Spring 3-27-2019

Mastermind with a Deceptive Code-Maker

Madison Krell
Dakota State University
Mark Spanier
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/research-symposium

Recommended Citation

Krell, Madison and Spanier, Mark, "Mastermind with a Deceptive Code-Maker" (2019). Annual Research Symposium. 26.
https://scholar.dsu.edu/research-symposium/26

Madison Krell and Mark Spanier

Introduction

Mastermind is an extremely addictive 'code breaking' game for two players - here one player creates a secret code (code-maker) and the other (code-breaker) attempts to determine the secret code based on a set of hints/responses. Under correct (truthful) responses from the code-maker, the code-breaker can easily decode the message in five moves or fewer (e.g., Knuth's algorithm). We consider an interesting modification where the code-breaker is uncertain about the correctness of the code-maker's responses (e.g., allowing a deceptive/untrustworthy code-maker). We investigate the effects of a deceptive code-maker on the average and maximum number of turns.

Figure 1: Mastermind box art and game boards since 1970 (game launch)

Mastermind and Rules

Mastermind is a code-breaking game for two players.
The code-maker chooses a secret code of four pegs, e.g., $[5,4,3,3]$, of six possible repeatable colors $-1,2,3,4,5,6$.
(Note - there are $4^{6}=1296$ possible secret codes.)
The code-breaker tries to break the code by making guesses, i.e., submitting one code.

Following each guess, the code-maker answers using up to four pegs of two colors:

A black peg means that a guess peg matches both color and position of a code peg.
A white peg means that a guess peg matches the color but not the position of a code peg.

Examples/Walk Through

Following an incorrect guess (guess/score) the code-breaker removes from S (the set of all possible solutions) any element that would not give the same response if it (guess/score) were the secret code

**:	$[*, *, *, *]$	(B,W)	\#S	**:	$[*, *, *, *]$	(B,W)	\#S	**:	$[*, *, *, *]$	(B,W)	\#S
1	[1, 1, 1, 1]	$(0,0)$	625	1:	[1, 1, 2, 4]	$(0,1)$	276	1:	[3, 4, 5, 6]	$(1,2)$	132
2	[2, 2, 2, 2]	$(0,0)$	256	2	[2, 2, 3, 2]	$(1,0)$	54	2	[1, 3, 4, 6]	$(0,2)$	38
3	$[3,3,3,3]$	$(2,0)$	54	3	[2, 5, 5, 5]	$(0,1)$	6	3 :	[2, 4, 3, 5]	$(2,1)$	3
4	$[3,3,4,4]$	$(0,3)$	4	4	$[5,3,3,1]$	$(2,1)$	1	4	$[5,4,3,3]$	$(4,0)$	
5	$[4,5,3,3]$	$(2,2)$	1	5	$[5,4,3,3]$	$(4,0)$					
6	$[5,4,3,3]$	$(4,0)$									

Figure 3: Tree diagram of game play with secret code $[5,4,3,3]$, initial guess $[1,1,1,1]$, and future guesses determined based on the consistency approach.

**:	[*, *, *, *]	(B,W)	\#S	**:	[*, *	(B,W)	\#S	**:	[*,*,*,*]	(B,W)	\#S
1	$[1,1,1,1]$	(0, 0)	625	1	[1, 1, 2, 4]	$(0,1)$	276	1	[3, 4, 5, 6]	$(1,2)$	132
2	[2, 2, 2, 2]	$(0,0)$	256	2:	[2, 3, 3, 3]	$(2,0)$	237	2	$[1,3,4,6]$	$(0,2)$	38
3	[3, 3, 3, 3]	$(2,0)$	54	3	$[4,3,5,3]$	$(1,3)$	1	3	[2, 4, 3, 5]	$(1,3)$	1
4	[3, 3, 4, 4]	$(0,3)$	4	4 :	$[5,4,3,3]$	$(4,0)$		4	$[5,4,3,3]$	$(4,0)$	
5	$[4,5,3,3]$	$(2,2)$	1								
6	$[5,4,3,3]$	$(4,0)$									

Next Guess Based on Consistency

In the consistency approach, a player (or program) selects the first entry from the set of possible solutions as their next guess (the set of possible solutions is updated after each guess).

Initial Guess	1	2	3	4	5	6	7	8	9	EL	ML
$[1,1,1,1]$	1	4	25	108	305	602	196	49	6	5.74	9
$[1,1,2,2]$	1	12	71	253	588	286	78	7	0	5.02	8
$[1,1,2,4]$	1	12	71	253	286	78	7	0	0	5.02	8
$[1,2,3,4]$	1	13	73	256	465	360	110	16	2	5.14	9
$[3,4,5,6]$	1	13	92	413	593	163	21	0	0	4.66	7

Figure 5: Game stats cycling through all possible secret codes ($4^{6}=1296$ games). EL $=$ Expected Length (mean number of rounds) and ML $=$ Maximum Length (maximum number of rounds)

Mastermind with a Liar - Consistency Approach

**:	$[*, *, *, *]$	(B,W)	\#S	**:	$[*, *, *, *]$	(B,W)	\#S	**:	$[*, *, *, *]$	(B,W)	\#S
1	[1, 1, 1, 1]	$(0,0)$	625	1	[1, 1, 1, 1]	$(0,0)$	625	1:	[1, 1, 1, 1]	$(0,0)$	625
2	[2, 2, 2, 2]	$(1,0)$	256	2	[2, 2, 2, 2]	$(0,1)$	0	2	[2, 2, 2, 2]	$(0,0)$	256
3	[2, 3, 3, 3]	$(2,0)$	27		Lie Detected!	R1?		3	[3, 3, 3, 3]	$(1,0)$	108
4:	[2, 3, 4, 4]	$(0,2)$	0		Lie Detected!	R2?		4 :	[3, 4, 4, 4]	$(1,1)$	24
	Lie Detected!	R1?		3	[2, 2, 2, 2]	$(0,0)$	256	5	[$5,3,4,5]$	$(1,2)$	6
	Lie Detected!	R2?		4	$[3,3,3,3]$	$(2,0)$	54	6	$[5,4,3,6]$	$(3,0)$	0
5	$[4,5,3,3]$	$(2,2)$	1	5	$[3,3,4,4]$	$(0,3)$	4		Lie Detected!	R1?	
6	$[5,4,3,3]$	$(4,0)$		6	$[4,5,3,3]$	$(2,2)$	1	7	$[5,4,3,1]$	$(3,0)$	0
				7	$[5,4,3,3]$	$(4,0)$			Lie Detected!	R2?	
								8:	[$5,4,3,2]$	$(3,0)$	0
									Lie Detected!	R3?	
								9	$[5,4,3,3]$	$(4,0)$	

When to Lie/Best Lie - Consistency Approach

Lie/Lie Round	1	2	3	4
$(0,0)$	$(6.76,10)$	$(7.61,10)$	$(7.34,10)$	$(6.97,10)$
$(0,1)$	$(6.76,10)$	$(6.92,10)$	$(7.20,11)$	$(7.14,12)$
$(0,2)$	$(6.76,10)$	$(6.67,10)$	$(6.94,11)$	$(7.10,10)$
$(0,3)$	$(6.76,10)$	$(6.75,10)$	$(6.82,10)$	$(6.87,10)$
$(0,4)$	$(6.76,10)$	$(6.76,10)$	$(6.75,10)$	$(6.67,10)$
$(1,1)$	$(6.76,10)$	$(6.67,10)$	$(6.95,10)$	$(7.17,10)$
$(1,2)$	$(6.76,10)$	$(6.65,10)$	$(6.79,10)$	$(6.95,10)$
$(1,3)$	$(6.76,10)$	$(6.76,10)$	$(6.75,10)$	$(6.70,10)$
$(2,0)$	$(5.92,9)$	$(6.36,9)$	$(6.74,10)$	$(6.97,10)$
$(2,1)$	$(6.76,10)$	$(6.64,10)$	$(6.78,10)$	$(6.85,10)$
$(2,2)$	$(6.76,10)$	$(6.75,10)$	$(6.70,10)$	$(6.59,10)$
$(3,0)$	$(6.20,9)$	$(6.36,9)$	$(6.48,9)$	$(6.47,9)$

Figure 6: Game stats with an initial guess of $[1,1,1,1]$ and future guesses determined via the consistency approach. Games cycled through all possible secret codes, lies, and round of lie. Individual cells represent $(E L, M L)$.

Next Guess Based on Frequency

By determining the frequency of values, $[1,2,3,4,5,6]$, occurring in the set of possible solutions a player selects the guess that most closes aligns with the maximum frequencies of values

Initial Guess	1	2	3	4	5	6	7	8	9	EL	ML
$[1,1,1,1]$	1	4	25	108	305	602	196	49	6	5.76	9
$[1,1,2,2]$	1	12	74	266	588	283	66	6	0	4.98	8
$[1,1,2,4]$	1	13	70	292	586	300	34	0	0	4.91	7
$[1,2,3,4]$	1	13	84	341	535	277	44	1	0	4.86	8
$[3,4,5,6]$	1	13	84	347	553	264	33	1	0	4.83	8

Figure 7: Game stats cycling through all possible secret codes ($4^{6}=1296$ games). EL $=$ Expected Length (mean number of rounds) and ML = Maximum Length (maximum number of rounds)

When to Lie/Best Lie - Frequency Approach

Lie/Lie Round	1	2	3	4
$(0,0)$	$(6.76,10)$	$(6.66,10)$	$(6.20,10)$	$(5.62,9)$
$(0,1)$	$(5.88,8)$	$(6.31,9)$	$(6.36,9)$	$(5.70,10)$
$(0,2)$	$(5.88,9)$	$(6.04,9)$	$(6.16,9)$	$(5.70,10)$
$(0,3)$	$(5.78,8)$	$(5.86,9)$	$(5.89,8)$	$(5.56,9)$
$(0,4)$	$(5.82,9)$	$(5.82,9)$	$(5.75,9)$	$(5.48,9)$
$(1,1)$	$(5.59,8)$	$(5.95,8)$	$(6.18,10)$	$(5.75,10)$
$(1,2)$	$(5.78,9)$	$(5.91,9)$	$(5.98,9)$	$(5.65,9)$
$(1,3)$	$(5.82,9)$	$(5.80,9)$	$(5.74,9)$	$(5.47,9)$
$(2,0)$	$(5.76,8)$	$(5.88,8)$	$(6.05,9)$	$(5.77,10)$
$(2,1)$	$(5.76,8)$	$(5.84,8)$	$(5.88,9)$	$(5.63,9)$
$(2,2)$	$(5.82,9)$	$(5.77,8)$	$(5.69,8)$	$(5.38,8)$
$(3,0)$	$(5.81,9)$	$(5.67,8)$	$(5.64,8)$	$(5.34,8)$

Figure 8: Game stats with an initial guess of $[3,4,5,6]$ and future guesses determined via the frequency approach. Games cycled through all possible secret codes, lies, and round of lie. Individual cells represent $(E L, M L)$.

