR class to dominate the model by balancing 

the training data (from >99.99% NR before balancing to about 75% NR after), (2) as a feature 

reduction technique (from >1500 features before the LSA transform to 200 features after), and 

(3) because the LSA features are semantically richer, accounting for synonymy. 

We crafted this design for the above reasons and selected it because of its high precision 

and recall and low false positive rate based on cross-validation statistics, along with the ability 

to fully automate construction of the “per threat” classifiers. The latter is a practical 

consideration; since we will have to build a large number of classifiers for a “per threat” design 

and may want to periodically rebuild the classifiers as new data is labeled, we prefer not to do 

it manually. The next best design was the threat keyword design, but it required manual 

intervention for every threat to extract the keywords.  

Extensibility to Other Threats 

Having seen promising results from the selected design, we wanted to know if these 

results would extend to other CAPEC standard threats. We chose threats 66 (SQL injection), 

134 (email injection), 268 (audit log manipulation), and 593 (session hijacking) according to 

the same criteria we used to select threat 49. Then we compared cross-validation statistics for 

models trained for these five threats before and after text improvement. The left-most five sets 

of bars in Figure 5 show the precision, recall, and false positive rates for models trained for the 

5 test threats before and after the text improvement. In the figure, “U” and “I” stand for 
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unimproved text and improved text, respectively. The rightmost set of bars shows the mean 

precision, recall, and false positive rate averaged across the 5 test threats. At a glance, this figure 

shows that the cross-validation measures are better after the text improvement, except for threat 

268. Because threat 268 had 1.0 precision before the text improvement, precision declined 

slightly as expected when recall went up after the text improvement. As illustrated in Figure 5, 

precision is between 0.86 and 1.0 and recall is between 0.86 and 0.95 for all 5 test threats for 

improved text with false positive rate of 4% or less. Overall, although not a guarantee of 

generality, these classifier cross-validation statistics are favorable.  

 

 

Figure 5. Unimproved vs Improved Text Comparison for 5 Threats 

Solution Architecture and Use Cases 

For the artifact described above and evaluated below to be truly useful to the CSE in the 

context of mitigation selection for cyber risk assessment, it must be incorporated into a system 
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with which the CSE can interact. Appendix B describes the common use cases for the CSE’s 

usage of such a system and Appendix C describes the data model and a high-level architecture 

of such a system as illustrated in Figure 6. The architecture has been designed modularly and 

using object-oriented principles so that any of the threat-mitigation matching techniques 

investigated in this chapter could be incorporated. Some key characteristics of the system 

include the following: (a) provides for models to be saved and reused to label additional 

mitigations (b) persists the threats, mitigations, and known matches in a data store for reuse, (c) 

is extensible to additional threats, and (d) provides a means for the CSE to view, augment, and 

utilize the data. 

 

Figure 6. Solution Architecture 

Demonstration and Evaluation 

Demonstration and evaluation work together to show that the artifact effectively solves 

the problem. Hevner and March (Hevner & March, 2004) state a number of rigorous evaluation 

methods, classifying them into the following categories: observational (e.g. case or field study), 

analytical (e.g. quantitative comparisons, such as of time or cost), experiment or simulation, 

testing, and descriptive (e.g. argument or scenarios). In the present research, we demonstrate 

and evaluate the artifact by applying it to predict the labels for new mitigation documents that 

were held aside and not used for training. The test data set consists of 276 documents, 261 of 
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which were extracted from the CAPEC mitigations for threats other than 49, 66, 134, 266, and 

593, and 15 of which were drawn from the Internet, 3 new relevant mitigations for each of the 

5 test threats. We discuss the evaluation of the artifact in the next few paragraphs by revisiting 

each solution objective stated in the Research Methodology section. Quantitative machine 

learning and IR performance metrics are shown in Figure 7 and Table 3. The evaluation 

conclusions are summarized in Table 4. 

 

Figure 7. Test Results – Improved Text 

Objective: Match most of the relevant mitigations for a given threat while avoiding 

selection of non-relevant mitigations. This is one of the most important objectives as the 

others are only germane after the artifact achieves satisfactory matching performance. As 

mentioned in the design section, we experimented with several artifact designs to see which 

obtained the best performance. Thus, we needed some objective measures for comparison. 

Following medical SRs research, we measured recall, precision, false positive rate, specificity, 

and the number of instances correct and incorrectly labeled to evaluate performance of the 

artifact. We applied cross-validation, using the 10-fold approach to obtain these measures 

during the training stage (Altman & Bland, 1994; Bekhuis & Demner-Fushman, 2012; Bekhuis 

et al., 2014; Cohen, 2008; Cohen et al., 2006; García, Mollineda, & Sánchez, 2014; 
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Jonnalagadda & Petitti, 2014; Liu et al., 2016; Matwin et al., 2010; Mo et al., 2015; Su, 1992; 

Timsina et al., 2016).  

During design, we used the cross-validation statistics output during training to compare 

the model designs, deciding which to advance or leave behind. Although suitable for comparing 

models, these measures are not definitive for new document instances. During the evaluation 

stage, we re-evaluated the classifiers on test data held aside and not used during training as is 

customary in machine learning evaluation. We computed the recall, precision, false positive 

rate, and specificity by comparing the predicted and actual labels for the test instances. Figure 

7 and Table 3 show the test results on the improved text for five threats. These results are 

discussed in more detail in the next few paragraphs. 

Recall that training measures yielded precision and recall > 0.93 for the NR class. This 

foreshadowed excellent discernment of the NR class. Although we are most interested in the R 

class, the model’s ability to discriminate NR instances is also a benefit. Test results for precision 

and recall on the NR class lived up to the promises made by the training statistics. In addition, 

all five models had high specificity (97-100%) meaning at least 97% labor savings for the CSE 

when compared to totally manually matching efforts because the models are very good at 

accurately discarding non-relevant documents. 

For the R class, training measures yielded precision between 0.86 and 1.00 (mean 0.94), 

recall between 0.86 and 0.95 (mean 0.90), and FP rate between 0 and 4% (mean 2%). During 

testing, the models all yielded 1.00 recall on the R class, performing better than anticipated 

based on cross-validation statistics. This means each of the models excels at recognizing 

relevant mitigations for its designated threat and thus we are not likely to ignore relevant 

mitigations. Unfortunately, precision during testing was lower than anticipated (between 0.27 

and 0.75, mean 0.40). For the 266 test instances, there were between 0 and 8 false positives (0-

3%) per threat. In practical usage, we can tolerate a few false positives in our approach but, 

similar to the process of medical SRs, we would have to have CSE review of the mitigations 

labeled as relevant as illustrated in the architecture in Figure 3 and Appendix C before recording 

them in a knowledge base as reusable recommendations. 
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Table 3. “Per Threat” Test Summary - Improved Text 

Threat Class Precision P@3 Recall FP  
Rate 

Specificity # 
Correct 

# 
Incorrect 

49 R 
NR 

0.75 
1.00 

1.00 1.00 
1.00 

0.00 
0.00 

1.00 
1.00 

3 
272 

0 
1 

66 R 
NR 

0.27 
1.00 

1.00 (*) 1.00 
0.97 

0.02 
0.00 

0.97 
1.00 

3 
265 

0 
8 

134 R 
NR 

0.30 
1.00 

1.00 (*) 1.00 
0.97 

0.03 
0.00 

0.97 
1.00 

3 
266 

0 
7 

268 R 
NR 

0.38 
1.00 

1.00 (*) 1.00 
0.98 

0.02 
0.00 

0.98 
1.00 

3 
268 

0 
5 

593 R 
NR 

0.30 
1.00 

1.00 (*) 1.00 
0.97 

0.03 
0.00 

0.97 
1.00 

3 
266 

0 
7 

 

Precision @ K, discussed in the Literature Review, is a measure of precision commonly 

applied in text retrieval applications. We considered P@K for all 5 models; we used K=3 

because we knew in advance that our test data set contained exactly 3 relevant mitigations per 

threat. For threat 49, there were 4 positive predictions, 3 correct and 1 false positive. The correct 

predictions were ranked in the top 3, each with 1.0 probability and the false positive was ranked 

fourth at 0.51 probability. Thus, P@3 for threat 49 is 1.0. For threat 66, there were 11 positive 

predictions, 3 correct and 8 FPs. All 3 of the TPs were ranked at 1.0, but 5 FPs were also ranked 

at 1.0. This complicated the P@K calculation because any of the 8 items ranked 1.0 could be 

in the top 3. We found sparse treatment of tie-breaking for P@K in the literature. A simplistic 

but commonly accepted approach for dealing with ties from TREC5 (National Institute of 

Standards and Technology, 2005) is to choose one of the possible orderings and evaluate P@K 

for it. One such ordering is for all the positive instances to be in the top 3 and, thus, P@3 would 

be 1.0. However, this is admittedly very optimistic (indicated with * in Table 3) as other 

arbitrary orderings of the results could yield appreciably different results for P@3, including 

0.0, 0.33, and 0.67. McSherry and Najork proposed an alternative method for computing P@K 

which accounts for ties by averaging P@K over all the possible orderings (McSherry & Najork, 

2008). There are 40,320 possible orderings for the 8 samples labeled positive for threat 66 and 

over half of them would contain 3 NR entries (P@3=0.0). These would drive the average down 

                                                 

5
 For more than 25 years, Text Retrieval Conference (TREC) has been a pre-eminent information retrieval 

conference supporting text retrieval research with large test corpi and uniform scoring procedures to facilitate 
comparison of results. It is sponsored by NIST. https://trec.nist.gov/  



42 

dramatically; thus, without implementing McSherry’s measure, we estimated that it would be 

not be better than the value in the precision column. Similarly, for threat 134, there were 10 

positive predictions, 9 of which were ranked at 1.0 including the 3 known positives; for threat 

268, there were 6 positive predictions, 6 of which were ranked at 1.0 including the 3 known 

positives; and for threat 593, there were 10 positive predictions, 9 of which were ranked at 1.0 

including the 3 known positives. The bottom line is P@K did not help with evaluation as much 

as we originally thought it would due to the ties. 

We ultimately based evaluation of our artifact on recall, specificity, and false positive 

rate as shown in Figure 7 and Table 3. These measures are defined in Equations 1, 2, and 3. 

Recall is the probability that all relevant documents will be retrieved. Specificity is the 

probability that all non-relevant documents will be ruled out. False positive rate is the 

probability that a non-relevant document will be retrieved. As Powers points out, taken alone, 

precision and recall tend to understate a method’s ability to correctly identify non-relevant 

instances (Powers, 2007). This ability is measured using specificity, and we think it is important 

for threat-mitigation mapping because ruling out true negatives can lead to substantial workload 

reduction for the CSE. 
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(Equation 1) 

���������� =
��

�� + 
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(Equation 2) 
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(Equation 3) 

 

In summary, with recall of the R class registering 1.00 on test data for all 5 models, we 

can be confident that the model will not overlook relevant mitigations. This is desirable because 

we do not want to obscure any relevant mitigations from the CSE’s view. With a false positive 

rate between 0 and 3% and specificity between 0.97 and 1.00, we are encouraged that the model 

will reliably eliminate instances that are not in the R class. Precision is lower than we desired 

and with this comes a few false positives. This shortfall can be mitigated in practice by 

providing for CSE screening of the recommended matches before they are committed to the 

knowledge base for reuse. The high precision (1.00), recall (>0.97), and specificity (1.00) of 

the NR class means the models will accurately eliminate most (>97%) of the NR instances 
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without any manual intervention, greatly reducing the CSE workload when compared to purely 

manual matching and leaving just a few false positives for the CSE to remediate. In a practical 

setting where the objective would be to build a reusable knowledge base of threat-mitigation 

mappings, this remediation activity would only have to be done for new matches. 

Objective: Process existing English language text documents where each 

separately describes either a threat or a mitigation. The CAPEC dataset and the additional 

example mitigations are English language documents. During the training and testing of each 

trial design, we demonstrated that the artifact accepts these English language text documents 

about threats and mitigations. 

Objective: Provide an automated method for recommending (matching) relevant 

mitigations when presented with a threat. During training and testing, we demonstrated that 

the artifact will label mitigations as relevant or not relevant to a given threat.  

Objective: Accommodate (be extensible to) new and evolving threats and 

mitigations. During testing we demonstrated that the artifact can accept new mitigations which 

it will label as relevant or not relevant on a “per threat” basis using a stored model trained from 

labeled data. The method can also accept new threats with the caveat that labeled data consisting 

of known relevant mitigations for the threat will have to be created so that a model can be 

trained. 

Objective: Provide utility to cybersecurity experts in mitigation selection. Merriam-

Webster equates utility with usefulness and “practical worth or applicability” (“Usefulness,” 

2019). Hevner et al. emphasize that “the artifact works and does what it is meant to 

do…achieving its goals.” (Gregor & Hevner, 2013) Finally, according to Raghavan et al. the 

“usefulness of a retrieval system is determined to a great extent by how closely it can 

characterize the dichotomy” of relevant vs non-relevant documents for its intended purpose 

(Raghavan et al., 1989). We use these definitions to assert a reasoned argument for utility of 

the artifact. We have shown that the artifact meets the objectives we set forth at the beginning 

of the research in 5 test cases, and especially that it matches most of the relevant mitigations 

for a given threat while ruling out at least 97% of the non-relevant mitigations. These results 

are favorable for utility, but we leave formal utility assessment to future work after the artifact 

has been operationalized into a system such as the one in Figure 6. 
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Objective: Be able to be used in a system that allows for reuse of the artifact and 

the matches produced by the artifact. The solution produces models that can be saved and 

reused. As described in the architecture section, if the artifact were to be operationalized in an 

architecture such as the one in Figure 6, the system could provide for models to be saved and 

reused to label new mitigations as they are encountered. The threat documents, mitigation 

documents, and labeled matches between the two could be persisted in a data store so that they 

can be reused to satisfy threat queries by the CSE. A user interface could allow the documents 

and matches to be viewed and utilized. 

Evaluation Summary. In Chapter 1 we motivated the problem of matching mitigations 

to cyber threats and in Chapter 3 we set forth objectives for a solution to that hard problem. We 

evaluated the artifact against those objectives and showed that it achieves its goals. Table 4 

summarizes the artifact evaluation based on the solution objectives stated in the Research 

Methodology section above. To show practical worth and applicability, we provided use cases 

and an architecture into which the artifact can be integrated for practical use by cybersecurity 

professionals engaged in cyber risk assessment. In particular, we produced a method for 

automatically matching mitigations to threats that is both extensible and reusable and that will 

match most of the relevant mitigations for a given threat while avoiding selection of non-

relevant mitigations. Moreover, five instantiations of the method accurately eliminated most 

(>97%) of the non-relevant mitigations without any manual intervention, leaving just a few 

false positives for the CSE to remediate manually. This robust discrimination of the R and NR 

classes aligns with Raghavan’s definition of usefulness for retrieval systems (Raghavan et al., 

1989). 

Table 4. Evaluation Results Based on Solution Objectives 

Objective Evaluation 

Process existing English language text 

documents where each separately 

describes either a threat or a mitigation 

Pass. By testing, we demonstrated that the 

artifact accepts English language text 

documents about threats and mitigations. 

Provide an automated method for 

recommending (matching) relevant 

mitigations when presented with a threat 

Pass. By testing, we demonstrated that the 

artifact proposes matching mitigations when a 

threat is given. 
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Objective Evaluation 

Match most of the relevant mitigations 

for a given threat while avoiding 

selection of non-relevant mitigations  

Pass. By evaluation of the models on test 

data, we demonstrated that the models can 

eliminate about 97% of non-relevant 

mitigations. Moreover, with recall at 1.00, it 

will not overlook relevant mitigations. 

Accommodate (be extensible to) new and 

evolving threats and mitigations 

Pass. The artifact can accept new mitigations 

which it will match to existing threats using a 

stored model trained from labeled data. The 

method can also accept new threats with the 

caveat that labeled data consisting of known 

relevant mitigations for the threat would have 

to be created so that a model can be trained.  

Provide utility to cybersecurity experts in 

mitigation selection 

Pass. By satisfying the preceding objectives, 

the artifact as instantiated provides practical 

value and to the CSE engaged in cyber risk 

assessment and meets the utility criteria for 

retrieval systems established by  (Raghavan et 

al., 1989). It has potential to reduce CSE 

workload by about 97% over purely manual 

matching. 

Be able to be used in a system that allows 

for reuse of the artifact and the matches 

produced by the artifact 

Pass. The artifact provides models that can be 

saved and reused to label additional 

mitigations at a later time. The artifact could 

be used in a system such as the one shown in 

Figure 6 where the threats, mitigations, and 

matches could be persisted in a data store and 

a user interface could be provided to allow 

this data to be viewed and reused. 
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Validity 

 

Figure 8. Validity 

Validity centers on interactions between the theoretical and observational research 

planes (Trochim & Donnelly, 2006) as illustrated in Figure 8. Constructs in the theoretical plane 

are intangible. In our research, the major constructs are cyber threats, mitigations, and a 

cognitive process that matches appropriate mitigations to threats. We operationalized these 

intangible ideas in the observational plane order to conduct the research. In our case, as shown 

in Figure 8, we operationalized threats and mitigations as textual documents describing 

instances of each of the corresponding constructs and we operationalized the cognitive 

matching process in our artifact. In the context of DSRM, Hevner et al. mention validity in the 

context of artifact evaluation stating that “validity means that the artifact works and does what 

it is meant to do; that it is dependable in operational terms in achieving its goals.” (Gregor & 

Hevner, 2013) The types of validity commonly discussed in scholarly research include, face 

validity, construct validity, internal validity, and external validity. In addition, Lukyanenko et 

al. recently put forth the concept of instantiation validity specifically for Design Science 

(Lukyanenko & Parsons, 2014). 

Face validity is a subjective assessment about whether the operationalization of the 

research constructs make sense when taken at face value. We argue for face validity of our 

operationalizations of the threat and mitigation constructs on the basis that the textual 

documents represent the traditional method by which such knowledge is codified. Likewise, 

the artifact parallels the cognitive matching process that the experts perform in their brains.   

Construct validity is “the degree to which inferences can legitimately be made from 

the operationalizations in a study to the theoretical constructs on which those 
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operationalizations were based” - in other words that the operationalizations are reasonable 

indicators of the underlying latent concepts (Trochim & Donnelly, 2006).  While there are tests 

for construct validity in quantitative research (e.g., convergent and discriminant validity), the 

picture is less clear for Design Science. One major threat to construct validity is failure to 

properly understand and explain the constructs before operationalizing them.  We have 

addressed this threat via our Literature Review of the pertinent content domains.  

Trochim defines internal validity as “the approximate truth about inferences regarding 

cause-effect or causal relationships” and furthermore asserts that “internal validity is only 

relevant in studies that try to establish a causal relationship.” (Trochim & Donnelly, 2006) Our 

research does not seek to establish a causal relationship; therefore, internal validity is mentioned 

here for completeness but is not pertinent to our research since we are not trying to establish 

causality. 

External validity “is the degree to which the conclusions in the study would hold for 

other persons in other places and at other times” also referred to as generalizability (Trochim 

& Donnelly, 2006).  The generalizability we seek is that our method applies to more threats 

than the 5 we tested here. We see initial indications of generality from similarities in the 5 test 

cases; however, the method must be applied to additional and more diverse sources of threats 

and mitigations before we can be sure.  

Instantiation validity is an assessment of how well an artifact created via Design 

Science Research instantiates constructs of the theory on which the artifact is based 

(Lukyanenko & Parsons, 2014). We have addressed and promoted instantiation validity in our 

research by appropriate alignment of the artifact with literature in the problem domains per the 

Literature Review and by developing the artifact using a rigorous approach as described in the 

Design and Development of the Artifact section.  

Communication 

Communication of research results to both practitioner and scholarly audiences is a key 

tenet of Design Science Research. Via a combination of UML drawings and prose, sufficiently 

detailed design documentation has been created to convey the construction details of the 

artifact. Per Hevner, this enables “practitioners to take advantage of the benefits” (Hevner & 
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March, 2004) while also promoting critical feedback and opportunities for extension by the 

research community. This dissertation satisfies the communication requirement of the DSRM. 
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CHAPTER 5 

CONCLUSIONS 

In this research, we set out to devise a method for matching mitigations to cyber threats 

expressed as English language text documents using machine learning and text retrieval 

techniques in support of cyber risk assessment. In the preceding chapters, we have discussed an 

iterative process framed within the Design Science Research Method where we evaluated and 

down-selected designs by comparing their respective measures of performance. We ultimately 

arrived at a matching method that achieves the stated objectives and we instantiated 5 examples 

as SVM “per threat” classifiers based on LSA features. We rigorously evaluated the 

instantiations in 5 test cases and were encouraged by the results. We illustrated the utility of the 

method by describing an architecture into which it can be integrated for practical use. Overall, 

we are encouraged by the results achieved thus far. 

Contributions 

Mitigation selection to remediate cyber threats has heretofore been primarily a manual 

process done by human experts using textual sources which are extensive and disparate. 

Reliance solely on human experts brings issues of scalability, consistency, and repeatability. 

The ongoing shortage of cybersecurity experts combined with a burgeoning cyber threat 

landscape compelled us to look for a way to improve this situation. 

This research contributes to theory by taking steps towards a novel machine learning 

method for automatically mapping mitigations to threats, both expressed as English language 

text, and demonstrating instantiations of the method. Moreover, the research fills a research gap 

in the cyber risk assessment literature by providing a semi-automated method to produce a 

starting list of possible mitigations for threats identified during risk assessment providing the 

data needed to flow into mitigation optimization techniques. The method is extensible to 

accommodate the continued evolution of both cyber threats and mitigations, an important 

consideration in light of the dynamic cyber landscape. We have also demonstrated one way to 
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improve the textual descriptions of threats and mitigations to better support automated 

matching.  

From a practical perspective, our method for matching mitigations to threats benefits all 

threat-informed cyber risk assessment approaches by providing a means to recommend relevant 

mitigations to remediate specific threats thereby aiding decision-making for IS stakeholders 

and cybersecurity experts. This is important because under-mitigating the actual threats 

provides a false sense of security while over-mitigating is costly and wasteful. When 

operationalized into a knowledge base, such as the one shown in Figure 6, where models and 

matches can be saved for reuse, the method may make mitigation selection more repeatable, 

facilitate knowledge reuse, save CSE time and labor, and extend the reach of cybersecurity 

experts who are currently in short supply. The list of mitigations applicable to each threat can 

serve as input into analyses of alternatives, enabling practitioners to leverage a large body of 

mitigation optimization research. Finally, the method can respond to the evolutionary nature of 

cyber threats and mitigations. Thus, it may improve overall security of cyber systems when 

used as part of a risk assessment and mitigation cycle such as the one shown in Figure 1 by 

making more frequent reassessments of cyber systems feasible. 

Lessons Learned from the Text 

In Chapter 4 Analysis of the Text, we identified that improving the mitigation texts to 

include an explanation of how each one addresses the threat would improve the match results 

by reducing the FNs. During the research, we noted domain-specific peculiarities in the 

documents. A number of issues are known to affect text-based processing in general, including 

synonymy, polysemy, misspellings, colloquialisms, and the use of acronyms and jargon. The 

cyber threat-mitigation matching problem suffered from all of these issues and, in addition, 

varying styles (e.g. prose versus bullets), varying degrees of brevity and verbosity, extraneous 

information (e.g. “this may be prohibitively expensive”), and expressions in the negative (i.e. 

what not to do). References to product names and technical standards sometimes served as 

short-hand, obscuring complex concepts. We also encountered considerable sameness in the 

language used to express different threats (e.g., SQL injection, email injection, script injection 

as well as some mitigations which apply to multiple threats (e.g., multifactor authentication, 

encryption, training). These conditions worked against discernment of relevance. Data 
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imbalance favoring the non-relevant class, limited matching mitigations per threat, and 

erroneous mappings presented tactical issues for classifier training.  

Future Work 

For this initial proof of concept research, we bounded the scope, providing ample 

opportunities for incremental improvements. The method we developed was instantiated and 

tested with English language documents. It would be interesting to extend it to other languages. 

Likewise, our instantiations were based on a narrow slice of cybersecurity documents. The 

method could be improved by exposure to more threat and mitigation sources. We made no 

effort to address redundant threats and mitigations in our corpus. In order to ingest documents 

from additional sources, the method should be preceded by an automated approach for dealing 

with duplication. In addition, analyses of the structure and semantics of threat and mitigation 

documents from various sources could lead to discovery of additional ways to improve the 

document content and by extension the matching method.  

We used supervised machine learning which required some pre-existing matches. This 

work could be extended by investigating semi-supervised learning classification techniques to 

build classifiers for new threats where labeled data does not yet exist. Moreover, it is possible 

that semi-supervised learning could also be used to improve the classifiers initially trained for 

existing threats by taking into account new matches that come about as new mitigation 

documents are added. 

We focused our research on defensive cybersecurity, identifying threats and seeking to 

determine relevant mitigations. It is possible that our method may be applicable or extensible 

to “white hat” offensive cybersecurity, such as to better understand attacker behavior or residual 

exposure. This perspective is characterized by identifying the mitigations present in a system 

and seeking to determine threats to counter them. Moreover, while we established a degree of 

utility for our method by demonstrating that the artifact solves the problem for 5 examples, 

survey research to investigate the perceived utility by actual CSEs would be beneficial. 

Finally, we identify several lofty goals for future extensions of this research. Improving 

the ways that threat and mitigation text is written, such as by addressing the limitations 

described in the Lessons Learned section, could improve the method. Furthermore, devising a 

robust ontology to capture the intricacy of threat/mitigation relationships would offer great 
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potential to improve the matches, helping to tease out complexities such as overlapping threats 

and one to many mitigation-threat mappings. This structure could be used as metadata to 

improve the matching models. In the long term, we envision the matcher as a component of an 

overarching architecture with a reusable, continually evolving, peer-reviewed knowledge base 

of threat-mitigation mappings with contributions coming from many sources, including threat 

frameworks, mitigation catalogs and vendor literature.  
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APPENDICES 

APPENDIX A: DEFINITIONS OF CYBER TERMS 

In this appendix we define a few important cyber terms that recur in our dissertation.  

• We use the word cyber to denote associations with the information technology 

(IT) and information systems (IS) domains, including computers, computer 

networks, hardware, and software.  

• A cyber system is a system composed of IT/IS components, though it may also 

encompass non-cyber entities. Smart phones, automated teller machines, home 

automation systems, digital cameras, e-commerce platforms, and even the 

Internet are all examples of cyber systems of various sizes.  

• A cyber vulnerability is a known or unknown weakness in a cyber system. 

When we hear vulnerability, we most often think of software flaws, but cyber 

systems are also vulnerable to a number of other conditions, such as natural 

disasters and human error.  

• A cyber threat is any adverse event, regardless of intent, that disrupts a cyber 

system by activating a vulnerability. Common threats include errors, routine 

failures, natural disasters, and cyberattacks.  

• A cyberattack is a purposeful “attempt to damage, disrupt, or gain access to” a 

cyber system (Random House Inc., n.d.). Cyberattacks are often undertaken for 

nefarious purposes, though sometimes they may be pranks.  

• We use the term cyber effect to refer to the outcome after a cyber threat has 

been realized. Cyber effects are most commonly categorized in terms of loss of 

confidentiality, integrity, or availability of the cyber system or one of its parts.  

• Risk is a condition faced by an organization or entity. It encompasses the 

likelihood that a threat or adverse event will occur and the degree of damage or 

injury (also known in organizational contexts as mission impact) if the threat is 

realized.  
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• Cyber risk is the risk that an organization or entity faces due to its association 

with or reliance on cyber systems.   

• Mitigations represent tools or techniques that may counter or reduce the impact 

of cyber threats. In this paper, we consider the terms security controls and 

countermeasures to be synonymous with mitigations.  

• Risk assessment, according to Kaplan and Garrick, is an attempt “to envision 

how the future will turn out if we undertake a certain course of action (or 

inaction).”  (Kaplan & Garrick, 1981). In the case of cyber risk assessment, the 

objectives are to understand and prioritize identified cyber risks in order to 

understand the status quo and determine mitigating courses of action for high 

priority threats.  
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APPENDIX B. USE CASES  

The following use cases describe the main uses of a system such as the one illustrated 

in the drawing in Figure 6 and described in detail in Appendix C. Instantiations of the artifact 

of this research can be a key part of such a system that would allow a CSE to leverage the 

practical utility of the artifact. We refer to these instantiations as the Matcher. Each Matcher is 

a classifier for a particular threat that; it labels new potential mitigation document instances as 

relevant to the given threat. Each instantiation of the Matcher comes to exist by virtue of a 

model building process shown in Figure 4. In the notional architecture in Figure 6, we have 

allocated the process of creating new Matcher instantiations to the Preprocessor. Use cases 1 

and 2 relate to the Matcher (artifact). Use cases 3 through 7 relate to a system such as the one 

depicted in Figure 6 which would encompass the artifact and support practical usage of it.  

Use Case 1 Label potential mitigations relevant or not relevant to a specified 

threat 

Preconditions Unlabeled potential mitigation documents exist to be labeled. 

A model (classifier) and semantic space exist that can be used to 

determine the relevance of new mitigation documents for the 

specified threat, T. 

Success End Condition Unlabeled mitigations have been labeled relevant or not relevant 

to T. 

Actors Matcher 

Description 1. The Matcher pertinent to T ingests unlabeled potential 

mitigations. 

2. The Matcher transforms each mitigation, M, to the features of 

the semantic space. 

3. The Matcher applies the classifier to each transformed M. 

4. The Matcher outputs a relevant or non-relevant label and a 

confidence value for each M relative to T. 
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Use Case 2 Create a model for a new threat 

Preconditions A new threat, T, exists. 

At least n labeled mitigations relevant to T and at least m non-

relevant instances exist. (We arbitrarily used 20 for n and 200 for 

m.) 

Success End Condition A model (classifier) and semantic space exist that can be used to 

determine the relevance of new mitigation documents for the 

specified threat, T. 

Actors Preprocessor (Model Builder) 

Description 1. The Model Builder applies LSA to create a threat-specific 

semantic space from the provided labeled mitigations. 

2. The Model Builder saves the semantic space and the labels. 

3. The Model Builder uses T as a query against the semantic 

space returning mitigations in order from most to least relevant T.  

4. The Model Builder makes training data from the top 100 

mitigations and trains a classifier for T. 

Variations  

 

Use Case 3 Get a list of relevant mitigations for a given threat 

Preconditions Threat documents, mitigation documents, and mappings exist. 

A model exists that can determine the relevance of new 

mitigation documents for the given threat. 

Success End Condition A list of relevant mitigation documents for the given threat has 

been produced. 

Actors CSE, System 

Description 1. The CSE specifies an existing threat T and requests a list of 

relevant mitigations. 

2. If there are any unmapped mitigations in the system, the 

system first performs use case 4 to map them. 
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Use Case 3 Get a list of relevant mitigations for a given threat 

3. The system selects all mitigations labeled as R for threat T and 

returns the mitigation id, text, relevance indicator, relevance 

score, relevance source, verified indicator, and verified source. 

 

Use Case 4 Classify unmapped mitigations relative to a specified threat 

Preconditions Threat documents, mitigation documents, and mappings exist. 

Some new mitigations exist that are not yet mapped to any threat. 

A model exists that can predict the relevance of new mitigation 

documents for the given threat. 

Success End Condition New mitigations have been labeled with their relevance to the 

specified threat and marked as unverified. 

Actors System 

Description 1. The system loads the appropriate model to classify unlabeled 

mitigations for the specified threat, T. 

2. The system applies the threat-specific model to the unlabeled 

mitigations. 

3. The model predicts and outputs a label and a confidence value 

for each unlabeled mitigation to indicate its relevance or non-

relevance to T as described in use case 1. 

4. The system saves the threat-specific label determinations and 

relevance scores for each previously unlabeled mitigation, and 

marks the mapping as not verified. 

Variations Future: The system automatically marks new mappings verified 

when the confidence exceeds an established value C. 

 

Use Case 5 Add a new mitigation 

Preconditions The CSE has a new mitigation to add. 

The CSE has verified that the mitigation to be added is not 

already in the data store. 
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Use Case 5 Add a new mitigation 

Success End Condition The new mitigation has been added to the system and is ready to 

be labeled upon request. 

Actors CSE, System 

Description 1. The CSE requests to add the new mitigation to the data store. 

2. The system accepts and saves the new mitigation. 

Variations Future: The system automatically detects and prevents addition 

of duplicate mitigations. 

 

Use Case 6 Add a new threat 

Preconditions The CSE has a new threat to add. 

The CSE has at least n labeled mitigations relevant to the threat. 

The CSE has verified that the threat to be added is not already in 

the data store. 

Success End Condition The new threat, associated relevant mitigations, and verified 

mappings have been added to the system and a model has been 

created to handle the new threat. 

Actors CSE, System 

Description 1. The CSE requests to add the new threat, T, and associated 

mitigations to the system. 

2. The system accepts and saves the new threat, mitigations, and 

mappings for the relevant mitigations provided. The mappings 

are marked as verified. 

3. The system trains a new model for T per use case 2 using the 

provided labeled data and m negative instances drawn at random 

from the mappings already in the system. 

4. The system saves the model for future use. 

Variations Future: The system automatically detects and prevents addition 

of duplicate threats. 
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Use Case 7 Review/adjudicate matches 

Preconditions Mappings exists in the data store. 

Success End Condition The status has been changed for requested mappings. 

Actors CSE, System 

Description 1. The CSE requests to review unverified mappings, potentially 

specifying a confidence threshold. 

2. The system presents the new mappings to the CSE. 

3. For each mapping, 

a. The CSE approves, rejects, or skips. 

b. For approved or rejected mappings, the system saves 

the action. 

Variations Future: The system also allows the CSE to review existing 

mappings by specifying selection criteria. This could be used to 

correct errors that made it past the review process. 
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APPENDIX C. SOLUTION ARCHITECTURE 

Design and Architecture 

In order for the approach described in Chapter 4 to be useful to the cybersecurity expert 

in the context of cyber risk assessment, it must exist within a system with which the CSE can 

interact. This appendix describes the data model and an overall architecture for such a system. 

It has been designed modularly and using object-oriented principles so that any of the threat-

mitigation matching techniques investigated in this research could be incorporated as the 

Matcher. 

Data Model 

In this section, we present a logical view and description of the data types and 

relationships inherent in the artifact (Figure C.1). Note that, although this data model is based 

on the CAPEC data, it is not limited to CAPEC and is intended to be extensible to threat and 

mitigation documents from other sources.  

Catalog is the main object. It is a container for all the threats, mitigations, and associated 

mappings. Each Threat has a unique identifier (ID), a short title, and a description which can 

be verbose. A threat may have one of three levels of Abstraction (meta, standard, or detailed). 

We are focusing on CAPEC threats at the standard level of abstraction, because they have the 

best balance of specificity versus generality for our purposes. Meta threats represent groupings 

of similar threats, accessed via the ParentThreat property of a standard threat. Mitigations at the 

meta level are associated to the standard threats that are children of the meta threat. The 

DomainOfAttack (e.g. hardware, software, communications) and MechanismOfAttack (e.g. 

subvert access control) properties are also used to group related threats. Detailed threats are 

further refinements of standard threats, accessible via the ImmediateChildren property. 

KeyPhrases are significant words or phrases extracted from the threat title and description 

which succinctly represent the meaning of the threat. 

Each Mitigation has a unique identifier (ID), a short title, and a description, which can 

be verbose. The DomainOfAttack (e.g. hardware, software, communications) and 

MechanismOfAttack (e.g. subvert access control) properties are also used to group mitigations 
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that counter certain related categories of threats. KeyPhrases are significant words or phrases 

extracted from the mitigation title and description, which succinctly represent the meaning of 

the mitigation. 

 

 

Figure C.1. Overall Data Model 

A Mapping object represents a threat and mitigation pair, represented by a ThreatID 

and MitigationID, respectively. The IsRelevant and IsVerified properties are used to indicate 

the strength of the match. When IsRelevant is true, this means that the mitigation is a 

countermeasure for the threat, either because it was extracted based on a CAPEC threat-

mitigation mapping, or, if a new mitigation, as a result of a decision by the Matcher. When 

IsVerified is true, this means that the match has been independently verified. IsVerified and 

IsRelevant will always be true for matches extracted from CAPEC. For decisions made by the 

Matcher, IsRelevant will be true but IsVerified will initially be false until a SME concurs with 

the match. Mappings where IsRelevant and IsVerified are both true can be used as training data. 

Mappings where IsRelevant is false are not usually stored, except for diagnostic purposes. 
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Architecture Overview 

Figures C.2 and C.3 illustrate the architecture into which instantiations of the threat-

mitigation matcher can be inserted. Figure C.2 illustrates the preprocessor architecture. During 

Data Extraction, the CAPEC XML structure described in the Data Source and One-time Data 

Preparation section above is unpacked and transformed into the structure shown in Figure C.1 

and described above.  

 

Figure C.2. Preprocessor Architecture 

Preprocessor. The Preprocessor includes these functions: (a) convert the threat and 

mitigation text into threat documents, mitigation documents, and matches, (b) create indices to 

support the LSA representations of the documents, and (c) train model(s) as needed for the 

matcher. In (a) the threat and mitigation texts extracted from CAPEC are lower-cased, 

tokenized, and stemmed. In this architecture, a model will be trained for each threat then saved 

for reuse when matching is necessary. Over time, after substantial additional labeled data has 

been accumulated through the use of the system, it may make sense to train new models to take 

advantage of the new semantic knowledge provided. 
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Figure C.3. Matcher Architecture 

Matcher. The Matcher, shown in Figure C.3, is the main component of this research. It 

is executed on demand. To control the scope of the research, we assumed a fixed set of threat 

documents and a clear delineation between threats and mitigations. We decided to fix the pool 

of threats because our approach relies on the pre-existence of labeled data consisting of 

mitigations known to be relevant to the threat. We assumed that a document consists of either 

a threat or a mitigation but not both so that we did not have to invent a way to separate composite 

documents into the requisite parts. Our approach can accept new mitigations which it will match 

to existing threats. It can also accept new threats with the caveat that labeled data consisting of 

known relevant mitigations would have to be created so that a classifier can be trained. 

The Matcher uses the data output from the Preprocessor. It is implemented as described 

in Chapter 4 to select relevant mitigations for a given threat. Existing threats, mitigations, and 

matches extracted from CAPEC reside in their respective data stores as a result of data 

extraction and preprocessing. New mitigations are classified as relevant or not relevant to a 

selected threat by applying the models previously trained and stored. Each match is written to 
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the Matches data store as a row that references a threat, a matching mitigation, the rank of the 

match (if applicable), and a flag to designate matches considered to be ground truth, such as 

from training data or SME confirmation. Matches recorded from the labeled data will be flagged 

as verified. Matches generated by the Matcher will initially be flagged as unverified. 

Review. The review function allows a subject matter expert to examine new matches 

generated by the Matcher. The SME can confirm the match or indicate that the given threat-

mitigation pair is NR. It is not required that all generated matches must be reviewed. Initially 

that may be the practice, but as experience is gained in practical use, it may be that some new 

matches can be confirmed based on the model’s confidence in the match leaving only the least 

confident matches for SME review. Regardless of how review is handled, we think it is 

important to present the review status of each returned match to CSE who requests a list of 

mitigations for a given threat. This will help the CSE to compensate for errors in precision 

where a mitigation that is not relevant may be erroneously presented. 
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APPENDIX D. DESIGN TRIALS  

This appendix discusses details for each design iteration. At the outset, we had three 

design concepts for the threat-mitigation matcher artifact: classification, ranked retrieval, and a 

hybrid of the two. We explored a number of designs, including various classifiers, feature sets, 

and feature reduction techniques. 

Classification 

In this section we discuss the iterative process for applying classification in the design 

of our artifact. Following the medical SR literature discussed above in the Literature Review, 

we started with a single threat and some labeled mitigation data that contains instances that are 

relevant and not relevant to the threat. We designate this as the “per-threat” approach. In order 

for the “per threat” approach to solve the problem at hand, we would have to eventually train a 

classifier for each existing threat and likewise for new threats that come along; however, this 

does not seem like an unreasonable requirement. New threats do come along, but the library of 

known threats is relatively stable over time. In the ten months since we started this research, 

the CAPEC dataset has undergone two subsequent releases but only two new standard threats 

have been added to CAPEC. Tables D.1 and D.2 summarize several design iterations on the 

“per threat” approach, each of which is discussed in more detail following the tables. Later on, 

we discuss several trials where we experimented with a “one for all” approach. 

Table D.1. “Per Threat” Summary of Classification Iterations – Full Text 

# Trial Class P R FP F C I 

1 
 

Threat 49, one row for each 
mitigation  
Features:  

• Mitigation text,  

• R/NR indicator 

Filter: StringToWordVector 

• TFIDF 

• Lower case 

• Word tokenization 

(removes punctuation) 

R 0.25 0.11 0.01 0.15 1 8 

NR 0.99 0.99 0.89 0.99 601 3 
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# Trial Class P R FP F C I 

• Stemming 

• Eliminate stop words 

• Retain 1,000 words 

Classifier: Weka SMO 

2 
 

Same as trial 1 except  
Attribute selection: top 50 
attributes based on information 
gain 

R 0.50 0.11 0.00 0.18 1 8 

NR 0.99 0.99 0.89 0.99 603 1 

3 
 

Threat 49, one row for each 
mitigation 
Features: 

• Mitigation text  

• R/NR indicator 

Filter: StringToWordVector 

• TFIDF 

• Lower case 

• Word tokenization 

(removes punctuation) 

• Stemming 

• Eliminate stop words 

• Retain 1,679 words 

Classifier: Weka SMO 

R 0.92 0.48 0.00 0.63 12 13 

NR 0.98 0.99 0.52 0.99 611 1 

4 
 

Same as trial 5 plus attribute 
selection: top 200 attributes based 
on information gain 

R 0.83 0.39 0.002 0.53 5 8 

N 0.99 0.99 0.62 0.99 599 1 

 

Trial 1 

In the first trial, we made a training data set consisting of one row for each mitigation, 

where each row contained the mitigation text and an attribute to indicate if the mitigation is or 

is not relevant (R/NR) to threat 49. This data set was extremely unbalanced, containing 9 items 

in the R class and 604 (>99%) in the NR class. The input dataset was preprocessed in Weka by 

applying a StringToWordVector filter using TFIDF weighting, lower case, word tokenization, 

stemming, and stop word elimination, retaining 1,000 words. We trained a SMO model from 

the filtered data set. The only good thing to be said about this model is the false positive rate 

for the R class is low. Precision and recall for the R class (0.25/0.11) were worse than the flip 

of a coin; hence, unacceptable. 
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Trial 2 

In the second trial, we made a training data set and applied the filter as described in trial 

1, then selected the top 50 attributes using information gain. We trained a SMO model using 

the filtered and reduced data set.  This resulted in improved precision (0.50) for the R class and 

maintained the low false positive rate, but recall was still poor (0.11). 

As expected, the models in trials 1 and 2 were both very good at correctly classifying 

non-relevant instances due to the class imbalance in the data, but they were not good at correctly 

classifying relevant instances, likely for the same reason. It became apparent that it was 

necessary to do something about the class imbalance. In addition, note that this approach did 

not utilize any information from the threat; thus, such an approach may not generalize to other 

threats. This ultimately led us to try the keyword approach described later in trials 5 and 6. 

 

Trial 3 

 In trial 3, we followed the method described in trial 1, except we retained 1,679 words 

from the StringToWordVector filter. We selected the number 1,679 to facilitate comparison 

with the LSA ranked retrieval results in trials 9 and 10 discussed later (1,679 was the number 

of unique words identified during the LSA transformation). We did not perform any attribute 

reduction. We trained a SMO model from the filtered data set, achieving precision of 0.92, 

recall of 0.48, and minimal false positives for the R class. This is an improvement over the prior 

trials and suggests that retaining more words is better. Precision and recall for the NR class 

were 0.98 and 0.99, respectively. As mentioned previously, the dataset is highly imbalanced in 

favor of the NR class but we are primarily interested in the R class. For the R class, precision 

in this trial was good (0.92), but recall was not good enough. There are only a small number of 

relevant mitigation documents for a given threat and at 50% recall, we would be failing to 

recommend over half of them. 

 

Trial 4 

In trial 4, we made a training dataset similar to the one in trial 3, but used attribute 

selection to choose the top 200 attributes based on information gain. We trained a SMO model 

from the filtered and reduced data set, achieving precision and recall (0.83/0.39) for the R class 

and (0.99/0.99) for the majority NR class. Recall and precision here were worse than trial 3, 
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suggesting that the additional words do add some information to the model, which is lost during 

the information gain reduction. 

Table D.2. “Per Threat” Summary of Classification Iterations – Keywords 

# Trial Class P R FP F C I 

5 
 

Threat 49, one row for each 
mitigation, 2/3 undersampling of the 
NR class 
Features:  

• Presence/absence of threat 

keywords (TextRank + 

synonyms) in mitigation text 

• R/NR indicator 

Filter: 

• Lower case 

• Eliminate stop words and 

punctuation 

Classifier: Weka SMO 

R 0.82 0.67 0.00 0.74 14 3 

NR 0.97 0.99 0.33 0.98 207 7 

6 
 

Threat 49, one row for each 
mitigation, 2/3 undersampling of the 
NR class instances and 100% 
SMOTE oversampling of the R class 
Features:  

• Presence/absence of threat 

keywords in mitigation text  

• R/NR indicator 

Filter: 

• Lower case 

• Eliminate stop words and 

punctuation 

Classifier: Weka SMO 

R 0.97 0.74 0.00 0.84 31 1 

NR 0.95 1.00 0.24 0.97 211 11 

 

Trial 5 

An inspection of the mitigation text for the 9 relevant examples in trial 2 revealed that 

those which were correctly classified have in common some key words from threat 49 

suggesting keywords/phrases as a possible way to introduce information from the threat text 

into the approach, while also potentially improving the classification results. Table D.3 shows 

the keywords/phrases automatically extracted by TextRank for threat 49 and its associated 
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mitigations. Some of these keywords were rather rough, so we decided to clean them up 

manually. The improved keywords are also shown in the table. While it would be nice in the 

long run (assuming an approach based on keywords bears fruit) to automate the keyword/phrase 

extraction, it will suffice to prove the concept if we use expert-assigned keywords. 

Table D.3. Keywords for Threat 49 

Text Rank Improved 

attack 
adequate password policy 
brute force attack 
dictionary attacks 
effective e 
feasible 
computationally 
maximum length 
password 
password brute 
possible passwords 
possible value 
proper enforcement 
mechanism 
pure brute force attack 
rainbow tables 
strong passwords 
weak other password 

password policy 
password 
policy 
brute force 
brute 
force 
combination 
trial and error 
trial 
length 
throttle 
limit 
strong password 
strong 
weak password 
weak 
user 

 

Next, we investigated techniques to address the class imbalance in the data (Cohen et 

al., 2006; Miwa et al., 2014; Timsina et al., 2016). The most obvious solution was to add more 

relevant mitigations, so we extracted about a dozen additional documents relevant to threat 49 

from the internet and added them to the data. In addition, we decided to try undersampling of 

the dominant (NR) class. The danger of undersampling is information loss; however, due to the 

extreme imbalance, it seemed a risk worth taking. We also decided to try oversampling of the 

minority (R) class. Oversampling can result in overfitting, but this likewise seemed like a risk 

worth taking in the given situation.  

In trial 5, we created a dataset with one entry for each mitigation in the corpus, including 

12 additional mitigations relevant to threat 49 drawn from the Internet. In this dataset, the 

features consisted of threat 49 keyword counts plus the R/NR indicator. To reduce class 

imbalance, we under-sampled by randomly dropping 2/3 of the NR instances, then we trained 
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a SMO model. The training set contained about 225 instances (slight variances due to random 

sampling) with about 9% relevant. Although still notable, the class imbalance was not as severe 

as was the original dataset. In this trial, the SMO model showed improved precision (0.82) and 

recall (0.67) of the R class, low false positives (0.00), and no appreciable impact to the precision 

and recall of the NR class. We used several different methods for determining the keyword 

counts, including a simple count of the times a keyword appeared in the document (TF), TFIDF, 

TF divided by the total number of words in the document, and 0 or 1 to indicate the keyword is 

present or absent in the document. Of these, the presence/absence approach yielded the best 

results, which are reported here. 

 

Trial 6 

To further improve balance, in trial 6 we followed a process similar to trial 5, but with 

100% Synthetic Minority Oversampling Technique (SMOTE) (He & Garcia, 2009; Liu et al., 

2016) based on 5 nearest neighbors to double the number of instances of the R class.  The 

SMOTE technique creates new instances of the minority class by drawing features from the K 

(e.g. 5) nearest minority instances based on Euclidean distance in the feature space. We trained 

a SMO model for threat 49. The training set contained about 225 instances, 18% relevant. 

Although still significant, the class imbalance was less pronounced than the prior trial. With 

combined undersampling of the NR class and oversampling of the R class, the SMO model 

achieved precision of 0.97 and recall of 0.74 for the R class with minimal false positives and 

no appreciable impact to the precision and recall of the NR class. The undersampling of the NR 

class and oversampling of the R class showed some modest improvement in results over prior 

trials, especially in regards to precision. However, a recall of 0.74 means we would fail to 

recommend about a quarter of the available mitigations for threat 49.  

We were curious about the potential impact of additional under- and oversampling, so 

we experimented with 3/4 undersampling of the NR class, and 200% oversampling of the R 

class for threat 49. When comparing 3/4 undersampling versus 2/3 undersampling of the NR 

class for the same oversampling percentage (100%) of the R class, the precision, recall, and F-

measure for 2/3 undersampling was better. When we increased oversampling of the NR class 

to 200%, recall of the R class seemed to improve overall but with a small toll on precision. In 

the 200% oversampling case, the model failed to properly classify test samples. These results 
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suggest that 3/4 NR undersampling was too much and, when combined with 200% R 

oversampling, the model was becoming overfit to the training data. 

Ranked Retrieval 

As a possible alternative to classification, in the spirit of iterative design, we 

investigated two ranked retrieval (i.e. search engine) approaches to matching relevant 

mitigations for a given threat similar to (Foltz, 1990; Goldrich et al., 2014; Swanson & 

Smalheiser, 1997). In trials 7 and 8, we investigated ranking based on a combination of the 

Boolean and Vector Space models as implemented in Apache Lucene (Apache Foundation, 

2013). In trials 9 and 10, we investigated ranking based on Latent Semantic Analysis as 

implemented in Gensim  (Rehurek, 2018). The results are summarized in Table D.4 with details 

provided after the table. 

Table D.4. “Per Threat” Summary of Ranked Retrieval Iterations 

# Trial Class P@25 R FP F C I 

7 Threat 49, one row for each 
mitigation 
Features: 

• Full mitigation text 

• Tokenized, stop words 
removed, TFIDF 

Apache Lucene with Standard 
analyzer similarity to threat 
keywords (top 25) 

R 0.48 0.48   12 13 

8  Threat 49, one row for each 
mitigation 
Features: 

• Full mitigation text 

• Tokenized, stop words 
removed, TFIDF, 
stemmed 

Apache Lucene with Custom 
analyzer similarity to threat 
keywords (top 25) 

R 0.60 0.60   15 10 

9 Threat 49, one row for each 
mitigation  
Features: 

R 
 

0.92 0.92   23 2 
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# Trial Class P@25 R FP F C I 

• Full mitigation text 
LSA similarity to full threat text 
(top 25) 

10 Threat 49, one row for each 
mitigation  
Features: 

• Full mitigation text 
LSA similarity to threat name 
(top 25) 

R 0.84 0.84   21 4 

 

Trials 7 and 8 

For trials 7 and 8, we used Apache Lucene, which implements the Vector Space models. 

Retrieval in Lucene is a two-stage process. First, an index of the document corpus is created; 

then queries can be run against the index. A Lucene index is an inverted index of terms in 

documents, where each term consists of a field name and corresponding field token(s). The 

tokens are, in essence, values of the fields input into the indexing process, except in the case of 

text inputs they may have been tokenized, lower-cased, stemmed, etc. depending on the Lucene 

Analyzer chosen. The inverted index supports scoring of results during the search stage such 

that documents which contain more of the search terms will score higher and thus will be 

deemed more relevant. Items designated as “TextField” are tokenized by the Analyzer which 

those designated as “StringField” are captured literally in the index. We indexed the fields from 

each mitigation as shown in Table D.5. Meanings of the fields are described in the Data Source 

and One-time Data Preparation section above. We elected not to tokenize the Id and Threat Ids 

because we included them in the index for diagnostic purposes only (not for searching) and we 

wanted to preserve their human-readability. We elected not to tokenize the Domain of Attack 

and Mechanism of Attack because these are metadata which we also wanted to preserve intact. 

We allowed the remaining fields to be tokenized to improve matching during the search stage.  

Table D.5. Fields Indexed for Ranked Retrieval 

Field Type Index Store Rationale 

Name TextField Yes Yes Threat matching 

Description TextField Yes No Threat matching 

Keywords TextField Yes Yes Threat matching 
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Field Type Index Store Rationale 

Id StringField Yes Yes Diagnostic 

Domain of Attack StringField Yes Yes Threat matching 

Mechanism of Attack StringField Yes Yes Threat matching 

Threat Ids Mitigated StringField Yes Yes Diagnostic 

 

We experimented with two different analyzers. The StandardAnalyzer is the most 

commonly used Lucene analyzer. It tokenizes text based on white space, removes stop words, 

and lower cases the text. We also tried a CustomAnalyzer, in which we added stemming to the 

other options. We created the search query for each threat by or-ing its respective threat 

keywords and executed the search over the mitigation text. The query returned the mitigations 

in rank order by similarity. In a perfect world, the known relevant mitigations should be top-

ranked, so we established a relevant/not relevant cutoff at the top 25 for purposes of measuring 

the efficacy of this approach. At this cut-off, only about half the relevant mitigations were 

returned, and precision and recall were about equivalent to a coin flip. If we were to use this 

approach to recommend mitigations, we would not want the cut-off to be much larger than the 

expected number of relevant results as this would lead to recommending mitigations that are 

not actually relevant to the threat. 

 

Trials 9 and 10 

 As mentioned in the Literature Review section, Latent Semantic Analysis has been 

shown to improve retrieval of relevant documents from a corpus when compared to keyword 

search because LSA addresses the issue of synonymy inherent in natural language. In trials 9 

and 10 we experimented with a ranking approach using LSA. This is also a two-stage process 

where the corpus must be indexed (i.e. transformed to a semantic space) before it can be queried. 

We started with a comma-separated-values (CSV) file containing one row for each mitigation, 

containing the mitigation id, text, and R/NR indicator designating the mitigation’s relevance to 

threat 49. The mitigation text was used to build the semantic space and the other fields were 

used for evaluation and diagnostic purposes. 

For each mitigation text, stop words were removed, then the text was tokenized, lower-

cased, and stemmed. Using Gensim, Bag of words (BOW) and TFIDF representations of the 
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corpus were computed and then TFIDF representation was transformed to a semantic space or 

Latent Semantic Index (LSI) retaining 200 topics. This is slightly higher than the number of 

standard threats in CAPEC and fits with optimal LSI dimensionality findings in (Bradford, 

2008). Bradford observed favorable results when the number of topics was between 200 and 

500 for a corpus with millions of documents. We selected the low end of Bradford’s range 

because our corpus is much smaller than his. The LSI representation was saved for future use 

in similarity queries. The BOW corpus had 637 documents and 1679 features. 

We experimented with two approaches for constructing the threat query. In trial 9, we 

used the full text of the threat document (tokenized, stemmed, lower-cased, and transformed to 

the semantic space) as the query and in trial 10 we used the threat name (similarly transformed) 

as the query. We established the cut-off at the top 25. In trial 9 (precision=0.92, recall=0.92), 

22 of the known mitigations earned similarity scores in the top 25, while the others scored 26th, 

38th, 40th, and 370th. In trial 10 (precision=0.84, recall=0.84), 21 of the known mitigations 

ranked in the top 25 and all ranked in the top 82. Trial 9, similarity to full threat text, 

outperformed trial 10, similarity to threat name. This suggests that a query with more semantic 

context (i.e. more words) is better. 

In terms of precision and recall, the LSA retrieval results are better than the SMO 

models trained based on words in the mitigation text (trials 1 - 4) but slightly worse than the 

SMO models trained to emphasize threat keywords in the mitigation text (trials 5 and 6). The 

LSA results are better than the keyword search trials (7 and 8), which is not surprising given 

LSA’s reputation for improved performance versus keyword search (Deerwester et al., 1990).  

Hybrid 

Drawing from (Manning et al., 2009), (Nakamoto, 2011), and (Gee, 2003), we 

experimented with several hybrid approaches that combine ranked retrieval and classification 

techniques. For these trials we used LSA features in conjunction with the SVM classifier. As 

mentioned previously, we selected this classifier because support vector machines have been 

shown to perform favorably for text classification, especially when the number of positive 

instances per category is small (Platt, 1998). We decided to continue to use SVM in the hybrid 

trials to facilitate apples-to-apples comparisons with the prior results. The results of these trials 

are presented in Table D-6 with details following the table. 
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Table D-6. “Per Threat” Summary of Hybrid Iterations 

# Trial Class P R FP F C I 

11 
 

Threat 49, one row for each 
mitigation  
Features: 

• LSA transform of mitigation 

text (200 features)  

• R/NR indicator 

Classifier: Weka SMO 

R 1.00 0.72 0.00 0.76 18 7 

NR 0.99 1.00 0.28 0.99 612 0 

12 
 

Threat 49, one row for each 
mitigation, drop rows not in top 100 
similarity scores vs full threat text  
Features: 

• LSA transform of mitigation 

text (200 features)  

• R/NR indicator 
 (*)The number incorrect does not 
include the one known relevant 
mitigation that was ranked outside 
the top 100. 
Classifier: Weka SMO 

R 0.95 0.75 0.01 0.84 18 6(*) 

NR 0.93 0.99 0.25 0.96 75 1 

13 
 

Same as trial 12 except drop rows 
not in top 100 similarity scores vs 
threat name (all R samples were in 
the top 100) 

R 0.95 0.76 0.01 0.84 19 6 

NR 0.93 0.99 0.24 0.96 74 1 

14 
 

Classifier based on (Gee, 2003) 
using LSA nearest neighbor and/or 
majority on mitigation text 

R 0.63 0.83 0.03 0.71 5 1 

NR 0.99 0.97 0.17 0.98 92 1 
(+2 
tie) 

 

Trials 11 

 In trial 11, we extracted the LSA-transformed representation of each mitigation (200 

features) from the semantic space and made a CSV consisting of these features plus the R/NR 

indicator. We trained a SMO model using this data set. The model in trial 11 achieves very high 

precision (1.0) and minimal false positives but only mediocre recall (0.72). This suggests that, 

although this approach would not recommend any errant mitigations, it would fail to 

recommend nearly 40% of the relevant mitigations.  
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Trials 12 - 13 

Recalling that the dataset is extremely imbalanced in favor of the NR class and that we 

saw improvement in the results above (trials 5 and 6) when we took steps to achieve better 

balance in the training data, we decided, in trials 12 - 13, to utilize the LSA similarity scores as 

a means to balance the training data. That is, we cut the training data off after the top 100 entries 

based on similarity to the threat text. We intuited that this approach will be better than simply 

undersampling at random and over-sampling with SMOTE for the following reasons. 

Undersampling at random could drop relevant entries of which we already have too few. 

Oversampling with SMOTE adds new instances to the corpus, but no new knowledge. Because 

the similarity score imparts some knowledge about the semantics of the entries, keeping the 

most similar entries will keep most of the relevant entries and in addition the non-relevant 

entries that are most difficult to discriminate.  

In trial 12, we used similarity scores resulting from comparing the full threat test against 

the mitigations in the semantic space up to the cut-off. In trial 13, we used similarity scores 

resulting from comparing the threat name against the mitigations up to the cut-off.  In trials 12 

and 13, we trained the models using only the 200 LSA features and the R/NR indicator. Trial 

12 (similarity based on full threat text) and 13 (similarity based on threat name) produced 

similar balance of precision and recall, while keeping false positives low (Trial 12: P=0.95, 

R=0.75, FP=0.01; Trial 13: P=0.95, R=0.76, FP=0.01), but it is worth noting that the recall 

number is somewhat optimistic because it does not account for one relevant mitigation that was 

dropped from the training set because it ranked lower than the cut-off.  We cannot afford to 

omit up to 25% of the relevant mitigations. 

 

Trial 14 

In trial 14 we developed a method for classifying mitigations relevant/not-relevant to a 

given threat  inspired by Gee (Gee, 2003) and Foltz (Foltz, 1990). First, LSA was utilized to 

create a semantic space for a training set consisting of 80% of the existing labeled mitigation 

documents and an external index was constructed to maintain the known relevance status of the 

mitigation with regard to the threat. When a new mitigation document was presented, it was 

used as a query against the semantic space, returning a ranked list of other mitigation documents 

similar to the query from most similar to least. The trial 14 classifier classifies the new 
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document in three stages. First, it is classified according to the class of its nearest neighbor in 

the space (i.e. the existing mitigation document whose similarity score is highest). Next, the 

new mitigation document is classified according to class of the majority of all results in the 

ranked list truncated at an arbitrary cut-off N. Finally, if the majority and nearest neighbor 

stages agree, the new mitigation document is deemed to be of the nearest neighbor’s class. If 

the majority and nearest neighbor stages do not agree, the dispute is settled by the third stage 

which attempts to detect the skew of the new document towards one class or the other. We 

implemented the first 2 stages using an arbitrary cut-off of top 5, but for the tie-breaker we took 

a default where tie equates to an incorrect classification (i.e. for the R class, resulting prediction 

is NR; for the NR class, resulting prediction is R). We intended to go back and implement a 

more robust tie-breaker if observations revealed an approach that would be beneficial. 

In trial 14, there were 546 mitigations in the training set and 101 (6 relevant and 95 not 

relevant to threat 49) in the testing set. On the test data, this method yielded precision of 0.63 

and recall of 0.83 with 3% false positives on the R class and 0.99/0.97/17% for the NR class. 

Two ties were encountered in the NR class indicating the need to consider a better tie-breaker 

before this method could to be viable. 

A possible stage 3 algorithm, based on (Gee, 2003) is as follows for arbitrary A, B, and 

C which Gee set to 0.7, 0.7, and 0.65 respectively: 

• If the average of the majority scores > A and the nearest neighbor score < B, use the 

majority class 

• If the average of the majority scores < B and the nearest neighbor score > A use the 

nearest neighbor class 

• If the nearest neighbor score > C use the nearest neighbor class 

• If the average of the majority scores > C use the majority class 

• If still not determined, result = incorrect classification 

Analysis of Text 

 Success in classifying textual data is heavily influenced by the characteristics of the text 

itself. Having experimented with a few variations, it made sense to pause and look closely at 

the text of threat 49 for insights on the matching successes and failures. In the training corpus, 

there are 25 known relevant mitigations. Using diagnostic tools, we identified 6 mitigations that 

were commonly misclassified in the trials. One thing the false negative instances had in 
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common is that they lack any text that helps the reader understand how the mitigation addresses 

the threat. The false positives fell into two categories: (a) some dealt with password 

vulnerabilities but not specifically password brute force guessing and (b) others dealt with brute 

force guessing but not of passwords. We hypothesized that improving the mitigation texts to 

include an explanation of how each one addresses the threat would improve the match results 

by reducing the FNs. In some applications of text mining, the text “is what it is” and we have 

to use what we find (e.g. ratings, surveys, news articles). For threat-mitigation matching, we 

have influence over the problem space and thus we do have the luxury of recommending 

improvements to the threat and mitigation documents to better support automated matching in 

the future. With that in mind, we augmented the text of the FPs and FNs then reran selected 

trials as shown in Table D-7 and described below the table. A side-by-side comparison of the 

results for the R class on the original and improved mitigation text for the best trials is provided 

in Table D-8. 

Table D-7. “Per Threat” Summary (Improved Mitigation Text) 

# Trial Class P R FP F C I 

15 
 

Threat 49, one row for each 
mitigation, enhanced mitigation text 
with vector space representation and 
TFIDF 
(comparable to trial 3) 

R 1.00 0.56 0.00 0.72 14 11 

NR 0.98 1.00 0.44 0.99 612 0 

16 
 

Same as trial 15 plus attribute 
selection: top 200 attributes based on 
information gain  
(comparable to trial 4) 

R 1.00 0.56 0.00 0.72 14 11 

NR 0.98 1.00 0.44 0.99 612 0 

17 
 

Threat 49, one row for each 
mitigation, full corpus, 200 LSA 
features from enhanced mitigation 
text 
(comparable to trial 11) 

R 0.95 0.80 0.00 0.87 20 5 

NR 0.99 0.99 0.20 0.99 611 1 

 
18 
 

Threat 49, one row for each 
mitigation, 200 LSA features from 
enhanced mitigation text, drop rows 
not in top 100 (comparable to trial 
12), Weka SMO 

R 0.95 0.80 0.01 0.87 20 5 

NR 0.94 0.99 0.20 0.96 74 1 

18b 
 

Same as trial 18 but retain top 200 
rows 

R 1.00 0.70 0.00 0.82 14 6 

NR 0.97 1.00 0.30 0.98 180 0 

18c 
 

Same as trial 18 but retain top 300 
rows 

R 0.94 0.64 0.00 0.76 16 9 

NR 0.97 0.99 0.36 0.98 274 1 
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# Trial Class P R FP F C I 

18d 
 

Same as trial 18 except using scikit-
learn SVM.SVC 

R 0.96 0.92 0.01 0.94 23 2 

NR 0.97 0.99 0.08 0.98 74 1 

19 
 

Classifier based on (Gee, 2003) using 
LSA nearest neighbor and/or 
majority on enhanced mitigation text  
(comparable to trial 14) 

R 0.75 1.00 0.01 0.86 6 0 

NR 1.00 0.99 0.00 0.99 200 2 

 

Trials 15 - 16 

We ran trials 15 and 16 to see if the improved mitigation text yielded improved results when 

classifying the text using the Vector Space Model and TFIDF weights without and with 

information gain attribute selection. These compare with trials 3 and 4 in Table 3.  We saw 

improvement in recall and precision and reduction in both false negatives and false positives, 

but recall was still too low for our purposes. 

 

Trials 17 - 18 

We ran trials 17 - 18 on the improved text because the corresponding trials in Table 4 showed 

the best results on the original text. In trial 17, we trained the classifier on the LSA features 

using the full corpus. In trial 18, we used the top 100 mitigations ranked by similarity to the 

threat as the training corpus. Trial 17 showed modest improvement in recall but a slight decline 

in precision over a similar trial (11) and no false positives. Trial 18 showed stable precision and 

false positive rate and modest improvement in recall over a similar trial (12). This model has 

good precision and an acceptably low FP rate on the R class, but the recall of 0.80 was 

concerning because it represents a significant number of relevant mitigations that would not be 

recommended. We ran alternate versions of trial 18 where we retained the 200 (18b) and 300 

(18c) top-ranked mitigations, but the recall of the R class declined as we increased the training 

dataset, likely because the additional samples were mainly NR samples resulting in increased 

class imbalance. An alternate version (18d) using scikit-learn SVM.SVC had a modest 

improvement in precision over the Weka SMO version (18) and a notable improvement in 

recall. 
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Trial 19 

In trial 19, overall precision and recall for the R class was 0.75/1.0 with 1% FP and for the NR 

class was 1.0/0.99 with no false positives. For the NR class, in 200 instances, the predicted and 

actual labels agreed, 2 resulted in a tie (reaffirming the need to more fully investigate a tie-

breaker) where nearest neighbor class predicted NR but top 5 majority predicted R, and none 

were incorrectly classified. The nearest neighbor similarity range for the R class was 0.47 to 

0.92 and for the NR class was 0.36 to 1. The majority mean similarity range for the R class was 

0.45 to 0.65 and for the NR class was 0.31 to 0.89. With such large ranges, tie-breaker cut-offs 

similar to those in Gee’s algorithm were not obvious. The majority and nearest neighbor 

similarities for the two ties, both of the NR class, were 0.41 and 0.38 respectively. 

Table D-8. “Per Threat” Results Before and After Text Improvement 

# Trial Class P R FP F C I 

3 Threat 49, one row for each 
mitigation, mitigation text with 
vector space representation and 
TFIDF 

R 0.92 0.48 0.00 0.63 12 13 

15 R 1.00 0.56 0.00 0.72 14 11 

         

4 Same as trial 3/15 plus attribute 
selection: top 200 attributes based 
on information gain 

R 0.83 0.39 0.002 0.53 5 8 

16 R 1.00 0.56 0.00 0.72 14 11 

         

6 Threat 49, one row for each 
mitigation, 2/3 undersampling of 
the NR class instances and 100% 
SMOTE oversampling of the R 
class, presence/absence of threat 
keywords in mitigation text 
(Note: No after improvement trial) 

R 0.97 0.74 0.00 0.84 31 1 

  

         

11 Threat 49, one row for each 
mitigation, full corpus with 200 
LSA features 

R 1.00 0.72 0.00 0.76 18 7 

17 R 0.95 0.80 0.00 0.87 20 5 

         

12 Threat 49, one row for each 
mitigation, drop rows not in top 
100, 200 LSA features  

R 0.95 0.75 0.01 0.84 18 6 + 
1(*) 

18d R 0.96 0.92 0.01 0.94 23 2 
         

14 Ensemble classifier based on (Gee, 
2003) 

R 0.63 0.83 0.03 0.71 5 1 

19 R 0.75 1.00 0.01 0.86 6 0 
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Table D-8 provides a comparison of results for “per threat” matching approaches for 

selected trials before and after improvement of the mitigation text. Per common practice, we 

used the precision, recall, and false positive rates of the R class (based on cross-validation 

statistics generated during training) to compare the models. From these results, we decided to 

advance the designs in trials 12/18d and 14/19. These have the best balance of precision and 

recall on cross-validated training data. We left the designs in trials 3/15, 4/16, and 11/17 behind 

due to unacceptably low recall. We shelved the design in trial 6 for two reasons. First, its recall 

lags behind the other retained designs. Second, the automated keyword/phrase extraction was 

only moderately successful, leaving us with required manual SME intervention to perfect the 

keywords. Note also that our intuition that improving the mitigation text to describe how the 

mitigation addresses the threat would yield better matching results is buoyed by these initial 

results, especially in regards to precision. 

Extensibility to Other Threats 

Having seen promising results from some “per threat” designs, we wanted to know if 

these results would extend to other CAPEC standard threats. Tables D-9, D-10, D-11, and D-

12 show results for threats 268, 593, 66, and 134 respectively for the designs in trials 13/14 for 

the unimproved text and 18d/19 for the improved text.  

Table D-9. “Per Threat” Comparison for Threat 268 

# Trial Class P R FP F C I 

 Unimproved Text        

13 One row for each mitigation, drop 
rows not in top 100, 200 LSA 
features (*) The number incorrect 
does not include the one known 
relevant mitigation that was ranked 
outside the top 100 

R 1.00 0.90 0.00 0.95 18 2+ 
1(*) 

NR 0.98 1.00 0.00 0.99 80 0 

14 Ensemble classifier based on (Gee, 
2003) 

R 0.66 0.50 0.02 0.57 2 2 

NR 0.96 0.98 0.50 0.97 49 1 

 Improved Text        

18d One row for each mitigation, 200 
LSA features, drop rows not in top 
100 

R 0.95 0.95 0.01 0.95 20 1 

NR 0.99 0.99 0.05 0.99 78 1 

19 Ensemble classifier based on (Gee, 
2003) 

R 0.80 1.00 0.02 0.89 4 0 

NR 1.00 0.98 0.00 0.99 49 1 
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Table D-10. “Per Threat” Comparison for Threat 593 

# Trial Class P R FP F C I 

 Unimproved Text        

13 One row for each mitigation, 200 
LSA features, drop rows not in top 
100 

R 0.73 0.69 0.12 0.71 22 10+ 
4(*) 

NR 0.86 0.88 0.31 0.87 60 8 

14 Ensemble classifier based on (Gee, 
2003)  

R 0.30 0.75 0.04 0.75 3 1 

NR 0.99 0.96 0.25 0.99 167 1 
(+6 
tie) 

 Improved Text        

18d One row for each mitigation, 200 
LSA features, drop rows not in top 
100 

R 0.94 0.86 0.03 0.90 30 5+ 
1(*) 

NR 0.93 0.97 0.14 0.95 63 2 

19 Ensemble classifier based on (Gee, 
2003)  

R 0.45 1.00 0.03 0.91 5 0 

NR 1.00 0.97 0.00 0.99 167 1 
(+5 
tie) 

 

Table D-11. “Per Threat” Comparison for Threat 66 

# Trial Class P R FP F C I 

 Unimproved Text        

13 One row for each mitigation, 200 
LSA features, drop rows not in top 
100 

R 0.50 0.33 0.06 0.40 5 10+ 
5(*) 

NR 0.89 0.94 0.67 0.91 80 5 

14 Ensemble classifier based on 
(Gee, 2003) 

R 0.00 0.00 0.03 0.00 0 3 (+1 
tie) 

NR 0.96 0.97 1.00 0.98 96 1 (+2 
tie) 

 Improved Text        

18d One row for each mitigation, 200 
LSA features, drop rows not in top 
100 

R 0.86 0.90 0.04 0.88 18 2 

NR 0.97 0.96 0.10 0.97 77 3 

19 Ensemble classifier based on 
(Gee, 2003) 

R 0.80 1.00 0.01 1.00 4 0 

NR 1.00 0.99 0.00 1.00 98 (+1 
tie) 
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Table D-12. “Per Threat” Comparison for Threat 134 

# Trial Class P R FP F C I 

 Unimproved Text        

13 One row for each mitigation, 200 
LSA features, drop rows not in top 
100 

R 0.86 0.75 0.01 0.80 6 2 

NR 0.98 0.99 0.25 0.98 91 1 

14 Ensemble classifier based on (Gee, 
2003) 

R 0.00 0.00 0.00 0.00 0 1 
(+1 
tie) 

NR 0.98 1.00 1.00 1.00 111 0 

 Improved Text        

18d One row for each mitigation, 200 
LSA features, drop rows not in top 
100 

R 1.00 0.88 0.00 0.93 7 1 

NR 0.99 1.00 0.13 0.99 92 0 

19 Ensemble classifier based on (Gee, 
2003) 

R 1.00 0.50 0.00 1.00 1 0 
(+1 
tie) 

NR 0.99 1.00 0.50 1.00 111 0 

 
Table D-13 shows a summary of the cross-validation statistics for the R class for models 

trained for threats 49, 66, 134, 268, and 593. Note that precision, recall, and false positive rates 

are better for the improved text when compared to models trained with the unimproved text. Of 

the two, the SVM classifier based on LSA features and top 100 most similar documents (Trial 

18d) has the best precision, recall, and false positive rate when compared to the ensemble 

classifier (19).  

Table D-13. “Per Threat” Models Summary for R Class 

# Trial 
 

Threat P  
(Mean) 

R 
(Mean) 

FP 
(Mean) 

#C #I 

 Unimproved Text       

13 One row for each 
mitigation, 200 LSA 
features, drop rows not in 
top 100 

134 
49 

268 
593 

66 

0.86 
0.95 
1.00 
0.73 
0.50 

(0.81) 

0.75 
0.76 
0.90 
0.69 
0.33 

(0.69) 

0.01 
0.01 
0.00 
0.11 
0.06 

(0.04) 

6 
19 
18 
22 

5 
(64%) 

2 
6 
3 

14 
15 

(36%) 

14 Ensemble classifier based 
on (Gee, 2003) 

134 
49 

268 
593 

66 

0.00 
0.63 
0.66 
0.30 
0.00 

(0.32) 

0.00 
0.83 
0.50 
0.75 
0.00 

(0.42) 

0.00 
0.03 
0.02 
0.04 
0.03 

(0.02) 

0 
5 
2 
3 
0 

(53%) 

1 
1 
2 
1 
4 

(47%) 
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# Trial 
 

Threat P  
(Mean) 

R 
(Mean) 

FP 
(Mean) 

#C #I 

 Improved Text       

18
d 

One row for each 
mitigation, 200 LSA 
features, drop rows not in 
top 100 

134 
49 

268 
593 

66 

1.00 
0.96 
0.95 
0.94 
0.86 

(0.94) 

0.88 
0.92 
0.95 
0.86 
0.90 

(0.90) 

0.00 
0.01 
0.01 
0.03 
0.04 

(0.02) 

7 
23 
20 
30 
18 

(89%) 

1 
2 
1 
6 
2 

(11%) 

19 Ensemble classifier based 
on (Gee, 2003) 

134 
49 

268 
593 

66 

1.00 
0.75 
0.80 
0.45 
0.80 

(0.76) 

0.50 
1.00 
1.00 
1.00 
1.00 

(0.90) 

0.00 
0.01 
0.02 
0.03 
0.01 

(0.01) 

1 
6 
4 
5 
4 

(95%) 

1 
0 
0 
0 
0 

(5%) 

 “One for All” - Beyond the Per Threat Approach 

So far, we have discussed matching approaches that are implemented on a “per threat” basis. 

This approach is derived from the medical SRs research discussed in the Literature Review. It 

is based on the premise that each threat has its own pattern or semantics. A “per threat” solution 

is not unreasonable and would work for our purposes as described in the Architecture section. 

However, we wondered if there was a way to implement a “one for all” approach where a single 

matcher would determine relevant mitigations for any threat contained in the corpus. In the next 

paragraphs, we discuss two trials towards a “one for all” approach as summarized in Table D-

14. We used the unimproved text for these trials because it was not practical to improve the text 

of the entire CAPEC dataset. 

Table D-14. “One for All” Trials 

# Trial Class P R FP F C I 

20 All threat-mitigation 
combinations, up to 200 LSA 
features of each, unimproved text, 
Weka SMO 

R 0.00 0.00 0.00 0.00 0 593 

NR 0.99 1.00 1.00 0.99 86915 0 

         

21 Ensemble classifier based on 
(Gee, 2003) 

R     3 8 
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Trial 20 

In Trial 20, we used LSA to create a semantic space representing all the standard threats 

and a separate semantic space representing all the labeled mitigations for these threats. Then 

for each combination of a threat and a mitigation, we made a training dataset consisting of the 

200 LSA factors representing the mitigation from the corresponding semantic space, the threat 

id, 163 LSA factors representing the threat from the corresponding semantic space, and a label 

indicating whether the mitigation was relevant or not relevant to the threat. (Although we 

specified 200 features when building both semantic spaces, the threat space yielded only 163 

features.) The dataset consisted of 364 attributes and 87,000 instances. We trained a SMO 

model which we hoped might be able to answer for given threat (T) and mitigation (M), is M 

relevant to T? The results shown in Table 14 indicate that this model will not be able to 

distinguish relevant T-M pairs from non-relevant ones. Intuitively, this result makes sense. It is 

simply a hodge-podge of features tagged either R or NR. When the threat features and the 

mitigation features are comingled, the model does not know which features represent the threat 

and which represent the mitigation. Also, there is no reason to expect that, for example, a 

relevant T-M pair for Threat 49 will have anything in common with a relevant T-M pair for 

Threat 268 to indicate that they are both of class R since they express totally different concepts.  

 

Trial 21 

In Trial 21, we constructed a model based on (Gee, 2003)6 to try to select the threat T 

to which a new mitigation M is relevant from among all threats in the corpus based on M’s 

similarity to  labeled mitigations already known to be relevant to T. We used LSA to create a 

semantic space of the mitigations mapped to all the standard threats in the corpus and we also 

created an index of which mitigations are labeled relevant to each threat. In this classifier threat 

id is the dependent variable. When a new mitigation document is presented, it is used as a query 

against the semantic space, returning a ranked list of other mitigation documents similar to the 

query from most similar to least. The trial 21 model classifies the new document in three stages. 

First, it is classified according to the class of its nearest neighbor in the space (i.e. it is assigned 

the threat id associated with the existing mitigation document whose similarity score is highest). 

                                                 

6
 Note this model is not the same as the one discussed in the “per threat” section, trials 14 and 19. 
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Next, the new mitigation document is classified according to the class (threat id) associated 

with of the majority of all mitigations in the ranked list truncated at an arbitrary cut-off N. 

Finally, if the majority and nearest neighbor stages agree, the new mitigation document is 

deemed to be relevant to the threat to which its nearest neighbor is relevant. If the majority and 

nearest neighbor stages do not agree, the dispute is settled by the third stage which attempts to 

detect the skew of the new document towards one class or the other. We implemented the first 

two stages (but not the tie-breaker) and tested the results with 11 representative mitigations. Of 

these, the model classified 3 mitigations as relevant to the correct threat, 7 to an incorrect threat, 

and 1 resulted in a tie, which we count as incorrect in the absence of tie-breaker logic. These 

results were so poor that we did not invest any time in developing a tie-breaker, since it would 

only come into play a small percentage of the time. This result was more of a brain teaser than 

the prior trial, but in the final analysis it also made intuitive sense. Given a threat, for example, 

breach of physical access, we may have mitigations that describe a fence, a wall, a moat, and 

drone surveillance and each of these mitigations will furthermore describe how they mitigate 

the threat. If we present a new mitigation, for example, an armed guard, which also describes 

how it mitigates the threat, the mitigation itself (armed guard) is not very similar to any of the 

other mitigations (fence, wall, moat, drone) for the threat. Even though all the listed mitigations 

may present as similar to the threat, the inverse is not necessarily true.  
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APPENDIX E: CYBER RISK ASSESSMENT 

A number of cyber risk assessment methodologies are described in the literature and in 

use today. These include: 

• Carnegie Mellon Software Engineering Institute Operationally Critical Threat, Asset, 

and Vulnerability Evaluation (OCTAVE) (Caralli et al., 2007) 

• ISACA Risk IT Framework based on Control Objectives for Information and Related 

Technologies (COBIT) (ISACA, 2009; Schmittling, 2010) 

• Johns Hopkins University Applied Physics Laboratory Mission Information Risk 

Analysis (MIRA) (Llanso et al., 2012) (Llanso et al., 2013) 

• Johns Hopkins University Applied Physics Laboratory BluGen (Llanso et al., 2017) 

• Mitre Crown Jewels Analysis (CJA) and Threat Assessment and Remediation 

Methodology (TARA) (MITRE, 2015) 

• US National Institute of Standards and Technology (NIST) Special Publication 800-30: 

Guide for Conducting Risk Assessments (National Institute of Standards and 

Technology, 2012) 

• Automated Risk and Utility Management (AURUM) (Fenz et al., 2011) 

These were selected because they are representative of approaches in use by 

organizations that employ formal cyber risk assessment processes and because descriptions are 

available in open literature. Note that this is not an exhaustive survey of such methodologies, 

and in particular does not include proprietary and other closed-source methodologies.  

OCTAVE is an eight-step process, as follows. First, impact areas (e.g. financial, 

productivity, reputation, health, etc.) are identified and ranked. Next critical information assets 

are identified as well as IT and non-IT locations where critical information is processed and 

stored. Then situations that could affect the critical information are enumerated and threat 

scenarios (including asset, actor, access, motive, and outcome) are identified. The consequences 

of identified threat scenarios are assessed to point out risks. An aggregate score is derived for 

each identified threat/consequence by assigning qualitative impact values (e.g. high, medium, 

low) to each identified threat/consequence for each impact area, multiplying by the rank of the 

impact area, and summing the products. Finally, a relative risk matrix is developed based on 
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probability of occurrence (high, medium, low) and score ranges, then mitigation approaches are 

selected based on the risk matrix.  

Similarly, Risk IT, advocates identifying risk scenarios derived from understanding of 

business objectives, where each scenario considers the potential actor (insider, competitor, etc.), 

threat type (malicious, accidental, etc.), event type, asset or resource affected, and time. 

Likewise, CJA+TARA considers mission priorities and potential impacts due to cyber, 

identifying the potential threats faced by each individual asset based on common attack patterns 

cataloged in CAPEC (MITRE, 2017a), scoring (on a scale of 1-5) each threat in multiple 

dimensions, and aggregating to produce a risk score per asset. Additionally, the NIST risk 

assessment process is a 5-step process, including: (1) identify possible threat sources and 

events, (2) identify inherent vulnerabilities and predisposing conditions present in the system, 

(3) determine likelihood of occurrence of events, (4) determine magnitude of impact of each 

event occurrence, and (5) determine risk as a combination of likelihood of occurrence and 

impact. The AURUM Framework follows the NIST risk assessment process and also includes 

automated control recommendations. 

In MIRA, two sets of risk scores are expert-generated. First, experts judge mission 

impact for each viable combination of mission, system asset, data type, and cyber effect 

(confidentiality, integrity, or availability). Also, expert input for adversary level of effort 

(LOE), the amount of effort and/or resources an adversary would have to apply to realize the 

effect, is required for each viable combination of asset, data type, cyber effect and attack vector. 

Risk is then visualized by plotting the mission contexts on an x-y plot such that those with the 

highest mission impact (x) and lowest LOE (y) are the highest priority candidates for mitigation. 

BluGen takes a capability-centric approach based on an expert-constructed reusable 

knowledge resource called the Reference Catalog. In this catalog, threats are mapped to asset 

types in a taxonomy and mitigations are mapped to threats. Consistent with event-centric 

approaches, like MIRA, OCTAVE, CJA, Risk IT, and AURUM, BluGen intakes a description 

of the system being assessed, including assets, data types, and mitigations already present. 

BluGen requires a set of raw criticality scores, one for each viable combination of mission, 

asset, data type, and cyber effect. BluGen estimates risk from these scores and the threat-asset 

type mappings. To the extent that threat-mitigation mappings exist in the Reference Catalog, 

BluGen is the only method discussed here that recommends mitigations; however, the catalog 
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is still in its infancy. Ongoing construction of the BluGen Reference Catalog could benefit from 

an automated approach to mapping mitigations to threats. Table E.1 summarizes the risk 

assessment methods discussed above. 

Table E.1. Asset-based, Threat-informed Cyber Risk Assessment Methods 

 

Method 
Characterize 

System 

Characterize 

Mission 

Characterize 

Threat 

Assess 

Risk 

AURUM 

(Fenz et al., 2011) 

Assets Magnitude of 

impact of 

adverse events 

Threat sources 

and events; 

inherent 

vulnerabilities; 

likelihood of 

occurrence 

Aggregation of 

combined 

likelihood of 

occurrence and 

impact  

BluGen 

(Llanso et al., 

2017) 

Assets, data, 

existing 

mitigations 

Mission 

weights, 

criticality 

scores per 

mission/asset/ 

data/cyber 

effect 

Adversary’s 

anticipated 

offensive 

capabilities  

Asset exposure 

based on existing 

mitigations and 

Reference Catalog 

mappings, asset 

criticality based 

on aggregation of 

individual 

criticality scores 

CJA+TARA 

(MITRE, 2015) 

 

Assets Mission 

priorities 

Potential 

threats by 

asset, scored 

based on 

common 

attack patterns 

Aggregation of 

scores 
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Method 
Characterize 

System 

Characterize 

Mission 

Characterize 

Threat 

Assess 

Risk 

MIRA 

(Llanso et al., 

2012, 2013) 

Assets, data, 

connectivity 

Mission impact 

per asset/data/ 

cyber effect 

Adverse 

events scored 

by required 

adversary LOE 

per asset/data/ 

cyber 

effect/attack 

vector 

x-y plot of assets 

by mission impact 

and LOE 

NIST SP 800-30 

(National Institute 

of Standards and 

Technology, 

2012) 

Assets Magnitude of 

impact of 

adverse events 

Threat sources 

and events; 

inherent 

vulnerabilities; 

likelihood of 

occurrence 

Aggregation of 

combined 

likelihood of 

occurrence and 

impact  

OCTAVE 

(Caralli et al., 

2007) 

Assets, 

locations, 

information 

Areas of 

impact, 

consequences 

Threat 

scenarios 

(asset, actor, 

access, motive, 

and outcome) 

Aggregation of 

scores for each 

identified threat/ 

consequence  

RISKIT 

(ISACA, 2009; 

Schmittling, 

2010) 

Assets Business 

objectives 

Threat 

scenarios 

(asset, actor, 

motive, time), 

frequency and 

magnitude of 

impact of 

occurrences 

Aggregation of 

magnitude of 

impact 
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APPENDIX F: MITIGATION OPTIMIZATION APPROACHES 

The CSE faces two main problems when selecting a security control portfolio to address 

an organization’s cyber risk. First, there may be multiple conflicting objectives to be considered 

(e.g. cost, ease of use) making it impossible to arrive at a single optimal solution. At the same 

time, the number of combinations of viable alternatives presents an overwhelmingly large 

search space, requiring strategies to winnow it down to a tractable scope. These decisions are 

complex and inexact, involve multiple stakeholders with diverse interests, and require trade-

offs between conflicting objectives. Moreover, information environments, risk tolerance levels, 

and the threats they face vary widely from one organization to the next. (Kiesling et al., 2016) 

Hence, compromise solutions must be sought. There is a large body of research which applies 

multi-criteria decision-making (MCDM) techniques to solve the mitigation optimization 

problem. In addition, a few authors have applied game theory to the problem. We discuss these 

below and summarize them in Table F-1. 

Multi-Criteria Decision-Making Approaches 

Multi-criteria decision-making (MCDM), also known as multiple-criteria decision 

analysis (MCDA), is widely applied to security portfolio selection (Fenz et al., 2011; Llansó et 

al., 2019; Patterson et al., 2013; Sawik, 2013; Schilling & Werners, 2016; Weishäupl, 2017; 

Yevseyeva et al., 2015). MCDM is discipline for evaluating multiple conflicting criteria. It is 

used to analyze problems where these are some measures of costs and benefits which can be 

traded off to arrive at the best solution under the given constraints. Researchers investigate a 

number of MCDM techniques for this problem, some of which include or are based on fuzzy 

set theory (Otero, 2014), multi-attribute utility theory (i.e. value functions, knapsack strategy) 

(Fielder et al., 2016; Panaousis et al., 2014; Shapasand et al., 2015; Smeraldi & Malacaria, 

2014), evolutionary multi-objective optimization (EMO) also known as genetic algorithms 

(Gupta et al., 2006; Kiesling et al., 2016, 2012; Rees et al., 2011; Sarala et al., 2016; Viduto et 

al., 2012), analytic hierarchy process (AHP) (El-Gayar & Fritz, 2010), grey relational analysis 

(GRA) (Breier & Hudec, 2013), simple additive weighting (SAW) (Llanso, 2012; Llansó et al., 

2019), the technique for order preference by similarity to ideal solution (TOPSIS) (Breier & 
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Hudec, 2013), and preference ranking organization method for enrichment evaluation 

(PROMETHEE) (Lv et al., 2011). 

(Fenz et al., 2011) describe an automated approach to mitigation selection that requires 

as input an enumeration of relevant potential controls, risk level of the protected asset, and 

control attributes, such as cost and effectiveness. Their method defines mitigation selection in 

terms of a multi-objective combinatorial optimization problem which seeks to select controls 

by analyzing alternatives in consideration of the stakeholder’s objectives, such as risk reduction, 

cost, availability, and reliability to choose Pareto-efficient combinations. They provide a user 

interface where each objective is represented by a slider, allowing the stakeholder to tune the 

upper and lower bounds of his objectives and obtain immediate feedback. 

(Patterson et al., 2013) describe a method for optimizing security control decisions for 

critical infrastructure systems. Given a fixed budget, the method balances costs and benefits of 

improving three dimensions of cybersecurity, intrusion prevention, detection, and response by 

posing the selection as an optimization problem. The goal of the optimization is to select the 

investment strategy that yields the smallest residual probability of successful attack, i.e. the best 

security portfolio for the budget. This optimization problem requires models of the system 

under analysis, cost and performance of applicable security controls, and risk. The authors note 

that creating the models presents a large challenge for future work. 

Given an enumeration of threats and potential mitigations, (Sawik, 2013) describes a bi-

objective mixed integer trade-off model to select an optimal countermeasure portfolio  

balancing expected and worst-case losses. The model applies conditional value-at-risk (CVaR) 

and scenario-based analysis to select controls by considering desired confidence, expected loss, 

budget, and risk tolerance. 

(Schilling & Werners, 2016) present a combinatorial optimization model for optimal 

selection of security controls. Unlike most models, which are based on cost minimization, this 

model minimizes the number of controls as a proxy for cost. The authors decided to do this 

because it eliminates the need to collect cost data on all the candidate solutions before selecting 

a solution. Their idea is to cost out the selected solution and if the cost is too high, rerun the 

model after reducing the number of controls. 

(Weishäupl, 2017) describe a multi-objective optimization model for control selection 

which seeks to minimize control cost while maximizing security level. Overall security level is 
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computed as the sum of the security levels of individual assets weighted by importance. Each 

asset’s security level is inversely proportional to the severities of the vulnerabilities by which 

it is affected accounting for probability of occurrence. Cost is the sum of initial costs (e.g. 

purchase, set-up), operating costs (e.g. annual fees and ongoing maintenance), and costs 

associated with security breaches (e.g. disruption of business, damage, reputation, decline in 

stock price). 

(Yevseyeva et al., 2015) present two formulations of security control selection based on 

quadratic integer programming based on a traditional risk vs return model common in financial 

portfolio selection. A multi-objective formula seeks to minimize risk (based on probability of 

successful attack) and maximize return (by minimizing expected losses due to cyber breach) 

while simultaneously satisfying a budget constraint. A single-objective formula is derived from 

the multi-objective formula by assuming that both the return and the budget are constrained. 

(Yevseyeva, Fernandes, Van Moorsel, Janicke, & Emmerich, 2016) seek to apply the 

Sharpe ratio common in financial analysis to security control selection based on a fixed budget 

and two objectives, risk and return. Maximizing the Sharpe ratio supports computation of 

efficient portfolios while balancing the objectives in an optimal way. 

In his doctoral dissertation, (Otero, 2014) describes creation of an artifact based on 

fuzzy set theory and constructed using the MATLAB Fuzzy Logic Toolbox. Taking four input 

variables for each security control under consideration - estimated implementation cost, scope 

(number of assets protected), extent of compliance with laws and regulations, and effectiveness 

in addressing the risks - Otero’s artifact includes fuzzy “if-then” rules and membership 

functions defining objectives and constraints developed in consultation with cybersecurity 

experts and based on the literature. Execution of the rules results in a set of selected controls. 

The design of the rules and functions in the artifact is based on expert responses to a survey that 

asks experts to identify the existing controls in place in their organization, rank the 11 ISO/IEC 

2702 information security areas by order of importance to the organization, rate the detailed list 

of security controls in their top three security areas on cost, scope, compliance, and 

effectiveness. 

(Panaousis et al., 2014) model the cybersecurity posture of an organization and then 

present a series of non-cooperative control-games where each game is between the defender (a 

single control) and the attacker. The Nash Equilibria of the games is derived in consideration 
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of organizational preferences such as costs, anticipated threats, and asset importance. A multi-

objective, multi-choice knapsack approach is then used to optimize investment in controls 

within the organization’s budget. 

(Shapasand et al., 2015) apply a knapsack model for control selection with budget as 

the constraint. Consts considered in this model include cost of maintaining desired levels of 

C/I/A, profit reduction due to C/I/A compromise, and penalty cost (e.g. fines, reputation) due 

to C/I/A compromise. (Smeraldi & Malacaria, 2014) describe a combinatoric optimization 

algorithm based on variations of the knapsack problem that can also account for mitigations 

that benefit more than one asset and mitigations that, when applied together, provide more 

benefit than the sum of their individual benefits. 

(Kiesling et al., 2012) describe a decision support framework for security control 

selection consisting of three stages. In the modeling stage assets, threats, and available controls 

are identified. In the second stage, a baseline risk assessment is determined through simulation. 

Finally, Pareto-efficient control portfolios are computed via multi-objective optimization. 

(Kiesling et al., 2016) describe Multi-Objective decision Support in Efficient Security 

Safeguard Selection (MOSES3), a collaborative decision support process that enables 

cybersecurity professionals and strategic decision makers to “bridge the gap between strategic 

security investment and operational implementation decisions.” After describing the system 

architecture (assets, data, access), identifying threats and attacker skill level, and enumerating 

existing controls, assets are valued according to their criticality by C/I/A and candidate 

mitigations per asset and are specified. An attack-based simulation seeks to estimate a set of 

Pareto-efficient security control portfolios, optimizing via a genetic algorithm while 

minimizing the specified objectives (cost, C/I/A impact, undetected rate, target reached rate). 

Each portfolio is evaluated by initializing the system model with the given set of controls then 

simulating attacks and aggregating attack outcomes. 

(Gupta et al., 2006) present a genetic algorithm approach for selecting a security profile 

that minimizes cost while also minimizing the number of unmitigated vulnerabilities. (Rees et 

al., 2011) present a decision support system which uses a genetic algorithm to determine an 

optimal combination of countermeasures by trading off cost versus residual risk where risk is 

calculated as the sum for all anticipated threats of the number of occurrences expected annually 

and the expected cost of each occurrence. 
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(Sarala et al., 2016) describe an approach to optimizing control selection where 

solutions must observe a budgetary constraint and solution cost must not exceed the anticipated 

losses if threats were left unmitigated. Their approach solves a multi-objective problem by 

applying TABU search combined with genetic algorithm. The objectives, to maximize the 

number of vulnerabilities addressed while minimizing the cost of the solution, are first 

processed via the TABU search to arrive at a set of Pareto-efficient solutions. These serve as 

the initial input to a genetic algorithm  

(Viduto et al., 2012) apply the evolutionary algorithm known as Multi-Objective Tabu 

Search (MOTS) for selecting security controls as a multi-objective optimization problem 

balancing financial costs (purchase, operational, training, and labor) and residual risk. The 

MOTS algorithm was shown to arrive at a Pareto-efficient set more rapidly than the exhaustive 

search method with similar quality solutions. 

(El-Gayar & Fritz, 2010) describe a collaborative multi-perspective decision support 

system (DSS) based on AHP and stakeholder input. The decision model is comprised of assets, 

threats, and controls expressed as a set of vectors and analysis subspaces representing the 

pairwise interactions, e.g. threat-asset, threat-control, and asset-control. Stakeholders may be 

assigned unequal weights. They express judgments of the pairwise interactions. Judgments are 

aggregated using the weighted arithmetic mean to provide a ranked list in order of importance. 

(Breier & Hudec, 2013) describe a quantitative prioritization of security controls based 

on asset valuation and the threats identified by an a priori risk assessment. Their method uses 

GRA combined with the TOPSIS, taking as inputs asset importance (financial values), threat 

data (impact, to which assets, probability of occurrence), and potential security controls 

(purchase price, difficulty of implementation, maintenance cost, efficiency, applicable to which 

threats). The security control alternatives are evaluated based on cost, efficiency, and protection 

against the most significant threats and the top n are selected. 

Cyber Investment Analysis Methodology (CIAM) (Llanso, 2012) combines data about 

the infrastructure to be protected (key hardware, software, people, and processes), incident data 

(vulnerabilities, attack steps, and frequency) related to the infrastructure, potential security 

controls including cost to install and maintain, possible business impacts of cyber events, and 

control weightings (effectiveness) to compute an initial selection of security controls and 

investment prioritization. A SAW algorithm combines the incident data, effectiveness scores, 
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control costs, and impact data to compute a list of controls in relative priority order. The list 

can be used to select controls in the content to an overall cyber security budget. 

(Lv et al., 2011) describe a multi-criteria ranking model based on PROMETHEE 

method. Its accepts a finite set of security controls and a set of evaluation criteria (e.g. purchase 

cost, operating/maintenance cost, effectiveness, alignment with standards) as inputs, then ranks 

security controls quantitatively. Evaluation criteria must be numeric, but they can have various 

units and some may be minimized while others are maximized in order to identify a set of 

controls that optimizes all the criteria. 

(Llansó et al., 2019) describe a SAW-based mitigation selection approach that uses a 

set of weighted criteria and a a capability-based representation for cybersecurity mitigations. 

The security engineer sets the weights based on organizational priorities and constraints and the 

algorithm recommends a candidate set of mitigations representing a “practical middle ground 

between completely ad hoc mitigation selection approaches” and “approaches whose 

computational complexity requires the use of sophisticated heuristic algorithms.” 

Game Theoretic Approaches 

Several authors apply game theory to security portfolio selection in combination with 

MCDM techniques. (Fielder et al., 2016) employs a pure game theoretic approach in a single 

massive two-person non-cooperative zero-sum static game where the defender (person in 

charge of choosing controls) competes against an attacker who chooses among various attack 

targets. The Nash equilibrium of the game represents the best control portfolio. Recognizing 

that the organization may not have sufficient budget to implement the equilibrium of the pure 

game, they also discuss a hybrid approach combining game theory with a knapsack strategy. 

(Panaousis et al., 2014) model the cybersecurity posture of an organization and then present a 

series of non-cooperative control-games where each game is between the defender (a single 

control) and the attacker. The Nash equilibria of the games are derived in consideration of 

organizational preferences such as costs, anticipated threats, and asset importance. A knapsack 

approach is subsequently used to optimize investment in security controls within the 

organization’s budget. Finally, (Wang & Zhu, 2016) used evolutionary game theory to 

investigate long-term cybersecurity investment strategy finding that firms will invest as long as 

either the cost to invest is low or the cost of a breach is high. 
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Table F.1. Selected Mitigation Optimization Approaches 

 

Method Inputs Analysis Approach 

(Barnard & von Solms, 

2000) 

Business analysis 

Security requirements / policy 

Potential security controls 

Evaluation criteria  

Flow-based control 

selection model 

(Breier & Hudec, 2013) Asset financial values 

Threats to assets 

Potential countermeasures 

Countermeasure cost, efficiency 

GRA combined with 

TOPSIS 

(El-Gayar & Fritz, 2010) Assets 

Threats 

Controls 

Weighted stakeholder judgments 

Analytic hierarch process 

(Fielder et al., 2016) Threats 

Controls 

Degrees of control implementation 

Game theory: two-person 

non-cooperative zero-sum 

static game combined 

with MCDM knapsack 

strategy 

(Fenz et al., 2011) Potential controls 

Risk level of the protected asset 

Control attributes such as cost and 

effectiveness 

MCDM multi-objective 

combinatorial 

optimization (Pareto 

efficiency) 

(Gupta et al., 2006) Controls 

Cost 

Unmitigated vulnerabilities 

Evolutionary multi-

objective optimization / 

genetic algorithms 

(Kiesling et al., 2012) 

 

Assets 

Threats  

Controls 

MCDM: Pareto efficiency 
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Method Inputs Analysis Approach 

(Kiesling et al., 2016) System architecture (assets, data, 

access) 

Threats and attacker skill level 

Existing controls 

Assets valued according to their 

criticality by C/I/A 

Candidate mitigations per asset  

Evolutionary multi-

objective optimization / 

genetic algorithms 

(Llanso, 2012) 

Cyber Investment 

Analysis Methodology 

(CIAM) 

 

Assets to be protected 

Incident data related to the assets 

Potential security controls 

Installation and maintenance cost 

Control effectiveness 

Possible business impacts of cyber 

events 

Simple additive 

weighting: cost/benefit 

algorithm 

(Lv et al., 2011) Potential security controls 

Evaluation criteria (cost, 

effectiveness, organizational 

priorities) 

Multi-criteria ranking, 

PROMETHEE 

(MITRE, 2017c) 

Cyber Risk Remediation 

Analysis (RRA) 

 

Table of countermeasures per 

threat 

Cost of countermeasures 

High to low ranking by 

cost 

(Otero, 2014) Potential security controls 

(implementation cost, scope, extent 

of compliance, effectiveness) 

MCDM: Fuzzy logic / 

fuzzy set theory 

(Panaousis et al., 2014) Potential controls 

Organizational preferences such as 

costs, anticipated threats, and asset 

importance 

Game theory non-

cooperative control-games 

combined with MCDM 

multi-attribute utility 

theory 
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Method Inputs Analysis Approach 

(Patterson et al., 2013) Model of the system under analysis 

Applicable security controls  

Control cost and performance 

Risk 

Budget 

MCDM 

(Rees et al., 2011) Potential controls 

Control cost 

Residual risk after control 

Anticipated threats and annual rate 

of occurrence 

Evolutionary multi-

objective optimization / 

genetic algorithms 

(Sarala et al., 2016) Potential controls 

Budgetary constraint (maximum 

acceptable control portfolio cost) 

Anticipated financial loss if threats 

left unmitigated 

Vulnerabilities 

Evolutionary multi-

objective optimization / 

genetic algorithms 

(Sawik, 2013) Threats 

Potential mitigations 

Expected loss 

Budget 

Risk tolerance 

Potential mitigations 

MCDM: bi-objective 

trade-off model 

(Schilling & Werners, 

2016) 

Potential controls 

Number of controls as a proxy for 

cost 

MCDM: combinatorial 

optimization 
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Method Inputs Analysis Approach 

(Shapasand et al., 2015) Potential controls  

Cost of maintaining desired levels of 

C/I/A,  

Profit reduction due to C/I/A 

compromise 

Penalty cost (e.g. fines, reputation) 

due to C/I/A compromise 

MCDM: multi-attribute 

utility theory, knapsack 

model 

(Smeraldi & Malacaria, 

2014) 

Mitigations 

Applicability to multiple assets 

MCDM: multi-attribute 

utility theory, knapsack 

model 

(Viduto et al., 2012) Potential mitigations 

Financial costs (purchase, 

operational, training, and labor)  

Residual risk 

Evolutionary multi-

objective optimization / 

genetic algorithms 

(Wang & Zhu, 2016) Potential controls 

Control cost 

Anticipated losses due to 

unmitigated cyber breach (including 

reputation) 

Evolutionary game theory 

(Weishäupl, 2017) Potential controls 

Control costs 

Security level provided by controls 

Asset importance 

Vulnerability severity per asset 

MCDM: multi-objective 

optimization 
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Method Inputs Analysis Approach 

(Yevseyeva et al., 2015) Potential controls 

Risk (probability of successful 

attack) 

Anticipated losses due to cyber 

breach 

Control effectiveness in reducing 

loss 

Budget constraint 

MCDM: quadratic integer 

programming 

(Yevseyeva et al., 2016) Potential controls 

Risk  

Return (anticipated loss minus 

control effectiveness) 

Budget constraint 

Sharpe ratio 
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