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ABSTRACT 

The binary analysis of software has become an integral activity for security researchers and 

attackers alike. As the value of being able to exploit a vulnerability has increased, the need to 

discover, fix and prevent such vulnerabilities has never been greater. This paper proposes the 

Binary Analysis Framework, which is intended to be used by security researchers to query and 

analyze information about system and third party libraries.  Researchers can use the tool to 

evaluate and discover unknown vulnerabilities in these libraries.  Furthermore, the framework 

can be utilized to analyze mitigation techniques implemented by operating system and third-

party vendors.  The Binary Analysis Framework takes a novel approach to system-level security 

by introducing a framework that provides for binary analysis of libraries utilizing a relational 

data model for permanent storage of the binary instructions, as well as providing novel ways of 

searching and interacting with the parsed instructions. 

 Keywords: binary analysis, reverse engineering, vulnerability research 
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CHAPTER 1 

INTRODUCTION 

This chapter introduces the reader to the current state-of-the-art in static binary analysis 

and binary analysis frameworks and shows the lack of a robust, multi-architecture, multi-platform 

framework for performing binary analysis.  The chapter describes the creation of a framework for 

performing binary analysis and introduces a novel architecture for searching machine code to 

validate and discover software-based security features and vulnerabilities.  The proposed 

framework will enhance security research by providing a multi-architecture, multi-platform binary 

analysis platform in a single framework.  The framework will also provide a robust search 

architecture that utilizes disassembly output rather than machine code for search patterns. 

 This chapter provides the reader with an introduction to the problem and related 

background on topics pertinent to this work.  Section 1.1 discusses the importance of performing 

static binary analysis and the security implications of undiscovered flaws in software design.  

Section 1.2 introduces the framework and the contributions it makes in the field of binary analysis.  

In section 1.3 the reader is given an overview of the current state-of-the-art in software security as 

well as how security features are bypassed by malicious actors.  This section also covers prevalent 

attack techniques and fundamental architectural components of computing systems, concepts that 

are important to understand when discussing a framework designed to assist in security research.  

The final section, section 1.4, provides the layout of the remaining chapters of this work. 
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1.1    Introduction of the Problem 

The daily use and interaction with electronic devices has become an integral part of 

everyday life. These devices are no longer only tools of commercial productivity, limited to the 

workplace, but have now permeated almost every aspect of modern life. Recent studies have found 

that adolescents aged 8 – 18 spend on average 7.5 hours a day on social media (i.e. electronic 

devices) (Drago, 2015). While studies such as this provide insight into the daily reliance of 

electronic devices, they often do not consider all the indirect interaction with electronic devices. 

From traditional devices such as laptops and desktops to devices where it is more difficult to 

observe the interaction, such as refrigerators, thermostats and vehicles, society is constantly 

interacting with and relying upon technology (Technological Development and Dependency, 

2011).   

However, the advancement of technology has not come without its perils. Massive data 

breaches, invasions of privacy, disruption to business operations and attacks against critical 

infrastructure are now greatly facilitated by the proliferation and inter-connected nature of these 

devices (Mandiant, 2016). This has given rise to a new profession, commonly referred to as “cyber 

security”, in which professionals are tasked with providing the necessary insight to minimize the 

risk exposed by these devices, both commercially and at home (Francis & Ginsberg, 2016). 

Security engineer, network security architect, reverse engineer, malware analyst is a small sample 

of common titles given to those now on the front-lines of this new cyber age. Regardless of the 

title, one of the key tasks in evaluating the security of a device is in assessing the software running 

on that device. This software begins with the operating system, which is the first program loaded 

into memory when a computer starts and provides the required framework for other programs to 

run as well as other systems and users to interact with the computer ("Operating Systems," n.d.). 
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Attackers seek vulnerabilities, which are design weaknesses in the software running on a computer 

to gain unauthorized access (Dowd, McDonald, & Schuh, 2006).  For an attacker to be able to 

compromise an operating system gives them complete control not only over that computer, but all 

the information the computer processes (Song et al., 2016).   

In this paper, we propose the Binary Analysis Framework, a framework which will assist 

in performing reverse engineering activity on the operating system software to evaluate the code 

for known vulnerabilities and potentially discover unknown vulnerabilities. The Binary Analysis 

Framework will also extend to other software running within an operating system. With this 

information, security professionals can make significant contributions to securing our devices and 

minimizing the risks of the cyber-age. 

1.2    Motivation 

To evaluate the resilience of computing systems to malicious attack, it is crucial to be able 

to audit not only core operating system files but also third party software installed within the 

operating system.  Therefore, the purpose of performing an audit of software is to not only identify 

systems susceptible to known vulnerabilities, but to also discover unknown vulnerabilities 

(Regalado et al., 2015).  The auditing process provides owners of computing systems with the 

opportunity to update their software or apply other defenses to mitigate these vulnerabilities, 

reducing their exposure to attack.   

1.2.1    Software auditing.  The process of performing a software audit centers around the 

activity of reverse engineering, which is defined by Regalado et al. (2015) as “simply taking a 

product apart to understand how it works”.  The level of effort required to audit software will vary 

based on several conditions such as the complexity of the software, the scope of the audit, 
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availability of source code, technical proficiency of those performing the review and familiarity 

with the software under scrutiny.  In the case where source code is not available, which occurs 

frequently with closed-source, proprietary software, binary analysis must be performed (Regalado 

et al., 2015).  According to Andriesse, Chen, van der Veen, Slowinska, and Bos (2016), 

“Disassembly is thus crucial for analyzing or securing untrusted or proprietary binaries, where 

source code is simply not available”.  Binary analysis requires that the software being reviewed is 

done so from a binary state, without the benefits provided when analyzing source code such as 

variable and function naming, programmer comments, control flow constructs, and class 

definitions.  This level of analysis requires greater knowledge by the reviewer in such areas as 

compiler behavior, operating system internals, assembly language, file formats and other topics 

that correspond to the inner-workings of the computer system (Regalado et al., 2015).   

1.2.2    Binary Analysis Framework.  Due to the complexities involved with binary 

analysis, this work proposes the Binary Analysis Framework, which is intended to be used by 

security researchers to query information about a variety of system and third party software.  

Security researchers can use the framework to audit software for known vulnerabilities as well as 

to perform research to potentially identify unknown vulnerabilities, providing an opportunity for 

remediation before the software is exploited.  Furthermore, the framework can be utilized to 

analyze mitigation techniques implemented by operating system and third-party vendors, which 

assists in evaluating defensive measures in place on computing systems.  The Binary Analysis 

Framework takes a novel approach to system-level security by introducing a framework that 

provides for binary analysis of software contained in the operating system as well as third-party 

software.  In addition, it will contain information about exploit mitigation techniques that the 

software is, or is not, utilizing.  These mitigation techniques are often enabled during compilation 
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or linking and not part of the original development of the software at the source-code level.  This 

framework will utilize relational data models for permanent storage of the binary instructions as 

well as provide novel ways of searching and interacting with the parsed instructions. 

1.3    Background 

The advent of the digital computer was first proposed in a paper titled On Computable 

Numbers authored by Alan Turing ("History of Computing Hardware," n.d.). The advancement in 

digital computing hardware advanced drastically from the mid to late 20th century. The Electronic 

Numerical Integrator and Computer, or ENIAC, was the first electronic and programmable 

computer built in the United States. ENIAC weighed approximately 30 tons and required nearly 

1800 ft2 of physical space ("History of Computing Hardware," n.d.). By the beginning of the 

twenty-first century, cellphones had become a commodity item that were a fraction of the cost to 

manufacture, could fit in a person’s pocket and contained approximately 1,300 times more 

computing power ("The ENIAC vs The Cell Phone," n.d.). The drastic reduction in size of 

computing hardware was equaled by the increase in performance, which is generally measured by 

a series of characteristics, such as system availability, resiliency, responsiveness, power 

consumption, cooling requirements and system throughput in terms of work capacity ("Computer 

Performance," n.d.). Indeed, modern cellphones are orders of magnitude more powerful than the 

computers used to land Apollo 11 on the moon (Zakas, 2013).  

1.3.1    Commodity computing hardware.  As the power of computing has increased over 

time (Schaller, 1997), there has also been a reduction in the cost of computing (Worthen, 2010), 

which was, in part, responsible for the rapid increase and availability of smaller, less expensive 

computing components. Computers such as the ENIAC, that were initially criticized as infeasible 
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were now proving their utility through performance as well as no longer suffering from cost and 

physical limitations, making them accessible to more businesses. The increased demand for 

computing hardware provided the incentive for the industry to continue to push for the 

development of faster, smaller and less expensive hardware (Reimer, 2005). This progression of 

smaller, less expensive hardware eventually gave rise to the possibility of the personal computer, 

or PC, which not only increased the use of computing hardware in businesses, but also created a 

market for personal use. The use of the personal computer ultimately created the potential for 

integrating computing technology in ways never conceived by the original inventors. Laptop 

computers introduced a mobile version of the personal computer ("History of Laptops," n.d.) and 

shortly thereafter the invention and rapid adoption of the smart phone ("Smartphone," n.d.). 

Fundamentally a smartphone does not differ significantly from a laptop, it is simply a personal 

computer running an operating system that is portable and able to connect to a cellular system 

(Hamblen, 2009, Mar 14).  However, the smartphone does generally include features not 

commonly found in traditional personal computers such as Bluetooth capabilities, cameras, global 

positioning system (GPS) capabilities, and near field communication (NFC) capabilities, to name 

a few.   

1.3.2    Internet of Things phenomenon.  The integration of technology is continuing to 

expand into every day devices, from items as complex as airliners and automobiles down to those 

as simple as greeting cards. This expansion phenomenon is commonly referred to as the “Internet 

of Things (IoT)” (Morgan, 2014), and can be summarized as the process of providing 

computational and network communication abilities to common objects ("Hardware Control Flow 

Integrity (CFI) for an IT Ecosystem," 2015).  A prime example that illustrates the “Internet of 

Things” phenomenon is the automobile, which has become an increasingly complex system of 
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computers and wireless communication interfaces (Wojdyla, 2013).  One such system that is 

seeing advances in complex computing is in how drivers interface with the automobile. 

Automobile manufacturers are switching to steer-by-wire systems in which there is no longer a 

direct mechanical connection between the steering mechanism in the driver cabin and the wheels 

(Davies, 2014), computers provide the translation from physical inputs to mechanical instructions 

instead of mechanical systems providing this translation to other mechanical systems. 

With the move to systems that rely on computation power instead of mechanical, there 

exists an increasing availability for vulnerabilities to exist. Dowd et al. (2006) defines a 

vulnerability as “flaws or oversights in a piece of software that allows attackers to do something 

malicious – expose or alter sensitive information, disrupt or destroy a system, or take control of a 

computer system or program.” Vulnerabilities have been discovered in entertainment systems that 

have enabled an attacker to subvert control of the automobiles primary systems, namely 

acceleration, deceleration and engine operations (Huddleston, 2015). This highlights the 

importance that the underlying hardware and software have, especially as an increasing number of 

objects not only adopt computing power, but also the ability to communicate over the Internet. 

1.3.3    Security implications.  The wide spread adoption and usage of the Internet has 

provided a robust distribution network for the delivery of communications and software.  While 

the clear majority of Internet-based activity is benign, there is a significant amount of activity that 

is related to malicious activity. According to Sikorski and Honig (2012), any software that “does 

something that causes harm to a user, computer, or network can be considered malware.” It is 

estimated that malware costs approximately $13 billion annually to the world economy ("Malware 

report: The economic impact of viruses, spyware, adware, botnets, and other malicious code," 

2007). In addition, it is estimated that the cost of a data breach, which is generally defined as the 
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act of stealing or taking information without the owner’s consent ("Data Breach," 2016), now 

averages $3.8 million dollars, with an average cost per record of data at $154 ("Cost of data 

breaches increasing to average of $3.8 million, study says," 2015).  

Other sectors of the economy may see a more significant financial impact from a breach 

such as the healthcare industry, which is estimated to have an average record cost of $363 ("Cost 

of data breaches increasing to average of $3.8 million, study says," 2015).  Data breaches can often 

be traced to the introduction of malware, malware that often exploits vulnerabilities in operating 

system software or third-party code to achieve arbitrary code execution ("The Eight Most Common 

Causes of Data Breaches," 2013).  That is, they can execute arbitrary code on the target platform, 

code that was never intended to be executed by the developers or even included in the original 

software design. This has created a back and forth in which malware authors, often referred to as 

attackers, are constantly looking for new and effective ways to distribute their malware while 

software vendors and security researchers are seeking ways to prevent attackers from exploiting 

computing systems. Once an attacker has been able to compromise a target system, they can not 

only harvest information processed on that machine, but also to expand their reach throughout the 

network.  In the case of Target, who suffered a large data breach in 2013, attackers could leverage 

the compromise of a single host to ultimately install malicious software on a significant number 

of Target’s point of sale terminals (Kassner, 2015) and compromise financial information for 

approximately 40 million of its customers (Krebs, 2014). 

Auditing the attack surface of software, to include the operating system, becomes a crucial 

task for both security researchers and those charged with the security of computing devices. An 

operating system is defined as “system software that manages computer hardware and software 

resources and provides common services for computer programs. The operating system is a 
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component of the system software in a computer system. Application programs usually require an 

operating system to function” ("Operating Systems," n.d.). Put simply, an operating system is 

composed of software that manages the interactions between a user and the hardware. This 

software is the core system programs, services and libraries provided by the operating system 

developer.  On the Microsoft Windows series of operating systems, these are often executable files 

or dynamically linked libraries (DLLs) ("What is a DLL?," n.d.). In addition, third party developers 

can also distribute their software through libraries and other executable programs to expand the 

functionality of the operating system and allow for a greater range of applications to run.  A 

primary example of this is Adobe Flash, which provides for the installation of several libraries that 

are utilized by web browsers to execute application data that pertains to Flash applications, 

expanding the capabilities of modern web browsers.   

When assessing the overall security posture of a system, both the operating system software 

as well as third party software must be considered (Manes, 2016).  Data is collected about known 

vulnerabilities as they pertain to both operating system and third-party software by the National 

Institute of Standards and Technology (NIST) ("National Vulnerability Database," 2016).  NIST 

provides a common approach to identifying, categorizing and even searching published 

vulnerabilities through the National Vulnerabilities Database (NVD).  The format they use is 

provided by MITRE and called Common Vulnerabilities and Exposures, or CVE  ("Common 

Vulnerabilities and Exposures," n.d.). The CVE format defines a standard for the classification and 

sharing of security information.  The NVD contains over 75,000 related CVEs that pertain to 

operating system and third-party application software ("National Vulnerability Database," 2016).  

This data is used annually to produce a report highlighting the number of vulnerabilities (CVEs) 

by operating system and software (Manes, 2016).  Figure 1 highlights the increasing trend of 
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known CVEs from 2015, which totaled 8,822.  In 2014, the total number was 7,038 (Flores, 2015), 

that is an increase in 20% from the previous year and up nearly 60% since 2011, which had a total 

of 3,532 known vulnerabilities. 

 

Figure 1. Total number of common vulnerabilities and exposures (CVEs) annually. 

 

Data relating to known vulnerabilities enables us to divine trend information, which 

indicates that operating system and third-part software will continue to be exploited by attackers 

to gain unauthorized access.  

Manes (2016) further breaks down each vulnerability type by vendor and operating system 

version.  Table 1 highlights this data and represents the top 15 vendors.  In the case of a vendor 

that produces multiple versions of their operating system, such as Microsoft, each version is listed 

individually.  This data highlights that even though Microsoft did not have the most CVEs for a 

single version of its operating system, the aggregate of all versions means that most known 

vulnerabilities affected Windows. NetMarketShare produces real-time statistics of operating 

system market share by collecting information about operating systems through information 

transmitted commonly by web browsers and reports that the Windows operating system has 90% 
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of the market share, making it the most prevalent operating system in the market ("Operating 

system market share," 2016).   

Table 1. Reported operating system CVEs. 

 

1.4    Common Memory Corruption Vulnerabilities 

Many modern attacks that desire arbitrary execution of code involve the targeting of native 

software, such as operating systems, web servers and browsers. While not exclusive to these 

languages, programming languages that tend to expose memory corruption bugs are written in C 

or C++ (Ray, Posnett, Filkov, & Devanbu, 2014). This stems from the requirement in these 

languages for the programmer to handle the allocation, access (read/write) and deallocation of 

memory used by their programs. Mistakes in these tasks can then lead to exploitable vulnerabilities 

in the software. Juxtapose this with languages such as C#, which reduces this risk using an 

automatic memory management feature ("Automatic Memory Management," n.d.). That is, the 

resulting program is executed in a runtime which handles memory allocation, access and 

deallocation automatically for the program, eliminating the need of the programmer to handle these 
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tasks. The execution of a program in a runtime environment helps to reduce the impact of errors 

in memory management due to programming mistakes. However, even software written to run in 

a managed environment can expose memory corruption bugs as the runtime environment itself 

may be written in a language that executes in a non-managed environment. For example, Adobe 

Flash provides an execution environment for Flash applications. A Flash application is written in 

ActionScript before it is compiled into intermediary code, often referred to as bytecode. The Flash 

runtime environment is written in C++ ("Adobe Flash," n.d.) and is responsible for the execution 

of the Flash Application’s bytecode, it translates the bytecode into specific machine instructions 

for the central processing unit (CPU) on the host system. Vulnerabilities that lead to the corruption 

of memory are commonly referred to as memory corruption, as the attack corrupts the process 

memory of the target application to subvert the normal flow of execution of the program and 

potentially achieve arbitrary code execution ("Memory Corruption," n.d.).  This section will 

describe a few of the most prevalent memory corruption bugs. 

 

1.4.1    Memory layout of a process.  The execution of a program begins when the program 

is first loaded into memory. Normally, a program has been installed or is stored on a permanent 

medium, such as the hard drive on the host computer. However, program storage is not limited to 

a physical disk connected to the host computer and may extend to removable drives and even 

programs loaded directly into memory over a network. Once a program has been selected for 

execution, key components of the operating system must first parse the program data and load the 

program into memory. One of those key components is an operating system level utility called a 

loader and is responsible for parsing information about the program, selecting the environment in 

which it should be executed under, and then mapping the contents of the program into memory. 
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Once a program is loaded into memory, it is viewed on the system as a process, which acts as a 

container for all the program’s resources. Each operating system can choose how to map a program 

into memory, but most follow some general conventions for the use of the memory space provided 

to the program.  Figure 2 provides a high-level overview of a typical program that has been loaded 

into memory.  

 

Figure 2. Representation of program layout in memory. 

 

In Figure 2 common areas are highlighted and will be referred to as sections. Each section 

is given a range of addresses in which each address represents a byte of memory. The loader 

determines how much memory each section receives based off information that is parsed in the 

file format. Section size may also vary based off usage, such as the stack and heap. The executable 

instructions of a program are generally loaded into the code (.text) section. Data, both initialized 

and uninitialized, is loaded into the data and BSS sections, respectively (Erickson, 2008). The 

stack and heap regions of memory expand and contract based off program usage. Memory 
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corruption attacks occur when an attacker can change how or where the CPU receives its 

instructions. The following sub-sections describe prevailing memory corruption attack scenarios. 

 

1.4.2    Stack buffer overflow.  The program’s stack stores both data and return addresses 

(code pointer) and is a critical abstract data structure responsible for storing information about 

current function execution as well as the calls leading up to the current function (Dowd et al., 

2006). A stack buffer overflow occurs when a program using a buffer (i.e. allocated memory) in 

the stack region of memory can cause the program to write to more memory than was allocated 

for the buffer (One, 1996). A stack frame is created for each function call, this concept 

encompasses the arguments, return address and local variables (Sikorski & Honig, 2012).  If the 

overflow can overwrite return information, an attacker can supply arbitrary data to subvert the 

execution of the program.  Figure 3 highlights a stack frame layout for two functions.  The stack 

frame on the right depicts the state of the stack when a buffer overflow occurs, while the stack 

frame on the left depicts normal program usage.   
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Figure 3. Stack frame for function vulnerable to buffer overflow. 
 

In this scenario, the attacker can supply specially crafted data that overflows the buffer at 

EBP-18h and, by supplying enough data, overwrite a 4-byte value used to store the return 

addresses. When the program returns from the function is uses the corrupted value instead of the 

original and the attacker can now control execution of the program. 

 

1.4.3    Heap corruption.  Like the stack overflow, heap corruption occurs when 

dynamically allocated memory in the heap is susceptible to a buffer overflow. However, heap 

memory is allocated differently than stack memory (Dowd et al., 2006).  Since heap memory is 

dynamically allocated there is memory management algorithms that control the management of 

this memory. Heap memory typically contains additional information about its characteristics, 

relationship to other blocks of memory and information about its state. Free nodes of memory are 

typically managed in a singly or doubly linked list and each node contains pointers to the next and 

previous nodes (Dowd et al., 2006). At certain times, free memory is coalesced into larger chunks 

to reduce fragmentation in heap memory. If an attacker can overwrite heap memory they have the 
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potential to corrupt this meta-data (the list pointers) and abuse maintenance algorithms to gain 

control of the program. They can also corrupt data in memory such as values, objects (to include 

virtual function tables) and function pointers. These conditions can lead to arbitrary code 

execution, corruption of valid data, denial of service and other vulnerabilities. 

 

1.4.4    Use-After-Free.  A use-after-free (UaF) vulnerability occurs when a region of 

memory that has been allocated is prematurely freed (Dowd et al., 2006). Since freed memory can 

then be reallocated, there is potential for an attacker to request and fill that memory with attack 

data (i.e. shellcode, ROP chain, change valid data). Since the memory was prematurely freed, a 

valid pointer still references that area of memory. Depending on the use of the memory in the 

program, if the program attempts to use the previously freed block of memory it can lead to 

arbitrary code execution, corruption of valid data, data leakage and premature program 

termination, just to name a few.   

 

1.4.5    Double-Free.  A double-free occurs when a free operation is called twice on the 

same memory address ("CWE-415: Double Free," n.d.).  This condition can potentially lead to a 

buffer overflow in which an attacker can overwrite memory with attack data. 

1.5    Evolution of Memory Corruption Mitigations  

Nominally, memory corruption attacks began with the stack overflow and the release of 

“Smashing the Stack for Fun and Profit” by One (1996). This brought into view the vulnerable 

nature of software and the underlying machine architecture. The response to memory corruption 
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was twofold: focus was given on developing more secure software and computer component 

manufactures began looking for ways to mitigate such vulnerabilities at a hardware level.  

The first significant mitigation came in the form of the no-execute bit (Krahmer, 2005). 

Initially, the stack was an executable region of memory, meaning that if an attacker could abuse a 

buffer overflow they could use this region of memory to stage arbitrary code and design for its 

execution. The no-execute bit was a hardware-enforced change that made the stack region of 

memory non-executable (Krahmer, 2005). This change would prevent attackers from leveraging 

an overflow to achieve code execution. While effective in stopping the original stack overflow 

vulnerability, attackers could circumvent this defense by placing their attack code in heap memory 

and then corrupting the stack to point to this allocation.  

Since heap memory is a different region in the process’ virtual address space it was not 

subject to the implementation of the no-execute bit as the stack was. One difficulty in mitigation 

technology is the rate at which it is adopted. Microsoft did not introduce support for the NX 

features until Windows XP Service Pack 2 in 2004 and Windows Server 2003 Service Pack 1 in 

2005, nearly 8 years after One (1996) published “Smashing the Stack for Fun and Profit” 

("Executable Space Protection," n.d.).  Microsoft commonly referred to this as data execution 

prevention (DEP) and through this feature a program could control which memory pages where 

allowed to contain executable code.   

As is prevalent in this field of study, the introduction of mitigation technology began a 

back and forth in the development of exploit mitigation and attack techniques. The next mitigation 

introduced is commonly referred to as a stack guard (stack cookie, canary) (Cowan et al., 1998).  

Overall, the purpose of the stack guard was to place a known (random) value after a stack-based 

buffer that is checked before a function returns. If the value has been modified than the operating 
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system assumes an overflow and can terminate the program instead of continuing to execute code 

(i.e. by returning from the function). The cookie value was determined at runtime and therefore 

not susceptible to a priori knowledge. This feature was added to compilers and therefore did not 

require any modifications to existing code, code did have to be re-compiled with a supporting 

compiler though and supported by the operating system.  Figure 4 depicts a stack frame susceptible 

to a stack overflow but with the stack guard implemented, the stack guard is located at EBP-4 and 

labeled “cookie”. 

While effective, attackers found a way to reliably bypass this defense through a technique 

called Structured Exception Handling (SEH) overwrite. While this attack begins with a buffer 

overflow, instead of overwriting the return address in the function’s stack frame, the attacker 

overwrites a significant portion of the stack and triggers an exception. The exception handler 

mechanism would engage by retrieving function pointers responsible for handling exceptions from 

the stack. Since the function pointers are stored in the stack, the attacker can overwrite these 

function pointers. When the exception handler dispatches the exception, it uses a corrupt value and 

the attacker can gain control of the program. The response to this attack was called SafeSEH, 

which checks function pointers before they are used to ensure they have not been corrupted 

("Executable Space Protection," n.d.). 
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Figure 4. Stack frame with stack guard protection. 

 

After the introduction of the NX bit, and later DEP in Microsoft Windows, attackers had 

to find other techniques to bypass non-executable memory. The first technique adopted was termed 

“return to libc” (Krahmer, 2005). This technique was later built upon and is now commonly 

referred to as return-oriented programming (ROP), which is depicted in Figure 5. There exists 

considerable overlap in the return-to-libc and ROP techniques and only ROP will be discussed in 

this section.  This technique subverts non-executable memory by not relying on executable code 

to be placed in those regions of memory. Instead, the attacker pieces together individual sets of 

instructions from the program and any loaded modules that end in a RET instruction. Since the 

instructions end in a RET, execution always flows back to the stack to retrieve the return address 

(a RET instruction assumes that the stack pointer ESP is pointing to the return address and moves 

that value into EIP, the instruction pointer) (Intel 64 and IA-32 Architectures Software Developer's 
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Manual, n.d.). The sequences of RET instructions is referred to as gadgets and an attacker’s 

payload can consist entirely of these gadgets. Since the instructions are borrowed from executable 

regions of memory, an executable stack is not needed. 

 

Figure 5. Execution of a ROP chain. 

 

ROP gadgets can be found not only in the code of the program, but also in the libraries 

loaded into the program’s virtual address space. The process of finding a gadget involves searching 

executable code regions for a RET instruction and moving an arbitrary number of bytes higher in 

the address space from the address where the RET instruction was found. It is arbitrary since 
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different lengths can result in different instructions.  Figure 6 demonstrates how a single RET 

instruction can be used to create multiple instructions. 

 

Figure 6. Varying instructions from number of bytes used from RET instruction. 

 

A series of ROP gadgets is referred to as a ROP chain, and this becomes the primary 

payload for an attacker. With a ROP chain, the attacker is then able to utilize ways in which to 

disable or circumvent executable space protections. For example, an attacker’s ROP chain may re-

mark a page as executable or allocate a new page with execute permissions. As part of the original 

proposal, address space layout randomization (ASLR) was to mitigate this type of attack and later 

adopted in modern operating systems ("Executable Space Protection," n.d.). Attackers that 

leverage ROP rely on the predictability of the addresses in which the gadgets they need are located. 

Before ASLR, programs, and their imported libraries, would be loaded at predictable virtual 

addresses. ASLR ensures that each time a program is run random addresses are used. This 

complicates an attack using ROP since the addresses used for gadgets will change with each 

execution of the program, either breaking the ROP chain or changing its behavior. In combination 

with DEP this has proven to be an effective layering of defenses. However, attackers have still 

been able to circumvent ASLR by locating address leaks in a program. If an attacker can reliably 
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find a base address for a loaded library, they still have the potential to construct a ROP chain and 

bypass DEP and ASLR protections. 

Another form of memory corruption attack involves indirect calls. An indirect call is when 

a call instruction uses a dynamic value as the target. This value is created during runtime and often 

stored in memory, which gives an attacker the ability to corrupt the target address before it is used. 

Microsoft introduced a feature termed “Control Flow Guard” (CFG) with Windows 8.1 Update 3 

and Windows 10 in November of 2014 (Microsoft, n.d.). This feature checks an indirect call target 

before it is used by the call instruction, triggering program termination if it determines that the 

value is not a valid call target. 

1.5    Dissertation Organization 

This dissertation is organized in the following chapters.  This chapter provided the reader 

with an introduction to the problem and related background on topics pertinent to this work.  

Chapter 2 provides a literature review to introduce the reader to the current state of binary analysis.  

Chapter 2 reviews current binary analysis frameworks, complications inherent with binary analysis 

and proposed techniques for effective binary analysis.  Chapter 2 will also cover shortfalls in binary 

analysis frameworks and how the proposed work addresses those gaps.  Chapter 3 discusses the 

research approach taken for this work and development of the framework.  Chapter 3 also includes 

discussion relevant to the design decisions made while constructing the framework and how this 

framework differs from previous work.  Chapter 4 discusses the results of the framework and 

highlights the novel search architecture developed.  Finally, Chapter 5 provides a summary and 

proposes avenues for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides the reader with background on binary analysis and other related 

topics important in understanding the need for the framework.  Section 2.1 covers background 

information related to generating an executable program.  A core activity of the framework will 

be in producing disassembly, which is the output from interpreting the data within an executable 

program.  This provides a foundation for creating an effective platform for binary analysis and is 

the topic of section 2.2.   Section 2.3 introduces instruction set architectures, which define the 

binary machine code interpreted by a central processing unit (CPU) as instructions.  A framework 

that performs disassembly requires an understanding of instruction set architectures as the 

disassembly output is generated by interpretation of the machine code.  This section also covers 

nuances in the prevailing instruction set architectures that can complicate the process of 

disassembly and lead to inaccurate or misleading output.  Section 2.4 discusses recognized 

techniques for performing the disassembly of machine code and the drawbacks associated with 

each approach.  Before disassembly can be performed on a binary file, the area of the file that 

contains executable code must be identified.  Section 2.5 provides readers with an overview of 

binary file formats.  Finally, section 2.6 reviews binary analysis frameworks.  This section will 

discuss their features, what they lack and how the framework will address those shortfalls.  

2.1    Generating an Executable Program 

The process of generating an executable program involves the translation of source code, 

written in a high-level language such as C or C++, into object code.  Object code represents the 
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original instructions but in a binary form, which is required for execution by a central processing 

unit, or CPU.  The final step is to perform linking, which resolves external symbol references for 

the resulting binary (Allain, n.d.).  While the definition of a symbol can vary slightly, in this context 

a symbol represents a function or variable located in an external module ("Linker (computing)," 

2016).   

2.1.1    File formats.  Each operating system defines the format in which this binary data 

is stored. Microsoft defines the COFF format for object files, and the portable executable (PE) file 

format for executables (EXE) and dynamically-linked libraries (DLLs) (Microsoft, 1999).  While 

the COFF and PE file formats are similar, an object file will lack the final step of resolving external 

symbols and therefore not be ready for execution by the operating system.  It is the latter form that 

libraries and executable programs are distributed and often the target of reverse engineering 

activity.  For executable programs, the PE file format allows the operating system loader the ability 

to determine how to map the binary data into memory, relocate the binary, and begin executing at 

the appropriate entry point (Russinovich, Solomon, & Ionescu, 2012).  Similarly, for dynamically-

linked libraries the PE file format allows for the library to be loaded into the address space of an 

appropriate executable by the operating system during program execution.  

2.2    Static Binary Analysis 

According to Sikorski and Honig (2012), at the core of the reverse engineering process is 

the analysis of binary files to determine the functionality of the source program.  Reverse 

engineering stems from two complementary but distinct activities,  static and dynamic analysis  

(Popa, 2012).  Dynamic analysis techniques involve the execution of code and the monitoring of 

program behavior to determine the functionality of the target program, while optionally exploring 
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for vulnerabilities.  Static techniques involve the analysis of binary files without execution and 

require disassembly or decompilation of the target software in order to determine  functionality 

(Eagle, 2011).  According to Eagle (2011), a disassembler “undoes the assembly process, so we 

should expect assembly language as the output (and therefore machine language as input)” while 

a decompiler will attempt to “produce output in a high-level language when given assembly or 

even machine language as input.”  Determining program functionality has proven to be a complex 

subject matter and is an undecidable problem (Wartell, Zhou, Hamlen, Kantarcioglu, & 

Thuraisingham, 2011). 

2.3    Instruction Set Architectures 

Schmalz (n.d.) discusses the instruction set architecture (ISA) and defines it as the machine 

language that can be interpreted by a computing machine.  High-level languages are compiled into 

the supported binary formats for a particular operating system.  The compilation of an executable 

program results in the loss of meaningful information from source code as it is discarded as 

unnecessary in the resulting machine code.  This includes such information as function names, 

variable names and the ability to correspond disassembly output to the original high-level code 

("Linker (computing)," 2016).  This adds complexity when performing reverse engineering 

activities, as this information must then be determined by the reverse engineer in its absence.   

2.3.1    Differentiating code and data in ISAs.  Challenges also arise from the 

organization of the machine code itself.  The portable executable file format allows for segregation 

of data and instructions. However, the Intel ISA allows for the mixing of code (i.e. instructions) 

and data.  Other ISAs, such as RISC and Java byte-code, keep code and data isolated from each 

other (Wartell et al., 2011).  In addition, Intel x86 also uses variable-length and instruction 
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encodings that are unaligned (Wartell et al., 2011).)  Wartell et al. (2011) discussed the 

complexities with the x86 instruction set and proposes an algorithm for differentiating data from 

code in x86 binaries to increase the accuracy of the disassembly process.  Data inaccurately treated 

as instructions will lead to incorrect disassembly results and any analysis derived from the 

inaccurate instructions. To overcome this, the author’s algorithm isolates byte sequences and then 

performs analysis on those sequences using machine learning. This process further allows the bytes 

to be classified as data or code, effectively identifying data that may potentially be misinterpreted 

as code. The authors provide results produced from selected samples but the overall effectiveness 

of the proposed method is not determined. 

2.4    Prevailing Methods of Disassembly 

Creating accurate representations of binary programs through the process of static 

disassembly is a problem that has yet to be solved (Andriesse et al., 2016).  Two prevailing 

techniques exist when performing the analysis of code during static disassembly: linear sweep and 

recursive traversal (Linn & Debray, 2003).  Linear sweep simply begins at the first byte of 

executable code and begins disassembling, in a linear fashion, forward.  In comparison, recursive 

traversal begins at the first byte, but instead of disassembling in a linear fashion, follows the control 

flow of the program.  It does this by analyzing any control flow instructions, such as call or jmp, 

and determining the possible locations for those instructions.  These locations are disassembled, 

and any control flow instructions contained within are also analyzed.  This process repeats 

recursively until the binary is fully analyzed.  However, these approaches each pose their own 

unique complications.  Linear sweep is unable to account for data intermixed with the instructions, 

which may lead to the disassembly of data as executable code and therefore incorrect results.  
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Recursive traversal encounters complications when identifying all the appropriate target locations 

of control flow instructions and may miss sections of executable code.  

2.4.1    Disassembly complications.  Paleari, Martignoni, Fresi Roglia, and Bruschi (2010) 

also discussed the complexities inherent in the disassembly process.  In their work the authors 

evaluated eight disassemblers targeting the Intel x86 platform to determine the correctness of each 

disassembler.  They developed a methodology they termed N-Version Disassembly in which they 

compare the output of the disassemblers used to detect anomalies. Their methodology was then 

utilized to compare the disassemblers and bugs in the disassembly process was identified in each 

of them. The identified bugs were due in large part to the complexity and ambiguities of the Intel 

instruction set and how each compiler was implemented to handle them. This work highlights the 

complications inherit with disassembling the x86 instruction set. The authors approach focused on 

the accuracy of the disassemblers, calling into question their accuracy.  

To further complicate the disassembly process, new techniques continue to emerge to 

complicate or disrupt the disassembly process, whether by security researchers or malicious actors.  

Jamthagen, Lantz, and Hell (2013) proposed a new technique for complicating the disassembly 

process from a binary source.  Their approach utilizes the ability to provide arbitrary values within 

a 9-byte no-operation (NOP) instruction, taking advantage of the variable length property of the 

x86 ISA discussed by Wartell et al. (2011).  This allows for additional paths of execution inside a 

single program, a main execution path (MEP) and a hidden execution path (HEP). The path 

executed can depend on the external environment, such as the presence of virtualization software. 

By utilizing the HEP, disassembly can produce incorrect results and lead the analyst to wrong 

conclusions or make incorrect assumptions.  The authors demonstrate the viability of this approach 

using sample programs. 
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2.5    Binary File Formats 

Closely related to the disassembly process is the PE file format, as it represents the format 

in which the disassembler should begin parsing executable instructions and not data. Hahn and 

Register (2014) discusses the PE file format in detail as well as how malware authors often abuse 

this file format to complicate the disassembly process.  The prevalence of malware distributed 

utilizes the PE file format due to the popularity of the Microsoft Windows series of operating 

systems. To increase their effectiveness, malware authors introduce malformations that allow the 

program to still be executed by the OS but complicates static and dynamic analysis tools used for 

detection and discovery of program functionality. The author’s framework successfully analyzed 

and identified a large sample of malware, 103,275 samples, as well as 269 malformed samples. 

This work details the PE file format and numerous techniques used by malware authors to violate 

the PE specification yet still produce executable programs that will be handled by the operating 

system.  In contrast, the research done by Gawlik and Holz (2014) focuses on the implementation 

of the code instead of the file format that contains the executable code.  

2.5.1    File format malformations.  Malware authors also utilize encryption or 

obfuscation to hinder the analysis process.  This can become especially important when analyzing 

system libraries that, unknown to the analyst, may be artifacts from a malicious attack.  Zwanger, 

Gerhards-Padilla, and Meier (2014) discussed methods that can detect x86/x64 code regardless of 

file type and obfuscation attempts. This technique focuses on the byte-level instead of assembly 

mnemonics produced after disassembly.  As the work by Paleari et al. (2010) demonstrated, the 

disassembly process is not guaranteed to be absolutely correct, leaving room for errors during 

analysis. By focusing on the byte level the detection technique proposed is not dependent on the 

disassembly process. The authors show through a rigorous evaluation process that their technique 
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can reliably identify code in an arbitrary binary file. In addition, this method could be used to 

identify errors in disassemblers which, in turn, could be used to improve the process of 

disassembly.  

2.6    Binary Analysis Frameworks 

 Binary analysis frameworks have been created to streamline the process of performing 

binary analysis.  These frameworks often exhibit common characteristics in performance, support 

and output provided to the end-user.  This section will discuss prevailing frameworks, features 

provided and limitations.  The section concludes by identifying how the Binary Analysis 

Framework addresses these limitations. 

2.6.1    PEV.  Efforts have been made to stream-line the process of reverse engineering, 

whether under a static or dynamic context. PEV was introduced by Merces and Weyrich (2017) as 

a “fast, scriptable, multiplatform, feature-rich, free and open-source” (Merces & Weyrich, 2017) 

framework for the analysis of portable executable files.  In addition to providing an automated 

framework for parsing and displaying information about a PE file, it also provides functionality to 

assist in identifying malformations, indicators of potential malicious activity, and the ability to 

generate disassembly.  While a versatile platform, it is limited to parsing PE files, does not persist 

any data and does not provide an architecture for searching the instructions of the program under 

analysis.   

2.6.2    BARF.  A framework that aims to be multi-platform, BARF (STIC, 2017) has also 

been released as an open-source project.  BARF consists of three components: the core of the 

framework, architecture support and analysis functionality.  At the core of the architecture support 

is the use of the Capstone disassembly engine.  This framework provides broader support than that 
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offered by Merces and Weyrich (2017) in PEV as it supports multiple file formats, supports the 

ARM architecture, utilizes an intermediate language and offers a satisfiability modulo theories 

(SMT) solver.  Tools that utilize the BARF framework have also been developed and include the 

ability to enumerate return-oriented programming (ROP) gadgets, produce control-flow graphs of 

selected functions and generate call graphs of a selected function.  Limitations are like those 

highlighted in the previous framework, namely there is no persistence model, lacks arbitrary search 

of disassembly output and does not create a project-based profile that links related binaries.   

2.6.3    Angr.  Angr is a python-based binary analysis framework ("angr," n.d.).  Angr 

differs from the previous frameworks in that it provides both “static and dynamic symbolic 

analysis” ("angr," n.d.).  A framework that provides symbolic analysis requires additional levels 

of translation of disassembly output before allowing for user interaction and providing output 

(Stephens et al., 2016).  As with the previous frameworks, interaction with Angr begins with binary 

analysis.  The output from this stage is the disassembled machine code.  Frameworks such as 

BARF and PEV will cease program interpretation at this point and allow for user interaction with 

the output, it is up to the user to derive meaning from the disassembly.  However, Angr provides 

additional stages of processing before finishing binary analysis to include the use of an 

intermediate representation of machine code to provide multi-architecture support.  Angr 

additionally provides a solver engine, machine state emulation, program path analysis, semantic 

representation and full program analysis.  The Binary Analysis Framework does not intend to 

provide a feature set like Angr, but to expand analysis capabilities on disassembly output like 

frameworks such as PEV and BARF. 

2.6.4     Limitations addressed by the Binary Analysis Framework.  The Binary 

Analysis Framework attempts to address several of the limitations discussed earlier in this section.  
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The Binary Analysis Framework is not intended to provide features or address limitations in 

frameworks such as Angr, frameworks that employ symbolic or dynamic symbolic analysis.  

Instead, the Binary Analysis Framework was designed to address limitations in frameworks like 

PEV and BARF, frameworks that produce as the final output disassembly.  The primary interaction 

with such frameworks is in analyzing this output, which provides the context in which the analyst 

derives program meaning and behavior.   

The Binary Analysis Framework will address several key limitations in current binary 

analysis frameworks.  A data persistence architecture will be developed using an open-source 

database system.  The proposed benefits of this design are: reduced time in performing program 

analysis, an architecture for grouping related binaries and a novel search architecture based on 

disassembly output.  The development of a relational database for data persistence allows for the 

program to load data from programs already disassembled.  This contrasts with having to perform 

the disassembly of the input file each time a program analysis is desired.   

Related input files can easily by grouped together in a project construct.  This increases the 

efficiency of analysis as all related input files can be accessed from a singular graphical user 

interface.  Current frameworks require an instance of the analysis program to be open per file, 

increasing time requirements in switching between these instances. 

The last feature is that of a search architecture that allows for searching by assembly 

instruction (or disassembly output).  This allows for the construction of novel search algorithms 

that utilizes string comparison functions, regular expressions and database language features.  In 

addition, searches can be performed simultaneously across multiple input files.  This allows for an 

analyst to perform comparative analysis with disassembly output instead of relying on byte-

sequence matching.  This will expand the scope in which analysts are able to analyze a program 
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by providing a broader facility for search.  This builds upon current limitations, which are limited 

to performing a binary conversion of the input search patterns before performing the search.  The 

result of this architecture will be that of a more comprehensive evaluation of the target input file, 

allowing for discovery of unknown vulnerabilities and, ultimately, more secure software.  

2.7    Literature Review Summary 

This chapter has provided background information on generating an executable program, 

binary analysis, instruction set architectures, prevailing disassembly techniques, binary file 

formats and binary analysis frameworks.  These concepts form the foundation for the process of 

reversing engineering software and are used as foundational reasons for the proposal of the 

framework.  Research methodology and artifact design are discussed in the next chapter. 
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CHAPTER 3 

SYSTEM DESIGN 

 This chapter offers a formal definition of the Binary Analysis Framework, discusses each 

component of the framework and details how it was constructed. Novel search functionality is 

enabled by this design as comparative searches can be performed using database query languages, 

string comparison functions and regular expressions using assembly language syntax.  This 

approach differs from prevailing binary analysis frameworks in two ways, the use of a relational 

database for data persistence and the ability to use assembly language syntax to perform searches.  

Existing frameworks, covered in Chapter 2, require a translation of assembly language syntax into 

binary instructions before searches can be performed.  This creates new avenues to perform 

analysis of a disassembled program, increasing the understanding of the program logic by the 

analyst and reducing the amount of time needed to ascertain that understanding.  This, in turn, can 

lead to the discovery of vulnerabilities in the software. 

3.1    Research Approach 

This work followed the principals of design science as introduced by Hevner, March, Park, 

and Ram (2004).  According to Hevner et al. (2004), design science research is a paradigm that “is 

fundamentally a problem-solving paradigm. It seeks to create innovations that define the ideas, 

practices, technical capabilities, and products through which the analysis, design, implementation, 

management, and use of information systems can be effectively and efficiently accomplished”.  

Additionally, Hevner et al. (2004) defines design science as “a body of knowledge about the design 

of artificial (man-made) objects and phenomena— artifacts designed to meet certain desired 
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goals.”  The focus of the research is on the study of phenomenon, not necessarily naturally 

occurring, in which the research contributes to the corpus of knowledge related to that 

phenomenon, or certain behaviors or characteristics of that phenomenon.  Therefore, research 

activity is focused around the development of an artifact, in which there is a higher tolerance going 

into the research for failure to provide for the exploration of the unknown. 

3.2    Limitations 

The Binary Analysis Framework will take an optimistic approach to validating the input 

files.  Malware authors routinely abuse the PE file format to bypass detection and perform other 

nefarious activity on a computing system (Hahn & Register, 2014).  The framework will not 

attempt to detect intentional malformations and may be unable to parse the desired file or produce 

incorrect disassembly listings.  Consideration has been given to this problem and the framework 

will support future expansion of more robust file validation and will be discussed later in this 

section. 

Code obfuscation is a technique employed in executable code to make the inner workings 

of the software difficult to understand (Linn & Debray, 2003).  Code obfuscation comes in many 

forms and can include packing, dynamic code generation and the use of shellcode as well as 

encryption routines (Sikorski & Honig, 2012).  Code obfuscation is used to achieve a variety of 

goals, such the protection of intellectual property within the software or to inhibit the discovery of 

software vulnerabilities that could be leveraged by an attacker to exploit the software.   

Code obfuscation is also commonly used by malware authors to hide the intended 

functionality of their program and to evade signature-based detection by anti-malware products 

(You & Yim, 2010).  Regardless of the intent, these techniques make the process of disassembling 



BINARY ANALYSIS FRAMEWORK  

 

` 

35 

obfuscated software complex, as the data that the disassembly process encounters may not be 

executable code but encrypted or obfuscated data.  To disassemble this code correctly it would 

need to be de-obfuscated and with the number of possible ways in which the code can be 

obfuscated, quickly becomes a daunting task (Linn & Debray, 2003).  The Binary Analysis 

Framework will not be able to support the disassembly of obfuscated or encrypted code due to 

these difficulties. 

3.3    Code Organization 

The Binary Analysis Framework is a Java application which utilizes Java SE and JavaFX.  

Java SE version 1.8 and JavaFX version 8.0.111-b14 were selected for the development of this 

framework, as they were current version of Java SE and JavaFX at the time of development.  There 

are four platforms available from Oracle, the developer of Java, that can be selected when building 

a Java-based application: Java SE, Java EE, Java ME and JavaFX.  Java SE, or Standard Edition, 

is the most prevalently used platform when developing desktop applications.  Per Oracle, “Java 

SE's API provides the core functionality of the Java programming language. It defines everything 

from the basic types and objects of the Java programming language to high-level classes that are 

used for networking, security, database access, graphical user interface (GUI) development, and 

XML parsing” (Oracle, n.d.).  Other platforms include Java EE, which is designed for enterprise 

development of “large-scale” applications and Java ME, which is intended to support mobile 

devices (Oracle, n.d.). JavaFX was also utilized and provides core libraries for developing 

graphical user interfaces.  

A key consideration for the selection and use of Java was for the portability of the 

application.  Compiled Java differs from languages such as C and C++ in that Java is compiled 
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into an intermediary byte-code, which is then executed by a Java Virtual Machine (JVM) installed 

in the host operating system ("Java Virtual Machine," n.d.).  The JVM is responsible for providing 

translation from byte-code to machine code for the specific architecture of the host.  In comparison, 

languages such as C or C++ are compiled directly into machine code for the intended platform.  If 

multiple platforms are to be supported than a corresponding number of compiled executables must 

be provided by the developers or source code made available from which an executable file can 

be compiled individually.  The flexibility of the Java architect allows for Java applications to be 

distributed as a single application file, if there is a supported JVM the Java application will be able 

to execute on that host. 

Java applications are logically organized by project constructs.  A Java project consists of 

custom code, third party libraries and libraries provided by Java SE and other resources needed by 

the application under development.  Java project code is organized in two ways: through physical 

separation of the project files using folders and the logical organization of code through packages.  

Java packages allow for the organization and reference of code through naming conventions, 

which provides code organization as well as the ability to access specific code by name 

("Namespace," n.d.).  The use of packages also allows for a modular design of the framework, 

which intends to increase organizational effectiveness of maintaining the code as well as to support 

the modular growth of the framework for future expansion. 

3.4    Overview of the Binary Analysis Framework Components 

The overall design of the proposed framework is depicted in Figure 7.  The Binary Analysis 

Framework will have four primary components: input file validation, file parsing and disassembly 

engine, data storage architecture and the graphical user interface.  The process of analysis will 



BINARY ANALYSIS FRAMEWORK  

 

` 

37 

begin with the loading and parsing of the desired software.  Initially, the Binary Analysis 

Framework will only support 32-bit binaries in the PE file format.  The support of 32-bit PE files 

is not a design limitation but a decision made by the authors to limit the scope of the work, the 

modular design of the framework will allow for future expansion to include 64-bit binaries as well 

as additional instruction set architectures (ISA), such as ARM.   

 

Figure 7. Overview of the Binary Analysis Framework components. 

 

Interactions with the framework will begin by selecting an input file, which will be 

analyzed to determine file format.  If the format is supported by the framework then it will be 

furthered analyzed to confirm that the file conforms to its defined specification, such as the PE file 

format specification provide by Microsoft (1999).  Due to the focus on the PE file format for this 

work, the input file will be analyzed to determine a valid 32-bit PE file.  If an invalid PE file is 

detected it will not be sent to the next stage of the framework for disassembly and analysis will 

cease.   

Upon determination of a valid PE file, the framework will direct the input file to the next 

stage, the file parsing and disassembly engine. The results of this stage will include the 

characteristics of the file through the parsing of the files header information as well as 

identification of the code sections.  Identified code sections will be disassembled and the output 
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stored in a relational database provided by the database architecture.  The database will then be 

utilized to provide the data for display in the graphical user interface, which allows for analysis of 

the imported file. An example of characteristics would be the use of data execution prevention 

(DEP), address space layout randomization (ASLR), the use of stack cookies and control-flow 

guard (CFG).  After successful parsing and disassembly, the data will be directed to the data 

storage mechanism for permanent storage.  

 The Binary Analysis Framework will process the results of the disassembly engine to 

match the schema of the data store. This information will be stored in a relational database using 

MySQL 5.7.17.  The schema for the data model will be designed to allow for granular inspection 

of the individual instructions and the characteristics of each imported file.  This provides not only 

a storage mechanism for the currently imported file, but also a long-term storage mechanism for 

each file that is imported into the Binary Analysis Framework.  The desired results of this 

architectural design are twofold: to allow for novel search techniques to be developed by utilizing 

a relation database and to avoid the need to disassemble the input file each time binary analysis is 

to be performed.   

Additionally, the Binary Analysis Framework will allow for the creation of projects, in 

which software that is related can be grouped together in a logical collection, as defined by the 

user.  This allows for increased efficiency in exploring the imported software as well as instruction-

level comparison between all imported files within a project. The database model will be utilized 

to develop the frameworks search functionality and utilized the disassembly output rather than 

performing binary searches on the software’s machine code.  This allows for a higher level of 

abstraction when analyzing software, searching by assembly instruction and operands instead of 

binary or byte sequences. 
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3.4.1    Graphical user interface.  Initial interaction with the Binary Analysis Framework 

will begin with the graphical user interface (GUI).  Upon application start, the user is presented 

with the primary user interface presented in Figure 8.  

 

Figure 8. Primary user interface of the Binary Analysis Framework. 

 

The graphical interfaces are designed using an FXML document, as defined within the 

JavaFX standard ("4. Using FXML to Create a User Interface," n.d.).  FXML is based upon 

extensible markup language (XML) and provides for the development of the user interface 

components.  It is desirable to provide a decoupling, or abstraction, in the development of software 

applications to increase the ease at which the software can be maintained and further developed 

(Mo, Cai, Kazman, Xiao, & Feng, 2016).  This framework endeavors to follow in such a pattern.  

To achieve this, the functionality associated with the elements of the user interface are decoupled 

and organized in a series of controller classes, each interface corresponds to a unique controller 

class.  This design pattern allows for the clear distinction in the application code between 
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individual interfaces and their corresponding application logic and is used throughout the 

development of the framework. 

To begin using the framework, the user must create or load a project.  Project management 

is accomplished by expanding the File menu option and selecting the Load Project menu item.  

The user is then presented with a dialog listing all previously created projects, in order of frequency 

of use, as well as options to create a new project. The dialog presented is shown in Figure 9. 

 

 

Figure 9. Project management dialog. 

 

The concept of the project is to provide a logical grouping between imported software for 

analysis. For example, a project could be created to analyze a closed source application.  Included 

in this project would be the target application as well as any software dependencies.  Another 

example would be that of an operating system profile, in which software related to specific versions 

of an operating system could be created.  Creating a new project requires that the user provide a 

name for the project as well as to select the target platform.  The target platform is a statically 
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generated list of values retrieved from the database and is used for display purposes only.  The 

selection of a target platform does not have an impact on the analysis, parsing or disassembly of 

any input files.  Future work would involve expanding this listing to provide a dynamically 

generated listing of all supported platforms by the Binary Analysis Framework. 

Once a project has been loaded, a series of file menu options along the top portion of the 

primary interface become available.   If the project contains imported software, tabbed content 

displaying the disassembly output and identified functions of each import will be generated.  At 

this point the user can resume analysis on the previously imported software or import a new file.  

To import a new file into the project, the user can select the Import Binary menu item from the 

File menu.  Upon selection, a file selection dialog will be presented to the user and allow for the 

selection of the desired file from their local file system.  The file selection dialog does not filter 

the files and folders displayed and is therefore up to the user to select an appropriate file for import. 

3.4.2    Input file validation.  After selection of the desired input file, the framework will 

attempt to determine the appropriate file format.  This is the stage responsible for identifying the 

appropriate file format of the provided binary file.  Identification of a file format allows for 

accurate determination of executable code in the file, which ultimately is the information populated 

in the graphical display and that which the analyst uses to seek out software vulnerabilities and 

other security issues. Inaccurate data can be displayed to the analyst if the framework is unable to 

parse the given file format or makes an incorrect assessment of the file type.  Limitations in file 

parsing were discussed in section 3.2.  The remainder of this section discusses the code developed 

to handle this activity. 

The controller that supports the primary user interface is called Controller.java inside of 

the GUI package and includes functionality to begin the importation, parsing and disassembly of 
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the desired input file. File parsing and disassembly begins by the framework utilizing a custom 

DisassembleService class, which provides several interfaces in which to make the framework 

modular, allowing for the expansion of additional file formats and architectures.  The authors 

endeavored to use the Abstract Factory Pattern, in which base classes are responsible for creating 

related objects without knowing the details about the sub-class implementation (Martin, 2009).   

As depicted in Figure 10, the DisassembleService class exposes a single public method 

getCode on line 13, which returns a Code object on line 32.  The Code object is a general-purpose 

class whose properties allow for the storage of the disassembled code, function maps and other 

necessary attributes to facilitate further analysis.  The Code object is intended to be implemented 

by sub-classes, following the Abstract Factory Pattern.  This allows for a modular design in which 

the properties and methods of each supported file format remain consistent within the framework.  

Inside of the getCode function an instance of a LoaderFactory class is instantiated at line 15.   

 

Figure 10. Function getCode from DisassembleService.java. 
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From the LoaderFactory object instance, the get Loader function is called, providing as an 

argument the path to the input file.  It is in this method that the input file is parsed to determine the 

appropriate file format.  As discussed in the limitation section, detection of any file format 

malformations is not performed.  However, it is at this point in the framework that additional 

parsing and validation could be added to detect for known malformations.  To determine the file 

format, the framework checks for known file format signatures, also known as magic numbers 

("File Format," n.d.).  In the PE file format, the first two bytes of the file are the ASCII characters 

‘M’ and ‘Z’, or 0x4d and 0x5a in hex, and represent the magic number.  Figure 11 provides the 

implementation of the getLoader function.   

 

Figure 11. Function getLoader from x86.java. 

 

This function retrieves the necessary bytes from the input file at line 13 and compares them 

to known signatures beginning at line 14.  Additionally, other file formats can be determined based 

on their magic numbers and is supported by the framework using a multi-conditional IF-ELSE-IF 

control structure.  At line 18 a comparison is made for the hex value 0x7F, which represents the 

executable and linkable format (ELF) supported in Linux operating systems  ("Executable and 
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Linkable Format," n.d.).  However, the framework is unable to parse input files in the ELF file 

format in its current iteration and was provided to illustrate future expansion of the framework. 

Once the appropriate file format is identified, an instance of a supporting class is 

instantiated.  A base class named LoaderInterface has been developed to provide for the base 

properties and methods that will be required of disassembled programs, regardless of file format.  

Classes that extend this base class will also be created for each supporting file format and 

implement any abstract functionality to provide the consistency and extensibility of the framework.  

In the case of a PE file, a new instance of the PE class will be assigned to the LoaderInterface 

object and returned.  This technique can be observed at line 16 in Figure 11, with the object being 

returned by the function at line 23.  It is through this design that additional file formats can be 

defined and returned as instances of the LoaderInterface class, with each sub-class providing the 

appropriate implementation of properties and methods per the corresponding file format 

characteristics. 

The LoaderInterface class defines several abstract methods, public methods and public 

members.  One method of importance is an abstract method getType.  Since the PE class extends 

the base class LoaderInterface it must provide an implementation of this method, as would any 

class that extends LoaderInterface.  The purpose of the getType function is to provide introspection 

of the input file to determine the targeted architecture, such as Intel’s X86 or Holding’s Advanced 

RISC Machine (ARM).  Since each file format will include this information in varying ways, each 

class specific to a file format will need to implement the functionality necessary to determine the 

architecture type.  Figure 12 shows the implementation of the getType function for the PE file 

class.   
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Figure 12. Function getType from PE.java. 

 

The LoaderInterface class also defines an abstract method setBytes.  This method is 

responsible for storing the original bytes associated with the input file in a public member called 

bytes.  For example, in the implementation of this method in the PE class, the base class version 

of this method is called through a call to super.setBytes, then the member function load is called.  

Figure 13 depicts the load function as defined in the PE class.   

 

Figure 13. Function load from LoaderInterface.java. 

 

The function Load is responsible for parsing the header information of the related file 

format to locate the corresponding binary data for the executable code of the input file, represented 

as byte values, for later disassembly.  This can be seen in the try-block starting at line 39.  It is in 
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this function that the raw binary data is read from the input file’s code section and stored in a byte 

array member code.  The for-loop starting at line 51 is responsible for iterating over the raw bytes 

and storing them in the code member.  

 

3.4.3    File parsing and disassembling.  Upon successful input file validation, the next 

stage is to begin file parsing and disassembly.  This stage identifies the binary data in the file that 

represents the executable code and becomes the foundation for the data displayed to the analyst.  

Once executable code is identified, it can be disassembled.  The output of the disassembly process 

is the assembly instructions used to populate nearly all displays in the framework.  The rest of this 

section discusses the code developed to complete this activity. 

An instance of the DisassemblerFactory is created at line 17 in Figure 10.  The 

DisassemblerFactory class exposes a single function named getDisassembler, which expects an 

instance of the LoaderInterface class.  At line 18 this method is called and the previously 

instantiated LoaderInterface object provided as the argument value.  The purpose of the 

getDisassembler function is to determine the input file’s architecture to provide appropriately 

created objects for disassembly.  Function getDisassembler accomplishes this by utilizing the 

getType function from the LoaderInterface object, as previously discussed. 

Figure 14 depicts the function getDisassembler, which creates a new instance of a class 

appropriate to the architecture of the input file.  It does this by creating a multi-conditional IF-

ELSE-IF control structure in which the conditional uses the return value of the LoaderInterface’s 

getType function and a constant value representing the architecture.  This code technique can be 

seen starting at line 17.  In the case of a 32-bit PE file, this would be an instance of the x86 class, 

which is instantiated at line 25.  Additionally, architecture and mode information is defined and 
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later used to create an instance of the Capstone class, which will use this information to 

disassemble the code from the input file.  The instance of the Capstone class is assigned to a public 

member of the architecture class, x86, at line 26.  The function getDisassembler returns an instance 

of the DisassembleInterface class, which is a base class that is extended by the architecture specific 

classes, such as x86, at line 33.  

 

Figure 14. Function getDisassembler from DisassembleFactory.java. 

 

The DisassembleInterface class provides two abstract functions: disassemble and 

generateFunctions.  The DisassembleInterface class also exposes a member function setCapstone 

and a public member cs, which is the instance of the Capstone class assigned to in the 

getDisassembler function.  As was seen with the implementation and relationship of the 

LoaderInterface base class and the PE sub-class, a similar relationship exists between the 

DisassembleInterface class and that of the x86 class, or any class that extends the 

DisassembleInterface class.  This design pattern allows for the extension of the framework to 

support additional architectures, such as ARM, by allowing for a modular design in the getCode 

function of the DisassembleService class.  To extend the framework, additional classes that support 
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the desired architecture must be created and can be done without having to modify the core 

functionality of the framework.  

After an instance of the DiassembleInterface class has been created and a value assigned 

from the function getDisassembler, the code from the input file can be disassembled.  This is 

accomplished through the disassemble member function of the DisassembleInterface class, which 

was instantiated in the getCode function at line 18 in Figure 10.  The disassemble function expects 

a single argument, an instance of the LoaderInterface class. This value is provided by the earlier 

instantiation of this object and contains the required functionality to produce the data that 

represents the code section of the input file.  The disassemble function is defined as an abstract 

function in the DisassembleInterface class, which is extended and then implemented in the 

architecture appropriate sub-class. In the case of a PE file Intel’s x86 architecture, this would create 

an instance of the x86 class.  Figure 15 depicts the implementation of the disassemble function 

from the x86 class.  

 

Figure 15. Function disassemble from x86.java. 
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The purpose of the disassemble function is to disassemble the binary code identified in 

the input file, which will then be stored in the database.  The disassemble function begins by 

retrieving the code from the input file at line 118 in Figure 15.  This is accomplished by calling 

the getCode method from the provided instance of the LoaderInterface class.  The code 

requested was populated in the member variable code in the resulting LoaderInterface class.   

Once the input file code is retrieved, the disassemble function has all the bytes necessary to 

begin disassembly.   

During disassembly, this function also keeps track of the linear, virtual address of the 

instruction. This information is stored in the database and later displayed by the corresponding 

assembly instruction. The use of a virtual address allows for a correlation between the 

disassembled instruction and the location the instruction would appear in memory during program 

execution.  The initial address is determined during parsing of the input file and found in the header 

information of the corresponding file format. For example, in a PE file this address would be 

determined by using the ImageBase member in the IMAGE_OPTIONAL_HEADER structure as 

defined by Microsoft in the PE File Format specifications ("IMAGE_OPTIONAL_HEADER 

structure," n.d.).  Upon determination of the starting address and retrieval of the input files 

executable code, the function disassemble enters its primary loop at line 127.  At line 132 a call to 

getIns is made, which requires a single integer parameter that represents the virtual address for 

beginning of disassembly.   

The function getIns, depicted in Figure 16, converts this value from a virtual address to a 

relative offset from the beginning of the byte array, and does this due to the fact that virtual 

addresses are only of use when used relative to the virtual memory of a program during execution  
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("Virtual Address Space," n.d.).  The calculated offset provides an index to the corresponding 

program code, which is contained in the previously discussed member bytes.  At line 39 a FOR 

loop is implemented and up to 20 bytes is then copied into a local byte array, which will be used 

for the disassembly of the instruction.  Once the local byte array is populated, it is then passed to 

the disasm member function from the Capstone object that was created during the call to 

getDisassembler, this is done at line 47. The Capstone function disasm will disassemble the bytes 

provided by the local byte array and return a CsInsn object from the Capstone library, which will 

represent the original machine code as an assembly instruction and provide access to disassembly 

information such as the instruction mnemonic, the operands and the size of the instruction in bytes.  

 

 

Figure 16. Function getIns from x86.java. 

  

The CsInsn object is used to instantiate an Ins object, which is a custom object created to 

provide an interface for the disassembled instruction used throughout the rest of the framework.  

This approach was selected as to provide extensibility in the instruction object and not be limited 
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to that of the CsInsn object provided by the Capstone library.  Upon function return, this object is 

tested to ensure it has been created and, if so, the type of the instruction is determined through a 

call to getAddressItem.  The getAddressItem function determines if the instruction is a branching 

instruction, in which case the list of addresses original populated with the start address is added to 

for the disassembly of the program to be able to continue. 

Before completion of the getCode function, the member function generateFunctions of the 

DisassembleInterface object is called at line 30 in Figure 10.  This method requires a single 

argument, the instantiated Code object returned from the call to disassemble.  This function will 

explore the disassembled instructions seeking the call mnemonic and, if found, add it to another 

collection which contains the address of where the call instruction was found.  This functionality 

allows for all functions identified in the input file to be analyzed.   

Upon completion of the disassemble function, it returns an object of type Code. This object 

has members that contain collections in the form of TreeMaps of the disassembled instructions as 

well as all identified functions.  This function returns to the method responsible for importing a 

new binary initially called from Controller.java.  Once the input file is disassembled, the data can 

be stored in the relational database. 

3.4.4    Data persistence.  After successful disassembly, the output is stored in a relational 

database.  MySQL was chosen as the relational database engine, the schema developed can be 

viewed in Appendix A.  MySQL provides not only an open-source database solution, but also a 

non-proprietary format that accommodates the sharing of project data.  Many popular disassembly 

tools, such as IDA Pro, utilize a proprietary format for storage of disassembled programs.  This 

complicates the process of binary analysis amongst teams as there is no inherent way to 

synchronize analysis.  Proprietary formats also restrict the customization of such frameworks and 
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often limit those desiring custom functionality to limited APIs.  The use of an open-source database 

will allow for development of third-party software, accommodating expansion of the framework 

beyond just analysis but also collaboration and communication capabilities.  The rest of this section 

discusses the software developed to implement the data storage capabilities in the Binary Analysis 

Framework. 

The process of saving the data begins with the creation of a project object, which 

corresponds to the project table in the database schema. The project table provides a one-to-many 

mapping to the imports table using an intermediate table project_imports.  The project_imports 

table allows for multiple imports per project, but also that a single import could be shared across 

multiple projects.  The import table is used to store information about an imported file.  From the 

import table relationships exist with several other tables to store the disassembled instructions, 

characteristics of the import, section information and the bytes of the original imported file.  The 

disassembled instructions are stored in the instructions table, which has a one-to-many relationship 

with the imports table.  The characteristics table contains security information about the imported 

file: if it was compiled to use ASLR, DEP, CFG or stack guard.  This table has a one-to-one 

relationship with the import table.  A table named section stores the original bytes of the identified 

code sections of the input file and the name of the section.  The section table has a one-to-many 

relationship with the import table.  The final table is called original_binary and contains the entire 

binary content of the imported file. 

 Figure 17 depicts the process of object creation and data persistence for an imported file.   
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Figure 17. Creating Import and Section objects 

 

Once the selected file for import has been disassembled, the currently loaded project is 

referenced to obtain the project_id at line 119.  The project id is an internal value used in the 

database as the primary key to provide for data normalization.  Next, an instance of an import class 

is created at line 115, this object corresponds to the import table in the database.  Properties of the 

import object are updated and include: the size of the input file in bytes at 116, the name of the file 

at line 117, the project id at line 119, a list of ShortenedIns objects and a list of ShortenedFunction 
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objects (not depicted in Figure 17).  Referencing the Code object returned from the getCode 

function, this object provides a method called getCodeSectionBytesAsString, which returns all the 

bytes of the code section of the input file as a string.  An instance of the section object is created 

at line 143, which provides an object-mapped interface with the database.  It contains several 

properties: the name of the section, the id of the import that it belongs to and the content of the 

section.  The table that this object corresponds to provides a one-to-many mapping with the import 

and allows for multiple sections to be mapped.  

Following creation of the import object, the framework then saves the instructions and the 

functions that were disassembled.  During the process of disassembly two TreeMap collections are 

created, one that stores function information and another that stores instruction information and 

can be seen at lines 150 and 152 in Figure 18.  These lists are iterated, creating objects 

ShortenedFunction and ShortenedIns, which are then used to represent functions and instructions 

throughout the rest of the framework.  Once the new objects are created they are added to a list 

collection and persisted to the database.  These lists are also used to later update the graphical user 

interface. 

The properties of the ShortenedIns object are defined as follows: a string to represent the 

opcodes, an integer value for the virtual address of the instruction, a string for the instruction 

mnemonic, a string that represents the operands, a string that represents the virtual address and an 

integer that represents the opcode size in bytes.  These properties where chosen to facilitate 

information display and for search capabilities on the disassembled instructions.  Member 

functions include getters and setters for these properties. 
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Figure 18. Saving functions and instructions in Controller.java. 

 

 The properties of the ShortenedFunction object includes: a string to represent the virtual 

address where the function begins, an integer that represents the starting virtual address of the 

function, an integer that represents the ending virtual address of the function, a list of integers that 

represent virtual addresses for exit points within the function, a list of integers that represent virtual 

addresses for entry points within the function and a string that represents an alias for the function.  

Member functions include getters and setters for these properties. 

3.4.5    Updating the graphical user interface.  Data persistence is the final stage in the 

parsing and disassembling of the input file.  The framework will use the data from the database to 
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update the graphical display.  This contrasts with most frameworks of this type that will use the 

disassembled or parsed data directly from the binary, not providing a permanent storage 

mechanism.  One framework that does follow a similar model is that of the popular IDA Pro tool, 

which uses a proprietary file format to store information about a disassembled program (Eagle, 

2011).  However, the data storage format does not allow for the project concept accomplished here, 

nor for dynamic searching of multiple assembly mnemonics in a single or across all binaries in a 

project.  At this stage, the user if able to interact with the disassembled program, begin analyzing 

its functionality and seeking out known/unknown vulnerabilities.  The rest of this section discusses 

the code developed to implement the data displayed in the user interface. 

A function called fillDisplay is called and updates the primary user interface with function 

and instruction information from the corresponding data from the database.  The function 

accomplishes this by referencing the properties of the import object that contains collections of the 

ShortenedFunction and ShortenedIns objects.  To support multiple imports per project, the primary 

graphical interface was designed to use the TabPane container from the JavaFX library.  This 

provides a built-in mechanism for the display of tab content and is highlighted in Figure 19. 

 

 
Figure 19. Primary graphical interface highlighting use of the TabPane. 
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The fillDisplay function dynamically generates new container objects for each import in 

the project, a SplitPane is utilized to provide function information in the left-hand portion and 

instruction information in the right-hand portion of each tab.  For function display, a ListView 

provides the necessary container.  For instruction display a TableView is utilized as this provides 

the ability to bind the appropriate data to columns of the table.  The properties from the 

ShortenedFunction and ShortenedIns objects are used to populate the ListView and TableView 

respectively, then those containers are added to the SplitPane object.  Once the SplitPane has been 

prepared, a Tab object is created for each import and the SplitPane added to it as the content.  This 

is performed in a loop, iterating over each import for the project.  Once complete, the display is 

available to the user as seen in Figure 20. 

 

 
Figure 20. Primary graphical display highlighting use of tabs. 
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3.5    Search Functionality Architecture 

Once a project is loaded and there is at least one imported file, the Search file menu is 

enabled.  The Search file menu exposes four search features: search by mnemonic expression, 

search by mnemonic sequence, search for return oriented programming (ROP) gadgets and 

function comparison by mnemonic.  The first three search features support a single import and will 

be performed against the currently selected tab.  The final search feature will be performed across 

all files within the project 

Upon selection of the desired menu item, an interface dialog will appear for user 

interaction.  As with the construction of the primary user interface, these dialogs utilize the JavaFX 

library and FXML for structure.  Controllers were also developed to isolate related logic to each 

interface. However, search functionality leverages the data stored in the database and additional 

architecture was developed to facility access to this data as well as to maintain the modularity of 

the framework. 

Database access is controlled through the Java classes contained in the 

application.database package.  Overall architecture design followed the principles of N-Tier 

Architecture, in which the application was separated into multiple tiers ("N-Tier Data Applications 

Overview," n.d.).  Interactions through the controllers, whether by user or application life-cycle 

event, went through the data access objects to interface with the database.  These objects then 

return data utilized by the controller classes to populate and update the appropriate user interface 

element.  The data access tier begins with a class DBConnection, which implements a single 

constructor responsible for providing the connection string, username, password and appropriate 

driver to create a connection with the underlying relational database management system (RDMS).  

Each class desiring data access can utilize the DBConnection class to instantiate a connection 
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object.  This work implemented MySQL but it is conceivable that support for additional database 

systems could be implemented.   

Additional classes were created to provide access to the underlying database schema and a 

class for each table was developed.   These classes provide a direct object mapping through 

properties to the columns of the table they represent and are made available as public members.   

3.6    System Design Summary 

This chapter provided a formal definition of the Binary Analysis Framework.  The 

components of the framework where presented in detail and the relationships between those 

components have been defined.  This chapter also provided the architecture for the search 

functionality, its rationale and how it addresses shortfalls in current binary analysis frameworks. 

Implementation of search functionality is presented in the next chapter.    
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CHAPTER 4 

CASE STUDY 

This chapter provides results from the development of the Binary Analysis Framework.  

Four search techniques were developed and will be presented in section 4.1 through 4.4.  The 

ability to identify compile and link time security features was also developed and is discussed in 

section 4.5.  Section 4.6 will present results on analysis of system libraries from Windows 7 32-

bit and section 4.7 provides a brief discussion on disassembly output validation. 

Of primary interested in developing the Binary Analysis Framework was in exploring a 

novel way to search binary files (i.e. the input files), using regular string patterns in the form of 

assembly instructions.  The string inputs would be compared directly to the disassembled output 

that was stored in the database using string comparison functions.  This work experimented with 

where the string comparison would be made, in the application code (i.e. Java), in the structured 

query language (SQL) at the database or a combination of both techniques.  The framework also 

implemented search capabilities that expand beyond a single input file.  This work experimented 

with expanding the search capability to allow for search and comparison across all files in a project.  

The following search functions were implemented using the framework developed: search by 

mnemonic expression, search by mnemonic sequence, search for return oriented programming 

(ROP) gadgets and function comparison search by mnemonic.  In addition to search capabilities, 



BINARY ANALYSIS FRAMEWORK  

 

` 

61 

the framework also developed ways in which security information could be identified, such as 

compiler and linker options.   

The results discussed here show that an effective framework can be constructed utilizing a 

relational database for data persistence.  Disassembly output can be efficiently stored in a 

normalized database schema and used to provide both output for analysis and novel search 

techniques.  Search techniques are introduced in the following sections of this chapter.  

4.1    Search by Mnemonic Expression 

Search by mnemonic expression allows the user to perform a search utilizing the syntax of 

assembly instructions.  This technique allows the user to search program logic within the target 

binary file to perform program analysis.  This technique employs special patterns not part of 

normal assembly syntax.  This enables much broader search patterns and facilitates greater 

exploration of program functionality.   

Search by mnemonic expression allows a user to input a search pattern in the form of an 

assembly instruction, which is a mnemonic followed by any necessary operands.  To assist in 

providing a standard delimiter when parsing the mnemonic and operands by the framework, a 

hashtag (‘#’) character is used to delimit the segments of the input search sequence.  Figure 21 

depicts an example search for the instruction ‘call eax’, in which the mnemonic is the segment call 
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and the operand is the segment eax (Intel 64 and IA-32 Architectures Software Developer's 

Manual, n.d.).  

 
Figure 21. Example search by expression without use of special patterns. 

 

4.1.1    Components of the mnemonic expression search.  This interface utilizes the 

MnemonicSearch.fxml document and was assigned the SearchController class to handle all user 

interaction. Upon entering the desired search sequence, the user clicks the Search button.  This 

button corresponds to the searchByMnemonicExpression function defined in the controller class.  

As discussed in the modularity of the framework, controller functions are responsible for obtaining 

the appropriate results from the database and updating the user interface. To achieve this, the static 

method searchByMnemonicExpression from the Import class is invoked.  The Import class was 

expanded to become the primary interface object between user interface elements, controllers and 

the database.  The function searchByMnemonicExpression returns a list of ShortendInsn objects 

which are used to populate the TableView object in the search results interface.  This method 

constructs an SQL query to identify matching instructions.  The base of the query is defined as a 

static string in the class definition and contains the SELECT portion of the SQL statement.  This 
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query utilizes the Instruction table to obtain the desired result set.  This method then dynamically 

constructs elements of the WHERE clause to provide the search pattern as desired by the user.   

Figure 22 depicts the function Import.searchByMnemonicExpression.  This function was 

declared as static and requires two arguments: the id of the import to search and a string value 

representing the search input.  The import id is required as argument one due to the static definition 

of the function, this value provides the primary key to identify the import to search.  The second 

argument provides the raw search string the user entered in the textbox in the user interface.  The 

function begins by instantiating the DBConnection class on line 377 in Figure 22, which provides 

a connection to the database server.  On line 379 the search sequence is split by the hashtag 

delimiter and each part stored as an element of a string array.  The next function that is called is 

buildMnemonicExpression, which is a static method defined in the Import class. This method 

requires a single argument, an array of strings which represent the parts of the search sequence.  

This method is called on line 381, immediately after the user input is split.   

 
Figure 22. Function Import.searchByMnemonicExpression from Import.java. 
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4.1.2    Function buildMnemonicExpression.  The function buildMnemonicExpression 

is used by all search functions to standardize the format of the user input.  The function does this 

by building the WHERE clause of the SQL query used to search the Instructions table by leveraging 

regular expressions and the construction of the regular expression syntax.  This function also 

allows the user to utilize special search patterns in their sequence, broadening the number of 

instructions that can potentially match in the user’s input.  The following special input strings will 

be recognized by the framework: imm, r32 and mem.  The imm pattern represents an immediate 

value and is defined by Intel as “data encoded in the instruction itself as a source operand” (Intel 

64 and IA-32 Architectures Software Developer's Manual, n.d.).  An example of a query supported 

by this pattern would be ‘push imm’, in which the search would find any instruction with a push 

mnemonic and any immediate value as the operand.  In contrast, searching without this pattern 

would require the user to know the value of the operand that they wanted to search for, such as 

push 0.  Figure 23 highlights the use of this special search pattern. 

 

Figure 23. Example search using special instruction imm. 
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The pattern r32 represents one of the 32-bit registers available, such as EAX.  This pattern 

provides similar support as that described in the previous pattern, it allows the user to search 

instructions without specifying the exact register they wish to search for.  Figure 24 highlights the 

use of this special pattern. 

 

 

Figure 24. Example search using special instruction r32. 

Finally, mem represents access to a memory location, such as offsets relative to the EBP or 

ESP register or direct memory locations prefixed by ‘0x’, which indicates that virtual address in 

hexadecimal notation.  The special patterns increase the user’s ability to explore instructions within 

the file by broadening the number of potential matches. 

 The function buildMnemonicExpression iterates over each part of the string array argument 

beginning at line 338 in Figure 25, testing for the presence of one of the special search patterns.  
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Figure 25. Function Import.buildMnemonicExpression from Import.java. 

Regular expression syntax has been defined for each case and can be seen in line 344 for 

the value imm, line 348 for the value r32 and line 352 for the value mem.  If the search segments 

do not match any special case, then a direct comparison in the SQL is made and regular expressions 

are not utilized.  Each iteration of the loop causes the results of the comparisons to be concatenated 

to a single string object, which is then returned upon completion of the function.  This value is 

concatenated with the base query in line 381 in Figure 22 and used to instantiate a prepared 
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statement object.  Once instantiated, parameter values are assigned and the SQL executed.  Results 

are iterated and used to create ShortenedInsn objects and appended to a list collection, which is 

returned to the calling controller method and used to populate the user interface. 

4.2    Search by Mnemonic Sequence 

Search by Mnemonic Sequence extends the logic developed in the previous search 

technique by expanding the search functionality to include the ability to search by multiple 

sequences of sequential instructions.  Program analysis frequently requires the identification and 

analysis not of single instructions, but sequences of instructions that lead to a specific program 

state.  The quicker a researcher can identify these patterns, the more effective their time is spent in 

performing analysis.  This search technique allows users to search by pattern instead of individual 

instructions, enabling them to quickly identify areas of a program that may be of interest for deeper 

analysis. 

Search by Mnemonic Sequence utilizes the concept of the search expression being an 

instruction sequence, but expands the search functionality to include the ability to search by 

multiple sequences of instructions.  Figure 26 represents an example search, in which the user is 

searching for the instruction ‘push r32’ followed by a second instruction ‘pop r32’.   

4.2.1    Special search pattern identifiers.  When performing this search, any matches for 

the first sequence must also be followed by the second sequence.  This search functionality further 

expands upon the special patterns and allows for the use of the dollar-sign character (‘$’).  When 

added to a special pattern, it uses the corresponding matching operand to restrict matches in later 

comparisons.  An example of this feature can be seen in Figure 26, the dollar-sign was prepended 

to the special pattern r32.  During the search, if a pattern is matched it will be used as a value in 
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subsequent instructions.  In this example, the first instruction matched on the register EAX.  This 

value was used in the second instruction instead of matching any register, which is the behavior of 

the special pattern r32 without the dollar-sign prefix.   

 

Figure 26. Example search by mnemonic sequence. 

 

4.2.2    Components of the mnemonic sequence search.  This feature is supported by a 

user interface element, MnemonicSequenceSearch.fxml, and supporting controller, 

SearchSequenceController.  Once the user clicks the Search button, the method 

searchByMnemonicSequence is called in the controller.  This method calls the static method 

serachByMnemonicSequence from the Import class.  This function returns a list of ShortendInsn 

objects which is used to populate the TableView in the search results interface.  This method 

constructs an SQL query to identify matching instructions.  The base of the query is defined as a 

static string as part of the class definition.  This method then dynamically constructs elements of 

the WHERE clause to provide the search pattern as desired by the user.   

Figure 27 and Figure 28 depict the function Import.searchByMnemonicSequence.  This 

function begins by instantiating a DBConnection object, then splitting the user input by carriage-
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return and line-feed as seen at line 415.  This is done to store each individual search expression in 

a string array.  To begin searching, the first expression is then split by hashtag delimiter and the 

WHERE clause of the SQL is constructed, this is done using the buildMnemonicExpression 

function.   

 

Figure 27. Function Import.searchByMnemonicSequence from Import.java. 

 

The result from returned from the function buildMnemonicExpression is concatenated with 

the base SQL query and used to search for matching instructions in the Instruction table.   Results 

are iterated and used to create ShortenedInsn objects and added to a list collection.  
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Figure 28. Function Import.searchByMnemonicSequence from Import.java. 

 

With the initial collection of results, the next stage of the function is to search for additional 

sequences of instructions, if provided in the users search input.  A loop starting at line 442 is 

created to iterate over the collection of search results obtained from the first instruction.  To 

determine the next instruction to search, the address of the current instruction is obtained and the 

size of the instruction, in bytes, is added.  The resulting virtual address is the location of the next 

instruction and used in the SQL query to identify and search the correct sequential instruction.  
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This is possible since each record in the Instruction table has an address column, which is the 

starting virtual address of the instruction.  This is accomplished at line 445.   

The next control structure is a FOR loop created at line 450, which iterates over the 

remaining search expressions.  Inside this loop the search expression is split by hashtag character 

and stored in a string array.  Before the WHERE clause for the SQL statement is generated, the 

operands are checked for the existence of the dollar-sign prefix.  A series of conditional statements 

was implemented to provide this functionality and can be seen starting at line 456.  If either 

operand contains the dollar-sign prefix, then the value used for this part of the search pattern will 

be the corresponding result from the initial match.  If not, then the operand will be left unchanged.  

After determination of the dollar-sign prefix, the function calls buildMnemonicExpression and 

uses the returned string value to concatenate to the base SQL query.  The result set returned by the 

SQL query are iterated and added to a temporary collection of ShortenedInsn.  This process 

continues recursively if there are additional instructions to search for; calculating the next 

instructions virtual address, testing for the dollar-sign prefix, building the WHERE clause SQL and 

iterating the result set.  Once all instructions have been searched, the function returns the collection 

of ShortenedInsn objects and the invoking controller method updates the user interface 

appropriately. 

4.3    Search for Return-Oriented Programming (ROP) Gadgets 

The ability to search for ROP gadgets deviates slightly from the previously described 

functionality.  This feature is supported by a user interface element, ROPSearch.fxml, and 

controller, ROPSearchController.  Once the user clicks the Search button, the method 

searchForROPGadgets is called in the controller.  This method calls the static method 
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searchROPGadgets from the Import class.  This function returns a list of ShortendInsn objects 

which is used to populate the TableView in the search results interface.  

Figure 30 depicts the function Import.searchROPGadgets.  In the user interface (Figure 

29), the user supplies the mnemonic instruction in which they want to enumerate gadgets for, this 

value being used as the ending instruction.  To obtain a list of all instructions in the imported file, 

a call to searchByMnemonicExpression at line 568 is performed.  As previously discussed, this 

method returns a collection of ShortendInsn objects.  This collection of ShortenedInsn objects is 

iterated and the virtual address, provided by the address property, is used to calculate the address 

five bytes higher at line 579.   

 

Figure 29. Example search for return-oriented programming gadgets. 
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Figure 30. Function Import.searchROPGadgets from Import.java. 

 

4.3.1    Calculating offsets from virtual addresses.  Since the framework does not provide 

virtual address emulation, virtual addresses must be converted to raw offsets from the beginning 

of the code section of the original import.  The code section bytes are stored during initial parsing 

and disassembly and retrieved here for searching and further disassembly.  The Import class 
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defines a member code_section, which is an object of type section.  This object represents the 

section table and provides access to the raw bytes of the code section of the imported file.   

At line 572 the member function content is called on the section object and the raw bytes 

are returned and stored in a local string array, opcodes.  The loop at line 583 is responsible for 

iterating each of the characters in this string array and converting them to the corresponding byte 

value, which is saved in a byte array named bytes.  Once an offset has been calculated, the 

appropriate index can be referenced in this byte array and the opcodes disassembled.  The code 

responsible for disassembly begins at line 599 by instantiating an instance of the Capstone library.  

This object is then used to disassemble the appropriate bytes from the byte array and produces 

CsInsn objects, which provide access to each instructions mnemonic and operands.  Each 

instruction is concatenated to a string object as returned as a singular ROP gadget.  This process 

repeats for each original instruction that was found in the imported files disassembly. 

4.4    Simultaneous Search 

Simultaneous search enables users to compare functions across all imported files in a 

project.  This search technique allows users to identify functionality that is similar in arbitrary 

binary files.  This is accomplished by utilizing all identified functions in an import, performing a 

mnemonic comparison with each instruction.  Current search methods provide a percentage of 

program similarity by performing a comparison at the binary level.  While this helps to identify 

related files, it does not provide any insight into what program logic is similar.  Simultaneous 

search not only provides similarity results, but also allows the user to investigate precisely what 

program logic is similar.   
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For each function, the instructions are retrieved from the database and the instruction 

mnemonic used for comparison.  If a function contains an identical sequence of mnemonics, then 

it is determined to be a matching function.  This process is performed for each function across all 

imports in the project.  An example of the utility of this feature is in analyzing malware, which 

often makes minor modifications to the application to change the resulting byte pattern of the 

compiled program.  This is done to disrupt signature based detection without the need to 

significantly change the code base of the program (Sikorski & Honig, 2012).  When analyzing 

unknown programs, this feature can be used to identify similar functionality, reducing the time the 

analyst spends when piecing together the functionality of a program.  Figure 31 shows the results 

of this search feature, the starting virtual address for each matching function is displayed. 

 

 

Figure 31. Example Function Comparison Search 

 

4.4.1    Components of function comparison search.  This feature is supported by a user 

interface element, FunctionSearch.fxml, and controller, FunctionSearchController.  Once the user 

clicks the Search button, the method searchForFunctions is called in the controller.  This method 

calls the static method searchFunctionsAcrossImports from the Import class.  The function 
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searchFunctionsAcrossImports returns a list of ShortenedFunction objects which is used to 

populate the TableView in the search results interface. 

Figure 32 depicts the function searchFunctionsAcrossImports.  This function begins by 

using the argument importID to instantiate an import object, this represents the import from the 

currently selected tab and serves as a starting point to begin the search, the functions within this 

import will be used to search within other imports.  

 

Figure 32. Function searchFunctionsAcrossImports from Import.java. 

  

At line 632 the functions for the current import are stored in a list collection. At line 633 

another list collection is created and assigned all the imports for the current project, this allows for 

the search functionality to compare functions across all imports.  The final list collection, at line 

634, is created to store the results of any matching functions and returned to the invoking controller 
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method, which will then be used to update the user interface (Figure 31).  The loop structure at 

line 637 iterates all the imports in the project. If the project that is currently selected through the 

iteration of the loop does not match the originally selected import, then another loop will begin 

iterating each function from the original import, this is defined at line 643.  Two temporary list 

collections are created: one contains all of instructions for the current function, the other will 

contain the results returned from the function call to searchImport. 

4.4.2    Function searchImport.  Figure 33 depicts the function searchImport.  This 

function expects two arguments: the first is a list collection of instructions to search for, the second 

is the import to be searched.   

 

Figure 33. Function searchImport from Import.java. 
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The outer for loop defined at line 667 iterates each function from the target import.  Inside 

the loop, the instructions for the target function are retrieved from the database by a call to 

getFunctionInstructions, which is a member function of the Import class.  The function 

getFunctionInstructions returns a list collection of ShortenedInsn, which will be compared against 

the objects in the first argument.  A while loop at line 679 provides the control structure to begin 

mnemonic comparison, each instruction from both collections is compared in sequential order by 

mnemonic.  If all the mnemonics match, then the ShortenedFunction object is added to the result 

set.  If one instruction does not match than the loop breaks and the next function is compared.  This 

process continues until all imports, and their functions, are compared to the originally selected 

import.  

4.5    Security Feature Identification 

 The identification of security features enabled in an imported program supported by the 

framework includes data execution prevention, address space layout randomization, control flow 

guard and stack guard.  These features are determined at compile or link time during executable 

program construction.   This information is identified by the framework during the parsing of the 

file format and stored in the Characteristics table, with a bit field defined for each property.  Once 

a project is loaded, a file menu option Info is enabled, this provides a menu item Security Info 

which opens a user interface element.   

 

 4.5.1   Components of security feature identification.  To support identification of this 

information, the Code object (as discussed in the Binary Parsing section) implements four Boolean 

properties: depEnabled, aslrEnabled, cfgEnabled and stackGuardEnabled.  These properties are 

then set per functions implemented in the sub-classes.  This work focused on the parsing of the PE 



BINARY ANALYSIS FRAMEWORK  

 

` 

79 

file format, the corresponding class would be the PE class. Within the PE file format, this 

information is determined from the word member DllCharacteristics of the 

IMAGE_OPTIONAL_HEADER structure ("IMAGE_OPTIONAL_HEADER structure," n.d.).  To 

identify the use of ASLR, DEP and CFG, three bit masks were defined as private members in the 

PE class:  

• IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE 

• IMAGE_DLLCHARACTERISTICS_NX_COMPAT 

• IMAGE_DLLCHARACTERISTICS_GUARD_CF 

 

The values assigned to these private members were 0x0040, 0x0100 and 0x4000, 

respectively.  The static members were then used to perform a bitwise AND comparison to the 

word member DllCharacteristics of the imported file.  If the results of the comparison were a non-

zero, positive value, then the appropriate Boolean member is set to true, indicating the use of that 

feature in the import.  The default state of the Boolean field is false, and does not require updating 

if the results of the comparison is false.  Figure 34 depicts the process of identification through the 

function isDEPEnabled and is representative of the process of detecting the use of CFG and ASLR. 

 

 

Figure 34. Function isDEPEnabled from PE.java. 

 

 4.5.2    Identification of stack guard.  Detecting the use of the stack guard required a 

different approach.  The detection of the use of the stack guard focused on the implementation 
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used by Microsoft and the resulting Microsoft Visual C/C++ compiler.  The framework allows for 

the expansion of this feature to identify other techniques used to add stack guard support.  If a 

binary supports the stack guard, then a pointer is located at an offset of +0x3C from the base of 

the “.rdata” section, what the pointer points to is updated at runtime and is the dynamically 

generated stack guard value.  The absence of a pointer value at this offset indicates that the binary 

is not using the stack guard feature.  The framework locates this offset and accesses the integer 

value at that location.  If the value is not zero, then the import is determined to have utilized the 

stack guard.  Figure 35 depicts the function isStackGuardEnabled. 

 

Figure 35. Function isStackGuardEnabled from PE.java. 

4.6    System Analysis 

The Binary Analysis Framework was evaluated for performance against several key 

Windows libraries.  The libraries were obtained from an installation of Windows 7 Service Pack 

1 32-bit.  The results, along with the libraries evaluated, are reported in Table 3.  The 

information includes: library name, file size, total processing time in seconds and whether the 

library utilizes control-flow guard, stack guard, ASLR and DEP.  It is worth noting that control-
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flow guard was not implemented for Windows 7 system libraries.  No issues were encountered 

during parsing and security feature identification of the analyzed system libraries. 

4.7    Disassembly Verification 

Spot check validation was performed on the disassembly output generated by the Binary 

Analysis Framework.  IDA Pro provides an export feature that allows a user to create a disassembly 

listing of any function in the database.  The format of this export is section name colon virtual 

address, mnemonic and operands.  Figure 36 depicts an example listing. 

 

 
Figure 36. Listing Generated by IDA Pro 

 

The listing output provided instruction information that could be compared with similar 

output generated by the framework and the results of the comparison used to determine accuracy.  

A Python script was developed that parsed this information to isolate the mnemonic, it then used 

the sequence of mnemonics for comparison in an import within a project.  The script would query 

all instructions for a given import and begin comparing to those provided from the listing file.  If 

all the instruction mnemonics matched, the starting address of the sequence of instructions is 

printed to standard out.  This can be verified with the function address used to generate the listing 
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file.  If the entirety of the sequence of instructions does not match, then no results are displayed.    

The results of comparing the function at virtual address 0x00401000 from the listing file generated 

by IDA Pro and the same file imported by the framework is demonstrated in Figure 37. 

 

 

Figure 37. Output of Disassembly Verification 

4.8    Case Study Summary 

This chapter presented results from the development of the Binary Analysis Framework.  

Search functionality was the primary contribution of this work and four novel search techniques 

were developed using the framework.  The final chapter will detail what was learned during the 

development of the Binary Analysis Framework, future work and summarize contributions to the 

study of reverse engineering.  
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CHAPTER 5 

CONCLUSION 

The Binary Analysis Framework allows security researchers to perform full program 

analysis from software in a binary state.  This work introduced a novel search architecture for 

binary analysis that utilized a relational database.  In addition, functionality was developed to 

identify security information supported by the intended operating system of the software.  

Interaction with the framework is facilitated through a graphical user interface, which aids the 

researcher in identifying, confirming and exploring security issues in the target software.  

5.1 Contributions 

A data persistence architecture was developed using an open-source database system.  The 

benefits of this design are:  

• Reduced time in performing program analysis 

• An architecture for grouping related binaries  

• A novel search architecture based on disassembly output 

5.1.1    Reduced time in performing program analysis.    The development of a relational 

database for data persistence allows for the program to load data from programs already 

disassembled directly from the database.  This contrasts with having to perform the disassembly 

of the input file each time program analysis is desired.   

5.1.2    Architecture for grouping related binaries.    Related input files can easily by 

grouped together in a project construct.  This increases the efficiency of analysis as all related input 
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files can be accessed from a singular graphical user interface.  Current frameworks require an 

instance of the analysis program to be open per file, increasing time requirements in switching 

between these instances. 

5.1.3    Search architecture based on disassembly output.  The search architecture allows 

for searching by assembly instruction (or disassembly output) and utilized string comparison 

functions, regular expressions and database language features to perform search comparison.  

Three novel search methods were developed from this architecture: search by mnemonic 

expression, search by mnemonic sequence and simultaneous search.   

Search by mnemonic expression allows a user to input a search pattern in the form of an 

assembly instruction.  This allows the user to search arbitrary instructions within the target binary 

file to explore program logic and perform program analysis.  This search feature is enhanced by 

the development of special patterns, which enable much broader search patterns and facilitates 

greater exploration of program functionality.   

Search by mnemonic sequence builds upon the logic developed in the mnemonic 

expression search by utilizing the concept of the search expression being an instruction sequence, 

but expands the search functionality to include the ability to search by multiple sequences of 

sequential instructions.  Mistakes in software, to include those that lead to security vulnerabilities, 

are often the result of multiple sequences of assembly instructions.  Some of these instructions are 

well known, while others need to be identified on a per case basis.  This feature allows users to 

search by pattern instead of individual instructions, enabling them to quickly identify areas of a 

program that may be of interest for deeper analysis. 

Simultaneous search enables users to perform cross-binary analysis.  This search feature 

allows users to identify functionality that is similar in arbitrary binary files.  It does this by 
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comparing all instruction mnemonics per function within all imports in a project, allowing the user 

to identify similar program logic.  Current search methods provide a percentage of program 

similarity by performing a comparison at the binary level.  While this helps to identify related files, 

it does not provide any insight into what program logic is similar.  Simultaneous search allows the 

user to investigate precisely what programming logic is similar.   

5.2    Lessons learned.  

5.2.1    Unexpected detection of stack guard value.  During research detecting the use of 

the stack guard, an unanticipated behavior was observed.  When compiling a program, the user 

can use the “/GS” compiler option to enable the use of the stack guard and the “/GS-“ to disable it 

("/GS (Buffer Security Check)," n.d.).  Microsoft defines the use of the security guard as a value 

added to the beginning of a function “that the compiler recognizes as subject to buffer overrun 

problems” ("/GS (Buffer Security Check)," n.d.).  This generally means that any user defined 

functions that contain a buffer of any type will have the stack guard added to detect a buffer overrun 

condition.  Sample programs were constructed that utilized buffers and the stack guard and was 

successfully detected by the logic implemented in the framework.  However, when the stack guard 

was disabled using the “/GS-” option, the use of the stack guard was still observed in the sample 

programs.  Upon further investigation, the library functions in the program were identified to be 

using the stack guard.  This is important to note, as the framework may identify the use of the stack 

guard in library code even when user defined code is not utilizing it.  In that case, a security 

researcher would still want to investigate the program for potential buffer overflow sites. 
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5.3    Future Work 

The Binary Analysis Framework was designed with modularity in mind, which provides 

for the expansion of the framework in several key areas.   

5.3.1    Framework expansion.  The number of file formats and architectures supported 

by the framework can be expanded to those supported by the Capstone library, which is responsible 

for the disassembly of the input file.  Capstone is an independently maintained project with broad 

community support.  Expansion of the Capstone project will also impact the Binary Analysis 

Framework, as the framework will benefit from any future expansion of the Capstone project in 

the number of file formats and architectures it can support.  The expansion of the number of file 

formats and architectures supported by the Binary Analysis Framework will provide utility to a 

broader number in the research community. 

5.3.2    Identification of code obfuscation.  Reverse engineering is a core activity when 

analyzing malicious software, or malware (Sikorski & Honig, 2012).  To complicate the process 

of analysis, malware authors routinely use code obfuscation techniques, complicating the process 

of disassembly.  Malware authors will additionally use malformations in the file format with the 

goal of disrupting the ability to parse the file format correctly (Hahn & Register, 2014).  The Binary 

Analysis Framework does not attempt to detect such techniques and could be expanded in this 

area, providing for more robust detection of protected or malformed files.  Detecting such files 

provides better information to be used during disassembly to help ensure accurate results are 

displayed to the researcher.   

 5.3.3    Expansion of search capabilities.  The Binary Analysis Framework developed 

search techniques involving the disassembled instructions stored in a relational database.  This 

architecture creates novel ways of performing assembly-level searches using structured query 
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language, string functions and regular expressions.  Search capabilities are currently supported in 

two forms: on a single import or across all imports in a project.  However, current search 

functionality across all imports is limited to function-level comparison.  The single-import search 

functionality can be expanded to include all imports in a project.  Additional search techniques not 

considered in this work can also be explored. 

 5.3.4    User experience.  Finally, the graphical user interface can be expanded to provide 

a more fluid experience of navigating and exploring the disassembly output.  Call graphs are not 

used and the user has no ability to navigate functions using hyperlinks.  Current user interface 

design requires the user to scroll linearly through the disassembly output.  Function and operand 

renaming could also be introduced, which would enhance the analysis performed by the researcher 

by allowing them to add clarity and meaning to the disassembly output. 

5.4    Limitations 

The Binary Analysis Framework may not be suitable for all binary files.  The following 

are significant limitations that should be evaluated when considering the adoption or expansion of 

this work. 

5.4.1    Detection of code obfuscation.  Code obfuscation, file format malformations and 

other anti-analysis techniques are often employed by malicious actors to avoid detection and 

complicate the process of analysis.  These techniques can also be employed by non-malicious 

entities to provide protection of intellectual property or inhibit the discovery of potential software 

vulnerabilities.  Regardless of the desired outcome, when employed in executable code these 

techniques make the inner workings of the software difficult to analyze and understand.  The 

Binary Analysis Framework will not attempt to detect intentional malformations, obfuscation or 



BINARY ANALYSIS FRAMEWORK  

 

` 

88 

anti-analysis techniques and may be unable to parse the desired file or produce incorrect 

disassembly listings.  

5.4.2    File format and architecture support.  The Binary Analysis Framework currently 

supports a very narrow set of architectures and file formats.  Namely, the portable executable file 

format and 32-bit intel architecture.  While the framework provides for expansion to include other 

file formats and architecture, it would require additional system development to implement.  This 

would require background knowledge in Java development, software engineering and binary 

analysis. 

5.4.3    User interface.  The user interface provides basic information concerning the 

analyzed files and search results.  This information includes virtual address, mnemonic, operands 

and function location.  The user does not have the ability to easily navigate output, rename virtual 

addresses, rename operands or provide comments.  These features would increase the effectiveness 

of the framework and are supported by the architectural design, but require implementation. 

5.5    Summary 

This chapter provided a summary of the work presented.  Section 5.1 detailed significant 

contributions from this work, which include efficiencies in program analysis, project-based user 

interface and a novel search architecture.  Lessons learned during artifact development are 

highlighted in section 5.2.  Future work is discussed in section 5.3 and followed in section 5.4 by 

current framework limitations.  The appendices contain database schema design, framework 

performance analysis and complete code listings for critical application files. 
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Table 2. Description of Application Database Classes 

Class Member/Member Function Description 

DBConnection Constructor Provides instantiation of connection object used by later database 
access objects. 

Project Constructors Provide population of object members during object instantiation.  

 ID Primary key of the data, used by database for data normalization. 

 ProjectName String representing the name of the project, user defined. 

 TargetPlatform The desired platform of the project. 

 DateCreated The date and time that the project was created. 

 ViewCount A numeric value incremented each time the project is loaded. 

 Save() 
Member function that provides conditional logic to determine 
when to insert new data or update an existing record based on 
presence of the primary key member ID. 

 GetAllProjects() Static method that returns a list of all Project objects. 

   

Import Constructors Provide population of object members during object instantiation. 
Multiple constructors are provided. 

 ID Primary key of the data, used by database for data normalization. 

 FileSize Size in bytes of imported file. 

 DateCreated The date and time that the project was created. 

 Name Name of imported file. 

 functions List of ShortenedFunction objects that represent all functions 
identified during disassembly. 

 instructions List of ShortenedInsn objects that represent all instructions 
identified during disassembly. 
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 Save() 
Member function that provides conditional logic to determine 
when to insert new data or update an existing record based on 
presence of the primary key member ID. 

 SaveRawBytes() Saves the original binary content of the file by inserting into the 
original_binary table. 

 SaveFunctions() Iterates the functions member and inserts data into the functions 
table. 

 SaveInstructions() Iterates the instructions member and inserts data into the 
instructions table. 

 buildMnemonicExpression() Static method that builds an SQL statement using regular 
expression syntax based on input provided in the search form. 

 searchByMnemonicExpression() 
Static method that utilizes buildMnemonicExpression function to 
construct an SQL statement to search instructions table for desired 
assembly sequence. This searches a single instruction at a time. 

 searchByMnemonicSequence() 
Static method that utilizes buildMnemonicExpression function to 
construct an SQL statement to search instructions table for desired 
assembly sequence.  This searches multiple instructions at a time. 

 getFunctionInstructions() 

Member function that returns all the instructions associated with a 
specific function. Function information is determend by using an 
instance of the ShortenedFunction object passed as a single 
argument. 

 getAllImports() Static method that returns all imports related to a specific project. 
Expects one argument which is the desired project ID. 

 searchRopGadgets() Static method that returns a list collection of string objects that 
represent discovered return-oriented programming gadgets. 

   

Characteristics Constructors Provide population of object members during object instantiation. 
Multiple constructors are provided. 

 Save() 
Member function that provides conditional logic to determine 
when to insert new data or update an existing record based on 
presence of the primary key member ID. 

   

Section Constructors Provide population of object members during object instantiation. 
Multiple constructors are provided. 

 Save() 
Member function that provides conditional logic to determine 
when to insert new data or update an existing record based on 
presence of the primary key member ID. 
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Original_Binary Constructors Provide population of object members during object instantiation. 
Multiple constructors are provided. 

 Save() 
Member function that provides conditional logic to determine 
when to insert new data or update an existing record based on 
presence of the primary key member ID. 
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Table 3. Performance Analysis 

Library Name File Size Load Time (seconds) ASLR DEP CFG Stack 

Guard 

advapi32.dll 640.5 KB 225 x x   

crypt32.dll 1.2 MB 556 x x   

cryptbase.dll 36.9 KB 12 x x   

kernel32.dll 857.6 KB 726 x x   

ntdll.dll 1.3 MB 825 x x   

winhttp.dll 351.2 KB 107 x x   

wininet.dll 981.0 KB 601 x x   

 

  



BINARY ANALYSIS FRAMEWORK  

 

` 

103 

APPENDIX B: BINARY ANALYSIS FRAMEWORK CODE 

Controller.java 

1. package gui;    
2.    
3. import java.io.BufferedReader;    
4. import java.io.File;    
5. import java.io.FileNotFoundException;    
6. import java.io.FileReader;    
7. import java.io.IOException;    
8. import java.util.ArrayList;    
9. import java.util.List;    
10. import java.util.ListIterator;    
11. import java.util.Map;    
12. import java.util.TreeMap;    
13.    
14. import org.apache.commons.io.FilenameUtils;    
15.    
16. import com.thoughtworks.xstream.XStream;    
17. import com.thoughtworks.xstream.io.xml.DomDriver;    
18.    
19. import application.database.Characteristics;    
20. import application.database.Import;    
21. import application.database.Project;    
22. import application.database.section;    
23. import edu.millermj.disassembler.Code;    
24. import edu.millermj.disassembler.Function;    
25. import edu.millermj.disassembler.Ins;    
26. import gui.service.DisassembleService;    
27. import gui.service.FileChooseService;    
28. import javafx.collections.FXCollections;    
29. import javafx.collections.ObservableList;    
30. import javafx.event.ActionEvent;    
31. import javafx.event.EventHandler;    
32. import javafx.fxml.FXMLLoader;    
33. import javafx.geometry.Insets;    
34. import javafx.geometry.Orientation;    
35. import javafx.scene.Parent;    
36. import javafx.scene.Scene;    
37. import javafx.scene.control.Label;    
38. import javafx.scene.control.ListCell;    
39. import javafx.scene.control.ListView;    
40. import javafx.scene.control.Menu;    
41. import javafx.scene.control.MenuItem;    
42. import javafx.scene.control.SplitPane;    
43. import javafx.scene.control.Tab;    
44. import javafx.scene.control.TabPane;    
45. import javafx.scene.control.TableColumn;    
46. import javafx.scene.control.TableView;    
47. import javafx.scene.control.TextArea;    
48. import javafx.scene.control.TextField;    
49. import javafx.scene.control.cell.PropertyValueFactory;    
50. import javafx.scene.layout.Background;    
51. import javafx.scene.layout.BackgroundFill;    
52. import javafx.scene.layout.CornerRadii;    
53. import javafx.scene.layout.HBox;    
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54. import javafx.scene.paint.Color;    
55. import javafx.stage.Modality;    
56. import javafx.stage.Popup;    
57. import javafx.stage.Stage;    
58. import javafx.stage.StageStyle;    
59. import javafx.util.Callback;    
60.    
61. public class Controller  {    
62.    
63.     public MenuItem loadItem;    
64.     public Menu searchMenu;    
65.     public MenuItem importBinary;    
66.     public Menu infoMenu;    
67.     //public TableView tableView;    
68.     public TableColumn addressCol;    
69.     public TableColumn opCodeCol;    
70.     public TableColumn mnemonicCol;    
71.     public TableColumn operandCol;    
72.     public ListView searchListView;    
73.    
74.     public TabPane tabPane;    
75.    
76.     public TextArea outputLog;    
77.     public Project loadedProject;    
78.    
79.     InteractiveInstruction interactiveInstruction;    
80.    
81.     private String filename;    
82.     private GUI gui;    
83.    
84.     public enum MESSAGE_TYPE {    
85.         INFO, WARNING, ERROR    
86.     }    
87.    
88.     public void setGui(GUI gui) {    
89.         this.gui = gui;    
90.    
91.         /*listView.setOnMouseClicked(new EventHandler<MouseEvent>() {   
92.             @Override   
93.             public void handle(MouseEvent event) {   
94.                 if(event.getButton() == MouseButton.SECONDARY) {   
95.                     showFunctionMenu((ShortenedFunction) listView.getSelectionModel().g

etSelectedItem());   
96.                 }   
97.             }   
98.         });*/   
99.     }    
100.    
101.     public void openNew() {    
102.    
103.         logOutput("Importing new binary file...", MESSAGE_TYPE.INFO);    
104.    
105.         long startTime = System.currentTimeMillis();    
106.    
107.         File file = FileChooseService.chooseFile(gui.getStage(), "new");    
108.         if(file == null) {    
109.             return;    
110.         }    
111.    
112.         Project p = gui.getLoadedProject();    
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113.    
114.         //Create new import    
115.         Import binary = new Import();    
116.         binary.setFileSize(file.length());    
117.         binary.setName(file.getName());    
118.         binary.setMD5Hash("hash");    
119.         binary.setProjectID(p.getID());    
120.    
121.         logOutput("New binary imported", MESSAGE_TYPE.INFO);    
122.    
123.         this.filename = FilenameUtils.removeExtension(file.getName());    
124.    
125.         //Store the original bytes    
126.         binary.SaveRawBytes(file);    
127.    
128.         logOutput("Original bytes stored", MESSAGE_TYPE.INFO);    
129.    
130.         Code c = DisassembleService.getCode(file);    
131.    
132.         Characteristics chars = new Characteristics();    
133.    
134.         chars.setASLREnabled(c.getASLREnabled());    
135.         chars.setDEPEnabled(c.getDEPEnabled());    
136.         chars.setCFGEnabled(c.getCFGEnabled());    
137.         chars.setStackGaurdEnabled(c.getStackGuardEnabled());    
138.    
139.         binary.setCharacteristics(chars);    
140.    
141.         binary.Save();    
142.    
143.         section codeSection = new section();    
144.    
145.         codeSection.content = c.getCodeSectionBytesAsString();    
146.         codeSection.name = c.getCodeSegmentName();    
147.         codeSection.import_id = binary.getID();    
148.         codeSection.save();    
149.    
150.         TreeMap<Integer, ShortenedFunction> shortFunctionMap = new TreeMap<Integer, Sho

rtenedFunction>();    
151.         TreeMap<Integer, ShortenedIns> shortInsMap = new TreeMap<Integer, ShortenedIns>

();    
152.         List<ShortenedFunction> functions = new ArrayList<ShortenedFunction>();    
153.         List<ShortenedIns> instructions = new ArrayList<ShortenedIns>();    
154.    
155.         for(Map.Entry<Integer, Function> entry : c.getFunctionMap().entrySet()) {    
156.             ShortenedFunction shortenedFunction = new ShortenedFunction(entry.getValue(

));    
157.             shortFunctionMap.put(entry.getKey(), shortenedFunction);    
158.    
159.             functions.add(shortenedFunction);    
160.         }    
161.    
162.         for(Map.Entry<Integer, Ins> entry : c.getCodeMap().entrySet()) {    
163.             ShortenedIns shortenedIns = new ShortenedIns(entry.getValue());    
164.             shortInsMap.put(entry.getKey(), shortenedIns);    
165.    
166.             instructions.add(shortenedIns);    
167.         }    
168.    
169.         binary.setFunctions(functions);    
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170.         binary.SaveFunctions();    
171.    
172.         binary.setInstructions(instructions);    
173.         binary.SaveInstructions();    
174.    
175.         p.imports  = Import.GetAllImports(p.getID());    
176.    
177.         gui.setLoadedProject(p);    
178.    
179.         fillDisplay();    
180.    
181.         logOutput("Binary Loaded, total time: " + (System.currentTimeMillis() - startTi

me)/1000 + "s", MESSAGE_TYPE.INFO);    
182.     }    
183.    
184.     public void loadFile(){    
185.    
186.         long startTime = System.currentTimeMillis();    
187.         File file = FileChooseService.chooseFile(gui.getStage(), "load");    
188.    
189.         if(file == null) {    
190.             return;    
191.         }    
192.    
193.         this.filename = FilenameUtils.removeExtension(file.getName());    
194.    
195.         XStream xStream = new XStream(new DomDriver());    
196.         StringBuilder stringBuilder = new StringBuilder();    
197.         try {    
198.             BufferedReader reader = new BufferedReader( new FileReader (file.getPath())

);    
199.             String line = null;    
200.    
201.             while((line = reader.readLine()) != null) {    
202.                 stringBuilder.append(line);    
203.             }    
204.         } catch (FileNotFoundException e) {    
205.             e.printStackTrace();    
206.         } catch (IOException e) {    
207.             e.printStackTrace();    
208.         }    
209.    
210.    
211.         interactiveInstruction = (InteractiveInstruction) xStream.fromXML(stringBuilder

.toString());    
212.    
213.         fillDisplay();    
214.    
215.         //System.out.println("loadFile Done: " +(endTime - startTime)/1000);    
216.         outputLog.appendText("Binary Loaded, total time: " + (System.currentTimeMillis(

) - startTime)/1000);    
217.    
218.     }    
219.    
220.     public void fillDisplay() {    
221.    
222.         List<Import>imports = gui.getLoadedProject().imports;    
223.         logOutput("Number of imports: " + imports.size(), MESSAGE_TYPE.INFO);    
224.    
225.         if (imports.size() > 0) {    
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226.             searchMenu.setDisable(false);    
227.         }    
228.    
229.         //Clear Tab Pane    
230.         tabPane.getTabs().clear();    
231.    
232.         for(ListIterator<Import> li = imports.listIterator(); li.hasNext();){    
233.             Import i = li.next();    
234.    
235.             List<ShortenedFunction> funcs = i.getFunctions();    
236.             List<ShortenedIns> inst = i.getInstructions();    
237.    
238.             Tab newTab = new Tab(i.getName());    
239.    
240.             SplitPane mainPane = new SplitPane();    
241.             mainPane.setOrientation(Orientation.HORIZONTAL);    
242.    
243.    
244.             SplitPane leftPane = new SplitPane();    
245.             leftPane.setMinWidth(100);    
246.             leftPane.setMaxWidth(100);    
247.    
248.             leftPane.setOrientation(Orientation.VERTICAL);    
249.    
250.             Label l = new Label();    
251.    
252.             l.setText("Functions");    
253.             l.prefHeight(100);    
254.    
255.             leftPane.getItems().add(l);    
256.    
257.             ObservableList<ShortenedFunction> obsFunctions = FXCollections.observableAr

rayList(funcs);    
258.    
259.             ListView tabListView = new ListView();    
260.             tabListView.setPrefWidth(100);    
261.             tabListView.setPrefHeight(70);    
262.             tabListView.setItems(obsFunctions);    
263.             tabListView.setCellFactory(new Callback<ListView, ListCell<ShortenedFunctio

n>>() {    
264.                 @Override   
265.                 public ListCell<ShortenedFunction> call(ListView param) {    
266.                     return new ListCell<ShortenedFunction>() {    
267.                         @Override   
268.                         public void updateItem(ShortenedFunction fn, boolean empty) {  

  
269.                             super.updateItem(fn, empty);    
270.                             if (!isEmpty()) {    
271.                                 this.setText(fn.getAlias());    
272.                             }    
273.                         }    
274.                     };    
275.                 }    
276.             });    
277.    
278.             leftPane.getItems().add(tabListView);    
279.    
280.             mainPane.getItems().add(leftPane);    
281.    
282.             //RIGHT Pane - TableView    
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283.             TableView newTabTable = new TableView();    
284.             addressCol = new TableColumn();    
285.             addressCol.setText("Address");    
286.             opCodeCol = new TableColumn();    
287.             opCodeCol.setText("OP Codes");    
288.             mnemonicCol = new TableColumn();    
289.             mnemonicCol.setText("Mnemonic");    
290.             operandCol = new TableColumn();    
291.             operandCol.setText("Operands");    
292.    
293.             ObservableList<ShortenedIns> obsInstructions = FXCollections.observableArra

yList(inst);    
294.    
295.             addressCol.setCellValueFactory(new PropertyValueFactory<Ins, String>("addre

ssString"));    
296.             opCodeCol.setCellValueFactory(new PropertyValueFactory<Ins, String>("opcode

S"));    
297.             mnemonicCol.setCellValueFactory(new PropertyValueFactory<Ins, String>("mnem

onic"));    
298.             operandCol.setCellValueFactory(new PropertyValueFactory<Ins, String>("opera

nds"));    
299.    
300.             newTabTable.setItems(obsInstructions);    
301.             newTabTable.getColumns().addAll(addressCol, opCodeCol, mnemonicCol, operand

Col);    
302.             newTabTable.refresh();    
303.    
304.             mainPane.getItems().add(newTabTable);    
305.    
306.             newTab.setContent(mainPane);    
307.    
308.             newTab.setId(Integer.toString(i.getID()));    
309.    
310.             tabPane.getTabs().add(newTab);    
311.         }    
312.     }    
313.    
314.     public void saveFile() {    
315.         FileChooseService.saveFile(gui.getStage(), filename, interactiveInstruction);  

  
316.     }    
317.    
318.     public void loadProject() {    
319.    
320.         Parent root;    
321.         FXMLLoader loader;    
322.    
323.         try {    
324.    
325.             Stage primary_stage = gui.getStage();    
326.    
327.             Stage project_dialog = new Stage(StageStyle.UTILITY);    
328.    
329.             project_dialog.initModality(Modality.WINDOW_MODAL);    
330.             project_dialog.initOwner(primary_stage);    
331.    
332.             loader = new FXMLLoader(getClass().getResource("ProjectLoaderView.fxml")); 

   
333.             root = loader.load();    
334.    
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335.             ProjectLoaderController projectController = loader.getController();    
336.    
337.             projectController.setGui(gui);    
338.    
339.             projectController.update_project_list();    
340.    
341.             Scene scene = new Scene(root);    
342.             project_dialog.setScene(scene);    
343.    
344.             project_dialog.setTitle("Choose A Project");    
345.             project_dialog.showAndWait();    
346.    
347.             fillDisplay();    
348.             /*project_dialog.setOnCloseRequest(new EventHandler<WindowEvent>() {   
349.                 public void handle(WindowEvent we) {   
350.                     logOutput("Project Dialog is closing...", MESSAGE_TYPE.INFO);   
351.   
352.                 }   
353.             });*/   
354.    
355.             importBinary.setDisable(false);    
356.             infoMenu.setDisable(false);    
357.    
358.         } catch(Exception ex) {    
359.             System.out.print("ERROR: "+ex.toString());    
360.         }    
361.     }    
362.    
363.     public void showFunctionMenu(ShortenedFunction fn) {    
364.         /*final ContextMenu contextMenu = new ContextMenu();   
365.         final MenuItem rename = new MenuItem("Rename");   
366.   
367.         rename.setOnAction(new EventHandler<ActionEvent>() {   
368.             @Override   
369.             public void handle(ActionEvent event) {   
370.                 showRenamePopup(fn);   
371.             }   
372.         });   
373.   
374.         contextMenu.getItems().add(rename);   
375.         listView.setContextMenu(contextMenu);*/   
376.     }    
377.    
378.     public void showRenamePopup(ShortenedFunction fn) {    
379.         final Popup popup = new Popup();    
380.         final HBox renameContainer = new HBox();    
381.         renameContainer.setBackground(new Background(new BackgroundFill(Color.WHEAT, Co

rnerRadii.EMPTY, Insets.EMPTY)));    
382.         final Label label = new Label("Rename " + fn.getAlias() + " to:");    
383.         label.setPadding(new Insets(2, 5, 2, 5));    
384.         final TextField textField = new TextField();    
385.    
386.         textField.setOnAction(new EventHandler<ActionEvent>() {    
387.             @Override   
388.             public void handle(ActionEvent event) {    
389.                 for(Map.Entry<Integer, ShortenedIns> ins: interactiveInstruction.getIns

Map().entrySet()) {    
390.                     if(ins.getValue().getOperands().equals(fn.getAlias())) {    
391.                         ins.getValue().setOperands(textField.getText());    
392.                     }    
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393.    
394.                 }    
395.                 interactiveInstruction.getFnMap().get(fn.getStartAddress()).setAlias(te

xtField.getText());    
396.    
397.                 fillDisplay();    
398.                 popup.hide();    
399.             }    
400.         });    
401.         renameContainer.getChildren().addAll(label, textField);    
402.    
403.         popup.getContent().add(renameContainer);    
404.         popup.show(gui.getStage());    
405.     }    
406.    
407.     public void searchROPGadgets() {    
408.    
409.         Parent root;    
410.         FXMLLoader loader;    
411.    
412.         try {    
413.    
414.             Tab selectedTab = tabPane.getSelectionModel().getSelectedItem();    
415.    
416.             gui.setSelectedImportID(Integer.parseInt(selectedTab.getId()));    
417.    
418.             Stage primary_stage = gui.getStage();    
419.    
420.             Stage search_window  = new Stage(StageStyle.UTILITY);    
421.    
422.             search_window.initModality(Modality.WINDOW_MODAL);    
423.             search_window.initOwner(primary_stage);    
424.    
425.             loader = new FXMLLoader(getClass().getResource("ROPSearch.fxml"));    
426.             root = loader.load();    
427.    
428.             ROPSearchController ropController = loader.getController();    
429.    
430.             ropController.setGui(gui);    
431.    
432.             Scene scene = new Scene(root);    
433.             search_window.setScene(scene);    
434.    
435.             search_window.setTitle("Search For ROP Gadgets");    
436.             search_window.showAndWait();    
437.    
438.         }catch(Exception ex) {    
439.             System.out.print("ERROR: " + ex.toString());    
440.         }    
441.     }    
442.    
443.     public void searchFunctions() {    
444.    
445.         Parent root;    
446.         FXMLLoader loader;    
447.    
448.         try {    
449.    
450.             Tab selectedTab = tabPane.getSelectionModel().getSelectedItem();    
451.    
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452.             gui.setSelectedImportID(Integer.parseInt(selectedTab.getId()));    
453.    
454.             Stage primary_stage = gui.getStage();    
455.    
456.             Stage search_window  = new Stage(StageStyle.UTILITY);    
457.    
458.             search_window.initModality(Modality.WINDOW_MODAL);    
459.             search_window.initOwner(primary_stage);    
460.    
461.             loader = new FXMLLoader(getClass().getResource("FunctionSearch.fxml"));    
462.             root = loader.load();    
463.    
464.             FunctionSearchController searchController = loader.getController();    
465.    
466.             searchController.setGui(gui);    
467.    
468.             Scene scene = new Scene(root);    
469.             search_window.setScene(scene);    
470.    
471.             search_window.setTitle("Search For Functions By Mnemonic Across All Imports

");    
472.             search_window.showAndWait();    
473.    
474.         }catch(Exception ex) {    
475.             System.out.print("ERROR: " + ex.toString());    
476.         }    
477.     }    
478.    
479.     public void displaySecurityInfo() {    
480.    
481.         Parent root;    
482.         FXMLLoader loader;    
483.    
484.         try {    
485.    
486.             Tab selectedTab = tabPane.getSelectionModel().getSelectedItem();    
487.    
488.             gui.setSelectedImportID(Integer.parseInt(selectedTab.getId()));    
489.    
490.             Stage primary_stage = gui.getStage();    
491.    
492.             Stage search_window  = new Stage(StageStyle.UTILITY);    
493.    
494.             search_window.initModality(Modality.WINDOW_MODAL);    
495.             search_window.initOwner(primary_stage);    
496.    
497.             loader = new FXMLLoader(getClass().getResource("SecurityInfo.fxml"));    
498.             root = loader.load();    
499.    
500.             SecurityInfoController searchController = loader.getController();    
501.    
502.             searchController.setGui(gui);    
503.             searchController.SetupStage();    
504.    
505.             Scene scene = new Scene(root);    
506.             search_window.setScene(scene);    
507.    
508.             search_window.setTitle("Compiler Options");    
509.             search_window.showAndWait();    
510.    



BINARY ANALYSIS FRAMEWORK  

 

` 

112 

511.         }catch(Exception ex) {    
512.             System.out.print("ERROR: " + ex.toString());    
513.         }    
514.     }    
515.    
516.     public void searchByMnemonicExpression() {    
517.    
518.         Parent root;    
519.         FXMLLoader loader;    
520.    
521.         try {    
522.    
523.             Tab selectedTab = tabPane.getSelectionModel().getSelectedItem();    
524.    
525.             gui.setSelectedImportID(Integer.parseInt(selectedTab.getId()));    
526.    
527.             Stage primary_stage = gui.getStage();    
528.    
529.             Stage search_window  = new Stage(StageStyle.UTILITY);    
530.    
531.             search_window.initModality(Modality.WINDOW_MODAL);    
532.             search_window.initOwner(primary_stage);    
533.    
534.             loader = new FXMLLoader(getClass().getResource("MnemonicSearch.fxml"));    
535.             root = loader.load();    
536.    
537.             SearchController searchController = loader.getController();    
538.    
539.             searchController.setGui(gui);    
540.    
541.             Scene scene = new Scene(root);    
542.             search_window.setScene(scene);    
543.    
544.             search_window.setTitle("Search By Expression");    
545.             search_window.showAndWait();    
546.    
547.         }catch(Exception ex) {    
548.             System.out.print("ERROR: " + ex.toString());    
549.         }    
550.     }    
551.    
552.     public void searchByMnemonicSequence() {    
553.    
554.         Parent root;    
555.         FXMLLoader loader;    
556.    
557.         try {    
558.    
559.             Tab selectedTab = tabPane.getSelectionModel().getSelectedItem();    
560.    
561.             gui.setSelectedImportID(Integer.parseInt(selectedTab.getId()));    
562.    
563.             Stage primary_stage = gui.getStage();    
564.    
565.             Stage search_window  = new Stage(StageStyle.UTILITY);    
566.    
567.             search_window.initModality(Modality.WINDOW_MODAL);    
568.             search_window.initOwner(primary_stage);    
569.    
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570.             loader = new FXMLLoader(getClass().getResource("MnemonicSequenceSearch.fxml
"));    

571.             root = loader.load();    
572.    
573.             SearchSequenceController searchController = loader.getController();    
574.    
575.             searchController.setGui(gui);    
576.    
577.             Scene scene = new Scene(root);    
578.             search_window.setScene(scene);    
579.    
580.             search_window.setTitle("Search By Sequence");    
581.             search_window.showAndWait();    
582.    
583.         }catch(Exception ex) {    
584.             System.out.print("ERROR: " + ex.toString());    
585.         }    
586.    
587.     }    
588.    
589.    
590.     protected void logOutput(String message, MESSAGE_TYPE mType) {    
591.    
592.         String msgPrefix = "";    
593.    
594.         switch(mType) {    
595.             case ERROR:    
596.                 msgPrefix = "[!!] ";    
597.                 break;    
598.    
599.             case WARNING:    
600.                 msgPrefix = "[!] ";    
601.                 break;    
602.    
603.             case INFO:    
604.                 msgPrefix = "[*] ";    
605.                 break;    
606.         }    
607.    
608.         outputLog.appendText(msgPrefix + message + "\n");    
609.     }    
610. }   

 

DisassembleService.java 

 

1. package gui.service;    
2.    
3. import java.io.File;    
4.    
5. import edu.millermj.disassembler.Code;    
6. import edu.millermj.disassembler.DisassembleInterface;    
7. import edu.millermj.disassembler.DisassemblerFactory;    
8. import edu.millermj.disassembler.LoaderFactory;    
9. import edu.millermj.disassembler.LoaderInterface;    
10.    
11. public class DisassembleService {    
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12.    
13.     public static Code getCode(File file) {    
14.    
15.         LoaderFactory factory = new LoaderFactory();    
16.         LoaderInterface loader = factory.getLoader(file.getAbsolutePath());    
17.         DisassemblerFactory disFactory = new DisassemblerFactory();    
18.         DisassembleInterface d = disFactory.getDisassembler(loader);    
19.         Code c = d.disassemble(loader);    
20.    
21.         c.setCodeSectionBytes(loader.getCode());    
22.    
23.         c.setASLREnabled(loader.isASLREnabled());    
24.         c.setDEPEnabled(loader.isDEPEnabled());    
25.         c.setCFGEnabled(loader.isCFGEnabled());    
26.         c.setStackGaurdEnabled(loader.isStackGuardEnabled());    
27.    
28.         c.setCodeSegmentName(loader.getCodeSegmentName());    
29.    
30.         d.generateFunctions(c);    
31.    
32.         return c;    
33.     }    
34. }   

 

Code.java 

 

1. package edu.millermj.disassembler;    
2.    
3. import java.util.TreeMap;    
4.    
5. public class Code    
6.     {    
7.         TreeMap<Integer, Ins>             codeMap;    
8.    
9.         private TreeMap<Integer, Function>    functionMap;    
10.         private byte[] codeSectionBytes;    
11.         private short characteristics;    
12.         private String codeSegmentName;    
13.             
14.         private Boolean depEnabled;    
15.         private Boolean aslrEnabled;    
16.         private Boolean cfgEnabled;    
17.         private Boolean stackGuardEnabled;    
18.             
19.         public Code()    
20.             {    
21.                 codeMap = new TreeMap<Integer, Ins>();    
22.                 setFunctionMap(new TreeMap<Integer, Function>());    
23.             }    
24.    
25.         public TreeMap<Integer, Ins> getCodeMap()    
26.             {    
27.                 return codeMap;    
28.             }    
29.    
30.         public void addFunction(int address, Function f)    
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31.             {    
32.                 getFunctionMap().put(address, f);    
33.             }    
34.    
35.         public TreeMap<Integer, Function> getFunctionMap()    
36.             {    
37.                 return functionMap;    
38.             }    
39.    
40.         public void setFunctionMap(TreeMap<Integer, Function> functionMap)    
41.             {    
42.                 this.functionMap = functionMap;    
43.             }    
44.             
45.         public void setCodeSectionBytes(byte[] codeSectionBytes) {    
46.             this.codeSectionBytes = codeSectionBytes;    
47.         }    
48.             
49.         public byte[] getCodeSectionBytes() {    
50.             return this.codeSectionBytes;    
51.         }    
52.             
53.         public String getCodeSectionBytesAsString() {    
54.    
55.             String ret = "";    
56.             for (int i = 0; i < codeSectionBytes.length; i++)    
57.                 ret += String.format("%02x ", codeSectionBytes[i]);    
58.             return ret;    
59.         }    
60.             
61.         public short getCharacteristics() {    
62.             return characteristics;    
63.         }    
64.             
65.         public void setCharacteristics(short character) {    
66.             this.characteristics = character;    
67.         }    
68.             
69.         public void setCodeSegmentName(String name){    
70.             codeSegmentName = name;    
71.         }    
72.             
73.         public String getCodeSegmentName() {    
74.             return this.codeSegmentName;    
75.         }    
76.             
77.         public Boolean getDEPEnabled() {    
78.             return this.depEnabled;    
79.         }    
80.             
81.         public void setDEPEnabled(Boolean value) {    
82.             this.depEnabled = value;    
83.         }    
84.             
85.         public Boolean getASLREnabled() {    
86.             return this.aslrEnabled;    
87.         }    
88.             
89.         public void setASLREnabled(Boolean value) {    
90.             this.aslrEnabled = value;    
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91.         }    
92.             
93.         public Boolean getCFGEnabled() {    
94.             return this.cfgEnabled;    
95.         }    
96.             
97.         public void setCFGEnabled(Boolean value) {    
98.             this.cfgEnabled = value;    
99.         }    
100.             
101.         public Boolean getStackGuardEnabled() {    
102.             return this.stackGuardEnabled;    
103.         }    
104.             
105.         public void setStackGaurdEnabled(Boolean value) {    
106.             this.stackGuardEnabled = value;    
107.         }    
108.     }   

 

LoaderInterface.java 

 

1. package edu.millermj.disassembler;    
2.    
3. import java.nio.file.Files;    
4. import java.nio.file.Path;    
5. import java.nio.file.Paths;    
6.    
7. import application.jpe.ImageDataDirectory;    
8. import application.jpe.ImageSectionHeader;    
9.    
10. public abstract class LoaderInterface    
11.     {    
12.         byte[] bytes;    
13.    
14.         public abstract byte[] getCode();    
15.    
16.         public abstract CODE_TYPE getType();    
17.    
18.         public static byte[] loadBytes(String path2)    
19.             {    
20.                 byte[] bytes = null;    
21.                 Path path = Paths.get(path2);    
22.                 Long startTime = System.currentTimeMillis();    
23.                 try   
24.                     {    
25.                         bytes = Files.readAllBytes(path);    
26.                         Long end = System.currentTimeMillis();    
27.                         System.out.format("Load time %d File\n", end - startTime);    
28.                     }    
29.                 catch (Exception e)    
30.                     {    
31.                         e.printStackTrace();    
32.                     }    
33.                 return bytes;    
34.             }    
35.    
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36.         public void setBytes(byte[] bytes)    
37.             {    
38.                 this.bytes = bytes;    
39.             }    
40.    
41.         public abstract int getBaseAddress();    
42.    
43.         public abstract int getStartAddress();    
44.             
45.         public abstract String getCodeSegmentName();    
46.             
47.         public abstract Boolean isDEPEnabled();    
48.             
49.         public abstract Boolean isASLREnabled();    
50.             
51.         public abstract Boolean isCFGEnabled();    
52.             
53.         public abstract Boolean isStackGuardEnabled();    
54.     }   

 

LoaderFactory.java 

1. package edu.millermj.disassembler;    
2.    
3. public class LoaderFactory    
4.     {    
5.         public LoaderFactory()    
6.             {    
7.    
8.             }    
9.    
10.         public LoaderInterface getLoader(String path)    
11.         {    
12.             LoaderInterface result = null;    
13.             byte[] originalBytes = LoaderInterface.loadBytes(path);    
14.             if (originalBytes[0] == 'M' && originalBytes[1] == 'Z') // Windows    
15.                 {    
16.                     result = new PE();    
17.                 }    
18.             else if (originalBytes[0] == 0x7F) // elf    
19.                 {    
20.                     result = new ELF();    
21.                 }    
22.             result.setBytes(originalBytes);    
23.             return result;    
24.         }    
25.     }   

 

DisassembleFactory.java 

1. package edu.millermj.disassembler;    
2.    
3. import capstone.Capstone;    
4.    
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5. public class DisassemblerFactory    
6.     {    
7.         public DisassemblerFactory()    
8.             {    
9.    
10.             }    
11.    
12.         public DisassembleInterface getDisassembler(LoaderInterface l)    
13.             {    
14.                 DisassembleInterface disass = null;    
15.                 int arch = -1;    
16.                 int mode = -1;    
17.                 if (l.getType() == CODE_TYPE.ARM)    
18.                     {    
19.                         disass = new ARM();    
20.                         arch = Capstone.CS_ARCH_ARM;    
21.                         mode = Capstone.CS_MODE_ARM;    
22.                     }    
23.                 else if (l.getType() == CODE_TYPE.x86)    
24.                     {    
25.                         disass = new x86();    
26.                         arch = Capstone.CS_ARCH_X86;    
27.                         mode = Capstone.CS_MODE_32;    
28.                     }    
29.    
30.                 Capstone cs = new Capstone(arch, mode);    
31.                 cs.setDetail(Capstone.CS_OPT_ON);    
32.                 // cs.setSyntax();    
33.                 disass.setCapstone(cs);    
34.                 return disass;    
35.             }    
36.     }   

 

PE.java 

1. package edu.millermj.disassembler;    
2.    
3. import application.jpe.ImageDOSHeader;    
4. import application.jpe.ImageDataDirectory;    
5. import application.jpe.ImageFileHeader;    
6. import application.jpe.ImageNTHeaders;    
7. import application.jpe.ImageSectionHeader;    
8. import application.jpe.LittleEndian;    
9.    
10. public class PE extends LoaderInterface    
11.     {    
12.         private ImageDOSHeader  header;    
13.    
14.         private ImageNTHeaders  fileHeader;    
15.         int                     codeOffset  = 0;    
16.    
17.         byte[]                  code;    
18.    
19.         private short characteristics = 0;    
20.         private String codeSegmentName = "";    
21.    
22.         int IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE   = 0x0040;    
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23.         int IMAGE_DLLCHARACTERISTICS_NX_COMPAT      = 0x0100;    
24.         int IMAGE_DLLCHARACTERISTICS_NO_SEH         = 0x0400;    
25.         int IMAGE_DLLCHARACTERISTICS_GUARD_CF       = 0x4000;    
26.    
27.         public PE()    
28.             {    
29.    
30.             }    
31.    
32.         void load()    
33.             {    
34.    
35.                 header = new ImageDOSHeader(bytes);    
36.                 header.debugPrint(System.out);    
37.                 Integer elf_anew = header.getELFHeaderRVA();    
38.                 code = null;    
39.                 try   
40.                     {    
41.                         fileHeader = new ImageNTHeaders(bytes, elf_anew);    
42.    
43.                         this.characteristics = fileHeader.getImageOptionalHeader().getD

llCharacteristics();    
44.    
45.                         ImageSectionHeader codeSegement = fileHeader.getCodeSegement(); 

   
46.                         codeOffset = codeSegement.getVirtualAddress();    
47.                         codeSegmentName = codeSegement.name;    
48.    
49.                         code = new byte[codeSegement.sizeOfRawData];    
50.                         for (int start = 0, i = codeSegement.pointerToRawData; start <  

   
51.                                 codeSegement.sizeOfRawData; i++, start++)    
52.                             {    
53.                                 code[start] = bytes[i];    
54.                             }    
55.                     }    
56.                 catch (Exception e)    
57.                     {    
58.                         e.printStackTrace();    
59.                     }    
60.             }    
61.    
62.         @Override   
63.         public Boolean isDEPEnabled() {    
64.             if((characteristics & IMAGE_DLLCHARACTERISTICS_NX_COMPAT) != 0)    
65.                 return true;    
66.    
67.             return false;    
68.         }    
69.    
70.         @Override   
71.         public Boolean isASLREnabled() {    
72.    
73.             if((characteristics & IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE) != 0)    
74.                 return true;    
75.    
76.             return false;    
77.         }    
78.    
79.         @Override   
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80.         public Boolean isCFGEnabled() {    
81.             if((characteristics & IMAGE_DLLCHARACTERISTICS_GUARD_CF) != 0)    
82.                 return true;    
83.    
84.             return false;    
85.         }    
86.    
87.         @Override   
88.         public Boolean isStackGuardEnabled() {    
89.    
90.             ImageDataDirectory loadConfig = fileHeader.getImageOptionalHeader().getData

Directory()[10];    
91.             ImageSectionHeader rdataSegmentHeader = fileHeader.getSegment(".rdata");    
92.    
93.             if (rdataSegmentHeader != null) {    
94.    
95.                 int dataOffset = (int) (loadConfig.getAddress() - rdataSegmentHeader.ge

tVirtualAddress());    
96.    
97.                 int foa = (int) rdataSegmentHeader.getRawDataPosition() + dataOffset;  

  
98.    
99.                 //If there is a non-

zero value than it should indicate a pointer to the security cookie    
100.                 if(LittleEndian.getUInt(bytes, foa+0x3C) > 0){    
101.                     return true;    
102.                 }    
103.             }    
104.             return false;    
105.         }    
106.    
107.         @Override   
108.         public String getCodeSegmentName() {    
109.             return codeSegmentName;    
110.         }    
111.    
112.         @Override   
113.         public byte[] getCode()    
114.             {    
115.                 return code;    
116.             }    
117.    
118.         @Override   
119.         public void setBytes(byte[] bytes)    
120.             {    
121.                 super.setBytes(bytes);    
122.                 load();    
123.             }    
124.    
125.         @Override   
126.         public CODE_TYPE getType()    
127.             {    
128.                 ImageFileHeader ifx = fileHeader.getFileHeader();    
129.    
130.                 if (ifx.getMachine() == 0x01c4)    
131.                     {    
132.                         return CODE_TYPE.ARM;    
133.                     }    
134.                 return CODE_TYPE.x86;    
135.             }    
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136.    
137.         @Override   
138.         public int getBaseAddress()    
139.             {    
140.                 return (int) fileHeader.getImageOptionalHeader().getImageBase() + codeO

ffset;    
141.             }    
142.    
143.         @Override   
144.         public int getStartAddress()    
145.             {    
146.    
147.                 return (int) fileHeader.getImageOptionalHeader().getImageBase() + fileH

eader.getImageOptionalHeader().getAddressOfEntryPoint();    
148.             }    
149.    
150.     }   

 

X86.java 

1. package edu.millermj.disassembler;    
2.    
3. import java.util.LinkedList;    
4. import java.util.TreeMap;    
5. import java.util.TreeSet;    
6.    
7. import capstone.Capstone.CsInsn;    
8. import edu.millermj.x86.x86Address;    
9. import edu.millermj.x86.x86AddressVisitor;    
10. import edu.millermj.x86.x86AddressVisitorPrint;    
11. import edu.millermj.x86.x86Call;    
12. import edu.millermj.x86.x86Jump;    
13. import edu.millermj.x86.x86JumpCond;    
14. import edu.millermj.x86.x86Normal;    
15. import edu.millermj.x86.x86Ret;    
16. import edu.millermj.x86.x86VisitorIns;    
17.    
18. public class x86 extends DisassembleInterface    
19.     {    
20.         private LinkedList<Integer>   tempList    = new LinkedList<Integer>();    
21.         byte[]                      data;    
22.         Integer                     start;    
23.         TreeSet<Integer>          done        = new TreeSet<Integer>();    
24.         byte[]                      code        = new byte[20];    
25.    
26.         /**   
27.          * Get Ins   
28.          *   
29.          */   
30.         private Ins getIns(int current)    
31.             {    
32.                 Ins i = null;    
33.                 Integer startAddressOffset = (current - start);    
34.                 if (startAddressOffset < data.length)    
35.                     {    
36.                         if (!done.contains(startAddressOffset) && startAddressOffset >=

 0)    
37.                             {    
38.                                 done.add(startAddressOffset);    
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39.                                 for (int dataAddress = startAddressOffset, codeAddress 
= 0;    

40.                                         dataAddress < startAddressOffset + 20; dataAddr
ess++, codeAddress++)    

41.                                     {    
42.                                         if( dataAddress < data.length) {    
43.                                             code[codeAddress] = data[dataAddress];    
44.                                         }    
45.                                     }    
46.                                 CsInsn instruct = cs.disasm(code, current, 1)[0];    
47.                                 i = new Ins(instruct, current);    
48.                                 String mnemonic = instruct.mnemonic;    
49.                                 int size = instruct.getSize();    
50.                                 i.setSize(size);    
51.                                 if (instruct == null || mnemonic == null)    
52.                                     {    
53.                                         i = null;    
54.                                     }    
55.                             }    
56.                     }    
57.                 else   
58.                     {    
59.                         System.err.println(startAddressOffset);    
60.                     }    
61.    
62.                 return i;    
63.             }    
64.    
65.         private x86Address getAddressItem(Ins i, int current)    
66.             {    
67.                 x86Address result = null;    
68.                 Boolean branch = true;    
69.                 int next = current + i.getSize();    
70.                 switch (i.getMnemonic())    
71.                     {    
72.                     case "call":    
73.    
74.                         x86Call xCall = new x86Call(i, next);    
75.                         result = xCall;    
76.                         break;    
77.                     case "jmp":    
78.                         x86Jump j = new x86Jump(i, next);    
79.                         result = j;    
80.                         break;    
81.                     case "jz":    
82.                     case "jnz":    
83.                     case "ja":    
84.                     case "jae":    
85.                     case "je":    
86.                     case "jne":    
87.                     case "jg":    
88.                     case "jge":    
89.                     case "jle":    
90.                     case "jl":    
91.                     case "js":    
92.                     case "jb":    
93.                     case "jbe":    
94.                     case "jns":    
95.                         x86JumpCond jc = new x86JumpCond(i, next);    
96.                         result = jc;    
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97.                         break;    
98.                     case "ret":    
99.                         result = new x86Ret(i, next);    
100.                         break;    
101.                     default:    
102.                         result = new x86Normal(i, next);    
103.                         branch = false;    
104.                         break;    
105.                     }    
106.                 if (result != null)    
107.                     {    
108.                         i.setBrach(branch);    
109.                     }    
110.                 return result;    
111.             }    
112.    
113.         @Override   
114.         public Code disassemble(LoaderInterface l)    
115.             {    
116.                 TreeSet<x86VisitorIns> instructs = new TreeSet<x86VisitorIns>();    
117.                 Code c = new Code();    
118.                 data = l.getCode();    
119.                 done.clear();    
120.                 TreeMap<Integer, Ins> resultMap = c.getCodeMap();    
121.                 start = l.getBaseAddress();    
122.                 TreeSet<Integer> list = new TreeSet<Integer>();    
123.                 list.add(l.getStartAddress());    
124.                 Ins i;    
125.                 Integer current;    
126.                 x86AddressVisitor visitor = new x86AddressVisitor(tempList);    
127.                 while (!list.isEmpty())    
128.                     {    
129.                         current = list.first();    
130.                         list.remove(current);    
131.                         tempList.clear();    
132.                         i = getIns(current);    
133.                         if (i != null)    
134.                             {    
135.                                 resultMap.put(current, i);    
136.                                 x86Address x = getAddressItem(i, current);    
137.                                 if (x != null)    
138.                                     {    
139.                                         instructs.add((x86VisitorIns) x);    
140.                                         x.accept(visitor);    
141.                                         for (Integer k : tempList)    
142.                                             {    
143.                                                 if (!done.contains(k))    
144.                                                     {    
145.                                                         list.add(k);    
146.                                                     }    
147.                                             }    
148.                                     }    
149.                             }    
150.                     }    
151.                 x86AddressVisitorPrint p = new x86AddressVisitorPrint();    
152.                 for (x86VisitorIns in : instructs)    
153.                     {    
154.                         in.accept(p);    
155.                     }    
156.                 return c;    
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157.             }    
158.    
159.         @Override   
160.         public void generateFunctions(Code c)    
161.             {    
162.                 TreeSet<Ins> instructions = new TreeSet<Ins>();    
163.                 c.getCodeMap().forEach((k, v) -> {    
164.    
165.                     if (v.getMnemonic().equals("call"))    
166.                         {    
167.                             if (!instructions.contains(v))    
168.                                 {    
169.                                     Long callL = v.getIMMAddress();    
170.    
171.                                     if (callL != null)    
172.                                         {    
173.                                             Integer callAddress = callL.intValue();    
174.                                             if (c.getCodeMap().containsKey(callAddress)

)    
175.                                                 {    
176.                                                     instructions.add(c.getCodeMap().get

(callAddress));    
177.                                                 }    
178.                                         }    
179.                                 }    
180.                         }    
181.                 });    
182.                 instructions.forEach((v) -> {    
183.                     try   
184.                         {    
185.                             Ins next = instructions.higher(v);    
186.                             if (next != null)    
187.                                 {    
188.                                     Function f = new Function(v, next);    
189.                                     c.getFunctionMap().put(v.getAddress(), f);    
190.                                     Integer startAddress = v.getAddress();    
191.    
192.                                     f.addEntryPoint(v);    
193.    
194.                                     while (next.getAddress() > startAddress)    
195.                                         {    
196.                                             if (v.getMnemonic().equals("ret"))    
197.                                                 {    
198.                                                     f.addExitPoint(v);    
199.                                                 }    
200.                                             startAddress = c.getCodeMap().higherKey(v.g

etAddress());// get next ins    
201.                                             v = c.getCodeMap().get(startAddress);    
202.                                         }    
203.                                 }    
204.                         }    
205.                     catch (Exception e)    
206.                         {    
207.                             e.printStackTrace();    
208.                         }    
209.                 });    
210.             }    
211.    
212.     }   
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Import.java 

1. package application.database;    
2.    
3. import java.io.File;    
4. import java.io.FileInputStream;    
5. import java.sql.ResultSet;    
6. import java.sql.SQLException;    
7. import java.sql.Statement;    
8. import java.time.LocalDate;    
9. import java.util.ArrayList;    
10. import java.util.Iterator;    
11. import java.util.List;    
12.    
13. import javax.sql.rowset.serial.SerialBlob;    
14.    
15. import capstone.Capstone;    
16. import gui.ShortenedFunction;    
17. import gui.ShortenedIns;    
18. import javafx.beans.property.DoubleProperty;    
19. import javafx.beans.property.IntegerProperty;    
20. import javafx.beans.property.SimpleDoubleProperty;    
21. import javafx.beans.property.SimpleIntegerProperty;    
22. import javafx.beans.property.SimpleStringProperty;    
23. import javafx.beans.property.StringProperty;    
24. import javafx.collections.FXCollections;    
25. import javafx.collections.ObservableList;    
26.    
27. public class Import {    
28.    
29.     private IntegerProperty id = new SimpleIntegerProperty();    
30.     private StringProperty md5_hash = new SimpleStringProperty();    
31.     private DoubleProperty file_size = new SimpleDoubleProperty();    
32.     private LocalDate date_created;    
33.     private StringProperty dateCreated = new SimpleStringProperty();    
34.     private StringProperty name = new SimpleStringProperty();    
35.    
36.     private byte[] originalBytes;    
37.     private List<ShortenedFunction> functions = new ArrayList<ShortenedFunction>();    
38.     private List<ShortenedIns> instructions = new ArrayList<ShortenedIns>();    
39.    
40.     private Characteristics importCharacteristics;    
41.    
42.     //#FIXME: not public    
43.     public section code_section;    
44.    
45.     private int project_id = 0;    
46.    
47.     private String insert = "INSERT INTO import (md5_hash, file_size, name) VALUES (?,?

,?)";    
48.     private String update = "UPDATE import SET md5_hash = ?, file_size = ?, name = ? WH

ERE id = ?";    
49.     private String insert_pivot = "INSERT INTO project_imports (project_id, import_id) 

VALUES (?,?)";    
50.     private String insert_raw_bytes = "INSERT INTO original_binary (import_id, content)

 VALUES (?,?)";    
51.     private String insert_function = "INSERT INTO functions (import_id, start_address, 

end_address, alias) VALUES (?,?,?,?)";    
52.     private String insert_instruction = "INSERT INTO instructions (import_id, address, 

mnemonic, operands, opcodes, opsize) VALUES (?,?,?,?,?,?)";    
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53.     private static String select_by_project = "SELECT import.name, import.id, import.da
te_imported FROM project_imports " +    

54.                                         "INNER JOIN import ON import.id = project_impor
ts.import_id " +    

55.                                         "WHERE project_imports.project_id = ? ";    
56.    
57.     private String select_by_id = "SELECT name, date_imported, file_size FROM import WH

ERE id = ?";    
58.     private String select_functions = "SELECT id, start_address, end_address, alias FRO

M functions WHERE import_id = ?";    
59.     private String select_instructions = "SELECT id, address, mnemonic, operands, opcod

es, comment, opsize FROM instructions WHERE import_id = ?";    
60.    
61.     private static String search_mnemonic = "SELECT address, mnemonic, operands, opcode

s, opsize FROM instructions " +    
62.                                             "WHERE mnemonic = ?  AND import_id = ?";    
63.    
64.     private static String search_mnemonic_sequence = "SELECT address, mnemonic, operand

s, opcodes, opsize FROM instructions " +    
65.                                                      "WHERE mnemonic = ?  AND import_id

 = ? AND address = ?";    
66.    
67.     private static String select_function_instructions = "SELECT address, mnemonic, ope

rands, opcodes, opsize FROM instructions " +    
68.                           " WHERE import_id = ? AND (address >= ? AND address < ?)";    
69.    
70.     /* Constructor(s) */   
71.    
72.     public Import() {    
73.    
74.     }    
75.    
76.     public Import(int ID) {    
77.    
78.         DBConnection _db = null;    
79.    
80.         try {    
81.             _db = new DBConnection();    
82.    
83.             this.setId(ID);    
84.    
85.             //populate the object    
86.             java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatement(select

_by_id);    
87.             prepared_stmt.setInt(1, ID);    
88.    
89.             ResultSet rs = prepared_stmt.executeQuery();    
90.    
91.             while(rs.next()){    
92.                 this.setName(rs.getString("name"));    
93.                 this.setDateCreated(rs.getString("date_imported"));    
94.                 this.date_created = rs.getDate("date_imported").toLocalDate();    
95.             }    
96.    
97.             //first get the functions    
98.             prepared_stmt = _db.conn.prepareStatement(select_functions);    
99.             prepared_stmt.setInt(1, ID);    
100.    
101.             rs = prepared_stmt.executeQuery();    
102.    
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103.             while(rs.next()) {    
104.    
105.                 functions.add(new ShortenedFunction(rs.getInt("start_address"), rs.getI

nt("end_address"), rs.getString("alias")));    
106.             }    
107.    
108.             //Now get the instructions    
109.             prepared_stmt = _db.conn.prepareStatement(select_instructions);    
110.             prepared_stmt.setInt(1, this.getID());    
111.    
112.             rs = prepared_stmt.executeQuery();    
113.    
114.             while(rs.next()) {    
115.                 instructions.add(new ShortenedIns(rs.getString("opcodes"),rs.getInt("ad

dress"), rs.getString("mnemonic"), rs.getString("operands"), rs.getInt("opsize")));    
116.             }    
117.    
118.             //now get the section(s)    
119.             this.code_section = new section(ID);    
120.    
121.             //Update Characteristics    
122.             this.importCharacteristics = new Characteristics(ID);    
123.    
124.             rs.close();    
125.             _db.conn.close();    
126.    
127.         }catch(Exception ex) {    
128.             ex.printStackTrace();    
129.         }    
130.     }    
131.    
132.     public Import(int ID, String name, LocalDate dateCreated) {    
133.         this.setId(ID);    
134.         this.setName(name);    
135.         this.setDateCreated(dateCreated.toString());    
136.         this.date_created = dateCreated;    
137.    
138.         DBConnection _db = null;    
139.    
140.         try {    
141.             _db = new DBConnection();    
142.    
143.             //first get the functions    
144.             java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatement(select

_functions);    
145.             prepared_stmt.setInt(1, ID);    
146.    
147.             ResultSet rs = prepared_stmt.executeQuery();    
148.    
149.             while(rs.next()) {    
150.    
151.                 functions.add(new ShortenedFunction(rs.getInt("start_address"), rs.getI

nt("end_address"), rs.getString("alias")));    
152.    
153.             }    
154.    
155.             //Now get the instructions    
156.             prepared_stmt = _db.conn.prepareStatement(select_instructions);    
157.             prepared_stmt.setInt(1, this.getID());    
158.    
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159.             rs = prepared_stmt.executeQuery();    
160.    
161.             while(rs.next()) {    
162.                 instructions.add(new ShortenedIns(rs.getString("opcodes"),rs.getInt("ad

dress"), rs.getString("mnemonic"), rs.getString("operands"), rs.getInt("opsize")));    
163.             }    
164.    
165.             rs.close();    
166.    
167.         }catch(Exception ex) {    
168.    
169.         } finally {    
170.             try {    
171.                 _db.conn.close();    
172.             } catch (SQLException e) {    
173.                 // TODO Auto-generated catch block    
174.                 e.printStackTrace();    
175.             }    
176.         }    
177.     }    
178.    
179.     public void Save() {    
180.         DBConnection _db = new DBConnection();    
181.    
182.         try {    
183.    
184.             if(this.getID() > 0) { //update    
185.    
186.                 java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatement(up

date);    
187.                 prepared_stmt.setString(1, this.getMD5Hash());    
188.                 prepared_stmt.setDouble(2, this.getFileSize());    
189.                 prepared_stmt.setString(3, this.getName());    
190.                 prepared_stmt.setInt(4, this.getID());    
191.    
192.                 prepared_stmt.execute();    
193.    
194.             } else { // insert    
195.    
196.                 java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatement(in

sert,Statement.RETURN_GENERATED_KEYS);    
197.    
198.                 prepared_stmt.setString(1, this.getMD5Hash());    
199.                 prepared_stmt.setDouble(2, this.getFileSize());    
200.                 prepared_stmt.setString(3, this.getName());    
201.    
202.                 int affectedRows = prepared_stmt.executeUpdate();    
203.    
204.                 if(affectedRows == 0) {    
205.                     throw new SQLException("Failed Creating Import");    
206.                 }    
207.    
208.                 try (ResultSet generated_key = prepared_stmt.getGeneratedKeys()) {    
209.                     if(generated_key.next()) {    
210.                         this.setId(generated_key.getInt(1));    
211.    
212.                         //update the pivot table    
213.                         java.sql.PreparedStatement ps_pivot = _db.conn.prepareStatement

(insert_pivot);    
214.    
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215.                         ps_pivot.setInt(1, this.getProjectID());    
216.                         ps_pivot.setInt(2, this.getID());    
217.    
218.                         ps_pivot.execute();    
219.    
220.                     }else {    
221.                         throw new SQLException("Failed to create import, no primary key

 ID obtained");    
222.                     }    
223.                 }    
224.    
225.                 if(importCharacteristics != null) {    
226.                     System.out.println("[DEBUG] Saving Characteristics");    
227.                     importCharacteristics.setImportID(this.id.getValue());    
228.                     importCharacteristics.Save();    
229.                 }    
230.             }    
231.    
232.         } catch (SQLException e) {    
233.             // TODO Auto-generated catch block    
234.             e.printStackTrace();    
235.         } catch (Exception e) {    
236.             // TODO Auto-generated catch block    
237.             e.printStackTrace();    
238.         } finally {    
239.             try {    
240.                 _db.conn.close();    
241.             } catch (SQLException e) {    
242.                 // TODO Auto-generated catch block    
243.                 e.printStackTrace();    
244.             }    
245.         }    
246.     }    
247.    
248.     //#FIXME: these just be incorporated with the Save()    
249.     public void SaveRawBytes(File inputFile) {    
250.    
251.         DBConnection _db = new DBConnection();    
252.    
253.         try {    
254.    
255.             FileInputStream fileInputStream = null;    
256.    
257.             this.originalBytes = new byte[(int)inputFile.length()];    
258.    
259.             fileInputStream = new FileInputStream(inputFile);    
260.             fileInputStream.read(this.originalBytes);    
261.             fileInputStream.close();    
262.    
263.             if(this.getID() != 0 ) {    
264.    
265.                 java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatement(in

sert_raw_bytes);    
266.                 prepared_stmt.setInt(1, this.getID());    
267.                 prepared_stmt.setBlob(2, new SerialBlob(originalBytes));    
268.    
269.                 prepared_stmt.execute();    
270.    
271.             }    
272.    
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273.         }catch(Exception e) {    
274.             e.printStackTrace();    
275.         }    
276.     }    
277.    
278.     public void SaveFunctions() {    
279.         DBConnection _db = new DBConnection();    
280.    
281.         try{    
282.    
283.             if(this.functions.size() > 0) {    
284.    
285.                 for(Iterator<ShortenedFunction> i = this.functions.iterator(); i.hasNex

t();){    
286.    
287.                     ShortenedFunction f = i.next();    
288.    
289.                     java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatemen

t(insert_function);    
290.                     prepared_stmt.setInt(1, this.getID());    
291.                     prepared_stmt.setInt(2, f.getStartAddress());    
292.                     prepared_stmt.setInt(3, f.getEndAddress());    
293.                     prepared_stmt.setString(4, f.getAlias());    
294.    
295.                     prepared_stmt.execute();    
296.                 }    
297.             }    
298.         } catch(Exception ex) {    
299.             ex.printStackTrace();    
300.         }    
301.     }    
302.    
303.     public void SaveInstructions() {    
304.         DBConnection _db = new DBConnection();    
305.    
306.         try{    
307.    
308.             if(this.functions.size() > 0) {    
309.    
310.                 for(Iterator<ShortenedIns> i = this.instructions.iterator(); i.hasNext(

);){    
311.    
312.                     ShortenedIns f = i.next();    
313.    
314.                     java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatemen

t(insert_instruction);    
315.                     prepared_stmt.setInt(1, this.getID());    
316.                     prepared_stmt.setInt(2,f.getAddress());    
317.                     prepared_stmt.setString(3, f.getMnemonic());    
318.                     prepared_stmt.setString(4, f.getOperands());    
319.                     prepared_stmt.setString(5, f.getOpcodeS());    
320.                     prepared_stmt.setInt(6, f.getOpSize());    
321.    
322.                     prepared_stmt.execute();    
323.                 }    
324.             }    
325.         } catch(Exception ex) {    
326.             ex.printStackTrace();    
327.         }    
328.     }    
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329.    
330.     public static String buildMnemonicExpression(String[] query) {    
331.    
332.         String operands = "";    
333.    
334.         if (query.length > 1) {    
335.    
336.             operands += " AND operands REGEXP '.*";    
337.    
338.             for(int i = 1; i < query.length; i++) {    
339.    
340.                 String op = query[i].trim().replace("$", "");    
341.    
342.                 if(op.equals("imm"))    
343.                 {    
344.                     operands += "((0[xX][0-9a-fA-F]+)|([0-9]{1,}))";    
345.                 }    
346.                 else if(op.equals("r32"))    
347.                 {    
348.                     operands += "[xi]{1}";    
349.                 }    
350.                 else if(op.equals("mem"))    
351.                 {    
352.                     operands += "(ebp|esp|0x).*";    
353.                 }    
354.                 else   
355.                 {    
356.                     operands += op;    
357.                 }    
358.    
359.                 if ( i < query.length - 1 )    
360.                 {    
361.                     operands += ",.*";    
362.                 }    
363.             }    
364.             operands += "$'";    
365.    
366.         }    
367.         return operands;    
368.     }    
369.    
370.     public static List<ShortenedIns> searchByMnemonicExpression(int importID, String ex

p) {    
371.    
372.         List<ShortenedIns> results = new ArrayList<ShortenedIns>();    
373.    
374.         DBConnection _db = null;    
375.    
376.         try {    
377.             _db = new DBConnection();    
378.    
379.             String[] query = exp.split("#");    
380.    
381.             String operands = buildMnemonicExpression(query);    
382.    
383.             java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatement(search

_mnemonic + operands);    
384.             prepared_stmt.setString(1, query[0]);    
385.             prepared_stmt.setInt(2, importID);    
386.    
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387.             ResultSet rs = prepared_stmt.executeQuery();    
388.    
389.             while(rs.next()) {    
390.                 results.add(new ShortenedIns(rs.getString("opcodes"),rs.getInt("address

"), rs.getString("mnemonic"), rs.getString("operands"),rs.getInt("opsize")));    
391.             }    
392.    
393.         } catch (SQLException e) {    
394.             e.printStackTrace();    
395.         } finally {    
396.             try {    
397.                 _db.conn.close();    
398.             } catch (SQLException e) {    
399.                 e.printStackTrace();    
400.             }    
401.         }    
402.         return results;    
403.     }    
404.    
405.     public static List<ShortenedIns> searchByMnemonicSequence(int importID, String exp)

 {    
406.         List<ShortenedIns> results = new ArrayList<ShortenedIns>();    
407.         List<ShortenedIns> tmp = new ArrayList<ShortenedIns>();    
408.    
409.         DBConnection _db = null;    
410.    
411.         String[] expressions = exp.split("\\r\\n|\\n|\\r");    
412.         int num_sequences = expressions.length;    
413.         int next_address = 0;    
414.    
415.         String[] query = expressions[0].split("#");    
416.         String operands = buildMnemonicExpression(query);    
417.    
418.         try {    
419.             _db = new DBConnection();    
420.    
421.             java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatement(search

_mnemonic + operands);    
422.             prepared_stmt.setString(1, query[0]);    
423.             prepared_stmt.setInt(2, importID);    
424.    
425.             ResultSet rs = prepared_stmt.executeQuery();    
426.             List<ShortenedIns> first_ins = new ArrayList<ShortenedIns>();    
427.    
428.             while(rs.next())    
429.             {    
430.                 first_ins.add(new ShortenedIns(rs.getString("opcodes"),    
431.                         rs.getInt("address"), rs.getString("mnemonic"), rs.getString("o

perands"),    
432.                         rs.getInt("opsize")));    
433.             }    
434.    
435.             rs.close();    
436.    
437.             for(int z = 0; z < first_ins.size(); z++)    
438.             {    
439.                 ShortenedIns tmpIns = first_ins.get(z);    
440.                 next_address = tmpIns.getAddress() + tmpIns.getOpSize();    
441.    
442.                 tmp.add(tmpIns);    
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443.    
444.                 innerloop:    
445.                 for(int x = 1; x < expressions.length; x++)    
446.                 {    
447.    
448.                     String[] sub_query = expressions[x].split("#");    
449.                     String[] firstInsOperands = tmpIns.getOperands().split(",");    
450.    
451.                     if(sub_query[1].contains("$"))    
452.                     {    
453.                         if(query[1].contains("$"))    
454.                         {    
455.                             sub_query[1] = firstInsOperands[0];    
456.                         }    
457.                         else if(query[2].contains("$"))    
458.                         {    
459.                             sub_query[1] = firstInsOperands[1];    
460.                         }    
461.                     }    
462.                     else if (sub_query[2].contains("$"))    
463.                     {    
464.                         if(query[1].contains("$"))    
465.                         {    
466.                             sub_query[2] = firstInsOperands[0];    
467.                         }    
468.                         else if(query[2].contains("$"))    
469.                         {    
470.                             sub_query[2] = firstInsOperands[1];    
471.                         }    
472.                     }    
473.    
474.                     String sub_operands = buildMnemonicExpression(sub_query);    
475.    
476.                     java.sql.PreparedStatement sub_p_stmt =    
477.                             _db.conn.prepareStatement(search_mnemonic_sequence + sub_op

erands);    
478.                     sub_p_stmt.setString(1, sub_query[0]);    
479.                     sub_p_stmt.setInt(2, importID);    
480.                     sub_p_stmt.setInt(3, (next_address));    
481.    
482.                     ResultSet sub_rs = sub_p_stmt.executeQuery();    
483.    
484.                     if(!sub_rs.isBeforeFirst()) {    
485.                         break innerloop;    
486.                     }    
487.                     else   
488.                     {    
489.                         sub_rs.next();    
490.    
491.                         ShortenedIns sub_tmp = new ShortenedIns(sub_rs.getString("opcod

es"),    
492.                                 sub_rs.getInt("address"), sub_rs.getString("mnemonic"), 

   
493.                                 sub_rs.getString("operands"),sub_rs.getInt("opsize")); 

   
494.    
495.                         tmp.add(sub_tmp);    
496.    
497.                         next_address = (next_address + sub_tmp.getOpSize());    
498.                     }    
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499.                 }    
500.    
501.                 if(tmp.size() == num_sequences)    
502.                 {    
503.                     results.addAll(tmp);    
504.                 }    
505.                 tmp.clear();    
506.             }    
507.    
508.         } catch (SQLException e) {    
509.             e.printStackTrace();    
510.         } finally {    
511.             try {    
512.                 _db.conn.close();    
513.             } catch (SQLException e) {    
514.                 e.printStackTrace();    
515.             }    
516.         }    
517.         return results;    
518.     }    
519.    
520.     public List<ShortenedIns> getFunctionInstructions(ShortenedFunction func) {    
521.    
522.         List<ShortenedIns> results =  new ArrayList<ShortenedIns>();    
523.         DBConnection _db = null;    
524.    
525.         try {    
526.    
527.             _db = new DBConnection();    
528.    
529.             java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatement(select

_function_instructions);    
530.             prepared_stmt.setInt(1, this.getID());    
531.             prepared_stmt.setInt(2,  func.getStartAddress());    
532.             prepared_stmt.setInt(3, func.getEndAddress());    
533.    
534.             ResultSet rs = prepared_stmt.executeQuery();    
535.    
536.             while(rs.next()) {    
537.                 //String opCodes, int address, String mnemonic, String operands    
538.                 results.add(new ShortenedIns(rs.getString("opcodes"),rs.getInt("address

"), rs.getString("mnemonic"), rs.getString("operands"),rs.getInt("opsize")));    
539.             }    
540.    
541.         } catch (SQLException e) {    
542.             // TODO Auto-generated catch block    
543.             e.printStackTrace();    
544.         } finally {    
545.             try {    
546.                 _db.conn.close();    
547.             } catch (SQLException e) {    
548.                 // TODO Auto-generated catch block    
549.                 e.printStackTrace();    
550.             }    
551.         }    
552.         return results;    
553.     }    
554.    
555.     /* Static Methods */   
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556.     public static List<String> searchROPGadgets(int importID, String endingsToSearch) { 
   

557.    
558.         int depth = 5;    
559.         List<String> rop_gadgets = new ArrayList<String>();    
560.    
561.         Import selected_import = new Import(importID);    
562.    
563.         ObservableList<ShortenedIns> obsInstructions = FXCollections.observableArrayLis

t(    
564.                 Import.searchByMnemonicExpression(importID,endingsToSearch));    
565.    
566.         String[] opcodes = selected_import.code_section.content.split(" ");    
567.    
568.         for (int i = 0; i < obsInstructions.size(); i++) {    
569.    
570.             ShortenedIns si = obsInstructions.get(i);    
571.    
572.             int offset = si.getAddress() - 0x401000;    
573.             int adjusted_offset = offset - depth;    
574.    
575.             List<Byte> bytes = new ArrayList<Byte>();    
576.    
577.             for(int j = adjusted_offset; j <= offset; j++) {    
578.    
579.                 byte value = (byte) ((Character.digit(opcodes[j].charAt(0), 16) << 4)  

  
580.                         + Character.digit(opcodes[j].charAt(1), 16));    
581.    
582.                 bytes.add(value);    
583.             }    
584.    
585.             byte[] code = new byte[bytes.size()];    
586.    
587.             for(int x = 0; x < bytes.size(); x++)    
588.             {    
589.                 code[x] = bytes.get(x).byteValue();    
590.             }    
591.    
592.             try{    
593.                 String tmp_gadget = "";    
594.    
595.                 Capstone cs = new Capstone(Capstone.CS_ARCH_X86, Capstone.CS_MODE_32); 

   
596.    
597.                 Capstone.CsInsn[] allInsn = cs.disasm(code, offset - depth);    
598.    
599.                 for (int z = 0; z<allInsn.length; z++)    
600.                 {    
601.                     tmp_gadget += allInsn[z].mnemonic + " " + allInsn[z].opStr + " # "; 

   
602.                 }    
603.    
604.                 if (tmp_gadget.contains(endingsToSearch))    
605.                 {    
606.                     tmp_gadget = tmp_gadget.substring(0,tmp_gadget.length() - 2);    
607.    
608.                     tmp_gadget = String.format("0x%08x: ", 0x401000 + (offset - depth))

 + tmp_gadget;    
609.    
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610.                     rop_gadgets.add(tmp_gadget);    
611.                 }    
612.             }    
613.             catch(Exception ex)    
614.             {    
615.                 System.out.println("ERROR disassembling ROP gadgets - " + ex.toString()

);    
616.             }    
617.         }    
618.         return rop_gadgets;    
619.     }    
620.    
621.     public static List<ShortenedFunction> searchFunctionsAcrossImports(Project p, int i

mportID) {    
622.    
623.         Import im = new Import(importID);    
624.    
625.         List<ShortenedFunction> funcs = im.getFunctions();    
626.         List<Import> projectImports = p.imports;    
627.         List<ShortenedFunction> matchingFunctions = new ArrayList<ShortenedFunction>(); 

   
628.    
629.         for (int j = 0; j < projectImports.size(); j++ )    
630.         {    
631.             Import tmpImport = projectImports.get(j);    
632.    
633.             if(im.getID() != tmpImport.getID())    
634.             {    
635.                 for ( int i = 0; i < funcs.size(); i++)    
636.                 {    
637.                     List<ShortenedIns> tmpListIns = im.getFunctionInstructions(funcs.ge

t(i));    
638.    
639.                     List<ShortenedFunction> tmpResults = searchImport(tmpListIns, tmpIm

port);    
640.    
641.                     if (tmpResults.size() > 0)    
642.                     {    
643.                         matchingFunctions.addAll(tmpResults);    
644.                     }    
645.                 }    
646.             }    
647.         }    
648.    
649.         return matchingFunctions;    
650.     }    
651.    
652.     public static List<ShortenedFunction> searchImport(List<ShortenedIns> sourceFuncIns

, Import im) {    
653.    
654.         List<ShortenedFunction> results = new ArrayList<ShortenedFunction>();    
655.         List<ShortenedFunction> funcs = im.getFunctions();    
656.    
657.         for(int i = 0; i < funcs.size(); i++)    
658.         {    
659.    
660.             List<ShortenedIns> tmpListIns = im.getFunctionInstructions(funcs.get(i));  

  
661.    
662.             int seek_len = tmpListIns.size();    
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663.    
664.             if (sourceFuncIns.size() == tmpListIns.size())    
665.             {    
666.                 int j = 0;    
667.    
668.                 while(j < seek_len    
669.                         && tmpListIns.get(j).getMnemonic().equals(sourceFuncIns.get(j).

getMnemonic()))    
670.                 {    
671.                     j++;    
672.    
673.                     if(j == seek_len)    
674.                     {    
675.                         results.add(funcs.get(i));    
676.                     }    
677.                 }    
678.             }    
679.         }    
680.         return results;    
681.     }    
682.    
683.     public static List<Import> GetAllImports(int projectID) {    
684.    
685.         List<Import> imports = new ArrayList<Import>();    
686.         DBConnection _db = null;    
687.    
688.         try {    
689.             _db = new DBConnection();    
690.    
691.             java.sql.PreparedStatement prepared_stmt = _db.conn.prepareStatement(select

_by_project);    
692.             prepared_stmt.setInt(1, projectID);    
693.    
694.             ResultSet rs = prepared_stmt.executeQuery();    
695.    
696.             while(rs.next()) {    
697.                 Import i = new Import(rs.getInt("id"), rs.getString("name"), rs.getDate

("date_imported").toLocalDate());    
698.    
699.                 imports.add(i);    
700.             }    
701.    
702.         } catch (SQLException e) {    
703.             // TODO Auto-generated catch block    
704.             e.printStackTrace();    
705.         } finally {    
706.             try {    
707.                 _db.conn.close();    
708.             } catch (SQLException e) {    
709.                 // TODO Auto-generated catch block    
710.                 e.printStackTrace();    
711.             }    
712.         }    
713.    
714.         return imports;    
715.    
716.     }    
717.    
718.     /* Getters and Setters */   
719.     public IntegerProperty idProperty() {    
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720.         return this.id;    
721.     }    
722.    
723.     public final int getID() {    
724.         return id.get();    
725.     }    
726.    
727.     public final void setId(int ID) {    
728.         this.id.set(ID);    
729.     }    
730.    
731.     public StringProperty nameProperty() {    
732.         return this.name;    
733.     }    
734.    
735.     public DoubleProperty fileSizeProperty() {    
736.         return this.file_size;    
737.     }    
738.    
739.     public final void setFileSize(long size) {    
740.         this.file_size.set(size);    
741.     }    
742.    
743.     public final Double getFileSize() {    
744.         return this.file_size.get();    
745.     }    
746.    
747.     public final String getName() {    
748.         return name.get();    
749.     }    
750.    
751.     public final void setName(String name) {    
752.         this.name.set(name);    
753.     }    
754.    
755.     public StringProperty dateCreated() {    
756.         return this.dateCreated;    
757.     }    
758.    
759.     public final String getDateCreated() {    
760.         return this.dateCreated.get();    
761.     }    
762.    
763.     public final void setDateCreated(String dateCreated) {    
764.         this.dateCreated.set(dateCreated);    
765.     }    
766.    
767.     public StringProperty md5_hash() {    
768.         return this.md5_hash;    
769.     }    
770.    
771.     public final String getMD5Hash() {    
772.         return this.md5_hash.get();    
773.     }    
774.    
775.     public final void setMD5Hash(String hash) {    
776.         this.md5_hash.set(hash);    
777.     }    
778.    
779.     public final int getProjectID () {    
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780.         return this.project_id;    
781.     }    
782.    
783.     public final void setProjectID(int project_id) {    
784.         this.project_id = project_id;    
785.     }    
786.    
787.     public final void setOriginalBytes(byte[] bytes) {    
788.         this.originalBytes = bytes;    
789.     }    
790.    
791.     public final void setFunctions(List<ShortenedFunction> functions) {    
792.         this.functions = functions;    
793.     }    
794.    
795.     public final List<ShortenedFunction> getFunctions() {    
796.         return this.functions;    
797.     }    
798.    
799.     public final void setInstructions(List<ShortenedIns> instructions) {    
800.         this.instructions = instructions;    
801.     }    
802.    
803.     public final List<ShortenedIns> getInstructions() {    
804.         return this.instructions;    
805.     }    
806.    
807.     public Characteristics getCharacteristics() {    
808.         return this.importCharacteristics;    
809.     }    
810.    
811.     public void setCharacteristics(Characteristics c){    
812.         this.importCharacteristics = c;    
813.     }    
814. }   
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