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EXTENDED ABSTRACT 

 
Personally Identifiable Information (PII) includes any 

information that can be used to distinguish or trace an 

individual’s identity such as name, social security number, date 

and place of birth, mother’s maiden name, or biometric records. 

It also includes other information that is linked or linkable to an 

individual, such as medical, educational, financial, and 

employment information. PII is often the target of attacks, and 

loss of PII could result in identity theft. According to the U.S. 

Department of Justice, the average number of U.S. identity 

fraud victims annually is 11,571,900 [1]. The total financial loss 

attributed to identity theft in 2013 was $21 billion dollars, 

compared to $13.2 billion total loss in 2010 [1].  

A. Introduction 

PII is essential in protecting data security and privacy. 
HIPAA defines 18 identifiers that might be used to identify an 
individual as Protected Health Information (PHI) and requires 
the information must be protected in any form or medium. 
However, there exist additional identifiers that can be used to 
link to an individual. What is PII? What does PII include? How 
does publicly available information (e.g., public records, social 
networks, search engines, etc.) affect privacy? These questions 
are important. However, the answers to these questions are 
vague. 

First, more identifiers may exist and can be used to link to an 
individual. For example, Montjoye et al. found that human 
mobility traces are highly unique [2]. Using a test dataset where 
the location of an individual is specified hourly, 95% of the 
individuals can be uniquely identified using four spatiotemporal 
points. Second, since the correlations of personally identifiable 
information are not clear, it is also uncertain what data should be 
protected due to deep analytic techniques. Inference attacks exist 
and can be used to collect more indirect information from 
existing known data which may be linked to personal identity 
[3]. Moreover, non-sensitive data could be aggregated to reveal 
more sensitive information and cause identity theft [4], [5]. 
Third, advance techniques such as de-anonymization could be 
used to link anonymous data to personal identity, and many 
efforts have been conducted on privacy preserving to obscure PII 
in datasets [6], [7]. However, de-anonymization attacks have 
been found to be effective in re-identifying anonymous data [8], 
[9]. Fourth, numerous public accessible information is available 
via public records, social media and the Internet. Information 
may not be available before and is now accessible on the 
Internet. It is not clear how the publicly available information 
affects user privacy. Fifth, privacy is also evolving and the 

definition of privacy may change as technology advances. A 
dynamic approach to characterize privacy is desirable.  

Our studies show that developing an accurate model for PII 
is a fundamental issue to resolve many challenges in privacy, 
such as privacy measurement, data loss assessment, policy 
making, etc. This paper proposes to develop an attribute-based 
statistic model for privacy exposure measurement and privacy 
impact assessment based on text mining and machine learning. 

B. An Attribtue-based Statsitc Model for PII 

The PII model includes three key components: privacy 
attributes, privacy sensitivities, and attribute correlations.  

Privacy Attributes: We use an actor to refer an entity (e.g., 
people, organization, etc.) on the Internet. An actor has certain 
characteristics, such as name, address, phone number, etc., 
which are known as “attributes”. Privacy attributes are the 
attributes which may affect privacy. Privacy attributes describe 
what privacy is and what it includes. 

Privacy Sensitivities: Each attribute has an impact on 
privacy. This impact is referred to as a privacy impact factor. A 
privacy impact factor is a numerical value. We consider the 
privacy impact factor for full privacy disclosure as 1. An 
attribute’s privacy impact factor is a ratio of its privacy impact 
to the full privacy disclosure. Thus, an attribute’s privacy impact 
factor has a value between 0 and 1. Privacy sensitivities describe 
how an attribute affects privacy.  

Attribute Correlations: Attribute correlations describe how 
attributes are related. There are two correlations which need to 
be further explored, i.e., inference information and aggregated 
information. Inference information is hidden information which 
can be derived from a known attribute. For example, location of 
high school indicates an individual’s hometown and hometown 
may be related to personal preferences, such as sports, etc. 
Attributes also show group properties. For example, as found in 
[4], [5], 87% of Americans can be uniquely identified by five 
digit zip code, gender, and date of birth. However, none of these 
characteristics alone can significantly affect privacy. 

Let 𝐴 be an actor and we assume the PII model includes 𝑚 

privacy attributes. We use 𝑎𝑖  to represent the i-th privacy 

attribute. Thus, 𝐴(𝑎1, 𝑎2, … , 𝑎𝑚) describes all attributes which 

may affect 𝐴 ’s privacy. We use 𝑠𝑖  to represent the privacy 

sensitivity of i-th attribute. Thus, we have 𝑆(𝑠1, 𝑠2, … , 𝑠𝑚) 
representing 𝐴 ’s privacy attribute sensitivities. Attribute 
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correlations are manifested in a number of rules. Let 𝑟𝑖  be a 

correlation rule and we use 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛}  to represent 

attribute correlations. Thus, an attribute-based PII model is 

defined as including: 

{

Attributes: 𝐴(𝑎1, 𝑎2, … , 𝑎𝑚)      

Sensitivities: 𝑆(𝑠1, 𝑠2, … , 𝑠𝑚)    

Coorelations: 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛}
 

The model defines what privacy is, how an attribute affects 
privacy, and how the attributes are related. It can help resolve 
many challenges in security and privacy. For example, using 
attributes and sensitivities, data loss can be assessed and risk can 
be analyzed. Using attribute correlations, potential sensitive data 
can be identified and removed in the de-identification process. 

1) Attribtue Extraction 

Attribute extraction is based on text mining and machine 

learning. Three data sources are used for text mining: 

 Privacy documents such as privacy laws, regulations, 

directives, policies, instruction letters, etc. 

 Online social network and website user profiles 

 Web search engines such as google, Bing, etc.  

A knowledge base is established to include the initial PII 

model. The initial privacy attribute set includes the 18 

identifiers defined in the HIPPA document. A document filter 

will be used to identify these three types of data sources. Text 

mining will then be conducted on these documents. Term 

frequency (tf) and inverse document frequency (idf) will be 

calculated for each term in a document. A weight (tf x idf) is 

assigned to each term. A raw set of attributes could be extracted 

based on the weight ranking. Other term weighting methods 

also exist [10].  

The raw set of attributes needs to be further analyzed. We 

use term association and term similarities to further justify if an 

attribute is a privacy attribute or a duplicate attribute. 

Association of each raw attribute and existing privacy attributes 

will be checked. The association is represented using a 

true/false matrix where 𝑡1, 𝑡2, … , 𝑡𝑚  are the known privacy 

attributes,  𝑡𝑚+1, 𝑡2, … , 𝑡𝑚+𝑝  are raw attributes,  𝐷1, 𝐷2, … , 𝐷𝑛  

are mining documents, and  𝑘𝑖𝑗 = 0 𝑜𝑟 1 (1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤

𝑚 + 𝑝 ). 𝑘𝑖𝑗 = 1  indicates 𝑡𝑗 ∈ 𝐷𝑖  otherwise 𝑘𝑖𝑗 = 0 . We 

define co-occurrence value between privacy attribute 𝑡𝑗  (1 ≤

𝑗 ≤ 𝑚) and term 𝑡𝑚+𝑙  (1 ≤ 𝑙 ≤ 𝑝) as 

𝑐𝑜𝑜(𝑡𝑗, 𝑡𝑚+𝑙) =∑𝑘𝑖𝑗 ∗ 𝑘𝑖,𝑚+𝑙

𝑛

𝑖=1

 

A new attribute might be a privacy attribute if it has a high 

occurrence with an existing privacy attribute.  

Similarities will also be checked between the raw attributes 

and the known privacy attributes where 𝑑𝑖𝑗  is the weight of term 

𝑡𝑗  in the document 𝐷𝑖 . A similarity value will be calculated 

between the new attribute 𝑡𝑚+𝑙  (1 ≤ 𝑙 ≤ 𝑝) and the existing 

known attribute 𝑡𝑗 (1 ≤ 𝑗 ≤ 𝑚). 

𝑠𝑖𝑚(𝑡𝑗 , 𝑡𝑚+𝑙) =∑𝑑𝑖𝑗 ∗ 𝑑𝑖,𝑚+𝑙

𝑛

𝑖=1

 

A raw attribute can be identified as a new privacy attribute if it 

is not similar with any existing privacy attributes. 

Thresholds for co-occurrence and similarities can be derived 

and used for machine learning to automate the process. Once a 

raw attribute is confirmed to be a privacy attribute, the attribute 

is added to the knowledge base for future analysis. This 

approach is based on text mining and machine learning. It is 

dynamic and will be very useful to track privacy trends on the 

Internet.  

2) Attribute Senstivity Evalaution 

Sensitivity is a numerical value between 0 and 1 which 

indicates an attribute’s impact on privacy. As discussed, a term 

weight (tf x idf) can be derived based on text mining. A 

normalized term weight between 0 and 1 will be used as an 

initial sensitivity value. Using a term weight as attribute 

sensitivity may have limitations. For example, 

 The connection between term weight and privacy 

sensitivity needs to be justified. 

 Using term weight as privacy sensitivities may violate 

attribute correlations. 

These two limitations can be further improved using the 

second approach, sensitivity justification and adjustment based 

on discovered constraint rules. 

Attribute sensitivities are not random value and they must 

obey constraint rules. We have observed that the following rules 

must be satisfied when assigning sensitivities to privacy 

attributes. Let 𝑎1  and 𝑎2  be two attributes and 𝑠1  and 𝑠2  be 

their sensitivities,  

 If 𝑎1 is privacy attribute and 𝑎2 is not, 𝑠1 > 𝑠2; 

 If 𝑎1 is essential to a user than 𝑎2, 𝑠1 > 𝑠2; 

 If 𝑎1  is used more frequently than 𝑎2  in security 

incidents, 𝑠1 > 𝑠2; 

 If 𝑎1 can be inferred from 𝑎2, 𝑠1 ≤ 𝑠2; 

More rules might be discovered and used when we evaluate 

attribute sensitivities. These constraint rules will also be part of 

the knowledge base to guide the text mining and machine 

learning. We will use these rules to justify and adjust the 

sensitivity value assigned to an attribute [11].  

3) Attribtue Correlation Revelation 

Attributes are not independent. They may depend on each 

other. We are interested in capturing two particular kinds of 

correlations, inference information and aggregated information. 

Attribute correlations can be described by 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛} 
where 𝑟𝑖 is a correlation rule such as 

𝑉𝑖1
𝑝𝑖
→ 𝑉𝑖2, 

where 𝑉𝑖1  and 𝑉𝑖1  are two subsets of the privacy attribute set 

and  𝑝𝑖  (0 ≤ 𝑝𝑖 ≤ 1)  is a probability to indicate how much 

information of 𝑉𝑖2 can be learned from 𝑉𝑖1 . For example, 

correlation rule {𝑎𝑖}
𝑝=1
→  {𝑎𝑗} describes an inference rule which 

indicates that attribute 𝑎𝑗  can be inferred from attribute 𝑎𝑖 . 

Correlation rule {𝑎𝑖 , 𝑎𝑗 , 𝑎𝑘}
𝑝=1
→  {𝑎𝑡} describes an aggregation 

rule which indicates that attribute 𝑎𝑡 can be further decided by 

attributes 𝑎𝑖 , 𝑎𝑗 , and 𝑎𝑘  together. The correlation rule can be 

618620



further represented as a function ℎ(𝑉𝑖1,𝑉𝑖2) = 𝑝𝑖  to simplify 

calculation. 

Text mining approaches such as Latent Semantic Analysis 

(LSA) and Probabilistic Latent Semantic Analysis (PLSA) have 

been widely used in information retrieval to identify term 

relations [12], [13]. Text mining can also be used to look for 

and identify privacy attribute relations, such as association and 

co-occurrence. Associated attributes and attributes in a cluster 

may indicate attribute correlations (inference information or 

aggregated information). Thus, a raw attribute correlation can 

be derived. A raw correlation may not be true or reasonable. It 

needs to be further verified and justified. Publicly available 

data, such as social network user data and data available on the 

Internet, will be used to justify attributes, sensitivities, and 

correlations. A justified attribute correlation will then be added 

to the PII model knowledge base.  

Attribute correlations can be further expanded using 

approaches in machine learning. An initial correlation 

knowledge base will be established based on the PII model. The 

correlation knowledge base will be further expanded using the 

new correlations discovered in text mining and machine 

learning. Reasoning is then used to expand the correlation 

knowledge base using existing inference information and 

aggregated information. For example, deductive reasoning can 

be conducted on the existing correlations, {𝑎1}
𝑝12
→ {𝑎2}  and 

{𝑎2}
𝑝23
→ {𝑎3} . New correlation {𝑎1}

𝑝13
→ {𝑎3}  can be deduced 

and added to the knowledge base.  

C. Privacy Impact Assessment 

The PII model includes privacy attributes, attribute 

sensitivities, and attribute correlations. To measure privacy 

exposure, privacy measurement functions and attribute 

visibilities are required. Our previous works on privacy 

measurement proposed three functions for privacy 

measurement: weighted privacy measurement function, 

maximum privacy measurement function, and composite 

private measurement function [14]. Correspondingly, three 

privacy indexes are defined: weighted-privacy index, 

maximum-privacy index, and composite-privacy index [14]. 

Using the PII model and privacy indexes, privacy exposure can 

be measured and privacy impact can be assessed on the Internet. 

D. Summary 

An attribute based statistic model is proposed to measure 
privacy exposure and assess privacy impact based on personal 
identifiable information. The model includes three key 
components, i.e., privacy attributes, privacy sensitivities, and 
attribute correlations. The approaches used to develop the model 
are based on text mining and machine learning. It is different 
than the existing approaches used in natural language processing 
and the approaches used in studying contextual privacy. Natural 
language processing, e.g., SemEval [15], can determine the 
sense of the word ‘privacy’ in a context. However, it does not 
address attribute sensitivities and correlations. Contextual 
privacy targets to protect privacy in a context [16] based on the 
assumption that we know privacy and have clear definition of 
privacy. However, such definition and model for privacy is not 
available in real practice.  
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