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ABSTRACT 

Evidence Based Medicine (EBM) refers to the application of state-of-the-art medical 

evidence to improve the quality and reduce the cost of medical care. While systematic reviews 

(SRs) are positioned as an essential element of modern evidence-based medical practice, the 

creation and update of these reviews is a much more demanding, rigorous, and resource-

intensive process than developing a literature review in other domains. Specifically, systematic 

reviews attempt to bring a high level of rigor to reviewing research evidence and are often 

developed based on a peer-reviewed protocol so that they can be replicated if necessary. 

To support the update of existing systematic reviews, we investigate various supervised 

learning techniques, feature extraction techniques, and sampling techniques to resolve class 

imbalance issue. Specifically, we used soft-margin Support Vector Machine (SVM) as a 

classifier, exploited Unified Medical Language Systems (UMLS) for medical terms extraction, 

and examined various techniques to resolve the class imbalance issue. Through an empirical 

study, we demonstrate that soft-margin SVM achieves better classification performance than the 

existing algorithms used in current research, and the performance of the classifier can be further 

improved by using UMLS to identify medical terms in articles and applying re-sampling 

methods to resolve the class imbalance issue.  

For supporting the creation systematic reviews, we explore semi-supervised learning 

based classifiers to identify articles that can be included when creating medical systematic 

reviews (SRs). Specifically, we perform comparative study of various semi-supervised learning 

algorithm, and identify the best technique that is suited for SRs creation. We also aim to identify 

whether semi- supervised learning technique with few labeled samples produce meaningful work 

saving for SRs creation. The results indicate that semi-supervised learning could significantly 
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reduce the human effort and is a viable technique for automating medical systematic review 

creation with a small-sized training dataset. We also demonstrate the viability of semi-supervised 

learning algorithm along with self-learning and active learning when training dataset is rare, 

which is often the practical case in many machine-learning problems. 

 From a theoretical perspective, this research explores the possibility of machine-learning 

techniques in new domain (Systematic Review generation), particularly as it relate to the creation 

of systematic reviews, the use of semi-supervised learning, and the use of full-text in the creation 

and update of systematic reviews. The experiences and lessons learned from this research are 

expected to inform the literature regarding the efficacy of the proposed techniques and the 

further development and refinement of these techniques.  From a practical and applied research 

perspective, this research is expected to result in a significant reduction in the cost of creating 

and updating systematic reviews. Overall, this research improves the availability of best medical 

evidence, and consequently, can positively and significantly impact the health and wellbeing of 

society. This research can be extended to other areas as well such as education, ecommerce, 

business, finance, etc.  
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1. INTRODUCTION!!

1.1. Background!

Evidence Based Medicine (EBM) refers to the application of state-of-the-art 

medical evidence to improve the quality and reduce the cost of medical care (A. Cohen et 

al. 2010). Although the classical vision of EBM required physicians to directly search the 

relevant medical research for evidence applicable to their patients, the modern conception 

of EBM heavily relies on synthesis of research findings in the form of an evidence report 

commonly referred to as a systematic review (SR). According to Higgins and Green 

(Higgins and Green 2011), “a systematic review is a high-level overview of primary 

research on a particular research question that tries to identify, select, synthesize and 

appraise all high quality research evidence relevant to that question in order to answer it”. 

Each systematic review addresses a clearly formulated problem. As an example, (Couch 

et al. 2008) presents a systematic review of “diabetes education for children with Type 1 

Diabetes Mellitus and their families”. It synthesizes the findings presented in 80 pertinent 

articles.  Nowadays, systematic reviews form a key resource for informing evidence 

based medical practice. With the increasingly rapid pace by which medical knowledge is 

created, researchers, practitioners and policy makers are challenged to keep pace with 

state-of-the-art medical evidence and incorporate such evidence into practice. Systematic 

reviews respond to this issue by recognizing, appraising, and synthesizing research-based 

evidence from multiple sources and presenting it in an accessible format (Mulrow 1994). 
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Developing a medical systematic review is a much more demanding, rigorous, 

and resource-intensive process than developing a literature review in other domains, since 

systematic reviews attempt to bring a high level of rigor to reviewing research evidence 

and are often developed based on a peer-reviewed protocol so that they can be replicated 

if necessary. Surprisingly, the current workflow for creating and updating SRs is largely a 

manual process. An initial search by querying databases such as Medline, Cochrane and 

Embase often returns a large number of articles given a medical topic. Developing the 

review presented in (Couch et al. 2008) first involves retrieving 12,740 articles based on 

keywords such as diabetes, diabetic children, diabetic family members, and diabetes 

education in order to ensure that none of the relevant articles will be missed. These 

12,740 articles were then evaluated manually by a team of scientists using highly 

methodic procedures. Only 80 of them were selected according to the inclusion and 

exclusion guidelines. Finally, the scientists synthesized the research findings in the 80 

articles to establish the best education for children with Type 1 diabetes mellitus and their 

families. The articles that need to be included in a systematic review are usually selected 

in two steps. The first step is called abstract triage, where scientists identify “relevant” 

articles that can potentially be included in a SR based on the title and abstract of the 

articles. This phase of screening articles usually requires a long time and significant effort 

as it involves a group of scientists evaluating thousands of articles in order to find the 

relevant ones. The second step is referred to as full-text triage. It involves full text 

inspection of the relevant articles selected in the title/abstract triage to determine those 

that satisfy the inclusion criteria and will be included in a systematic review (Shojania et 

al. 2007).   Due to the manual workflow of selecting articles for systematic reviews 
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(SRs), developing SRs requires a significant investment in time (1,139 expert hours on 

average) and funds (up to a quarter of a million dollars) from a dedicated and qualified 

research team (McGowan and Sampson 2005a). 

Nowadays, medical knowledge base is growing at an astounding pace. Reports of 

new clinical trials are being published at the rate of over 20,000 per year (Shojania et al. 

2007).   This creates an enormous challenge for scientists trying to develop and update 

systematic reviews to keep pace with the development in the medical field. Cochrane 

Collaboration estimates that at least 10,000 new systematic reviews are needed to cover 

most of the healthcare problems (Higgins and Green 2011).  Unfortunately, fewer than 

half of this number has been published even after ten years of focused effort by the EBM 

community (Higgins and Green 2011). Once a review is created, the job is not done yet - 

a systematic review needs to be updated periodically (Higgins and Green 2011). The 

median time for a review to become obsolete is 5.7 years; for some medical conditions 

like cardiovascular, a SR may be obsolete in less than a year (Shojania et al. 2007). A 

report published by Agency for Healthcare Research Quality (AHRQ) indicates that only 

2% of systematic reviews published in all journals represent updates of previous reviews 

(whether conducted by the same authors or not) (Shojania et al. 2007). Researchers have 

attributed the difficulty of developing and updating systematic reviews to keep up with 

medical research advances to the aforementioned resource intensive manual process 

needed to screen articles (Shemilt et al. 2013). We lack highly refined automated tools 

that help reviewers sort and prioritize articles, which has become a bottleneck that has 

hitherto constrained the timely creation and update of systematic reviews.   
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There are efforts that have leveraged text analytics (Adeva et al. 2014; Shemilt et 

al. 2013) to automate the article screening procedure for systematic reviews. Most 

existing literature focuses on addressing a text classification problem, where medical 

articles are classified as relevant or irrelevant to the topic based on the title and abstract 

of the articles. As in any text classification task, we need to enhance both recall (i.e., 

among the articles that are deemed relevant and included in a systematic review, the 

fraction of those classified as “relevant”) and precision (i.e., among the articles that are 

classified as “relevant”, the fraction of those will actually be included in a review). Any 

automated system for identifying relevant articles must maintain a very high level of 

recall since a systematic review should include most, if not all, articles that provide high 

quality evidence relevant to the topic. Any system with a low recall would be of little use 

(Matwin et al. 2010). Precision is also essential in this context since a higher precision 

means that the articles that are classified as relevant are indeed relevant, which means 

that a smaller number of articles needed to be reviewed during the downstream full-text 

triage stage. Hence, in order to resolve the aforementioned bottleneck in the screening of 

medical articles, it is necessary to improve precision while maintaining a high recall. 

Among the existing research, a few studies such as (Bekhuis and Demner-Fushman 2012; 

A. M. Cohen et al. 2009; Matwin et al. 2010) attempted to achieve a high recall. 

Nonetheless, the results of these studies have shown a tendency for precision to decline 

as recall increases. Another conspicuous issue that has been largely ignored in existing 

research is that systematic review datasets are normally highly imbalanced, which means 

that among the thousands of articles to be selected, only a small number of them will be 

included in the final systematic review. The imbalance ratio ranges from 1:10 to 
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1:1,000(Shemilt et al. 2013). Class imbalances have been reported to hinder the 

performance of classifiers proposed in existing research (Bekhuis and Demner-Fushman 

2012; A. M. Cohen et al. 2009; Matwin et al. 2010).  Another issue that has been highly 

diregarded by existing research is the unavailability of training dataset for creation of 

new medical systematic review. Most of the existing research use supervised learning 

assuming readily available training data and focus on updating reviews. For example, 

Cohen et al. (2006) used 50% training and 50% validation data, Adeva et al. (2014) used 

90% training and 10% validation data, and other studies have embraced a similar 

approach. However, supervised machine learning assumes the availability of training data 

sets that do not necessarily exist when creating SR. A need exist to explore other 

approaches that are more suited to situations where training data sets are not readily 

available, e.g., when creating SR. 

1.2. Objective!of!the!Research!

The objective of this research is to develop computer methods for automatically 

classifying articles for inclusion and exclusion for systematic review creation and update. 

We hypothesize that by exploiting powerful advanced analytics techniques and a suitably 

constructed, high quality small-set of training data, we can construct a classifier to 

automate the article triage procedure for SR creation and update. For creating systematic 

reviews, we investigate semi-supervised learning method, in which a small set of labeled 

data is used for training machine-learning algorithm. Next, we investigate ensemble 

techniques and class imbalance issues to optimize accuracy and create a generalizable 

model. For updating systematic reviews, we investigate a supervised-learning method 
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that uses the original SR as its training dataset.  When successfully completed, this 

research has the potential to facilitate the creation of over 5,000 new SRs, which are 

immediately needed to cover new medical problems and allows for the update of 98% of 

existing reviews. From a theoretical perspective, this research contributed to the machine 

learning and text analytics literature by exploring, adapting, and developing approaches 

to a new problem domain, namely the classification and update of medical literature for 

the purpose of creating and updating systematic reviews.  

1.3. Problem!Identification!

Issues Specific to Systematic Review Update: The median time for an SR to 

become obsolete is 5.7 years; nevertheless, for some conditions like cardiovascular, the 

SR obsolete time is less than a year (Shojania. et al. 2007). Therefore, keep up with 

recent developments, a review should undergo periodic update. Despite identifying a 

need for periodic SR updates, the scenario of SR updates in literature is not satisfactory. 

According to an Agency for Healthcare Research Quality (AHRQ) report, two-thirds of 

survey participants reported that over 20% of the reviews they created are obsolete, and 

the remaining one-third of participants reported that 50% of reviews they commissioned 

are obsolete (Shojania. et al. 2007). Overall, only 2% of systematic reviews published in 

all journals represent updates of previous reviews (whether conducted by the same 

authors or not) (Shojania. et al. 2007). In brief, despite the need and importance of 

evidence updating, it is apparent that current practice for updating these reviews has not 

kept pace (Moher et al. 2007).  One of the main reasons is attributed to resource 

limitations (Shojania. et al. 2007). The problem is exacerbated by the by the need for 
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more frequent updates. According to AHRQ, update guidelines such as updating every 

two years may miss significant contributions that occur within shorter time lines. 

Accordingly, future research should aim to devise automated methods to continuously 

monitor newly published articles related to the original systematic review.  Based on the 

quantity and quality of new articles, researchers can determine the need for a systematic 

review update (Shojania. et al. 2007).  

Issues Specific to Systematic Review Creation: Cochrane Collaboration estimates 

that at least 10,000 new SRs are needed to cover most of the healthcare problems (A. 

Cohen et al. 2010). Unfortunately, fewer than half this number has been published even 

after ten years of focused effort by the EBM community (A. Cohen et al. 2006). This is 

commonly attributed to resource intensive manual process need to create and update 

these reviews (McGowan and Sampson 2005a). In response to this situation, there have 

been some attempts in the literature to reduce the workload of manual screening. 

However, the need for a substantial amount of labeled dataset for the training purpose is 

the most critical problem in literature for SR creation. To create a labeled data set, 

experts need to manually review a considerable number of articles to produce a training 

set For example, Frunza et al. used 20,000 articles as the training set and 27,274 articles 

as the test set requiring the manual review of 20,000 articles just to train the machine 

learning algorithm.  

Issues Common to Systematic Review Creation and Update: One of the crucial 

issue in this area is satisfactory recall and accuracy. The best and most consistent 

outcome of existing research was recall of 94.6% and accuracy of 17% (Frunza et al. 

2010), i.e., if 20,000 articles are retrieved in certain SRs, then, 16,600 articles must be 
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still manually reviewed.  This, means existing research has not substantially optimized 

the workload, which is a crucial step for machine learning being viable technique for 

systematic review generation. 

1.4. Research!Questions!

The over-arching research questions related to the research problems discussed 

above are: 

1- Issues Specific to Systematic Review Creation:  How can we create a machine-learning model for SR 

creation with a minimum or no training dataset?  

2- Issues Specific to Systematic Review Update: How can we quantify the characteristics of included 

articles for a particular SR topic? How can we use the characteristics to identify newly published 

articles? How can we triage articles for an SR update?  

3- Issues Common to SR Creation and Update: How can we create a generalized machine learning 

model? How can we boost the accuracy and recall of article classification models? 

We aim to answers research questions by performing the comparative 

investigation of  various supervised and semi-supervised based learning approach, and 

investigating techniques to resolve class imbalance issues and exploring the possibility of 

using Unified Medical Language System (UMLS) for text classification. The details of 

these research questions are explained in chapter 2 (systematic review update) and 

chapter 3 (systematic review creation) of this dissertation. 

The dissertation is organized as follows: the Chapter 2 discusses the proposed 

approach for automating the update of systematic reviews. Specifically, we illustrate the 

motivation, dataset, methodology and empirical results regarding the systematic review 

update.  In the following chapter we focus on the process of creating systematic reviews. 

While in the last chapter, we present our concluding remarks of application of machine 
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learning in systematic review update and creation and highlight the theoretical and 

practical contribution of this thesis report. 
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2. Systematic!Review!Update!

2.1. Introduction!!

Nowadays, medical knowledge base is growing at an astounding pace. Reports of 

new clinical trials are being published at the rate of over 20,000 per year (Shojania et al.).   

This creates an enormous challenge for scientists trying to develop and update systematic 

reviews to keep pace with the development in the medical field. Cochrane Collaboration 

estimates that at least 10,000 new systematic reviews are needed to cover most of the 

healthcare problems (Higgins and Green).  Unfortunately, fewer than half of this number 

has been published even after ten years of focused effort by the EBM community 

(Higgins and Green).  Once a review is created, the job is not done yet - a systematic 

review needs to be updated periodically (Higgins and Green). The median time for a 

review to become obsolete is 5.7 years; for some medical conditions like cardiovascular, 

a SR may be obsolete in less than a year (Shojania et al.). A report published by Agency 

for Healthcare Research Quality (AHRQ) indicates that only 2% of systematic reviews 

published in all journals represent updates of previous reviews (whether conducted by the 

same authors or not) (Shojania et al.). Researchers have attributed the difficulty of 

developing and updating systematic reviews to keep up with medical research advances 

to the aforementioned resource intensive manual process needed to screen articles 

(Shemilt et al.). We lack highly refined automated tools that help reviewers sort and 

prioritize articles, which has become a bottleneck that has been hitherto constrained the 

timely creation and update of systematic reviews.   
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There are efforts that have leveraged text analytics (Adeva et al. 2014; Bekhuis 

and Demner-Fushman 2012; Shemilt et al. 2013) to automate the article screening 

procedure for systematic reviews. Most existing literature focuses on addressing a text 

classification problem, where medical articles are classified as relevant or irrelevant to 

the topic based on the title and abstract of the articles. As in any text classification task, 

we need to enhance both recall (i.e., among the articles that are deemed relevant and 

included in a systematic review, the fraction of those classified as “relevant”) and 

precision (i.e., among the articles that are classified as “relevant”, the fraction of those 

will actually be included in a review). Any automated system for identifying relevant 

articles must maintain a very high level of recall since a systematic review should include 

most, if not all, articles that provide high quality evidence relevant to the topic. Any 

system with a low recall would be of little use (Matwin et al.). Precision is also essential 

in this context since a higher precision means that the articles that are classified as 

relevant are indeed relevant, which means that a smaller number of articles needed to be 

reviewed during the downstream full-text triage stage. Hence, in order to resolve the 

aforementioned bottleneck in the screening of medical articles, it is necessary to improve 

precision while maintaining a high recall. Among the existing research, a few studies 

such as (Bekhuis and Demner-Fushman 2012; A. Cohen et al. 2006; Matwin et al. 2010) 

attempted to achieve a high recall. Nonetheless, the results of these studies have shown a 

tendency for precision to decline as recall increases. Another conspicuous issue that has 

been largely ignored in existing research is that systematic review datasets are normally 

highly imbalanced, which means that among the thousands of articles to be selected, only 

a small number of them will be included in the final systematic review. The imbalance 
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ratio ranges from 1:10 to 1:1,000 (Shemilt et al. 2013). Class imbalances have been 

reported to hinder the performance of classifiers proposed in existing research. (Bekhuis 

and Demner-Fushman 2012; A. Cohen et al. 2006; Matwin et al. 2010) 

The objective of this chapter  is to develop an advanced analytics-based approach 

to automatically identifying relevant articles that could be included in systematic reviews 

based on the title and abstract of the articles while updating exiting medical systematic 

review report. Our text analytics based approach aims to improve the precision of article 

classification for systematic reviews while sustaining a very high level of recall. It makes 

three improvements to the existing methods described in literature. First, we propose to 

use the Unified Medical Language Systems (UMLS) to extract medical terms as features 

for article classification, while the majority of existing research uses the “bag-of-words” 

approach (Adeva et al. 2014; Bekhuis and Demner-Fushman 2012; A. Cohen et al. 2006; 

Shemilt et al. 2013; Wallace et al. 2010) Our study demonstrated that the automatically 

extracted Unified Medical Language System (UMLS) terms helped boost classification 

performance. Second, we propose to use soft-margin polynomial Support Vector 

Machine (SVM) to classify articles. Using different medical datasets, we showed that 

soft-margin polynomial SVM achieved higher precision and recall, compared with 

several algorithms proposed in existing research.  Third, to deal with the aforementioned 

class imbalance problem, we examined various re-sampling methods to re-sample the 

training data. The results of our comparative experiments indicate that a soft-margin 

polynomial SVM classifier that leverages more precise feature representation using 

UMLS and integrates the Synthetic Minority Oversampling (SMOTE) method (Chawla 
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2010) has the potential to yield significantly improved performance in identifying 

relevant articles for systematic reviews. 

2.1.1. Related!work!

There have been some attempts in literature to leverage analytics to automate 

systematic reviewer update (Ananiadou et al. 2009; Bekhuis and Demner-Fushman 2012; 

A. Cohen et al. 2006; Frunza et al. 2010; Shemilt et al. 2013). One of the most significant 

research done in this area is one conducted by Cohen et al. (2006). In this National 

Institute of Health (NIH) supported project, Cohen et al. used the perceptron algorithm to 

identify journal articles for inclusion in systematic reviews based on the title and abstract 

of the articles. While the perceptron-based classifier achieved high recall, precision was 

consistently low.  By fixing recall to be at least 95%, it produced very low precisions 

when applied to a number of datasets such as Antihistamines (precision = 0%), 

SkeletalMuscleRelaxants (precision = 0%), and Triptans (precision = 3.65%).  

Adeva et al.’s research (2014) is probably the most comprehensive one so far in 

this area. They conducted experiments that involved multiple classification algorithms 

(including naïve Bayes, KNN, Support vector machines, and Rocchio) combined with 

several feature selection methods (including TF, DF, IDF, etc.) and applied to different 

parts of the articles (including the titles alone, abstracts alone and both titles and 

abstracts). SVM has been proved to produce the best performance with respect to the F1 

scores. Bekhuis and Demner-Fushman (2012) also compared different algorithms 

including K-nearest neighbor (KNN), naïve Bayes, complement naïve Bayes (cNB), and 

evolutionary SVM (EvoSVM) (implemented in the RapidMiner) and used information 

gain as their feature selection method to select features from article titles and abstract. 
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EvoSVM has been proved to be the most effective among the algorithm. One reason 

SVM and its variations often outperform other algorithms is that a medical document is 

normally represented as a feature vector with words or phrases as the features for 

classification. This feature vector is often high dimensional and sparse; that is, for each 

document, its feature vector only has a few entries that are non-zero.  SVM has the 

potential to handle large number of features with overfitting protection (Joachims 1998a), 

and it works well with problems with sparse features (Kivinen et al. 1995). Similar to 

Cohen et al. (2006), Bekhuis and Demner-Fushman’s study (2012) also proved the 

inverse relationship between precision and recall.  Precision was maximal when recall 

was very low, e.g., precision=100% and recall=7.69%. When maintaining a high recall 

(100% for two datasets, ameloblastoma and influenza), evoSVM, though the best among 

the tested algorithms, produced relatively low precisions (13.11% for the ameloblastoma 

dataset and 10.69% for the influenza dataset).  

As mentioned previously, class imbalance remains a critical, yet largely ignored 

issue in this context.  (Shemilt et al. 2013) is perhaps the only research that investigated 

the use of re-sampling in selecting articles for systematic reviews.  They used 

undersampling by drawing a random sample of excluded records equal in number to the 

total number of records marked as provisionally eligible for inclusion and proved that 

undersampling helps enhance that the performance of the text-mining based classifiers 

(Shemilt et al. 2013) In addition to undersampling, oversampling techniques, though 

never used in the area of systematic reviews, have long been proved to be effective in 

dealing with class imbalance in data mining literature. For instance, Ling et al. (1998) 

combined oversampling of the minority class with undersampling of the majority class 
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and concluded that the best results are obtained when both classes are equally 

represented. A particular type of oversampling, namely the Synthetic Minority 

Oversampling Technique (SMOTE) (Chawla 2010), creates synthetic examples of the 

minority class instead of just randomly duplicating minority examples. Chawal et al. 

(2010) conducted various experiments with different datasets and proved that SMOTE 

outperforms plain undersampling and oversampling, and furthermore, the combination of 

SMOTE and undersampling performs even better than SMOTE alone. It is hence 

intriguing to investigate if re-sampling techniques such as SMOTE can help improve the 

performance of article classification in the context of systematic reviews. 

Overall, the findings of extant research show enough promise to further consider 

the possibility of using data analytics techniques for automatically screening articles for 

systematic reviews (A. Cohen et al. 2006; Frunza et al. 2010; Shemilt et al. 2013; Tsafnat 

et al. 2014). However, further research is needed to develop appropriate classifiers, 

resolve the class imbalance problem, and improve the precision of classification 

techniques while maintaining a high recall.   

2.1.2. Research!Gap!

Our literature review indicates that 1) for any automated classification technique 

to be of practical use in supporting article selection for systematic reviews, it is critical 

for the technique to achieve a high level of recall, and 2) it is necessary to improve 

precision while sustaining a high recall since a higher precision means that fewer articles 

would need to be manually reviewed in the downstream full-text triage stage. Improving 

precision while sustaining a high recall, however, is a difficult task, as shown in existing 

research. This leads us to the following overarching research question: 
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How can we develop a classification technique that helps improve precision while 

sustaining a high recall (above 95%)? 

We plan to address this research question by investigating which combination of 

textual analytics techniques is most valuable in identifying relevant articles that should be 

included in a systematic review. 

Existing research into automatic article classification for systematic reviews has 

almost exclusively relied on the bag-of-words approach for feature representation. While 

this de facto standard has led to promising results, we feel that other feature extraction 

schemes may provide better predictive ability. Prior research (Aronson et al. 2007; H. Liu 

et al. 2002), though not in the area of systematic reviews, has corroborated the 

observation that biomedical text classification can be improved by enriching raw text 

with automatically extracted Unified Medical Language System (UMLS) terms. As an 

example, Kilicoglu et al. (2009) demonstrated the feasibility of automatically identifying 

"scientifically rigorous" articles using multiple features from publications, including 

"high-level" features such as Unified Medical Language System (UMLS) terms. This 

leads us to the following research question: 

Can we improve precision while sustaining a high recall by using automatically extracted Unified 

Medical Language System (UMLS) terms as features? 

As discussed previously, the issue of class imbalance is critical, yet not 

sufficiently addressed in this field. To address the issue, Cohen et al. (2006) modified the 

conventional perceptron algorithm by adjusting the false-negative learning rate (FNLR) 

to improve the recall to be over 95%. Another possible approach is using re-sampling 

methods to re-sample the training data. In the area of data mining, various re-sampling 
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strategies such as undersampling, oversampling and SMOTE oversampling, have been 

proposed to classify datasets with highly asymmetric positive and negative sample 

frequency. It is hence meaningful to investigate:   

Can we use a re-sampling method to further improve precision while sustaining a high recall?  

2.2. Methodology!!

Our analytics approach to identifying relevant articles for systematic reviews 

includes three major components: 1) feature extraction using the UMLS, 2) soft-margin 

polynomial SVM, and 3) SMOTE combined with undersampling. We conducted 

experiments using four systematic review datasets and compared analytics techniques 

with others that were proposed in existing research. In following sub-sections, we 

describe the data sources, each component in our analytics approach, and the methods 

that we compared our techniques with in detail.   

2.2.1. Data!Sources!

We used four systematic reviews on drug topics including ACEInhibitors (ACE), 

Antihistamines (AN), Skeletal-MusleRelaxants (SKE), and Triptans (TRIP), performed 

by AHRQ’s Evidence-based Practice Center (EPC) at Oregon Health and Science 

University as our datasets. These four systematic review datasets were also used in (A. 

Cohen et al. 2006). Cohen et al. (2006) defined a new measure WSS@95%, i.e., 

percentage of work saved when recall is fixed to be at least 95%, to measure the 

effectiveness of the perceptron-based classifier.  The perceptron-based classifier proposed 

in (A. Cohen et al. 2006) turned very low WSS@95% values (0.00%, 0.00% and 3.37) 

and low precisions (3.87%, 0.00%, and 3.65%) on three of the four dataset AN, SKE and 
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TRIP, respectively, when maintaining the recalls to be over 95%. We hence used these 

datasets in our experiments since we intended to investigate if our proposed approach can 

help improve the precision and WSS@95% values. The perceptron-based classifier 

achieved relatively high performance (recall =95.61%; WSS@95% = 56.61%) but low 

precision (3.87%) for the dataset ACE. We included this dataset in our study to 

investigate if our approach helps achieve comparable or better WSS@95% by enhancing 

precision.  The original datasets include the PubMed Unique Identifiers (PMID) of all the 

articles and the inclusion and exclusion decisions made by human researchers. Following 

(A. Cohen et al. 2006), we focus on classifying the articles based on the title and abstract 

of the articles. We used Medline’s Batch Entrez features to extract the title and abstract of 

all the articles based on their PMIDs. Table 1 shows an overview of the datasets. As 

discussed above, imbalanced class distributions are the norm for article selection in 

systematic reviews. Only a small ratio of articles has been included in each of the four 

systematic reviews. Among the four dataset, SkeletalMuscleRelaxants has the most 

serious class imbalance problem with only 9 included articles. Consequently, the 

perceptron-based algorithm proves to be ineffective with precision  = 0.55% (classify 

everything in one class) and WSS@95% recall (defined later) = 0.00% for the dataset. 

Table 1: Overview of Data Corpus—Systematic Review Update 

Dataset Total number 
of articles 

Number of 
excluded 
articles 

Number of 
included articles 

Ratio—Included 
vs. Excluded  

ACEInhibitors (ACE) 2544 2503 41 1:61 
Antihistamines (AN) 310 294 16 1:18 
SkeletalMuscleRelaxants 
(SKE) 

1643 1634 9 1:182 

Triptans (TRIP) 671 647 24 1:26 
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2.2.2. Feature!extraction!!

We used the MEDLINE records for each article in the four datasets to generate 

the feature set as input to our classification technique. The feature set includes the 

features extracted from the title and abstract as well as the article’s Medical Subject 

Headings (MeSH) and MEDLINE publication type. To extract features from the title and 

abstract of an article, we propose to use the UMLS to automatically extract terms and use 

them as features.  Most of the existing research has relied on the “bag-of-words” 

approach to extracting features. We conducted experiments to compare the performance 

between these two methods for feature extraction (i.e., UMLS vs bag-of-words). Below 

we briefly describe both methods. 

The features extracted from the bag-of-words approach used in our comparative 

experiments included not only unigrams (i.e., individual words) but also 2-term and 3-

term n-grams. Each document (i.e., a text file including the article tile and abstract) is 

represented by a vector of weights m features: 

!! = ! (!!! ,!!! ,…… ,!!")!

where m is the number of features, and !!  is the weight of the ith features 

(including unigrams, 2-grams and 3-grams). The weight value of a feature represents how 

much that feature contributes to the semantics of the document !! . If there are n 

documents in total, the corpus is represented by n*m matrix, which is usually called term-

document matrix. In a term-document matrix, if a certain feature (i.e., a word) does not 

occur in the document, then the weight of that feature becomes 0 for that document. 

Following (Bekhuis and Demner-Fushman 2012), we used the method TF-IDF(term 

frequency / inverse document frequency) (Robertson 2004)to create the weights. TF-IDF 
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is a numerical statistic that reveals the importance of a feature in a document in a dataset. 

The TF-IDF value of a word increases as it appears more often in a document; however, 

the TF-IDF value is offset by the frequency of the word in the whole dataset. This helps 

to mitigate for the fact that some words such as “patient” are generally more common 

than other words in medical documents. 

We propose to extract features from the titles and abstracts using the UMLS 

Metathesaurus. UMLS allows to extract terms from different vocabularies, including 

CPT, ICD-10-CM, LOINC, MeSH, RxNorm, and SNOMED CT. Moreover, UMLS 

enables us to extract the Concept Unique Identifier (CUIs), semantic types, and 

synonymous terms used in medical literature (US National Library of Medicine 2014), 

We used the MetaMap program that maps words and phrases to different UMLS 

semantic types. An example of UMLS terms extracted from an abstract is given below. 

The free medical text appears as: 

“The objective of this study was to examine the relationships of serum and dietary magnesium (Mg) with prevalent 
cardiovascular disease (CVD), hypertension, diabetes mellitus, fasting insulin, and average carotid intimal-medial wall 
thickness measured by B-mode ultrasound.” 

 

The UMLS terms and their semantic types appear as: 

Study Objective [Idea or Concept] 
Relationships [Qualitative Concept] 
Serum (Specimen Source Codes - Serum) [Intellectual Product] 
Serum (Specimen Type - Serum) [Body Substance] 
Dietary Magnesium [Element, Ion, or Isotope] 
Cardiovascular (Cardiovascular system) [Body System] 
disease prevalence (disorder prevalence) [Quantitative Concept] 
Hypertension (Hypertension Adverse Event) [Finding] 
Diabetes Mellitus [Disease or Syndrome] 
fasting (Act Code - fasting) [Intellectual Product] 
Insulin [Amino Acid, Peptide, or Protein,Hormone,Pharmacologic Substance] 
Insulin (Recombinant Insulin) [Amino Acid, Peptide, or Protein,Hormone,Pharmacologic Substance] 
Average [Quantitative Concept] 
Carotid [Body Part, Organ, or Organ Component] 
Intima [Tissue] 
Medial [Spatial Concept] 
Wall (Walls of a building) [Manufactured Object] 
Thickness (Thick) [Qualitative Concept] 
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Measured [Qualitative Concept] 
ultrasound b mode (B mode ultrasound) [Diagnostic Procedure] 
MEASURED (Measured Tumor Identification) [Diagnostic Procedure] 
ultrasound b mode (B mode ultrasound) [Diagnostic Procedure]  

 

We used the UMLS-extracted terms as the features for our classifier. For instance, 

in the example shown above, the terms such as “Study Objective”, “Serum (Specimen 

Source Codes - Serum)”  “Cardiovascular (Cardiovascular system)”, “fasting (Act Code - 

fasting)”, etc. have been used as features for classification. In our experiments, we 

compared the UMLS-based feature extraction method with the conventional bag-of-

words approach described above.  

2.2.3. Algorithms!

We propose to use soft-margin polynomial SVM to enhance the classification 

performance and compare it with other algorithms that have proved to be effective in 

existing research. In order to explain soft-margin polynomial SVM, we describe the 

regular “hard-margin” SVM algorithm first.  

SVM with liner kernel: Existing studies such as (Bekhuis and Demner-Fushman 

2012; Joachims 1998b; H. Liu et al. 2002)has proved the effectiveness of SVM with a 

linear kernel in text classification in the process of medical systematic reviews. The 

optimization problem associated with SVM is shown below. 

 

where for each data point (xi, yi), yi is either 1 or −1, indicating the class to which 

the point belongs. The two hyperplanes w · x – b = 1 and w · x – b = -1 are called support 
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vectors that separate the data. SVM maximizes the distance (called “margin”) between 

the support vectors.  

Soft-margin polynomial SVM: We propose to use the soft-margin Support Vector 

Machine (SVM) with a polynomial kernel as a classifier. Soft-margin polynomial SVM is 

an extension of the standard “hard” margin SVM described above. 

The “hard-margin” SVM sometimes does not work well since it does not allow 

data points in the margin. However, data is not often perfectly linearly separable, and it is 

necessary to allow some data points of one class to appear within the region bounded by 

the support vectors. Soft-margin polynomial SVM provides the flexibility by introducing 

a slack variable ϵi≥ 0, and the optimization problem of soft-margin polynomial SVM 

becomes (Stanford 2014): 

 

where ϵi, the slack variable, represents the degree of error in classification.  The 

optimization hence becomes a tradeoff between a large margin and a small error penalty 

(i.e., ϵi). When the training set is not linearly separable, and there exists no hyperplane 

that can perfectly separate positive and negative samples, the optimization results in a 

“soft” margin that may contain some misclassified data points. The parameter C known 

as a regularization term can be seen as a method for controlling overfitting - it is tradeoff 

between the importance of maximizing the margin and fitting the training data. That is, if 

the C value is large, then model is better fitted to the training data (may cause over-

fitting), whereas if the C value is small, SVM fits on the bulk of data (Cortes and Vapnik 

1995). In our experiments, when applying soft-margin SVM to each dataset, we selected 
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the best performing C and ϵ value that help maximize precision while sustaining recall to 

be over 95%, based on cross-validation.   

evoSVM: Bekhuis and Demner-Fushmanb (Bekhuis and Demner-Fushman) found 

that evoSVM achieved best performance, compared with KNN, naïve Bayes, 

complement naïve Bayes (cNB) (Bekhuis and Demner-Fushman). evoSVM is a SVM 

implementation using an evolutionary algorithm (ES) to solve the dual optimization 

problem of a SVM. In our experiments, following Bekhuis and Demner-Fushmanb 

(2012), we used the Rapid-Miner’s implementation of evoSVM and followed the 

evoSVM settings recommended by the authors: radial kernel; Gaussian mutation; 

gamma= 1.0; epsilon = 0.1; and C = 1. 

Perceptron: Cohen et al. (2006) used a perceptron-based classifier to predict 

when articles should be added to existing drug class systematic reviews. A perceptron is a 

type of neural network that finds a linear function to discriminate between classes. In 

essence, a single layer perceptron is simply a linear classifier, which is efficiently trained 

by a simple rule: It starts with an initial set of guessed weights (i.e. numerical 

parameters), and then for all wrongly classified data points, the weights either increase or 

decrease to reduce the prediction errors.  

Naïve Bayes: Naïve Bayes classifiers are a family of simple probabilistic 

classifiers based on applying Bayes’ theorem with strong (naïve) 

independence assumptions between the features. According to Adeva et al. (2014), naïve 

Bayes seemed to provide the best results in terms of false negatives. We hence also 

included this algorithm in our comparison.  
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2.2.4. ReOsampling!methods!

We examined four re-sampling techniques for resolving the aforementioned class 

imbalance issue.  

Undersampling reduces the number of samples in the majority class in the 

training set until the ratio between the minority class and the majority class is at a desired 

level (H. Liu et al. 2002). Theoretically, researchers cannot control what information of a 

majority class is thrown away. Also, undersampling is often problematic since important 

information about the decision boundary between the majority and minority class may be 

eliminated (A. Y.-c. Liu 2004). One of the benefits of undersampling is its very simple 

implementation. The overall number of samples in a training set is greatly reduced, which 

means that training time is greatly reduced. In our research, we randomly selected a 

portion of the majority class, which in our case are the articles excluded from the systems 

reviews, so that the number of excluded articles in each sampled dataset is equal to that 

of the included articles. For example, in the ACEInhibitors dataset, there are 1,252 

excluded articles that were excluded from and 21 included articles. We re-sampled the 

articles in the training dataset and created a new training set that includes all 21 included 

articles and 21 randomly selected excluded articles. 

Oversampling seeks to increase the number of samples in the minority class by 

replicating samples from that class (He and M 2013). The advantage of this approach is 

that less information from the majority class is lost, as compared to undersampling. The 

primary disadvantage of this approach is that it tends to over fit the trained model. In our 

experiments, we tested different oversampling rates including 100% (i.e., replicating the 

minority samples once), 200% (i.e., replicating the minority samples twice), 300% (i.e., 
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replicating the minority samples three times),  and 400% (i.e., replicating the minority 

samples four times). We stopped at 400% oversampling because our experiments showed 

that the classifier started to suffer from over-fitting on all four datasets. We then select 

the best performing oversampling rate (among 100%, 200%, 300% and 400%) based on 

cross-validation for each dataset. 

The Synthetic Minority Oversampling Technique (SMOTE) proposed in (Chawla 

2010) is different from the conventional oversampling method described above. The 

conventional oversampling method oversamples the minority class by randomly 

replicating minority examples. This affects the decision region of the minority class, 

which results in a similar but more specific region in the feature space (Chawla 2010). In 

the SMOTE, the minority class is oversampled by creating synthetic examples rather than 

replicating the minority class examples. In our experiments, we oversampled the minority 

class by taking each minority class example and developing synthetic examples along the 

line segments joining any k minority class nearest neighbors (in our case five neighbors). 

For example, if the rate of oversampling is 200%, only two neighbors among the five 

nearest neighbors will be randomly chosen, and a synthetic sample will be generated for 

each neighbor. If the oversampling rate is 300%, then for each example in the training 

dataset, three of its neighbors will be randomly selected, and three synthetic samples will 

be generated. Synthetic samples are computed according to the following procedure 

described in (Chawla 2010): 1) compute the difference between the sample under 

consideration and its nearest neighbor, 2) multiply the difference by a random number 

between 0 and 1, and 3) add the result from 2) to the feature vector under consideration to 

create a synthetic sample. We tested SMOTE using different oversampling rates 
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including 100%, 200%, 300% and 400% to oversample the minority class and selected 

the best oversampling rate for each dataset based on cross-validation.  

A combination of SMOTE and undersampling: We considered combining both 

SMOTE and undersampling. We investigated combinations of different undersampling 

rates and SMOTE rates, including 1) 50% undersampling of the majority class + 100% 

SMOTE of the minority class, 2) 50% undersampling of the majority class + 200% 

SMOTE of the minority class, 3) 75% undersampling of the majority class + 100% 

SMOTE of the minority class, 4) 75% undersampling of the majority class + 200% 

SMOTE of the minority class,  and 5) undersampling of the majority class + 200% 

SMOTE of the minority class to make the ratio between the majority and minority classes 

be 1. Again, we selected the best performing combination of sampling rates for each 

dataset based on cross-validation. 

2.3. Evaluation!Methods!

We evaluated the classification performance using four metrics, precision, recall, 

F1-score and Work Saved over Sampling at 95% confidence interval or WSS@95% in 

short, a metric proposed in (A. Cohen et al. 2006). These measures are defined based on a 

confusion matrix as shown in Table 2. In our research, we treated the articles that were 

included in a review as positive examples and those that were excluded as negative 

examples. TP represents the number of True Positives, i.e., positive examples that were 

correctly classified by our SVM classifier. TN is the number of True Negatives, i.e., 

negative examples that were correctly classified, FP the number of False Positive, i.e., 
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negative examples that were incorrectly classified as positive, and FN the number of 

False Negatives, i.e., positive examples incorrectly classified as negatives.  

Table 2: Confusion Matrix 

 Predicted Negative Predicted Positive 
Actual Negative True negative (TN) False positive (FP) 
Actual Positive False negative (FN) True positive (TP) 

 

The formulas for computing recall, precision, F1 and WSS@95% are shown in 

Table 3. Recall refers to the rate of correctly classified positives among all positives and 

is equal to TP divided by the sum of TP and FN. Precision refers to the rate of correctly 

classified positives among all examples classified as positive and is equal to the ratio of 

TP to the sum of TP and FP. F1 means the harmonic mean of recall and precision. 

WSS@95% is defined as percentage of examples that meet the initial search criteria and 

do not need to be manually reviewed because they have been correctly classified. Setting 

recall above 95%, WSS can be calculated as the ratio of the sum of TN and FN to the 

total number of samples minus 0.05.   

Table 3: Evaluation metrics—Systematic Review Update 

Evaluation Metric Formula 
Recall TP/ (TP+FN) 
Precision TP/(TP+FP) 
F1 (2*recall*precision)/(recall + precision) 
WSS@95% (TN + FN)/N – 0.05 
N= Total Number of Samples in Positive and Negative Classes 
WSS@95%= Work Saved over Sampling at 95% confidence interval 

 

It is noteworthy that we do not use accuracy or AUC (area under ROC curve) as 

evaluation metrics for two reasons. First, when the class distribution is imbalanced, the 

evaluation based on accuracy breaks down. For instance, in the dataset 

SkeletalMuscleRelaxants, if a classifier classifies all articles (4 positive articles and 817 
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negative articles) as negative, then the predicted accuracy would be 99.51%. A very high 

accuracy rate is achieved without detecting any articles that should be included. Second, 

classification accuracy assumes equal misclassification costs (for false positive and false 

negative errors), which is problematic because one type of classification error often can 

be more expensive than another.  In classification for systematic reviews, the cost of false 

negative is high because we intend to avoid missing any articles that should be included 

in a systematic review. According to Cohen et al. (2006), any analytics models that 

achieve a recall less than 95% is meaningless. Therefore, we preset the recall of a 

positive class to be greater than 95%, and we examined approaches to improve the 

precision of the algorithm. Precision defines the fraction of retrieved documents 

classified as relevant that are indeed relevant. The higher the precision, the smaller 

number of articles scientists need to manually review. 

To make the most efficient use of the datasets and to get the best estimate of 

system performance on future data, we chose to follow (2006) and used 5×2 cross-

validation. In 5×2 cross-validation, the data set is randomly split in half, and then one 

half is used to train the classifier, and the classifier is scored using the other half as a test 

set. Then the roles of the two half data sets are exchanged, with the second half used for 

training and the first half used for testing, with the results accumulated from both halves 

of the split (Dietterich 1998). What makes 5 × 2 different from the ten-way cross-

validation more commonly used is that the half-and-half split and score process is 

repeated five times. This approach uses each data sample five times for training and five 

times for testing among random splits and averages the results together for all runs. 
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2.4. Experimental!Procedures!

We conducted two experiments to evaluate the effectiveness of our approach. The 

datasets we used in the experiments are the four datasets we described in section 2.2.1 

including ACEInhibitors (ACE), Antihistamines (AN), SkeletalMuscleRelaxants (SKE) 

and Triptans (TRIP). The detail of our experiment design is illustrated in Table 4.  

Experiment 1 consists of two steps. First, we used the unigrams, 2-grams and 3-

grams extracted from article titles and abstracts using the bag-of-words approach plus the 

Medical Subject Headings (MeSH) and MEDLINE publication type as the features and 

compared soft-margin polynomial SVM with other algorithms including SVM with linear 

kernel, evoSVM, naïve Bayes, and perceptron. Second, we used the automatically 

extracted UMLS terms plus the MeSH and MEDLINE publication type as the features. 

Experiment 1 was designed to compare the performance of soft-margin polynomial SVM 

against the other algorithms. We also compared the effectiveness of the UMLS-based 

feature extraction against the bag-of-words method.  

Table 4. Overview of experiments—Systematic Review Update 

  Features Algorithms Sampling method 
Exp. 1   Step 1 Bag-of-words (up to 3-grams) extracted from titles 

and abstracts + Medical Subject Headings (MeSH) +  
MEDLINE publication type  

Soft-margin 
polynomial SVM, 
SVM, EVO-SVM, 
Perceptron, Naïve 
Bayes 

N/A 

   Step 2 UMLS terms extracted from titles and abstracts + 
Medical Subject Headings (MeSH) +  MEDLINE 
publication type 

Exp. 2   Step 1 Bag-of-words (up to 3-grams) extracted from titles 
and abstracts + Medical Subject Headings (MeSH) +  
MEDLINE publication type  

Soft-margin 
polynomial SVM 

No sampling 
Undersampling, 
Oversampling, 
SMOTE, 
SMOTE + 
Undersampling 

   Step 2 UMLS terms extracted from titles and abstracts + 
Medical Subject Headings (MeSH) +  MEDLINE 
publication type 

 

After identifying soft-margin polynomial SVM as the most effective algorithm in 

Experiment 1, we conducted Experiment 2 to investigate if different re-sampling methods 
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including undersampling, oversampling, SMOTE, and SMOTE combined with 

undersampling can further enhance the classification performance. We also conducted 

Experiment 2 in two steps. In Step 1, we used features extracted using the bag-of-words 

approach, and in Step 2, we used the UMLS extracted features. In both steps, we used 

soft-margin polynomial SVM as the classifier, combined with different re-sampling 

methods.  

2.5. Experimental!Results!and!Discussion!of!Findings!

2.5.1. Experiment!1!results!

Step 1. In this step we compared multiple algorithms with the features extracted 

using the bag-of-words approach plus the MeSH and MEDLINE publication type.  The 

results of this step are shown in Table 5 with the highest performance measures for each 

dataset being highlighted. 

As discussed previously, we intend to improve precision while sustaining a high 

recall. According to (A. Cohen et al. 2006), a recall of 0.95 or greater is required for an 

automated classification system to identify an adequate fraction of the relevant articles. 

However, among the five algorithms we investigated, two of them, naïve Bayes and 

evoSVM, do not have sufficient configuration options that allow us to fix recall to be 

over 95%. We fixed recall to be at least 95% for the other three algorithms including soft-

margin polynomial SVM, SVM with linear kernel and perceptron. To do so, drawing 

upon (A. Cohen et al. 2006), we fixed the false-positive learning rate at 1.0 and adjusted 

the false-negative learning rate (FNLR) to optimize performance for each dataset. We 

tested different FNLRs in a consistent manner across for each dataset and applied cross-
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validation to identify the optimal FNLR that resulted in an as-high-as-possible precision 

while maintaining over 95% recall.  

Table 5: Experiment 1 step 1 results—Systematic Review Update 

Dataset Algorithm N TP TN FP FN Precision  Recall F1-sore WSS@95% 
ACE Soft-margin SVM 1273 21 809 442 1 4.53 95.45 8.65 58.55 

SVM 1273 21 81 1171 1 1.76 95.45 3.46 1.44 
Perceptron 1273 21 775 476 1 4.23 95.45 8.10 55.87 
evoSVM 1273 14 635 617 8 2.22 63.64 4.29 0.00 
Naïve Bayes 1273 7 1245 7 15 50.00 31.82 38.89 0.00 

AN Soft-margin SVM 156 9 28 119 0 7.03 100.00 13.14 12.95 
SVM 156 9 16 131 0 6.43 100.00 12.08 5.26 
Perceptron 156 0 0 147 9 0.00 0.00 0.00 0.00 
evoSVM 156 4 42 105 5 3.67 44.44 6.78 0.00 
Naïve Bayes 156 2 142 5 7 28.57 22.22 25.00 0.00 

SKE Soft-margin SVM 809 5 191 613 0 0.81 100.00 1.61 18.61 
SVM 809 0 804 5 0 0.00 0.00 0.00 0.00 
Perceptron 809 0 0 804 5 0.00 0.00 0.00 0.00 
evoSVM 809 3 318 486 2 0.61 60.00 1.21 0.00 
Naïve Bayes 809 1 803 1 4 50.00 20.00 28.57 0.00 

TRIP Soft-margin SVM 338 13 107 218 0 5.62 100.00 10.64 26.65 
SVM 338 13 74 254 0 4.19 100.00 8.042 16.89 
Perceptron 338 13 28 297 0 4.19 95.83 8.02 3.28 
evoSVM 338 7 117 208 6 3.26 53.85 6.15 0.00 
Naïve Bayes 338 9 283 42 4 17.65 69.23 28.13 0.00 
 

Among the three algorithms where we achieved recall of at least 0.95, including 

soft-margin polynomial SVM, SVM with linear kernel (shown as SVM in Table 5), and 

perceptron, the soft-margin polynomial SVM was prominent in achieving 100% recall for 

three of the four datasets (including AN, SKE and TRIP) and 95.45% for the dataset 

ACE. SVM with linear kernel returned high recalls in three datasets (including ACE, AN, 

and TRIP), but failed to identify any positive examples, thus resulting in 0% recall and 

precision for SKE.  The Perceptron algorithm achieved high recalls (95.45.61% and 

95.83%) for ACE and TRIP, but produced 0% recall and precision for the other two 

datasets. Among these three algorithms with fixed recall, soft-margin polynomial SVM 

achieved the highest precision (4.53% in ACE, 7.03% in AN, 0.81% in SKE, and 5.62% 

in TRIP) and the highest F1 scores for all four datasets. Soft-margin polynomial SVM 
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also returned the highest WSS@95% (56.9% in ACE, 13% in AN, 18.6 % in SKE, and 

26.65% in TRIP) for all four datasets. Perceptron returned the second highest WSS@95% 

(55.87%) for the dataset ACE, and SVM with linear kernel returned the second highest 

WSS@95% (16.83%) for TRIP. It is noteworthy that in the case of the dataset SKE, 

where both SVM with linear kernel and perceptron failed to identify any true positive 

(TP) examples (see Table 5) and hence returned 0% precision and 0% WSS@95%, soft-

margin polynomial SVM was able to produce 18.61% work reduction. Also, for the 

dataset AN, soft-margin SVM produced 12.95% WSS@95%. It was followed by SVM 

with linear kernel with a much lower WSS@95% (5.26%). Among the four datasets we 

used, SKE and AN have a smaller number of positive examples (16 and 9 respectively). 

Our soft-margin SVM appeared to be more effective than the other algorithms in dealing 

with datasets with a small number of positive articles.  

 If we consider all of these five algorithms, soft-margin polynomial SVM 

produced the second highest F1 scores for all four datasets. On the surface, naïve Bayes 

appeared to have achieved higher precisions and F1 scores. For instance, naïve Bayes 

returned a high precision (28.57%) and the highest F1 score (25.00%) but a low recall 

(22.22%) when applied to the dataset AN. However, a close investigation revealed that it 

returned only two true positive predictions, which means among the nine articles that 

were included in a systematic review, the naïve Bayes classifier has classified only two of 

them to be positive. Similarly, for the dataset SKE, naïve Bayes achieved relatively high 

precision (50%) and highest F1 score (28.57%), but made only one true positive 

prediction. This proves that for asymmetrically distributed datasets, precisions and F-

scores are not meaningful when a high recall cannot be obtained. The experimental 
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results in Step 1 clearly showed that among the five algorithms we have compared, soft-

margin polynomial SVM achieved the best performance when we used the features 

extracted using the bag-of-words approach. Moreover, soft-margin polynomial SVM 

performed significantly better than the other algorithms for the datasets that have a small 

number of positive examples. 

Table 6: Experiment 1 step 2 results—Systematic Review Update 

Dataset Algorithm N TP TN FP FN Precision  Recall F1-sore WSS@95% 
ACE Soft-margin SVM 

1273 21 1065 186 1 10.41 
9

5.45!

1
8.34!

7

8.74!

SVM 1273 21 500 751 1 2.72 9

5.45!

5
.29!

3
4.36!

Perceptron 1273 21 865 386 1 5.16 9

5.45!

9
.79!

6
3.03!

evoSVM 1273 13 1113 138 9 8.61 5
9.09!

1
5.03!

0.
00!

Naïve Bayes 1273 15 1225 26 7 36.59 6
8.18!

4

7.62!

0.
00!

AN Soft-margin SVM 156 9 24 123 0 6.82 1

00.00!

1
2.77!

1

0.38!

SVM 156 9 18 129 0 6.52 1

00.00!

1
2.24!

0.
53!

Perceptron 156 0 147 0 9 0.00 0
.00!

0
.00!

0.
00!

evoSVM 156 2 137 10 7 16.67 2
2.22!

1
9.05!

0.
00!

Naïve Bayes 156 2 138 9 7 18.18 2
2.22!

2

0.00!

0.
00!

SKE Soft-margin SVM 809 5 436 368 0 1.34 1

00.00!

2
.65!

4

8.89!

SVM 809 0 804 0 5 0.00 0
.00!

0
.00!

0.
00!

Perceptron 809 0 804 0 5 0.00 0
.00!

0
.00!

0.
00!

evoSVM 809 3 764 40 2 6.98 6
0.00!

1

2.50!

0.
00!

Naïve Bayes 809 2 770 34 3 5.56 4
0.00!

9
.76!

0.
00!

TRIP Soft-margin SVM 329 13 173 152 0 7.88 1

00.00!

1
4.61!

4

6.18!

SVM 329 13 122 203 0 6.02 1

00.00!

1
1.35!

3
1.09!

Perceptron 329 13 107 218 0 5.63 1

00.00!

1
0.66!

2
6.66!

evoSVM 329 11 136 189 2 5.50 8
4.62!

1
0.33!

0.
00!

Naïve Bayes 329 5 309 16 8 23.81 3
8.46!

2

9.41!

0.
00!

Step 2.  In this step, we compared multiple algorithms with features including the 

automatically extracted UMLS terms plus the Medical Subject Headings (MeSH) and 
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MEDLINE publication type.  Table 6 shows the performance of the five algorithms. 

Again, evoSVM and naïve Bayes returned recall values below the acceptable level (95%) 

for all datasets. Among the other three algorithms with over 95% recall, soft-margin 

polynomial SVM had the highest precision across all four datasets. It also had 100% 

recall for three datasets (AN, SKE and TRIP) and 95.45% recall for the ACE dataset. 

SVM with linear kernel produced 95.45% recall for the ACE dataset, but soft-margin 

polynomial SVM achieved higher precision (10.14% vs. 2.72%) and much higher 

WSS@95% (78.74% vs. 34.36%). Among the three algorithms with fixed recall, soft-

margin polynomial SVM again produced the highest precisions and F1 scores for all of 

the four datasets. Soft-margin SVM distinguished itself from the other algorithms when 

applied to the dataset SKE that has only 9 positive examples. While all the other 

algorithms resulted in 0% work saved, soft-margin SVM produced 48.89% WSS. Naïve 

Bayes had the highest precision and F1 scores; however, the low recalls rendered the 

precisions and F1 scores hardly meaningful. Our findings in step 2 of experiment 1 are 

consistent with those obtained in step1. Soft-margin SVM performed better than the other 

algorithms across all four datasets when we used the automatically extract UMLS terms 

as the features. It was the optimal algorithm that could provide an improved precision and 

enhanced percentage of work saved, especially when applied to datasets with few 

positive examples. 

Comparing the results obtained in step 1 vs. step 2, we found that when applied to 

three datasets including ACE, SKE and TRIP, all three algorithms with recall fixed to be 

at least 95% achieved higher precisions, F1 scores and WSS@95% when UMLS was 

used to extract features. These three algorithms, however, achieved overall worse results 
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for the dataset AN. Table 7 shows the performance of soft-margin polynomial SVM 

using the UMLS terms as features vs. using bag-of-words. For the dataset AN, soft-

margin SVM successfully identified all included articles in the dataset, but it performed 

slightly worse with a larger FP value (123 vs. 119), which is not critical given that 

reviewers just need to manually review 4 additional articles. Using UMLS to extract 

features significantly enhanced the performance of the soft-margin SVM classifier when 

applied to the other three datasets. A possible reason behind the UMLS-based feature 

extraction method outperforming the bag-of-words approach is that the bag-of-words 

features are created by extracting n-grams from articles without considering the 

semantics of the words. UMLS (used in conjunction with vocabularies such as CPT, 

MeSH, SNOMED CT, etc.), on the other hand, identifies the semantic type for each 

extracted term and provides the synonyms of the term when available. Moreover, using 

UMLS to extract terms entails an automatic variable selection procedure - it extracts only 

the terms that are commonly used in medical literature. This automatic variable selection 

helps improve classification performance by reducing over-fitting. 

Table 7: Comparing soft-margin SVM results obtained in step 1 vs those obtained in step 2—
Systematic Review Update  

Dataset Feature 
extraction 
method 

N TP TN FP FN Precisio
n  

Recall F1-
sore 

WSS@95
% 

ACE Bag-of-words 1273 21 789 463 1 4.34 95.45 8.30 56.90 
UMLS 

1273 21 1065 186 1 10.41 
9

5.45!

1

8.34!

7

8.74!

AN Bag-of-words 156 9 28 119 0 7.03 100.0
0 

13.1
4 13.06 

UMLS 156 9 24 123 0 6.82 100.0
0 

12.7
7 10.38 

SKE Bag-of-words 809 5 191 613 0 0.81 100.0
0 1.61 18.6 

UMLS 809 5 436 368 0 1.34 100.0
0 2.65 48.89 

TRIP Bag-of-words 338 13 107 218 0 3.63 100.0
0 

10.6
6 26.65 

UMLS 338 13 173 152 0 7.88 100.0
0 

14.6
1 46.18 
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In summary, the results of experiment 1 demonstrated that 1) soft-margin 

polynomial SVM consistently performed better than the other algorithms across the four 

datasets, and 2) overall, using the UMLS terms as features helps enhance the 

performance of soft-margin polynomial SVM and the other algorithms as well.  

2.5.2. Experiment!2!results!

Table 8: Experiment 2 step 1 results with features extracted based on bag-of-words—
Systematic Review Update 

Dataset Sampling method N TP TN FP FN Precision  Recall F1-
sore 

WSS@95% 

ACE Undersampling 1273 21 859 392 1 5.08 95.45 9.66 62.56 
Oversampling 1273 21 853 398 1 5.01 95.45 9

.52 62.09 

SMOTE 1273 21 952 299 1 6.56 95.45 1
2.28 69.86 

SMOTE + 
Undersampling 1273 21 981 270 1 7.22 95.45 1

3.42 72.14 

Non-sampling 1273 21 809 442 1 4.53 95.45 8
.65 58.55 

AN Undersampling 156 9 4 143 0 5.92 100.00 11.18 0.00 
Oversampling 156 9 21 126 0 6.67 100.00 1

2.50 8.46 

SMOTE 156 9 22 125 0 6.72 100.00 12.59 9.10 
SMOTE + 
Undersampling 156 9 21 126 0 6.67 100.00 1

2.50 8.46 

Non-sampling 156 9 28 119 0 7.03 100.00 1
3.14 12.95 

SKE Undersampling 809 5 107 697 0 0.71 100.00 1.41 8.23 
Oversampling 809 5 317 487 0 1.02 100.00 2

.01 34.18 

SMOTE 809 5 434 370 0 1.33 100.00 2.63 48.65 
SMOTE + 
Undersampling 809 5 400 404 0 1.22 100.00 2

.42 44.44 

Non-sampling 809 5 191 613 0 0.81 100.00 1
.61 18.61 

TRIP Undersampling 338 13 43 282 0 4.41 100.00 8.44 7.72 
Oversampling 338 13 134 191 0 6.37 100.00 1

1.98 34.64 

SMOTE 338 13 164 161 0 7.47 100.00 1
3.90 43.52 

SMOTE + 
Undersampling 338 13 201 124 0 9.49 100.00 1

7.33 54.47 

Non-sampling 338 13 107 218 0 5.62 100.00 1
0.64 26.65 

After demonstrating that soft-margin SVM is the better classification algorithm 

compared with the other algorithms in Experiment 1, we investigated if we can further 
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enhance precision while maintaining a high recall using different re-sampling methods.  

We tested four re-sampling technique - undersampling, oversampling by replicating 

minority class examples, SMOTE, and SMOTE combined with undersampling. Again, 

we conducted the experiment in two steps. In both steps, we used soft-margin SVM as 

the classifier. 

Step 1. In this step, we used the bag-of-words extracted features plus the Mesh 

and MEDLINE publication type as the features. We compared the four different sampling 

methods including undersampling, oversampling by replicating minority class examples, 

SMOTE, and SMOTE combined with undersampling. Table 8 shows the results obtained 

in this step. It also includes the performance measures of soft-margin SVM when no re-

sampling has been conducted (shown as “non-sampling” in Table 8).  

Undersampling means that we randomly select a subset of the negative examples 

(articled excluded from the systematic reviews in this case), so that the number of 

positive examples is equal to that of the positive examples. When compared with non-

sampling, undersampling was only able to produce the improved performance for the 

dataset ACE (62.5% WSS@95).  It failed to achieve improved performance for both SKE 

and TRIP. Undersampling did not work at all for the dataset AN.  It helped to improve 

the classification performance for the dataset ACE due to the fact that there are relatively 

a large number of positive examples, which might be sufficient to train the classifier. We 

then oversampled the minority class examples (i.e., the included articles). For each 

dataset, we selected the optimal sampling rate based on the method described in section 

4.4. Oversampling by replicating the minority class examples (shown as “oversampling” 

in Table 8) enhanced classification performance with respect to the F1 score and 
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WSS@95% for three datasets including ACE, SKE and TRIP.  It worked especially well 

for the dataset SKE with only 9 positive examples. SMOTE is another oversampling 

technique for increasing the number of minority class examples. Compared with non-

sampling, SMOTE showed significantly improved performance for two datasets SKE and 

TRIP.  It boosted WSS@95% from 18.61% to 48.65% for SKE and from 26.65% to 

43.52% for TRIP.  

Table 9: Experiment 2 step 2 results—Systematic Review Update 

Dataset Sampling method N TP TN FP FN Precision  Recall F1-
sore 

WSS@95% 

ACE Undersampling 1273 21 1065 186 1 10.82 95.45 19.44 78.74 
Oversampling 1273 21 936 315 1 6.50 95.45 12.17 68.61 
SMOTE 1273 21 1096 155 1 12.88 95.45 22.70 81.17 
SMOTE + 
undersampling 1273 21 1104 147 1 13.55 95.45 23.73 81.80 
Non-sampling 1273 21 960 264 1 7.72 95.45 14.29 70.49 

AN Undersampling 156 9 6 141 0 6.00 100.00 11.32 0.00 
Oversampling 156 9 22 125 0 6.72 100.00 12.59 9.10 
SMOTE 156 9 38 109 0 7.63 100.00 14.17 19.36 
SMOTE + 
undersampling 156 9 43 104 0 7.96 100.00 14.75 22.56 
Non-sampling 156 9 24 123 0 6.82 100.00 12.77 10.38 

SKE Undersampling 809 5 349 455 0 1.15 100.00 2.28 38.14 
Oversampling 809 5 516 342 0 1.56 100.00 3.08 58.78 
SMOTE 809 5 478 326 0 1.64 100.00 3.24 54.09 
SMOTE + 
undersampling 809 5 630 174 0 3.29 100.00 6.37 72.87 
Non-sampling 809 5 436 368 0 1.45 100.00 2.85 48.89 

TRIP Under-sampling 338 13 62 263 0 4.78 100.00 9.12 13.34 
Oversampling 338 13 204 121 0 10.00 100.00 18.18 55.36 
SMOTE 338 13 215 110 0 10.92 100.00 19.70 58.61 
SMOTE + under-
sampling 338 13 220 105 0 11.40 100.00 20.47 60.09 
Non-sampling 338 13 173 152 0 8.07 100.00 14.94 46.18 
As shown in Table 9, SMOTE also outperformed plain oversampling across all 

four datasets. Combining SMOTE and under-sampling enabled our classifier to achieve 

higher precisions, F1 scores and WSS@95% than SMOTE alone for two datasets 

including ACE and TRIP. It produced slightly worse performance for the other two 

datasets. The datasets ACE and TRIP have larger numbers of included articles than the 

other two datasets, which indicates that with the bag-of-words features, SMOTE 
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combined with undersampling may be the optimal re-sampling method when applied to 

datasets with relatively a large number of positive examples, while we may need to use 

SMOTE alone when dealing with datasets with a small number of positive examples. It is 

also noteworthy that for the dataset AN, the classifier without any re-sampling achieved 

the best performance.  

Step 2.In this step, we used the UMLS terms as the features. Again, we compared 

the four different sampling methods including undersampling, plain oversampling, 

SMOTE oversampling, and SMOTE combined with undersampling. Table 9 shows the 

results we obtained in this step. 

With the UMLS terms as the features, the classifier with undersampling showed 

performance that is consistent with what we obtained in Step 1. It did not work at all for 

the dataset AN. Compared with non-sampling, undersampling failed to improve 

performance for three datasets except ACE. Different form the results we obtained from 

Step 1, for AN, both SMOTE alone and SMOTE combined with undersampling produced 

better precision and WSS@95% values than non-sampling. It is noteworthy that SMOTE 

combined with undersampling appeared to be the best re-sampling method for all four 

datasets. It worked particularly well for the dataset SKE with only 9 positive examples. It 

doubled the precision produced by SMOTE alone and raised the WSS@95% value from 

54.09% to 72.87%.  

In Table 10, we compared the best performing re-sampling methods obtained in 

Step1 and in Step 2. With the automatically extracted UMLS terms as the features in Step 

2, SMOTE combined with under-sampling achieved better performance for all four 

datasets, and it worked particularly well for AN and SKE.  
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Table 10: Comparing soft-margin SVM results obtained in step 1 vs those obtained in step 
2—Systematic Review Update 

Datase
t 

Ste
p 

Best sampling 
method 

N TP TN FP FN Precisio
n  

Recall F1-
score 

WSS@95
% 

ACE 1 SMOTE + 
Undersamplin
g 

1273 21 981 270 1 7.22 95.45 13.4
2 72.14 

2 SMOTE + 
undersampling 1273 21 

110
4 147 1 13.55 95.45 

23.7
3 81.80 

AN 1 Non-sampling 156 9 28 119 0 7.03 100.0
0 

13.1
4 12.95 

2 SMOTE + 
undersampling 156 9 43 104 0 7.96 

100.0
0 

14.7
5 22.56 

SKE 1 SMOTE 809 5 434 370 0 1.33 100.0
0 2.63 48.65 

2 SMOTE + 
undersampling 809 5 630 174 0 3.29 

100.0
0 6.37 72.87 

TRIP 1 SMOTE + 
Undersamplin
g 

338 13 201 124 0 9.49 100.0
0 

17.3
3 54.47 

2 SMOTE + 
under-
sampling 338 13 220 105 0 11.40 

100.0
0 

20.4
7 60.09 

 

In summary, the results of experiment 2 demonstrated that 1) overall, SMOTE-

based re-sampling methods including both SMOTE alone and SMOTE combined with 

undersampling helped improve classification performance of the soft-margin SVM 

classifier, whether we used the UMLS extracted features or bag-of-words; 2) the 

combination of SMOTE and undersampling in general performed better than SMOTE 

alone when the UMLS terms were used as the features. It is understandable that 

undersampling failed to achieve high performance since in undersampling, we make the 

ratio between the positive class and the negative class equal to 1 by reducing the number 

of negative examples, thus losing considerable amounts of information from the negative 

examples.  SMOTE in general outperformed plain oversampling because in plain 

oversampling, the decision region that results from classification of the minority class 

actually becomes smaller as we replicate the minority class examples.  SMOTE offers 

more related minority class examples to learn from, which leads to more coverage of the 
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minority class, thus allowing a learner to create broader decision regions (Chawla 2010). 

Moreover, oversampling tends to cause overfitting because of repetitive instances that 

tightens the decision boundary. In contrast, with artificially created examples, SMOTE 

softens the boundary region and is hence less susceptible to overfitting (Longadge et al. 

2013). 

Finally, following suggested data mining practice (T. Y. Liu et al. 2007) we 

compared our analytics techniques with an existing benchmark model. The benchmark 

we used is the perceptron model developed in Cohen et al.’s study (2006), a NIH-funded 

project that represents one of the most significant research in this field. Although Cohen 

et al. used the bag-of-words method to extract the features and did not employ any re-

sampling methods, these two studies are comparable since we used the same datasets, the 

same data sources (including titles, abstracts, MeSH, and MEDLINE publication type) in 

each dataset to extract features, and the same evaluation metrics (including precision, 

recall, F1 score and WSS@95%). Figure 1 shows the comparison of our proposed 

method with the benchmark model.  

As shown in Figure 1, our approach that includes a combination of different text 

analytics techniques produced higher recalls, precisions, and F1-scores over all four 

datasets, compared with the benchmark model. The significantly improved WSS values 

indicate that our approach significantly reduced the number of articles that scientists need 

to manually review to develop systematic reviews, thereby having the potential to reduce 

labor and other costs associated with systematic reviews. Our proposed approach worked 

especially well for the datasets AN and SKE, each of which has only a few included 

article. For example, our approach produced 72.87% WSS@95% for the dataset SKE. 
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Reviewers initially queried and included 809 documents in the dataset SKE. A manual 

process will entail reviewing all 630 documents to end up with five relevant documents. 

In contrast, our proposed approach would have accurately removed 174 documents. This 

leaves only 152 articles for the reviewers to manually review (resulting in the five 

relevant articles). 

 

 

  

  

 

Figure 1: Comparison of proposed model with the benchmark model—Systematic 
Review Update 
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2.6. Conclusion!

In this section, we examined an automated method to classify relevant articles for 

inclusion or exclusion during the abstract triage stage for updating systematic reviews of 

medical research. We demonstrated that a novel combination of text analytics techniques, 

including using the automatically extracted UMLS terms as the features, soft-margin 

polynomial SVM as the classification algorithm and SMOTE combined with 

undersampling to deal with the class balance issue, help improve precision while 

sustaining a high recall (95% or higher) in article classification for SRs.  
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3. Systematic!Review!Creation!

3.1. Introduction!

The general procedure of creating a new medical systematic review is similar to 

systematic review update; however, new challenge emerges because a training dataset is 

not available and researchers are attempting to answer completely new medical questions. 

The current workflow for creating systematic reviews is largely a manual process. It 

consists of 1) performing keyword search to identify potentially relevant articles, 2) 

performing article triage to identify articles for inclusion, and 3) finally, summarizing the 

selected studies via meta-analysis or other review methods. Within the workflow, article 

triage - identifying articles for inclusion in a systemic review - is particularly resource 

intensive (Shojania et al. 2007).  

In that regard, various machine learning methods have been proposed to automate 

the article screening for systematic reviews (Bekhuis and Demner-Fushman 2012; 

Shemilt et al. 2013; Adeva et al. 2014). Supervised learning has has proven helpful 

during “abstract triage”, where the abstracts of thousands or tens of thousands of articles 

retrieved from medical databases are reviewed and classified into “relevant” and 

“irrelevant”. Supervised learning assumes a readily available training dataset. For 

instance, Cohen et al. (2006b) proposed a perceptron-based classifier that helps 

automatically identify relevant articles. The corpus used in the study includes 24 datasets 

on different medical topics collected by scientists at the Oregon Evidence-based Practice 

Center for the Drug Effectiveness Review Project (DERP). DERP scientists labeled each 

article in the dataset as “relevant” or “irrelevant” based on the abstract alone. Only the 
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relevant articles would be included in full-text triage. When comparing various 

supervised learning algorithms for article selection, Adeva et al. (2014) used a dataset 

called Internet-Based Randomized Control Trial (IBRCT) mapping. It consists of 1941 

articles that were read and classified by a committee of experts into 510 relevant and 

1431 irrelevant instances. Supervised learning relies on a large training dataset, which 

can be problematic in this context because when we create a new systematic review, 

training data is rarely available. Cohen et al. (2006b) admitted the problem and focused 

on predicting which new articles are most likely to include evidence warranting inclusion 

in a review update. According to Cohen et al. (A. M. Cohen et al. 2009), the procedures 

for creating and updating systematic reviews (SRs) are similar; however, one important 

difference is that an SR update already has a collection of included/excluded article 

judgments that are based on previous reviews. Due to the lack of considerable amounts of 

training data, supervised learning methods proposed in exiting research holds very little 

promise for systematic review creation. Given a medical problem, a keyword search can 

return thousands or tens thousands of articles. Labeling these articles to create a 

sufficiently large training dataset is difficult, laborious and time-consuming. Scientists 

can afford to create a small-sized training set. However, it is known that a small-sized 

training dataset often leads to an overly simple prediction function that may not be rich 

enough to capture the true underlying relationship.  

In recent years, semi-supervised has received considerable attention in the area of 

data mining due to its potential for reducing the effort of labeling data. Semi-supervised 

learning falls between supervised and unsupervised learning techniques. It refers to the 

method of using a large unlabeled data set U together with a given labeled dataset L in 
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order to generate prediction functions that are more accurate on new data than would 

have been achieved using just L alone.  It is motivated by the fact that in many settings, 

unlabeled data is plentiful but labeled data is limited or expensive. When it comes to 

creating a new systematic review, labeled training data (i.e., articles that have been 

reviewed by human experts) is mostly not readily available and is costly to obtain, 

requiring a manual review of thousands of articles. The goal of this research therefore is 

to perform an exploratory analysis of semi-supervised learning techniques for article 

selection for medical systematic reviews. More specifically, we plan to explore the ability 

of semi-supervised learning to overcome the labeling bottleneck and automate systematic 

review creation with a small-sized training dataset that includes, say, one or two hundred 

labeled articles. We perform comparative studies of various semi-supervised learning 

methods and identify the techniques suited for systematic review creation. To our 

knowledge, the proposed research is one of the first that conducts a comprehensive study 

on the feasibility of using semi-supervised learning to address the small-sized training 

dataset problem that hampers the use of classification algorithms for systematic review 

creation.  

3.1.1. Related!Work!!

Nowadays, there are public databases such as a global network of Cochrane 

entities and a North American network of AHRQ-funded Evidence-based Practice 

Centers that enables scientists to access up-to-date research findings. Even so, developing 

a systematic review is slow. The average time to complete a systematic review is 2.4 

years with a reported maximum of 9 years. A bottleneck occurs during “abstract triage”, 

where scientists screen the title and abstract of thousands or tens of thousands of articles 
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for inclusion in a systematic review. Hence, most of the existing research has focused on 

automating abstract triage using supervised learning methods (Ananiadou et al. 2009; 

Bekhuis and Demner-Fushman 2012; A. Cohen et al. ; Frunza et al. 2010; Shemilt et al. 

2013). Cohen et al. (2006b), in a National Institute of Health (NIH) supported project, 

developed a perceptron-based classifiers to identify journal articles for inclusion in 

systematic review update, based on the title and abstract of the articles. In another study, 

Frunza et al. (2010) applied naïve Bayes to a dataset of 47,274 manually labeled article 

abstracts. They obtained very high recall values (up to 99%) and moderately high 

precision of 63%. There are also studies that focus on comparing different algorithms that 

can be used to classify articles for systematic reviews. For instance, Bekhuis and 

Demner-Fushman (2012) compared different supervised learning algorithms including K-

nearest neighbor (K-NN), naïve Bayes, complement naïve Bayes (cNB), and evolutionary 

SVM (EvoSVM) for “abstract triage”. The authors demonstrated that based on text 

mining techniques, the number of documents that need to be further manually screened 

was reduced by up to 46%, and among the three algorithms, EvoSVM achieved the 

highest recall (100% for both datasets) and relatively low precisions  (13.11% for the 

ameloblastoma dataset and 10.69% for the influenza dataset). Timsina et al. (2015) 

compared different supervised algorithms including SVM, Naïve Bayes, perceptron, etc., 

exploited Unified Medical Language Systems (UMLS) for medical terms extraction, and 

examined various techniques to resolve class imbalance issues. Through an empirical 

study, they demonstrated that SVM with polynomial kernel achieves better classification 

performance than other existing algorithms, and the performance of the classifier can be 

further improved by exploiting UMLS to identify medical terms in articles and applying 
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re-sampling methods to resolve the class imbalance issue. Adeva et al.’s (Adeva et al. 

2014) conducted experiments that involved multiple classification supervised learning 

algorithms (including naïve Bayes, k-Nearest neighbor, Support vector machines, and 

Rocchio) combined with several feature selection methods (including TF, DF, IDF, etc.), 

and applied to different parts of the given articles (including titles alone, abstracts alone 

and both titles and abstract). SVM has produced the highest F-measure when applied to 

the titles/abstracts. All these studies developed supervised learning classifiers based on 

large training datasets with manually designated labels. As discussed previously, a 

conspicuous problem with the supervised learning based approach to article selection is 

that supervised learning, to be effective, requires large amounts of training data, which is 

often not readily available in most circumstances when we create a new systematic 

review. It is time-consuming and resource-intensive for scientists to screen thousands of 

articles (even just the title/abstract of the article) to create a training dataset. In view of 

the problem, Cohen et al. (2006) suggested to focus on updating a review, where a 

reviewer already has a set of relevant documents in the form of the studies included in the 

original review. 

Is it possible to develop a new systematic review without asking scientists to 

manually review thousands of articles? There are a few studies that attempted to provide 

feasible solutions to the problem. Cohen et al (2009) investigated whether a topic-specific 

automated document ranking system for systematic reviews (SRs) can be improved using 

a hybrid approach, combining topic-specific training data with data from other SR topics. 

The authors found that when topic-specific training data are scarce, leveraging training 

data previously used for developing systematic reviews for other related topics can 
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significantly enhance the classification performance.  There is also research that focuses 

on prioritizing the order in which citations (including titles, articles, keywords, etc.) will 

be screened. Tomas et al. (2011) suggested a possible method called “term recognition”, 

which works by treating the included titles and abstracts as one big (and growing) 

document. This method can start with a relatively small number labeled articles. Each 

time another article is marked as “included”, its text is added to the previously included 

titles and abstracts. The key terms from this string of text are then identified, and a search 

is carried out on the remaining titles and abstracts. The search is weighted by the 

significance attached to each term and the results ordered in terms of relevance. Thus, 

rather than viewing the documents in no particular order, those most similar to the studies 

already included are reviewed first. Unfortunately, no empirical results were presented on 

this “term recognition” method. 

3.1.2. Research!Gap!

Overall, the findings of extant research indicate that supervised learning shows 

enough promise for automating the article selection process for systematic reviews if 

sufficient training instances are available. This is however a big “if” since developing a 

sufficiently large training set often requires screening the title/abstract of thousands of 

articles. Extensively studied in machine learning and applied to text classification, semi-

supervised learning has been proved to be effective in case of a small-sized training 

dataset (e.g., Song et al., (2011); Jin, (2011)).  Nonetheless, little research to date has 

examined if semi-supervised learning can help truncate the costly and laborious article 

screening process for systematic reviews by requiring a small percentage of labeled 

instances. This leads us to the following research questions:  
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1- Is semi-supervised learning a viable technique for systematic review creation with 

limited labeled articles?  

To address this issue, we compare semi-supervised learning techniques with 

supervised learning to determine if semi-supervised learning produces more meaningful 

empirical results when used with a small-sized training dataset.  

2- Which semi-supervised learning method is most valuable for article selection for 

systematic reviews?  

We compare the performance of different semi-supervised learning algorithms 

and then investigate if combining “self-training” and “active-learning” with the best 

performing algorithm can further enhance article classification performance. 

3.2. Article!Classification!

Our study includes three major components: 1) comparing the classification 

performance of different semi-supervised learning algorithms for systematic review 

article selection; 2) determining if combining “self-training” with the best performing 

algorithms identified in the previous step helps enhance classification performance, and 

3) determining if combining “active-learning” with the best performing algorithms helps 

enhance classification performance. We conducted three experiments using three 

systematic review datasets. Before we describe our experiments in detail, we first 

describe the data sources, the semi-supervised methods, and the evaluation metrics for 

article classification used in our research. 

3.2.1. Datasets!and!data!processing!

We used three systematic review datasets on drug topics including 

AtypicalAntipsychotics (AT), NSAID, and Estrogens (ESTRO) collected by AHRQ’s 
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Evidence-based Practice Center (EPC) at Oregon Health and Science University in our 

research. These three systematic review datasets were also used in (A. Cohen et al. 2006). 

We wanted to identify if our experiments consistently produce desirable results across 

multiple sample sets; therefore, we used different datasets for SR creation and SR update 

procedure. Table 11 shows an overview of the datasets. Since, class imbalance issue is 

norm of systematic review dataset, Table 11 shows that there are much more irrelevant 

articles than relevant ones in all three datasets. 

Table 11: Overview of Datasets—Systematic Review Creation 
Dataset Total number 

of articles 
Number of articles 
labeled as relevant 

Number of articles 
labeled as irrelevant 

Ratio— relevant 
vs. irrelevant  

Antihistamines (AT) 1120 363 757 0.48 
Estrogens (ESTRO) 370 81 289 0.28 
NSAID 393 88 305 0.29 

         

Each document in our datasets includes the title, abstract, Medline publication 

type, and Medical Subject Heading of an article. After stop-word removal and stemming, 

we treated each document as a “bag of words”, and each document was represented by a 

vector consisting of the TF-IDF weights of the words. TF-IDF is a numerical statistic that 

reveals the importance of a word to a document in a dataset. The TF-IDF value of a word 

increases as it appears more often in a document, but is offset by the frequency of the 

word in the whole dataset. This helps to mitigate for the fact that some words such as 

“patient” and “disease” are generally more common than other words in medical 

documents. 

3.2.2. SemiOsupervised!Learning!Methods!

We investigate the following semi-supervised learning methods. 
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Label Spreading (Zhou et al. 2004): Label Spreading assumes that geometrically 

closer data points tend to be similar. There are two general ideas related to label 

spreading: 1) the labeled examples act as sources that push out labels to unlabeled data, 

and 2) an example propagates its label to its neighboring examples according to their 

proximity to it. 

Formally, we are presented with a set of n data points X = XL ∪ XU = {x1, ..., xl, 

xl+1, ..., xn}, where XL represents the labelled subset, XL the unlabeled subset, and xi ∈ Rm 

is a m-dimensional feature vector representing the i-th data point. For the first l data 

points, we have the corresponding labels YL = {y1, ..., yl}, where yi ∈ {−1, 1}. Let F(0) = { 

y1, ...., yl, 0, ..., 0} be the vector that represents the labels for the data points, where yi = 0 

for l < i ≤ n.  

We code the data as a graph G = (X, W). The nodes X represent individual data 

points, and the edges are coded in an affinity matrix W. W stores the similarity between 

data points. In our research, we used the RBF kernel (radial basis function) as the 

similarity function, i.e., Wij = exp(−||xi – xj||
2/2σ2)  ∀i ≠ j , and Wii = 0. The normalized 

graph Laplacian L is defined as  

                                              L = D−1/2WD−1/2 with Dii = !!"!  .                                            

Label spreading proposed in is a graph based semi-supervised learning technique 

that spreads the label information from XL to the XU based on the affinity of the data 

points. It does this via the normalized graph Laplacian, and mathematically, the iterative 

information spreading is:  

                                            F(t + 1) = αLF(t) + (1 − α)F(0),                                                         
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where α is a suitably chosen learning rate. This iteration converges to the solution  

                                           F∗ = (1 − α)(I − αL) −1F(0),                                                                 

The solution F∗ can be interpreted as node weights after YL has been propagated 

across the graph. Due to the smoothness constraints, reliable labels should reinforce each 

other, resulting in higher node weights, whereas labels showing inconsistencies tend to 

cancel out, resulting in lower node weights. 

Label Propagation (Zhu and Ghahramani 2002):  Label propagation is similar to 

Label spreading in that both algorithms are graph-based, and both attempt to propagate a 

node’s label to its neighboring nodes according to their proximity.  Using label 

propagation, we also construct the graph G = (X, W), where X represents individual data 

points, and the edges are coded in an affinity matrix W.  The major difference between 

label propagation and label spreading is that label propagation uses the raw similarity 

matrix W constructed from the data with no modifications, while label spreading iterates 

on a modified version of the original graph and normalizes the edge weights by 

computing the normalized graph Laplacian matrix L (see above). 

Semi-supervised Support Vector Machine (S3VM) (Bennett and Demiriz 

1999): S3VM, an extension of standard support vector machine with unlabeled samples, 

is another widely used semi-supervised learning technique. The goal of an S3VM 

classifier is to find a labeling of the unlabeled samples, so that a linear boundary has the 

maximum margin on both the original labeled samples and the (now labeled) unlabeled 

samples. The obtained decision boundary has the smallest generalization error bound on 

unlabeled samples.  
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Formally, standard linear supervised SVMs output a decision function of the form 

f(x) = sign (wTx + b), by minimizing the following objective function 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !w
!w!+ !C! !(!!(!!!! + !))!

!!! !,                                                    

where l (t) = max(0, 1−t) is a hinge loss function penalizing the training errors and 

C is a trade-off constant.   

In the semi-supervised case, an additional term is added to the objective function 

that drives the outputs wTxi + b of the unlabeled point xi away from 0 (thereby 

implementing the cluster assumption): 

!
! !w

!w!+ !C! ! !! !!!! + ! + !C!∗ !(|!!!! + !|)!
!!!!!

!
!!!                                    

The main problem is that this additional term in the objective function (5) is non-

convex, which make optimization difficult (Zhu 2005).  

We selected the above three semi-supervised learning algorithms because they are 

widely used, and we have reliable implementations of them. Scikit-learn, a well-known 

machine learning toolkit, includes implementations of label spreading and label 

propagation. We used the S3VM implementation developed by (Gieseke et al. 2014). 

In our research, we also considered two wrapper methods for semi-supervised 

learning: Self-training and Active Learning. They are wrapper methods because they 

“wrap” some existing classifiers. In self-training, an existing classifier (such as SVM) is 

first trained with the small amount of labeled data. The classifier is then used to classify 

the unlabeled data. Typically, the most confident unlabeled points, together with their 

predicted labels, are added to the training set. The classifier is re-trained and the 

procedure repeated.  
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Active learning is a special type of semi-supervised learning. Active learning 

resembles self-training in that it also attempts to overcome the labeling bottleneck by 

identifying the most informative set of unlabeled instances based on some existing 

classifiers. It differs from self-training in that after selecting the most confident unlabeled 

samples, it requests an oracle (e.g., a human expert) to assign their labels. Active learning 

is also an iterative process in which it first trains a classifier with few training instances, 

based on the training results, it selects an optimal set of unlabeled instances and queries 

an oracle for manual labeling, and then it re-trains the algorithm based on the 

incremented training data.  

3.3. Evaluation!

We evaluated article classification performance using the classical precision, 

recall, and F1 metrics. The formulas for computing recall, precision, and F1are shown in 

Table 12. TP represents the number of True Positives, i.e., positive samples that were 

correctly classified. TN is the number of True Negatives, i.e., negative samples that were 

correctly classified, FP the number of False Positive, i.e., negative samples that were 

incorrectly classified as positive, and FN the number of False Negatives, i.e., positive 

samples incorrectly classified as negatives. Recall refers to the rate of correctly classified 

positives among all positives and is equal to TP divided by the sum of TP and FN. 

Precision refers to the rate of correctly classified positives among all examples classified 

as positive and is equal to the ratio of TP to the sum of TP and FP. F1 represents the 

harmonic mean of recall and precision.  

 



 

56 

Table 12: Evaluation metrics—Systematic Review Creation 
Evaluation Metric Formula 
Recall TP/ (TP+FN) 
Precision TP/(TP+FP) 
F1 (2*recall*precision)/(recall + precision) 

 

3.4. Experiments!

We conducted three experiments to evaluate the effectiveness of the various semi-

supervised learning methods for article selection for systematic reviews. The datasets we 

used in the experiments are the three datasets we described in Table 11.  

3.4.1. Experiment!1!–!Comparing!different!semiOsupervised!learning!algorithms!

In Experiment 1, we evaluated the effectiveness of three generic semi-supervised 

learning algorithms including label spreading, label propagation, and S3VM. We 

compared the performance of these semi-supervised learning algorithms with standard 

supervised SVM with polynomial kernel. SVM with polynomial kernel has been proved 

to achieve better performance than others in a recent study that compares a variety of 

supervised learning algorithms for article selection for systematic reviews (Timsina et al. 

2015).  

a. Experiment design 

We started with 5% labeled articles as seeds or initial training instances. We 

conducted stratified sampling to make sure that 5% of the positive instances and 5% of 

the negative instances in the seeds. Using the 5% seeds (i.e., initial labeled instances) as 

the training set and the rest 95% samples as the test set, we conducted semi-supervised 

learning using the three different algorithms. Since the seeds were randomly sampled, 
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this random sampling would have a substantial effect on the performance of the 

classifiers. Hence, for each algorithm, we conducted 50 trials to ensure the reliability of 

the results. We started with label spreading. In each trial, we first randomly selected 5% 

seeds including 5% of the positive instances and 5% of the negative instances are in the 

seeds and then performed learning. We then averaged the results of 50 trials to generate 

the final results for the label spreading algorithm with 5% seeds. This approach is 

consistent with an earlier approach used in literature (Zhu and Ghahramani 2002). For the 

other algorithms including label propagation, S3VM, supervised SVM, we did not re-

select the seeds. Rather, we used the 5% seeds that were previously selected in the 50 

trials for label spreading to ensure that we compared the different algorithms using the 

same training and test sets. After getting the results with 5% seeds, we increased the 

number of seeds to 10%, 15%, 20%, 25%, and 30%. For each number of seeds, we again 

conducted 50 trials and obtained the average results. 
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b. Results and findings 

The results of Experiment 1 are shown in Figure 2.     

Dataset: AT 

(1.a)

 

(1.b) 

 

(1.c)

 

Dataset: ESTRO 
(2.a)

 

(2.b)

 

(2.c)

 

Dataset: NSAID 

(3.a)

 

(3.b)

 

(3.c)

 

 

 Figure 2. Experiment 1 Results—Systematic Review Creation 
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Among the three measures including recall, precision and F1, recall is probably 

the most important one in this context. Any automated system for identifying relevant 

articles must maintain a very high level of recall since ideally, a systematic review should 

include all articles that provide high quality evidence relevant to a topic. Any system with 

a low recall would be of little use (Matwin et al. 2010).  Cohen et al. (2006) even 

assumed that a recall of about 0.95 is required for a classification system to identify an 

adequate fraction of the positive papers. The diagrams (1.a), (2.a) and (3.a) in Figure 2, 

respectively, show the recall results when we applied the three semi-supervised learning 

algorithms and the benchmark supervised SVM to the three datasets 

AtypicalAntipsychotics (AT), Estrogens (ESTRO), and NSAID. Label spreading 

consistently achieved higher recall than the other algorithms across all three datasets. 

When applied to the dataset AT, label spreading obtained around 90% recall with over 

10% seeds. For the dataset ESTRO, label spreading produced recall of 83.32% with 10% 

seeds and raised recall to 90% with 20% seeds and to 94.36% with 30% seeds. It also 

produced recall of 90.32% with 20% seeds and recall of 91.23% with 30% seeds for the 

dataset NSAID. Label propagation also achieved relatively high recalls for all three 

datasets. In two datasets, AT and NSAID, with 30% seeds, label propagation and label 

spreading produced similar recall results. However, label spreading consistently achieved 

higher recall than label propagation when the number of seeds is smaller than 25%. 

S3VM and SVM produced lower recall results than the two graph-based algorithms 

including label spreading and label propagation. S3VM produced recall results similar to 

those obtained by standard supervised SVM for two datasets ESTRO and NSAID with 

over 10% seeds. It appeared that S3VM failed to produce a recall that is high enough to 
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make it a feasible method for article selection with a small-sized training set. The highest 

recall values yielded by S3VM for the three datasets include 81.81 % for AT, 85.52% for 

ESTRO, and 84.69% for NSAID. 

The diagrams (1.b), (2.b) and (3.b) in Figure 2 display the precision results 

obtained by different algorithms for the three datasets. Precision is still essential in this 

context, but it is only meaningful when a high recall has been achieved. A higher 

precision means that the articles that are classified as “relevant” are indeed relevant, 

which means that a smaller number of articles needed to be manually reviewed. The 

diagram (1.c), (2.c) and (3.c) show the F1 scores. In this area, F1 is not as important a 

measure as it is in other contexts. F1 represents the harmonic mean of precision and 

recall. It hence assumes equal misclassification costs for false positive and false negative 

errors, but in the context of article selection for systematic reviews, an error of missing a 

relevant article (i.e., a false negative error) can be more expensive than an error of 

selecting an irrelevant article (i.e., a false positive error).  After all, the articles selected 

by machine learning methods still need to be manually verified. Among the three semi-

supervised algorithms, S3VM consistently achieved higher precision results than label 

spreading and label propagation. Also, compared with label spreading, S3VM produced 

similar F1 scores to label spreading for two datasets (AT and NSAID) and higher F1 

scores (46.49% vs.45.00% with 15% seeds, and 48.17 % vs. 43.50% with 30% seeds) for 

ESTRO. With respect to the metrics precision and F1, supervised SVM performed even 

better than S3VM. For the dataset AT, it yielded over 47% precision, roughly 10% higher 

than those obtained by S3VM and label spreading. For the other two datasets (ESTRO 

and NSAID), the precision results and subsequently F1 scores obtained by supervised 
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SVM underwent a jump between 20% seeds and 25% seeds, indicating that a supervised 

learning algorithm such as SVM requires a certain number of training instances (more 

than 20% in this case) to take effect. Such a jump, however, did not occur to SVM’s 

recall results. Even with 30% seeds, SVM produced low recall results (76.99% for AT, 

83.32% for ESTRO, and 78.79% for NSAID) 

In summary, the two graph-based semi-supervised methods, label spreading and 

label propagation, produced higher recall results than S3VM and SVM, while S3VM and 

SVM (with more than 20% seeds) produced relatively higher precision results. It 

appeared that the graph-based methods and the SVM-based algorithms have both 

advantages and disadvantages. Further analysis showed that label spreading and label 

propagation produced a significantly larger number of true positives than S3VM and 

SVM, which means label spreading and label propagation were able to identify some 

positive instances (i.e., relevant articles) that were missed by S3VM and SVM. With a 

significantly larger number of true positives, label spreading and label propagation 

achieved higher recall values. On the other hand, label spreading and label propagation 

also made a significantly larger number of false positive errors than S3VM and SVM. A 

false positive error means that a negative instance (i.e., an irrelevant article) was falsely 

classified as positive (i.e., relevant). As a result, overall, label spreading and label 

propagation yielded a lower level of precision than S3VM and SVM. In the context of 

systematic reviews, high recall is a prioritized criterion for effective article classification 

algorithms. Precision is useful only when a high level of recall is obtained. We hence 

believe that in this context, the graph-based algorithms are preferred to the SVM based 

algorithms. Between the two graph-based methods, label spreading performed better than 
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label propagation with respect to both recall and precision. A plausible reason can be 

label spreading minimizes a loss function that has regularization properties, as such it is 

often more robust to noise. Hence, among the three semi-supervised learning methods we 

investigated, label spreading appeared to be the optimal method for dealing with article 

selection for systematic reviews with limited labeled instance. Moreover, the results of 

experiment 1 indicates that semi-supervised learning, more specifically label spreading, 

could be a viable method for systematic review article selection with limited labeled 

instances. Label spreading obtained high recall in all three datasets. It achieved over 90% 

recall for AT and NSAID and about 95% recall for ESTRO. However, if we follow 

Cohen et al.’s requirement that a recall close to 95% is imperative for classification 

algorithms, further improving recall necessary. It is also noteworthy that compared with 

standardized supervised SVM, label spreading produced lower precision results. 

Although not as critical as recall in this context, lower precision signifies more false 

positive errors, which means that more irrelevant articles would be manually reviewed. 

We hence conducted the next two experiments, Experiment 2 and Experiment 3, to 

explore methods for further enhancing classification performance. 

3.4.2. Experiment!2!–!Enhancing!classification!performance!with!selfOtraining!

The goal of this experiment is to investigate if combining label spreading with 

self-training and supervised SVM can improve precision while maintaining or even 

enhancing recall, thus helping further reduce workload for systematic review article 

selection. Self-training is a semi-supervised method that can be used to increment the 

training set. Given an initial training dataset, self-training relies on an existing algorithm 

to label some of the most confident unlabeled instances. It then adds the newly labeled 
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instances to the training dataset and re-trains the algorithm. This process can be iterated 

over the remaining unlabeled data. Supervised learning algorithms such as SVM have 

often been used in self-learning to identify the most confident instances. In this 

experiment, we used label spreading, a semi-supervised algorithm, to select the optimal 

unlabeled instances since in Experiment 1, label spreading produced much higher recall 

and identified more true positives than SVM with a small-sized training dataset.   

a. Experiment design 

We used different numbers of seeds (i.e., initially labeled articles) ranging from 

5% to 30%. Again, to alleviate the effect of random sampling, for each seed number, we 

conducted 50 trials. Using the seeds as the initial training dataset, we performed label 

spreading learning to classify the unlabeled instances. Label spreading computed a 

weight for each unlabeled instance. An unlabeled instance with a higher weight was 

considered more likely to be positive. We ranked the unlabeled instances according the 

weights that the label spreading method produced for them. We then selected a few top 

instances and a few bottom ones and incorporated them with their predicted labels into 

the training set. This completed one iteration of self-training. The incremented training 

dataset was used to re-train the label spreading algorithm in the next iteration. Among the 

three datasets, ESTRO and NSAID have similar numbers of positive instances and 

negative instances. We tested different numbers of iterations (from 4 to 12) for these two 

datasets, and in each iteration, we also tried to select from 10 (including top 5 and bottom 

5 instances) to 20 instances (including top 10 and bottom 10 instances). It appeared that 9 

iterations of self-training with top 8 and bottom 8 instances selected in each iteration 

produced the best performance for ESTRO and NSAID. The dataset AT has a much 
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larger number of positive and negative instances. We hence conducted 18 iterations of 

self-training with top 8 and bottom 8 instances selected in each iteration to make sure that 

relatively similar percentages of new instances would be labeled and added to the training 

set across all three datasets. Table 13 includes a column called “Final Train”, which 

shows the final sizes of the incremented training datasets after the iterative self-training 

process. For instance, for the dataset AT, the initial training set included just the 5% 

seeds. 18 iterations of self-training added 40.44% instances to the training set, which 

resulted in a final training dataset that included 45.44% (40.44% new instances + 5% 

seeds) of the total instances. With the final training set, we trained a supervised SVM 

classifier and classified the remaining unlabeled instances.  

Results and findings 

Table 13: Experiment 2 results—Systematic Review Creation 

Dataset Seed 
Self-training Label Spreading SVM 
Final 
Train* Recall Precision F1 Recall Precision F1 Recall Precision F1 

AT 

5% 45.44% 80.26% 45.26% 57.88% 79.87% 39.52% 52.88% 45.18% 46.98% 46.06% 
10% 52.84% 85.58% 45.08% 58.81% 84.85% 39.75% 54.73% 72.36% 44.40% 55.03% 
15% 60.24% 85.42% 45.42% 59.31% 88.63% 39.02% 54.33% 72.59% 45.25% 55.75% 
20% 67.64% 87.33% 45.33% 59.68% 88.59% 38.31% 53.49% 73.80% 46.54% 57.08% 
25% 75.03% 88.89% 44.89% 59.65% 89.61% 37.25% 52.62% 74.52% 47.69% 58.16% 
30% 82.43% 90.17% 45.34% 60.34% 91.34% 35.91% 51.55% 75.14% 47.76% 58.40% 

ESTRO 

5% 54.67% 86.74% 29.35% 43.86% 74.99% 28.45% 41.01% 60.48% 21.14% 31.33% 
10% 59.86% 89.22% 30.93% 45.94% 83.32% 29.98% 43.88% 80.72% 26.54% 39.94% 
15% 64.71% 90.87% 35.64% 51.20% 87.88% 30.41% 45.00% 81.94% 28.74% 42.55% 
20% 69.90% 89.53% 36.44% 51.80% 90.00% 30.11% 44.96% 83.33% 29.89% 44.00% 
25% 74.74% 92.16% 38.38% 54.24% 92.15% 29.17% 44.17% 83.32% 37.34% 51.57% 
30% 79.93% 93.75% 38.66% 54.74% 94.36% 28.38% 43.50% 83.36% 36.74% 51.01% 

NSAID 

5% 52.13% 82.60% 30.35% 44.40% 81.43% 28.94% 42.51% 55.63% 29.37% 38.44% 
10% 57.38% 86.37% 30.93% 45.41% 86.45% 29.59% 43.92% 76.35% 30.98% 44.07% 
15% 62.30% 86.17% 32.64% 47.35% 89.38% 29.54% 44.25% 78.88% 30.33% 43.82% 
20% 67.21% 89.11% 38.44% 53.71% 90.46% 29.91% 44.96% 80.64% 31.84% 45.65% 
25% 72.13% 89.56% 43.38% 58.45% 90.22% 29.47% 44.43% 78.41% 40.12% 53.08% 
30% 77.38% 90.78% 43.66% 58.97% 91.23% 29.16% 44.19% 78.79% 43.28% 55.87% 

Note: *  “Final Train” stands for final training set size. Self-training added new labeled instances to the training set. This field 
indicates the size of the final training data size after the iterative self-training  

We compared the performance of self-training with that of using label spreading 

alone and of using SVM. Table 13 shows the results, with the largest recall, precision and 

F1 scores for each dataset with a specific number of seeds being highlighted. 
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We were aware that existing studies such as (A. Cohen et al. 2006; Bekhuis and 

Demner-Fushman 2012) had shown a tendency for recall to decline when precision 

increases. Since the Experiment 1 results showed that supervised SVM achieved lower 

recall but higher precision than label spreading, we decided to use SVM to train a portion 

of the unlabeled instances, which could potentially enhance precision but lower recall. 

We attempted to remedy this by using self-training to increment the training dataset. Our 

strategy hence included using self-training to increment the training set, in order to 

maintain a high level of recall, and using the incremented training set to train a 

supervised SVM learner, in order to enhance precision. Obviously, our strategy has been 

proved to be effective in enhancing precision in Experiment 2. Compared with label 

spreading, self-training produced significantly higher precision for all three datasets. For 

instance, for the dataset AT and ESTRO, self-training with 30% seeds produced precision 

that is about 10% higher than the precision obtained by label spreading alone. For the 

dataset NSAID, self-training with 30% seeds produced precision of 43.66%, while label 

spreading with the same seeds produced precision of only 29.16%. Self-training also 

produced very comparable precision results to SVM. Our strategy was also effective in 

maintaining a high level of recall. It worked especially well with a small number of 

seeds. For the dataset AT, with 5% and 10% seeds, self-training achieved higher recall 

(80.26% vs. 79.87% for 5% seeds and 85.58% vs. 84.85) than label spreading alone. For 

ESTRO with 5%, 10%, and 15% seeds and for NSAID with 5% seeds, self-training also 

yielded slightly higher recall. When the number of seeds got larger, self-training obtained 

slightly lower recall than label spreading alone. 
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To summarize, in Experiment 2, we aimed to enhance precision while 

maintaining or, better, improving recall. We used self-training with label spreading to 

identify the most confident unlabeled instances. These instances with their predicted 

labels were incorporated into the training dataset, and with the incremented training set, 

we employed SVM to classify the remaining unlabeled instances. The self-learning 

method succeeded in enhancing precision and maintaining a high level of recall. It, 

however, failed to further enhance recall. A reason could be that even if we chose to add 

the most confident instances in self-learning, some instances were still misclassified. In 

Experiment 2, across the three datasets, we labeled 1800 unlabeled instances as positive. 

We made 177 (or 9.83%) false positive errors. Our self-training method was much more 

effective in identifying negative instances, probably because our datasets are imbalanced, 

i.e., there are far fewer “relevant” than “irrelevant” instances in all three datasets. Among 

1800 instances labeled as negative in the self-training process only 28 (1.56%) were 

misclassified. A serious limitation of self-training is that these misclassified instances 

were treated as truth and were used to classify other unlabeled instances. The impact of 

these misclassified instances could snowball as the self-training process proceeded. We 

hence continued to explore the effectiveness of active learning. We expected that with 

human labeled instances incorporated into the training dataset, we could enhance both 

recall and precision. !

3.4.3. Experiment!3!–!Enhancing!classification!performance!with!active!learning!

Active learning approach has received considerable attention due to its potential 

for achieving greater classification accuracy in applications where unlabeled data may be 

abundant or easily obtained, but labels are difficult, time-consuming, or expensive to 
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obtain (Settles 2010). Active learning is similar to self-training in that the learner is 

responsible for acquiring training samples. The main difference of active learning from 

self-training is that in active learning, after an optimal set of unlabeled instances were 

identified, human experts need label these instances. In this experiment, we wanted to 

investigate whether active learning based on label spreading can further enhance the 

performance of article classification, as compared with the fully automated approaches 

such as the self-training method described above.  

a. Experiment design 

For each dataset, we again used different numbers of seeds. Again, to alleviate the 

effect of random sampling, given a specific number of seeds, we conducted 50 trials and 

took the average of the results. In each trial, we performed active learning iteratively. We 

conducted 9 iterations of active learning for the datasets NSAID and ESTRO and 17 

iterations for the dataset AT. In each iteration, we added 6 articles predicted by the 

algorithm as negative and another 6 articles predicted as positive to the labeled set.  We 

conducted multiple tests to identify these optimum parameters such as the number of 

iterations and the number of instances added to the training set. As discussed previously, 

there are more negative instance than positive ones in a typical systematic review dataset; 

machine learning hence tends to achieve high accuracy on predicting the negative 

articles, as evidenced by existing research (Shemilt et al. 2013).  Our datasets indeed 

included much fewer “relevant” articles than “irrelevant” ones. The Experiment 2 results 

showed that label spreading is effective in identify negative instances, with only 

misclassified 1.56% negative instances. Thus, in our active learning method, we added 

those instances predicted by the label spreading algorithm as negative into the labeled set 
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without asking human experts to annotate them. Positive articles, on the other hand, are 

fewer, and label spreading identified them with a higher misclassification rate in 

Experiment 2. In real practice, it is necessary for human experts to review and label the 

articles that were recognized as positive by label spreading and then add them to the 

training dataset. In our experiment, since the actual label of each instance is available in 

our datasets, we simply added the instances with their correct labels to the training 

dataset without asking human experts to review them. Like in Experiment 2, we used 

active learning to increment the training dataset iteratively. With the final incremented 

training set, we learned a SVM classifier, which was then used to classify the remaining 

unlabeled instance.  

The sizes of the final training datasets after the iterative active learning process 

are shown in the column “Total Article Read” in Table 14 below. Each final training 

dataset after active learning included the initial seeds and the newly labeled instances. In 

real practice, both the seeds and the instances labeled during active learning represent 

manually reviewed instances. We used our self-training method and supervised SVM as 

the benchmark methods. We conducted self-training and supervised SVM classification 

with an initial training dataset that included the same number of instances as in the 

training set obtained by active learning. For instance, for the dataset AT with 5% seeds, 

the augmented training dataset after active learning encompassed 26.43% of the 

instances, which included 5% seeds plus 21.43% newly labeled articles – these are 

articles supposedly reviewed by human experts. When we conducted self-training using 

the method described in section 4.2 for comparison, we also created an initial training set 

that contained 26.43% instances (including 5% seeds and another 21.43% stratified 
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samples). By doing this, we made sure that we compared actively learning and self-

training based on an equal number of manually reviewed articles. We conducted 

supervised SVM classification using the same initial training set prepared for self-

learning.  

b. Results and findings 

We compared the active learning method with supervised SVM and the self-

training method described in section 4.2. Table 14 shows the comparison results. 

 

Table 14: Experiment 3 results—Systematic Review Creation 

Dataset  Seed 
Total 
Article 
Read 

Active Learning Self-training SVM 

Recall Precision F1 Recall Precision F1 Recall Precision F1 

AT 

5% 26.43% 89.50% 50.54% 64.60% 88.98% 44.92% 59.70% 74.52% 47.69% 58.04% 
10% 31.43% 91.50% 49.52% 64.26% 91.17% 45.68% 60.86% 75.14% 47.76% 58.28% 
15% 36.43% 90.40% 51.12% 65.31% 90.17% 45.34% 60.34% 75.87% 47.78% 58.56% 
20% 41.43% 91.42% 51.53% 65.91% 90.76% 46.29% 61.31% 75.76% 47.66% 58.45% 
25% 46.43% 92.74% 52.26% 66.85% 91.37% 46.49% 61.62% 76.88% 48.22% 59.23% 
30% 51.43% 93.18% 54.81% 69.02% 91.92% 46.38% 61.65% 78.63% 47.73% 59.36% 
70%               89.95% 54.62% 66.98% 

ESTRO 

5% 27.84% 93.89% 41.82% 57.87% 92.87% 38.60% 54.53% 86.36% 37.34% 52.13% 
10% 32.70% 95.87% 42.49% 58.88% 93.97% 38.97% 55.09% 83.32% 36.74% 51.00% 
15% 37.84% 96.33% 42.67% 59.14% 94.22% 38.20% 54.36% 83.48% 36.69% 50.78% 
20% 42.70% 96.59% 41.68% 58.24% 94.69% 39.14% 55.39% 85.66% 36.93% 51.61% 
25% 47.84% 97.56% 41.95% 58.67% 95.16% 39.18% 55.50% 84.36% 37.19% 51.63% 
30% 52.70% 98.06% 44.77% 61.47% 95.64% 39.17% 55.57% 82.85% 39.88% 53.84% 
70%               93.38% 43.43% 59.28% 

NSAID 

5% 26.46% 91.60% 48.02% 63.01% 89.76% 44.02% 59.07% 78.41% 40.12% 53.08% 
10% 31.30% 92.94% 49.07% 64.23% 90.77% 44.53% 59.75% 78.79% 43.28% 55.87% 
15% 36.39% 93.34% 50.94% 65.91% 91.14% 45.16% 60.40% 77.97% 44.68% 56.81% 
20% 41.48% 94.01% 46.53% 62.25% 91.51% 45.61% 60.87% 77.10% 44.97% 56.80% 
25% 46.31% 94.44% 50.32% 65.66% 91.87% 45.37% 60.74% 78.40% 43.17% 55.68% 
30% 51.40% 94.90% 51.14% 66.46% 92.24% 46.53% 61.85% 79.02% 43.85% 56.40% 
70%               90.48% 49.51% 61.45% 

 

Table 14 shows that the active learning method produced considerably better 

recall and precision than both self-training and supervised SVM. It worked well even 

with a small number of seeds. For instance, with 10% seeds (around 31% of total 

instances read), the active learning method produced recall of 91.50% for AT, of 95.87% 

for ESTRO and of 92.94% for NSAID. We also included SVM classification results with 
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70% training datasets in Table 14. Active learning consistently outperformed SVM with 

70% training sets, with respect to all three metrics. They have comparable precision 

results. However, SVM, even with a large training set, still made quite some false 

negative errors and produced a level of recall that made it problematic to be used in the 

context of systematic review article selection. Another contributing factor that led active 

learning to outperform SVM could that be in each iteration of active learning, we selected 

roughly an equal number of positive vs. negative instances. In other words, the proposed 

active learning method implicitly performed under-sampling.  Prem et al. (2015) proved 

that since a typical systematic review dataset includes much fewer relevant articles than 

irrelevant ones, employment of re-sampling methods dealing with class imbalance such 

as under-sampling can significantly improve the performance of machine learning 

classifiers.  

In summary, we conducted three experiments, each of which shed some light on 

the use of semi-supervised learning in selecting articles for systematic reviews. The 

Experiment 1 results showed that given a small-sized training dataset, semi-supervised 

methods, especially label spreading, achieved a high level of recall, which makes them 

viable methods for reducing workload for systematic review article selection. The 

Experiment 1 results also showed that label spreading alone resulted in low precision. To 

improve precision while maintaining or better enhancing recall, we proposed a self-

training based method that combines semi-supervised learning (with label spreading 

based self-training) and supervised learning (with SVM). The Experiment 2 results 

showed that the proposed self-training based method significantly enhanced precision 

while maintaining a high level of recall. It worked especially well with small training sets 
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(5% or 10% seeds). Next, we explored the feasibility of using active learning to further 

enhance both recall and precision. Experiment 3 results showed that active learning 

produced a very high level of recall that meets Cohen et al.’s 95% recall requirement, 

suggesting that the active learning method is a highly feasible method for systematic 

review article selection with small-sized training datasets. However, active learning 

requires human expert to be continuously engaged to produce optimum results. If 

experts’ engagement is not available, with an initial small-sized training set, self-training 

provides a feasible alternative.  It is fully automatic, though the classification 

performance of self-training is inferior to that of active learning. 

3.5. Conclusion!

We examined several different semi-supervised methods and identified label 

spreading as an algorithm that produced high recall that is necessary for systematic 

review article selection. We also demonstrated that the performance of label spreading 

could be further enhanced when we combined it with self-training and active learning. 
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4. Conclusion!and!Contribution!

Evidence-based medicine has been widely promoted as a means of improving 

clinical outcomes, where evidence-based medicine refers to the practice of medicine 

based on the best available scientific evidence. Information overload, however, makes it 

difficult for healthcare providers to easily integrate evidence into practice. The challenge 

not only lie in recognizing the potential for breakthroughs in healthcare but 

in realizing this potential by providing the right tools to find the data that are relevant, 

extract information from the data, and convert that information to actionable knowledge. 

Information technology (IT) plays a crucial role in the practice of evidence-based 

medicine (EBM) by allowing health care practitioners to access and evaluate clinical 

evidence as they formulate their patient care strategies (Wells 2006). This oftentimes 

involves an analysis of a large amount of complex information.  

This research focuses on systematic reviews, the heart of evidence-based medical 

practice (Stevens 2001). The creation and update of these reviews is resource intensive. A 

major bottleneck occurs when scientists screen medical studies. Scientists need to 

identify provisionally eligible studies by reading the title and abstract of thousands of 

articles. This challenge calls for the use of text analytics to automate the article selection 

process. Next we present our concluding remarks on usage of machine learning on 

systematic review update and creation. 

4.1. Systematic!Review!Update!

In this research, we examined an automated method to classify relevant articles 

for inclusion or exclusion during the abstract triage stage for updating systematic reviews 
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of medical research. We demonstrated that a novel combination of text analytics 

techniques, including using the automatically extracted UMLS terms as the features, soft-

margin polynomial SVM as the classification algorithm and SMOTE combined with 

undersampling to deal with the class balance issue, help improve precision while 

sustaining a high recall (95% or higher) in article classification for SRs. At first, we 

compared five algorithms (Soft-margin SVM, Perceptron, SVM, evoSVM and Naïve 

Bayes) with the features extracted using the bag-of-words approach plus the MeSH and 

MEDLINE publication type. Next, we compared those five algorithm with features 

including the automatically extracted UMLS terms plus the Medical Subject Headings 

(MeSH) and MEDLINE publication type. Our empirical investigation showed that 1) 

soft-margin polynomial SVM consistently performed better than the other algorithms 

across the four datasets, and 2) overall, using the UMLS terms as features helps enhance 

the performance of soft-margin polynomial SVM and the other algorithms as well. After 

demonstrating that soft-margin SVM is the better classification algorithm compared with 

the other algorithms in Experiment 1, we investigated if we can further enhance precision 

while maintaining a high recall using different re-sampling methods.  We tested four re-

sampling technique - undersampling, oversampling by replicating minority class 

examples, SMOTE, and SMOTE combined with undersampling. We demonstrated that 

1) overall, SMOTE-based re-sampling methods including both SMOTE alone and 

SMOTE combined with undersampling helped improve classification performance of the 

soft-margin SVM classifier, whether we used the UMLS extracted features or bag-of-

words; 2) the combination of SMOTE and undersampling in general performed better 

than SMOTE alone when the UMLS terms were used as the features. 
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4.2. Systematic!Review!Creation!

This research presents a comprehensive study on the feasibility of using semi-

supervised learning to select relevant articles for systematic reviews. Specifically, we 

examined label-spreading (various kernels), label-propagation (various kernels) and 

semi-supervised support vectors machines. Through empirical evidence, we identified 

label spreading as an algorithm that produced high recall that is necessary for systematic 

review article selection when the training dataset is small. We also performed comparison 

of semi-supervised based learning algorithm with supervised techniques. We concluded 

that semi-supervised based techniques outperforms supervised based techniques when the 

training dataset is smaller than 15-20 of total samples. Next, we investigated if combining 

label spreading with self-training and supervised SVM can improve precision while 

maintaining or even enhancing recall, thus helping further reduce workload for 

systematic review article selection. Here, we compared the performance of self-training 

with that of using label spreading alone and of using SVM.  The self-learning method 

succeeded in enhancing precision and maintaining a high level of recall. It, however, 

failed to further enhance recall. We expected that with human labeled instances 

incorporated into the training dataset, we could enhance both recall and precision; thus, 

we investigated if active learning method, in which human labeled instances 

incorporated, can further optimize the result compared to self-learning and active 

learning. Active learning consistently outperformed SVM with 70% training sets, with 

respect to all three metrics. They have comparable precision results.!
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We conducted three experiments, each of which shed some light on the use of 

semi-supervised learning in selecting articles for systematic reviews. The Experiment 1 

results showed that given a small-sized training dataset, semi-supervised methods, 

especially label spreading, achieved a high level of recall, which makes them viable 

methods for reducing workload for systematic review article selection.  The Experiment 2 

results showed that the proposed self-training based method significantly enhanced 

precision while maintaining a high level of recall. It worked especially well with small 

training sets (5% or 10% seeds). Next, we explored the feasibility of using active learning 

to further enhance both recall and precision. Experiment 3 results showed that active 

learning produced a very high level of recall that meets Cohen et al.’s 95% recall 

requirement, suggesting that the active learning method is a highly feasible method for 

systematic review article selection with small-sized training datasets. 

4.3. Contributions!

In this research, we examined an automated method to classify relevant articles 

for inclusion or exclusion during the abstract triage stage for creating and updating 

systematic reviews of medical research.  We demonstrated that a novel combination of 

text analytics techniques, including using the automatically extracted UMLS terms as the 

features, soft-margin polynomial SVM as the classification algorithm and SMOTE 

combined with undersampling to deal with the class balance issue, help improve 

precision while sustaining a high recall (95% or higher) in article classification for SRs.  

We also demonstrated the viability of semi-supervised learning algorithm along with self-

learning and active learning when training dataset is rare, which is often the practical case 
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in many machine learning problems. Our research is intended to make the following 

contributions.  

From a theoretical perspective, this research explores the possibility of combining 

different text analytics techniques in the area of systematic review development.  In prior 

research, the bag-of-words method has been used as the de facto standard methods for 

extracting features from article titles and abstract. We used the automatically extracted 

UMLS terms as features by leveraging the latest version of the MetaMap software and 

demonstrated that this feature extraction method helps enhance classification 

performance, as compared with the bag-of-words approach. The class imbalance issue 

has been insufficiently addressed in extant literature. We explored the use of various re-

sampling methods, which have been hardly used in this field, to alleviate the class 

imbalance problem. We modified SMOTE by combining it with undersampling and used 

it to enhance article classification performance.  This research also explores the 

feasibility of using a less explored class of machine learning techniques, namely semi-

supervised learning, to deal with the small training set problem we often face when 

creating a new systematic review. In prior research, supervised-learning has been used as 

the de-facto standard method for article classification for systematic reviews. Supervised 

learning, however, relies on a large training dataset that in real proactively is extremely 

costly and time-consuming to obtain. This makes it practically expensive to use 

supervised learning technique in the case of systematic review creation where a 

researcher is attempting to answer new medical questions.  We proposed to use semi-

supervised learning methods such as label spreading, self-training, and active learning to 

classify articles based on a small-sized training dataset. The use of semi-supervised 
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learning for selecting articles during systematic review creation has so far been largely 

ignored in literature. The experiences and lessons learned from this research are expected 

to inform the literature regarding the efficacy of the proposed techniques and the further 

development and refinement of these techniques 

The experiences and lessons learned from our research are expected to inform the 

literature regarding the efficacy of the proposed techniques and the further development 

and refinement of these techniques.  

From a practical and applied research perspective, this research has the potential 

to optimize systematic creation and contribute to the adoption of evidence-based 

medicine. Currently, laborious efforts for selecting articles for systematic reviews 

preclude us from creating systematic reviews to keep pace with medical research 

advances, which subsequently impedes the translation of the latest medical evidence into 

healthcare practice. This research can help to automate the systematic review 

development process by significantly reducing the number of articles that scientists need 

to manually review when they create a new systematic review.  This research provides 

direct impact in the availability of best medical evidence and consequently, may 

contribute to improving the health and wellbeing of society.  

4.4. Limitations!and!future!work!

Although our research has reached its aims, there are some limitations.  First, due 

of time limitations, our study employed few datasets that have relatively small number of 

articles (samples) compared to average SR report. Second, this study performed abstract 

and metadata mining of medical articles, which automate the abstract triage procedure of 
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article selection. However, computerized articles selection techniques could also 

automate full text-triage procedure of SR generation. Third, we were not able to examine 

some important machine learning advancement in text mining. Last but not least, is the 

ability to deploy our proposed machine learning model in a ‘real-life’ setting. 

Accordingly, our research can be extended along a number of dimensions. First, 

the proposed approach can be further evaluated using additional data sets. Probably, 

datasets derived from the “AHRQ Comparative Effectiveness Reviews”. Second, this 

approach can be extended to support full-text triage. Nowadays, new big data 

technologies enable us to deploy algorithms that can easily process not only the abstracts 

of tens of thousands of articles but also the full text of the articles. Third, future research 

can use topic-modeling technics like Latent Dirichlet Allocation (LDA) for extraction of 

abstract features of medical documents, deep-learning techniques where machine learns 

itself from complex and large-scale dataset. Last but not least, future research may 

investigate means for deploying the proposed approach in a manner that simplifies and 

automates (or semi-automate) the update of systematic reviews on a frequent basis as 

new literature is added to the existing knowledge repository. Other integration and 

deployment possibilities include the leverage of clinical trials documentation, e.g., from 

clinicaltrials.gov to further expedite the translation of medical research into practice. 

 

 !
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