
Dakota State University
Beadle Scholar

Masters Theses & Doctoral Dissertations

Fall 12-1-2016

Distributed Multi-component Approach and
System for Enhanced Security of Public
Infrastructure as a Service (IAAS) Cloud
Computing Environments
Jason Nikolai
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses & Doctoral
Dissertations by an authorized administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

Recommended Citation
Nikolai, Jason, "Distributed Multi-component Approach and System for Enhanced Security of Public Infrastructure as a Service
(IAAS) Cloud Computing Environments" (2016). Masters Theses & Doctoral Dissertations. 301.
https://scholar.dsu.edu/theses/301

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Beadle Scholar at Dakota State University

https://core.ac.uk/display/234675443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Ftheses%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/301?utm_source=scholar.dsu.edu%2Ftheses%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

DISTRIBUTED MULTI-COMPONENT APPROACH

AND SYSTEM FOR ENHANCED SECURITY OF

PUBLIC INFRASTRUCTURE AS A SERVICE (IAAS)

CLOUD COMPUTING ENVIRONMENTS

A dissertation submitted to Dakota State University in partial fulfillment of the requirements

for the degree of

Doctor of Science

in

Information Systems

December, 2016

By

Jason Nikolai

Dissertation Committee:

Dr. Yong Wang

Dr. Jun Liu

Dr. Mark Hawkes

Dr. Deepak Turaga, IBM Research

 ii

DISSERTATION APPROVAL FORM

This dissertation is approved as a credible and independent investigation by a

candidate for the Doctor of Science in Information Systems degree and is acceptable for

meeting the dissertation requirements for this degree. Acceptance of this dissertation does not

imply that the conclusions reached by the candidate are necessarily the conclusions of the

major department or university.

Student Name:

Dissertation Title: _______________________________________

Dissertation Chair/Co-Chair: Date:

Dissertation Chair/Co-Chair: Date:

Committee member: ______ __ Date:

Committee member: __ Date:

Committee member: __ Date:

Committee member: __ Date:

UNIVERSITY

DISSERTATION APPROVAL FORM

This dissertation is approved as a credible and independent investigation by a candidate for the Doctor of
Science in Information Systems degree and is acceptable for meeting the dissertation requirements for this
degree. Acceptance of this dissertation does not imply that the conclusions reached by the candidate are
necessarily the conclusions of the major department or university.

Student Name: __;J:::..:a::.:S:..::O:.:...:n....:.N..:..:i.:..:;ko::..:l.::.a:....i ----------

Dissertation Title: Distributed Multi-component Approach and System for Enhanced Security of Public
Infrastructure as a Service (laaS) Cloud Computing Environment~

Dissertation Chair:, _____________ _

t t/21/201 6

Date: 11-16-2016

Date:

Date:

Date:

t 1 -A{--)1)\b

tf~~~/1{>

 iii

ACKNOWLEDGMENT

It is believed that Helen Keller once said “Alone we can do so little; together we can do so

much.” The work presented here supports this premise. This dissertation would not have

possible without the support of several people:

 My wife Danielle and children Kyler and Trever: Throughout my doctoral tenure,

my family provided support and sacrificed every step of the way alongside me.

 My advisor, Dr. Yong Wang: Yong’s guidance and intellectual discussions were

pivotal in my success.

 My parents, Karen and Al: They taught me the work ethic needed to persevere and

overcome obstacles in life, including my seven year journey to complete this

dissertation.

 My third line manager at International Business Machines (IBM) and IBM Fellow,

Nagui Halim: Nagui provided guidance and support at a critical time in the

dissertation process which resulted in my overall success.

 My committee: For reviewing my research, providing comments, and for granting

final approval for graduation.

 My employer, IBM, and the management team: IBM supported me through this

journey and gave me the opportunity to expand my knowledge and a chance to

give back to the research community.

 Co-workers at IBM: Several of my co-workers provided insight on ideas, helped

me with coding problems, discussed theoretical questions, and tolerated my

sporadic schedule.

All of these amazing people contributed to my success. Their contributions will never be

forgotten.

 iv

ABSTRACT

Cloud computing has become big business with organizations spending millions of

dollars creating and deploying cloud solutions. However, adoption of this multi-tenant and

dynamic technology has been slowed by security concerns. In this dissertation, to help

increase adoption by reducing security risks, we examine three research questions. First, how

can we detect attacks on cloud tenant instances without specific knowledge of tenant

applications? Second, how can we assist cloud providers with interpretation of the alert

output from security controls in an IaaS cloud environment to improve security? And, third,

how can we help protect cloud tenants from insider data theft attacks?

To answer these questions, we utilize the design science research methodology to

accomplish the objective of creating and demonstrating a new system composed of novel

security controls addressing each research question. We posit a system comprised of three

security control artifacts to assist cloud providers with improving their overall security

posture. Our proposed system consists of three components: A Hypervisor-based Cloud

Intrusion Detection System (HCIDS), a Streaming Cloud Intrusion Monitoring and

Classification System (SCIMCS), and a system for detecting insider attacks within cloud

computing environments.

First, HCIDS utilizes data from hypervisors running on cloud controller nodes to

detect and classify abnormal usage. Instantiation and demonstration of the system reveals a

100 percent detection rate for denial of service attacks from and against virtual machines.

Second, SCIMCS addresses the problem of information overload from alerts generated by

security controls in dynamic multi-tenant cloud environments. Implementation and

evaluation of this approach divulges an average message reduction rate of 95.9 percent based

on our experimentation. Third, the system for detecting insider data theft examines node

system state and anomalies in network bytes transmitted as well as number of active user

counts to detect virtual machine and data store theft. This approach demonstrates a 100

percent detection rate for data theft and unapproved logins on cloud nodes.

Each of these components plays a unique role in improving the overall security

posture in Infrastructure as a Service (IaaS) Cloud Computing Environments. The

combination of each approach makes up an overall system that addresses intrusion detection

 v

while preserving privacy, information overload from a plethora of controls deployed in a

defense in depth strategy, and the concern of insider data theft. Furthermore, each component

is designed, instantiated, demonstrated and communicated at respected conferences.

 vi

Declaration

I hereby certify that this dissertation constitutes my own product, that where the

language of others is set forth, quotation marks so indicate, and that appropriate credit is given

where I have used the language, ideas, expressions or writings of another.

I declare that the dissertation describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

Jason Nikolai

 vii

TABLE OF CONTENTS

DISSERTATION APPROVAL FORM ..II

ACKNOWLEDGMENT .. III

ABSTRACT .. IV

TABLE OF CONTENTS .. VII

LIST OF TABLES .. X

LIST OF FIGURES .. XI

INTRODUCTION ... 1

BACKGROUND OF THE PROBLEM ... 1

STATEMENT OF THE PROBLEM ... 3

OBJECTIVES OF THE PROJECT .. 4

SUMMARY ... 4

LITERATURE REVIEW ... 5

HISTORY AND DEFINITION OF CLOUD COMPUTING.. 5

CLOUD COMPUTING SECURITY CHALLENGES LITERATURE REVIEW ... 8

SUMMARY ... 15

RESEARCH METHODOLOGY ... 16

DESIGN SCIENCE RESEARCH .. 16

OUR APPROACH TO DESIGN SCIENCE RESEARCH .. 18

SUMMARY ... 19

RESEARCH COMPONENTS AND SYSTEM ... 20

RESEARCH COMPONENTS .. 20

IAAS CLOUD SECURITY SYSTEM ... 21

RESEARCH METHODOLOGY AND RESEARCH RIGOR .. 22

SUMMARY ... 24

HYPERVISOR-BASED CLOUD INTRUSION DETECTION SYSTEM 25

RELATED WORK .. 26

DESIGN AND DEVELOPMENT ... 27

DEMONSTRATION AND EVALUATION ... 30

CONCLUSION AND FUTURE WORK ... 36

 viii

A STREAMING INTRUSION MONITORING AND CLASSIFICATION SYSTEM 38

RELATED WORK .. 39

DESIGN AND DEVELOPMENT ... 42

DEMONSTRATION AND EVALUATION ... 50

CONCLUSION AND FUTURE WORK ... 56

A SYSTEM FOR DETECTING MALICIOUS INSIDER DATA THEFT 58

RELATED WORK .. 60

DESIGN AND DEVELOPMENT ... 61

DEMONSTRATION AND EVALUATION ... 69

CONCLUSION AND FUTURE WORK ... 72

CONCLUSIONS .. 73

REFERENCES .. 75

APPENDIX A: HCIDS SYSTEM DESIGN .. 83

SYSTEM DESIGN .. 83

SNODE.PY .. 83

CHIDS.SPL .. 83

APPENDIX B: SCIMCS SYSTEM DESIGN.. 84

SYSTEM DESIGN .. 84

LAUNCH.SH ... 84

SNORTSENSOR.PY .. 84

CHECKROOTKIT.PY .. 84

LOGSENSOR.PY .. 85

TCPIPSENSOR.PY .. 85

MSIDS.SPL .. 85

TCPANOMALYFINDER.SPL .. 85

ANALYZER.PY ... 85

DETECTOR.SPL ... 85

CLASSIFER.PY .. 86

VISUALIZE.HTML .. 86

GET_DATA.CGI .. 86

APPENDIX C: A SYSTEM FOR DETECTING INSIDER DATA THEFT DESIGN 87

SYSTEM DESIGN .. 87

INSIDER.PY .. 87

INSIDER_SCORING.PY ... 87

 ix

INSIDERTHREATDETECTORTRAINER.SPL ... 88

PARSE_TRAINING_DATA.PY ... 88

INSIDERTHREATDETECTORMONITOR.SPL ... 88

INSIDER_DETECTION.PY ... 88

 x

LIST OF TABLES

Table 1. Design Science Methodology Component Mapping 23

Table 2. Hevner, et al. Research Framework Mapping... 24

Table 3. Simulated Cloud Environment Specification .. 30

Table 4. Signatures .. 34

Table 5. Accuracy ... 35

Table 6. Message Reduction Results .. 54

Table 7. Attack Classification Results .. 55

Table 8. Signatures .. 56

Table 9. Experimentation Results ... 71

 xi

LIST OF FIGURES

Figure 1. Illustration of NIST Cloud Computing Definition .. 2

Figure 2. Literature Review Methodology .. 8

Figure 3. Information Systems Research Framework (Hevner, et al., 2004).............. 17

Figure 4. Design Science Research Methodology Process Model 18

Figure 5. System Perspective of Research Components ... 21

Figure 6. Conceptual Diagram of Proposed System ... 29

Figure 7. Implementation Detail ... 31

Figure 8. Three Step Approach ... 43

Figure 9. SCIMCS Framework Components .. 45

Figure 10. Cloud Environment .. 47

Figure 11. Classifer Output ... 50

Figure 12. Urgency Score Simulation - One Node ... 51

Figure 13. Urgency Score Simulation - Three Nodes ... 52

Figure 14. Insider Data Theft Flow Chart ... 61

Figure 15. Insider Data Theft Detection Approach ... 62

Figure 16. Network txbytes Anomaly Scores under Normal Conditions 64

Figure 17. Network txbytes Anomaly Scores Normal Conditions with Trained Max 64

Figure 18. Detection of Insider Data Theft Venn Diagram .. 65

Figure 19. Network txbytes Anomaly ... 66

Figure 20. Active User Anomaly .. 66

Figure 21. Cloud Environment .. 67

Figure 22. Hypervisor-Based Cloud Intrusion Detection System Design 83

Figure 23. Streaming Intrusion Monitoring and Classification System Design 84

Figure 24. Insider Data Theft Detector System Design .. 87

1

CHAPTER 1

INTRODUCTION

On August 25, 2006, Amazon EC2, one of the leading Infrastructure as a Service

cloud providers, went into beta (Barr, 2006). Since then, cloud computing has become big

business with organizations spending millions of dollars creating cloud solutions. The largest

technology companies in the world now provide cloud computing offerings and solutions

(Google, 2015; IBM, 2015; Microsoft, 2015). However, cloud computing is not without its

challenges. More specifically, since the inception of cloud computing, security and privacy

have been an ongoing concern that has slowed adoption of the technology (Kandukuri, Paturi,

& Rakshit, 2009; Lori, 2010; Ren, Wang, & Wang, 2012; Takabi, Joshi, & Ahn, 2010). In

chapter one, we explore the background of our research problem, provide a concise problem

statement, and define the objectives of this dissertation project.

Background of the Problem

In 2014, IDG Enterprise reported the results of a survey on cloud computing which

revealed that 45 percent of respondents had cloud projects return to internal information

technology teams. Furthermore, 59 percent of the respondents who indicated projects were

brought back in house stated security concerns were a contributing factor (IDG, 2014). The

number of cloud providers and organizations considering cloud computing as a paradigm for

deploying information technology solutions combined with the continuing concern over

security makes cloud computing security an interesting and worthwhile research topic to

explore.

In order to comprehend the importance of this problem, one first must have an

understanding of cloud computing. Cloud computing can be defined as a model for enabling

convenient, on-demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction (Armbrust et al.,

2009). In a general sense, a cloud computing environment can be defined as public or private

2

interconnected computers that provide shared computing power without presenting the

underlying structure (Biggs & Vidalis, 2009).

A more precise definition of cloud computing is provided by NIST and illustrated in

Figure 1. The NIST definition of cloud computing states that the cloud model consists of five

essential characteristics, three service models, and four deployment models (Mell & Grance,

2011). The essential characteristics consist of broad network access, rapid elasticity,

measured service, and on-demand self-service. The service models include Software as a

Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (Iaas). The

deployment models are made up of Public Cloud, Private Cloud, Hybrid Cloud, and

Community Cloud.

Figure 1. Illustration of NIST Cloud Computing Definition

 As stated, cloud computing spans several service and deployment models. However,

the essential characteristics are crucial to the definition. Unlike previous IT environments,

cloud computing environments provide broad network access, typically from the Internet. In

3

addition, resources can be provisioned and deprovisioned quickly, charges are generally based

on usage, and tenants of these environments perform provisioning and usage activities without

extensive interactions with IT departments or administrators. Furthermore, resources are

shared, many times between different tenants. The multi-tenant nature and lack of control

over the underlying infrastructure open up several security challenges and questions.

The focus of our research is on Public Infrastructure as a Service (IaaS) cloud

environments. Infrastructure as a Service cloud environments provide cloud tenants with the

capability to provision computing resources to run arbitrary software and operating systems.

The tenant does not control the underlying infrastructure but does have control over the

provisioned instance. Essentially, tenants are given access to computing resources in order to

perform computing activities as needed. The public deployment model provides unique

challenges over other hosted information technology environments in that the environment is

shared possibly among tenants, some of whom may be competitors or bad actors.

To secure these environments, the Cloud Security Alliance, a leading group on cloud

computing security, published the security guidance report that recommends a security

approach which utilizes a defense in depth (SANS, 2001) strategy where people, process, and

layers of technology all play a role in securing a cloud environment (Cloud Security Alliance,

2011). Their approach to securing IaaS cloud environments involves processes, procedures,

controls, and audits. No single technology has been shown to address all of the security

concerns in cloud environments. Furthermore, managing multiple processes, procedures, and

controls in an effective manner is nontrivial with many open research questions.

Statement of the Problem

Our research aims to address security and privacy concerns through the instantiation

of a system composed of novel technical cloud security artifacts. More specifically, we

examine the problems of detecting bad actors in cloud environments earlier while preserving

the privacy of cloud tenants. We posit three design science research questions. First, how can

we detect attacks on cloud tenant instances without specific knowledge of tenant applications

in order to preserve privacy? Second, how can we assist cloud providers with interpreting the

output from security controls in an IaaS cloud environment to improve security? And, third,

how can we help protect cloud tenants from insider data theft attacks?

4

Objectives of the Project

Our research contribution from this work is demonstrated through three security

artifacts making up a system to assist cloud providers with securing Infrastructure as a Service

(IaaS) cloud computing environments. Although no one technical solution is going to

completely remove the security threats and risks within multi-tenant cloud computing

environments, additional security artifacts will help to improve the overall security posture of

these environments. As the security posture in these environments improves, cloud tenants

will gain more confidence in the security of these environments. We believe that the long

term end result will be less risk for cloud tenants resulting in increased adoption of IaaS cloud

computing.

Summary

In this chapter, we introduced our research topic and provided an introduction to cloud

computing and some of the security issues. Furthermore, at a high level, we described the

general security challenges facing these environments, stated our research problem, and

provided the objectives of our research project. Chapter two provides a more detailed

discussion on cloud computing and a literature review of security related challenges

associated with these environments.

5

CHAPTER 2

LITERATURE REVIEW

Cloud computing provides several opportunities for organizations to optimize

resources and reduce costs. However, these benefits do not come without challenges and

security risks. This chapter is broken into two parts, both based on existent literature. First,

we briefly examine the history and provide a detailed definition of cloud computing. Second,

we present the findings of our cloud computing security challenges literature review.

History and Definition of Cloud Computing

In a general sense, a cloud computing environment can be defined as public or private

interconnected computers that provide shared computing power without presenting the

underlying structure (Biggs & Vidalis, 2010). The idea of cloud computing is not new. The

original concepts date back to the 1960s (Kaufman, 2009). Cloud computing as it is known

today has emerged from the construction of large scale commodity-computer datacenters

combined with advances in the World Wide Web and Web 2.0 (Armbrust et al., 2010).

Developments in virtualization technology on commodity hardware helped to provide the

underlying technology for rapid provisioning and de-provisioning of resources in a cost

effective manner. In order to understand cloud computing and associated security issues, one

first must understand the different services offered and deployment models. The consensus

within literature describes cloud computing as one of following services: Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).

IaaS can be described as offering information technology infrastructure as a service.

This is similar to outsourcing the datacenter. However, unlike traditional data center

outsourcing, cloud tenants use self-service mechanisms to provision and deprovision

resources and may share these environments with other unrelated and unknown tenants. In

addition, cloud customers are typically charged for the resources that they use. Examples of

IaaS include: Amazon AWS, IBM Softlayer, and Oracle’s Cloud Service.

6

The PaaS model can be described as a shared development environment that is

provided as a service. The provider offers blocks of code, or application program interfaces

(APIs), which developers use to create web based applications that are stored in the providers

cloud environment. Some examples of PaaS are: IBM Bluemix, Force.com, and Google App

Engine.

In the SaaS model, end users do not purchase software and store it locally. Rather,

software remains in a remote location referred to as a “cloud.” The customer pays based upon

usage. The backend infrastructure is physically shared among customers, but it is logically

divided among end users. Examples of Saas include: Google Docs and Zoho (Almulla &

Chan Yeob, 2010).

There are three deployment models in cloud computing: private cloud, public cloud,

and hybrid, or mixed, cloud environment. Private cloud is for internal use by an organization.

Private clouds reside within an organization’s internal data center. Because the organization

controls the data center, this cloud model is as secure as the data center. Public clouds are

cloud computing environments that are hosted by providers, available to the general public,

and are typically based on a pay per use model. In public implementations and offerings, the

cloud computing infrastructure is available via the Internet (Katzan, 2010). A mixed cloud

environment may be a community cloud or a hybrid cloud deployment. Community cloud is

a shared cloud among multiple organizations usually with a shared interest. Hybrid Clouds

are a mix of public and private cloud environments. Hybrid clouds generally consist of a

private cloud with interfaces to external cloud services. Hybrid clouds provide organizations

with cloud computing advantages but with less risk than public clouds (Katzan, 2010;

Ramgovind, Eloff, & Smith, 2010).

Cloud computing provides two significant advantages over other technologies:

elasticity and cost. First, it provides organizations with flexibility to scale up or scale down

their information technology as needed to meet the demands of the organization. From a

physical resource perspective, cloud computing allows organizations to provision new

resources as needed which relieves some of the planning burden. Cloud users can start using

a small environment and provision upward as needed and only pay for what is used

(Armbrust, et al., 2010; Doelitzscher, Reich, & Sulistio, 2010). This feature, typically termed

elasticity, is one of the primary features that sets cloud computing apart from previous, similar

7

technologies (Owens, 2010). Second, it provides computing power at an affordable cost that

would not otherwise be available to users previous to the inception of cloud computing

(Kaufman, 2009).

Some of the key characteristics of cloud computing include: on-demand self-service,

broad network access, resource pooling, and measured service. Thanks to the increase in

affordable network bandwidth, reliable networks, and the Internet, it is possible for cloud

computing providers to offer high quality data and software services that reside in remote data

centers (Cong, Qian, Kui, & Wenjing, 2009). Cloud computing can provide cost effective

pay-as-you-go information technology environments (Biggs & Vidalis, 2010).

Organizations that leverage cloud computing will likely achieve savings in hardware,

software, time provisioning servers, productivity, and system administration. Savings in

hardware will occur due to the reduction in the number of servers required to complete work,

less data center floor space, and reduction in power consumption. Software costs will likely

decrease due to less operation system licenses being needed and reduced software

maintenance cost. Server provisioning takes less time with automated provisioning

technology and tools. Productivity can be improved by cloud support staff rapidly responding

to end user requests. Even system administration costs will likely decrease as less system

administrators will be required to manage more systems (Almulla & Chan Yeob, 2010).

The benefits are clear and likely to result in continued adoption of the cloud

computing paradigm. This is evident based on a October 30, 2009 report released by Gartner

Inc. that stated cloud computing has become a top significant technology issue (Chang-Lung,

Uei-Chin, Chang, & Chun-Jung, 2010). However, this paradigm might not be appropriate for

all industries (Kaufman, 2009). A survey of federal government agencies funded by the

Lockheed Martin Cyber Security Alliance found that 70 percent of those surveyed were

concerned about data security, privacy, and integrity in a cloud computing environment

(Anonymous, 2010). In another survey of more than 170 businesses, 50 percent of the

respondents stated concerns with security issues relating to cloud computing resources (Biggs

& Vidalis, 2010). Multiple surveys have shown security to be ranked first as the greatest

challenge or issue of cloud computing (Popovic & Hocenski, 2010). Although cloud services

can relieve organizations of hosting burdens and reduce costs, a number of security concerns

continue to plaque the cloud computing paradigm.

8

Cloud Computing Security Challenges Literature Review

Our literature review is conducted in two parts. First, we perform a general literature

review of cloud computing security issues in this chapter. Second, chapters four, five, and six

contain a related works section which presents the results of literature reviews specifically

targeting the components of the system posited in this dissertation. The literature review in

this chapter follows the methodology outlined in Figure 2.

Figure 2. Literature Review Methodology

The literature review revealed 16 general security topics relating to cloud computing

security: Auditability, Availability of Data, Data Location, Data Segregation, Data Storage

Correctness, Disaster Recovery, Investigative Support, Long Term Viability / Data Lock-in,

Performance, Privacy, Regulatory Compliance, Reputation Fate Sharing, Restricted Access,

Security Controls, Trust and SLAs, and Trusted Interfaces. We summarize each of these

topics below:

Auditability

Cloud computing does not necessarily offer a guarantee for data integrity and

availability. It is of critical importance to enable public auditability for cloud data storage so

that the tenants have the ability to use a third party auditor for achieving appropriate risk

9

levels for the privacy protection of data (Armbrust, et al., 2010; Cong, Qian, Kui, & Wenjing,

2010).

Availability of Data

The outsourced nature of cloud computing raises concerns of ensuring availability of

data. When an organization moves data and applications to a cloud environment, it loses

control of the data which makes ensuring data availability difficult (Zhang, Wuwong, Li, &

Zhang, 2010). In addition, data availability includes the capability of a cloud provider to

move data to alternative environments if one environment becomes compromised (Armbrust,

et al., 2010; Ramgovind, et al., 2010). An example of where data availability became an issue

in a cloud computing environment is when Liquid Motors lost all of its servers in a data center

raid, then lost its suit against the FBI (Neumann, 2009).

Cloud availability threats also include risks from network based attacks, such as

Distributed Denial of Service (DDoS) attacks, as well as the cloud service provider’s

environment setup and competence level (Almulla & Chan Yeob, 2010; Owens, 2010). A

proper risk management process is needed to address the risks of moving applications and

data into a cloud computing environment to ensure availability (Messmer, 2009).

Data Location

Data location is concerned with the physical location of data and whether a cloud

provider will allow a tenant to dictate where data is located (Barnes, 2010; Doelitzscher, et al.,

2010; Ramgovind, et al., 2010). There are confidentiality issues pertaining to where data is

stored and where the data has travelled. In a cloud environment, data is relocated for

optimized storage, but each time when the data is moved, a copy may be retained at the

location (Acello, 2010; Almulla & Chan Yeob, 2010).

One example of where location plays a critical role is with Germany’s Federal Data

Protection Act. This act states that personal data can only be transferred for processing into

countries with the same adequate level of privacy protection laws. Whenever personal data is

acquired and/or processed by third-party instances, the affected person must be notified

according to this act. Users must know the exact location of their data and the cloud

provider’s court of jurisdiction (Doelitzscher, et al., 2010).

10

Data Segregation

Data segregation is the assurance that data is separated using trusted encryption

techniques and technologies (Barnes, 2010; Ramgovind, et al., 2010). Data isolation is not

trivial in a multi-tenant environment. Appropriate tools are required to ensure proper data

protection is available in shared environments (Naqvi, Dallons, & Ponsard, 2010). In

addition, concerns around virtualization security exist, including threats specific to virtual

environments and shared hypervisors. Although it may be cost-effective to use a shared

administrative management system to manage multiple customer environments, concerns

around data segregation exist (Owens, 2010).

Data Storage Correctness

Data is typically stored in multiple physical locations in a cloud environment and can

move to other locations rapidly. Maintaining data integrity in these dynamic environments

may present technical issues that increase data integrity risk if not properly managed. Tenants

must be assured that the cloud provider can competently manage the complexity of these

dynamic environments (Cong, et al., 2009).

Disaster Recovery

Recoverability encompasses the ability to recover data in the cloud environment when

an unplanned event occurs. Before moving data or applications to a cloud computing

environment, an organization should understand the cloud computing providers plan for

recovering from disasters (Barnes, 2010; Ramgovind, et al., 2010).

Investigative Support

Investigative support is the ability of the vendor to provide forensic analysis and

investigative support when illegal activities occur (Barnes, 2010; Ramgovind, et al., 2010). If

a security breach occurs, gathering evidence from cloud computing environments can be

difficult because of the underlying dynamic nature of the environment. Data is typically

spread dynamically across multiple hosts and data centers and maintaining chain of custody

during investigation can be problematic (Biggs & Vidalis, 2010; Wolthusen, 2009).

11

 Legal and regulatory concerns relating to cloud computing jurisdiction of data that

crosses borders are nontrivial. It is not clear if governments have access to cloud data that

spans borders (Kaufman, 2009). Cross-border placement of data can result in compliance

issues and can hinder cybercrime investigations (Biggs & Vidalis, 2010).

Long Term Viability / Data Lock-in

Long term viability refers to concerns surrounding the ability to retrieve data from a

cloud computing environment if the provider no longer meets the needs of the tenant or goes

out of business. There is an ongoing concern about proprietary data formats and whether data

can be retrieved in the case the tenant wishes to leave the cloud environment (Armbrust, et al.,

2010; Barnes, 2010; Ramgovind, et al., 2010).

Performance

A concern exists relating to performance of the cloud environment and data transfer

bottlenecks (Armbrust, et al., 2010). Virtualization technologies and shared environments

may slow processing capabilities of systems. Furthermore, security controls protecting data

flowing over the Internet and being processed as well as stored within a cloud environment

may reduce performance. Although benefits can be achieved by leveraging cloud computing

for certain applications, there are likely hidden operational and performance costs (Bauer,

2010).

Privacy

When a cloud provider houses large amounts of data, data mining techniques can be

used to derive personal information about tenants. For example, the Google Corporation

offers multiple cloud services and has access to a plethora of data (Chow et al., 2009). Some

have described cloud computing as being similar to a utility. However, unlike a utility, such

as electricity, where an attacker is not interested in accessing a specific electron, an attacker

may be interested in the data stored and transferred into a cloud computing environment.

In addition, ownership of data should be understood when considering moving

sensitive data to cloud environments. Does the cloud provider own the data? Does the

organization placing the data into the environment own the data? Or, if the tenant is running

12

an application in a cloud environment that contains tenant customer data, does the customer

with data stored in a data record own the data (Katzan, 2010)? In some cloud computing

environments, a fundamental right to privacy is expected. However, techniques such as

anonymous authentication make it difficult or impossible to track the real user if a transaction

is disputed (Lu, Lin, Liang, & Shen, 2010).

Regulatory Compliance

Regulatory compliance encompasses the issues around meeting the regulatory needs

of an organization (Barnes, 2010; Ramgovind, et al., 2010). Careful measures must be in

place to comply with government regulations and industry standards, such as FFIEC (Federal

Financial Institutions Examination Council), HIPPA (Health Insurance Portability and

Accountability Act), and PCI DSS (Payment Card Industry Data Security Standards)

(Katzan, 2010). Many of these controls must be incorporated into the environment by the

cloud provider and not the tenant. Concerns around controls, such as encryption, must be

taken into account when assessing the compliance related risks in these environments.

Questions, such as whether the cloud provider has passed a SAS-70 audit, should be asked

(Messmer, 2009). Transparency is especially important for regulatory reasons (Chow, et al.,

2009).

In addition, from the enforcement side, the definition of what constitutes compliance

will not be fully clear until judges and regulators have a better track record and case history to

dictate what is expected and reasonable (Ericson, 2009).

Reputation Fate Sharing

Cloud computing is a shared environment. Hence, if not properly managed, one bad

actor in the cloud environment may have a negative impact on other tenants. For example, if

one tenant is compromised and IP addresses become black listed, other consumers of the

cloud may be impacted by no fault of their own (Armbrust, et al., 2010). A tenant running a

critical application for customers in a cloud environment may become unavailable.

Unfortunately, the customers of that tenant will likely fault the tenant and not the cloud

provider.

13

Restricted Access

Restricted access refers to allowing only those who should be permitted to access data

to actually have access to the data. An organization that is placing data in a cloud computing

environment must be certain that the cloud provider has competent and honest administrators

who have put appropriate access controls in place (Barnes, 2010; Ramgovind, et al., 2010). In

addition, proper network security measures are needed to ensure only appropriately

authorized users can access systems, applications, and network data in these shared

environments (Kaufman, 2009).

Security Controls

Different cloud providers have differing levels of security controls in place. One

provider may have a well-established and respected information security program with

controls and monitoring in place while another provider may not. It is important to

understand the security controls and the security postures of cloud providers before placing

trust in their environment (Kaufman, 2009).

A cloud environment is only as secure as its weakest link. The multi-tenant nature of

cloud environments make for prime targets of cybercriminals. The movement towards

increased hosting of data and applications in the cloud and less reliance on user machines for

storing private data is likely to increase the threat of phishing and other attacks targeted at

stealing access credentials (Chow, et al., 2009).

Trust and Service Level Agreements (SLAs)

Data that is moved into the cloud is under control of a third party provider. Access to

that data is in the hands of that cloud provider. A concise service level agreement between

the tenant and cloud provider must be in place in order to reduce risks especially with regard

to availability. The cloud provider must be trusted to deliver on the commitments in the SLA

(Ramgovind, et al., 2010). Service Level Agreements are a key component to defend against

cybercrime and must evolve to counter dynamic attacks from cybercriminals. These

agreements must be well written and monitored (Biggs & Vidalis, 2010).

14

In addition to a standard SLA, a Sec-SLA which is a formally negotiated document

that defines security metrics for a cloud computing environment may be considered.

However, for a Sec-SLA to provide value, it must be monitored and enforced which requires

buy-in from the cloud provider (de Chaves, Westphall, & Lamin, 2010).

Trusted Interfaces

Cloud computing is primarily managed through network connections. Public clouds

are managed through the Internet and proper controls are needed to ensure the interface is

secure (Chang-Lung, et al., 2010). It is critical that interfaces are secure and encryption

protocols, such as TLS, are up to date to ensure known vulnerabilities are not used to exploit

weaknesses.

There are a vast number of security-related issues to be considered before an

organization moves its application and data into a cloud computing environment. Some of

these challenges present interesting research topics to be explored and solved. The cloud

computing paradigm introduces new concerns that must be addressed in order to achieve high

levels of adoption for all types of applications and data. Depending on an organization’s

security needs, regulatory compliance requirements, and customer demands, the issues

summarized in this chapter should be considered before moving applications and data into a

cloud computing infrastructure.

Cloud computing certainly has a number of advantages over self-managed data centers

and applications. There is potential for reduced hardware and operating costs along with the

ability to scale on demand. However, it is clear, security challenges are prevalent in these

environments. Organizations considering moving applications and data into a cloud

computing environment must assess the risks and ensure that proper controls and mitigation

plans are in place to achieve an acceptable risk level. Although risks can be mitigated, in

order for cloud computing to thrive to its full potential, more of the security challenges must

be addressed (Lu, et al., 2010).

15

Summary

In this chapter, we provided a history and definition for cloud computing. In addition,

we presented our findings from a general literature review on cloud computing security

challenges. The driving force behind our research is to address a subset of these challenges.

More specifically, as mentioned in chapter one, our primary research is focused on the

instantiation of new security artifacts for cloud environments to improve the overall security

posture while preserving tenant privacy with the goal to increase adoption of IaaS cloud

computing environments. Chapter three examines the research methodology we follow while

conducting our work.

16

CHAPTER 3

RESEARCH METHODOLOGY

The information systems discipline studies people, organizations, and technology

(Hevner, March, Park, & Ram, 2004). Generally, there are two paradigms used to conduct

this research: behavioral science and design science. Behavioral science is descriptive in

nature and attempts to explain phenomena related to information technology. On the other

hand, design science is prescriptive by definition and aims to improve the performance and

the results gained from using information technology (March & Smith, 1995). Both

approaches are used by researchers in the information systems discipline and are

complimentary in nature. In this chapter, we briefly examine the design science research

methodology. Then, we discuss the design science research approach that we follow while

conducting our research.

Design Science Research

The goal of design science research is to create a means to achieve or better achieve

human goals. This differentiates the methodology from other methodologies, especially those

used in the natural sciences which attempt to explain natural phenomenon but not create them.

Design research may be evaluated and improved upon through research activities where the

researcher executes a build and evaluate process. The build and evaluate research steps may

be followed by theorizing and justification steps which are the activities similar to those found

in the natural sciences. First, during the build phase, the artifact is constructed. Second, the

evaluate step consists of evaluating the artifact’s performance against a set of criteria. Third,

the theorizing phase attempts to explain the interactions with the artifact and the environments

as well as its characteristics. If theories are posited, they must be justified with evidence in

order to test the theory (March & Smith, 1995).

According to March and Smith, the outputs from design science include four

categories, which are also termed artifacts. They include constructs, models, methods, and

implementations. Constructs define the language of the concepts in the domain. Models can

17

conceptualize constructs in order to describe tasks, circumstances, or artifacts. Methods can

be described as the steps for accomplishing activities. And, finally, implementations are the

instantiated product (March & Smith, 1995).

Hevner, et al. posit seven guidelines for design research (2004). These guidelines can

be used by researchers to develop quality design research which contributes artifacts to the

information systems (IS) knowledge base. Unlike the natural sciences which examine,

understand, and predict phenomena that occur in nature, design science is concerned with the

study of the artificial and manmade objects. Hevner, et al. suggest that there are five outputs

from design research: constructs, models, methods, instantiations, and better theories.

Furthermore, the general methodology of design research consists of five process steps:

awareness of problem, suggestion, development, evaluation, and conclusion (Vaishnavi &

Kuechler, 2004/5).

Design research is a critical component for the IS discipline for the simple fact that the

entire discipline of information systems studies artifacts that have been designed by humans

to accomplish the goals of humans (March & Smith, 1995). Some argue that the relevance of

information systems is directly related to how research can be applied to design. Figure 3,

below, depicts an information systems research framework posited by Hevner, et al.

Figure 3. Information Systems Research Framework (Hevner, et al., 2004)

18

Figure 3 illustrates how business needs and applicable knowledge results in new theories

and artifacts. From a design research perspective, new artifacts are developed, refined and then

both pragmatic and scholarly contributions are made resulting in both relevant and rigorous

research.

The goal of information systems research is to explore the intersection of people,

organizations, and technology (Silver, Markus, & Beath, 1995). While the behavioral science

aspect of information systems is reactive, design research is proactive and attempts to bring into

being new artifacts to solve problems that have utility (Hevner, et al., 2004). Design science

research extends the state-of-the-art in the information systems domain by expanding the

boundaries of known applications of information technology and by exploring problems that

may have not been thought but could be approached using technology (March & Storey, 2008).

Our Approach to Design Science Research

The aim of our research is to bring new relevant cloud computing security artifacts

into being. In order to ensure research rigor and differentiate our work from design by

production, we follow the Peffers, et al. design science research methodology process model

shown in Figure 4 (2007).

Figure 4. Design Science Research Methodology Process Model

19

Our approach begins by identifying the problem and motivation behind the problem

by conducting a general literature review of open problems in IaaS cloud computing security.

Based on the literature review, we find gaps in security controls used within cloud computing

environments. First, our work identifies specific security control gaps within Infrastructure as

a Service (IaaS) Public Cloud Computing environments which are used to develop the

motivation behind our work. The output of the literature review leads us down three areas of

research: a new security control to detect attacks at the hypervisor level, a novel system for

managing and acting upon security control alerts, and an approach and artifact for detecting

insider data theft. Second, we define the objectives of our multi-part solution. Third, we

design and develop artifacts that address the objectives of our research. Fourth, we

demonstrate the effectiveness of our artifacts. Fifth and sixth, we evaluate the effectiveness

of our artifacts and system through experimentation and communicate our work to

professional and scholarly communities through publications. Each of these phases are

discussed in more detail in chapter four.

Summary

In this chapter, we discussed the design science research methodology and our

approach to applying this methodology to our work. Chapter four provides an overview of

our system which is composed of the artifacts derived from our research. Furthermore, a

mapping of each component to the Peffers, et al. Design Science Research Methodology is

discussed along with how our work generally fits within this methodology.

20

CHAPTER 4

RESEARCH COMPONENTS AND SYSTEM

Following the design science research methodology, we contribute to the information

systems and computing knowledge base by bringing new artifacts into being. These

components are derived following the Peffers, et al. Design Science Research Methodology as

mentioned in chapter three. In order to better understand the relevance of our work, it is

important to view each research artifact as a component in a larger system. In this chapter,

first, we introduce each of the research components. Second, we discuss how the components

fit into an overall system. And, third, we elaborate on the methodology used to construct the

artifacts and provide a mapping to information systems design science research concepts.

Research Components

The aim of our research is to address three security challenges in Infrastructure as a

Service cloud computing environments. First, we derive a new approach for detecting

potential bad actors in the cloud environment by analyzing anomalies in hypervisor

performance data. This approach provides a level of privacy for the cloud tenants while

offering an additional security control to improve bad actor detection and thwart cloud

attacks. Second, we research and develop a methodology and system for reducing the number

of alert messages from security controls in a cloud environment. A defense in depth approach

is recommended for securing IT infrastructures. However, managing security controls across

a vast number of systems can be a challenging task and ineffective if the appropriate alerts are

not properly acted upon. Third, our research examines the problem of data theft and insider

attacks in cloud environments. Cloud providers generally house multiple tenants who may

place sensitive assets into these environments. It is crucial that the providers not only operate

and manage controls to prevent outside attacks, but also attacks from within. In cloud

environments, insider attacks may occur from actors employed by the cloud provider as well

as ill-intentioned tenants wishing to steal data or other assets.

21

IaaS Cloud Security System

The three components of our research make up an overall system for enhancing the

security of IaaS cloud computing environments, and include a Hypervisor-based Cloud

Intrusion Detection System (HCIDS), a Streaming Intrusion Monitoring and Classification

System for IaaS Cloud (SCIMCS), and a System for Detecting Malicious Insider Data Theft

in IaaS Cloud Environments. Figure 5, below, illustrates how the individual components of

our research work together to make up our distributed multi-component approach and system

for enhanced security of public infrastructure as a service (IaaS) cloud computing

environments.

Figure 5. System Perspective of Research Components

Agents are installed in the cloud environment on the physical nodes that house tenant

virtual machines. These agents collect network and system data from various sources and

feed that data into the components of our system. More specifically, first, the Hypervisor-

based Cloud Intrusion Detection System receives metric data from the hypervisors which

control the tenant virtual machines. These metrics are used to detect anomalous behavior,

then compare the anomalous patterns with known attack patterns and classify attacks.

Second, the Streaming Intrusion Monitoring and Classification System for IaaS Cloud ingests

22

message alerts from security sensors in the cloud environment, including alerts from the other

two research components. This system presents potential Black Swan events to the security

administrator to help assist with triaging high priority events first. In addition, when trained,

the system displays the type of attack based on previously observed patterns. Third, the

System for Detecting Malicious Insider Data Theft in IaaS Cloud Environments examines

login activity and data transfers on the physical node. Abnormal patterns in these two events

coupled with system state data are shown to detect potential insider data theft in cloud

environments with a high level of accuracy.

While each component contributes to the knowledge base, the combination of these

three components makes up a system that provides a new set of security controls to improve

the security posture of IaaS cloud computing environments. Future chapters in this

dissertation reveal the detailed research and results for each component.

Research Methodology and Research Rigor

 As discussed in chapter three, our research is accomplished using the design science

research methodology. More specifically, we follow the Peffers, et al. Design Science

Research Methodology to ensure research rigor. Table 1, summarizes the mapping of our

research to the model.

23

Table 1. Design Science Methodology Component Mapping

Peffers, et al., Design

Science Research

Methodology Step

Chapter 5: Hypervisor-

based Cloud Intrusion

Detection System

(HCIDS)

Chapter 6: Streaming

Intrusion Monitoring

and Classification

System (SCIMCS)

Chapter 7: System

for Detecting

Malicious Insider

Data Theft

Identify Problem and

Motivate

A gap exists between

protecting the cloud users

from outsider attacks using

perimeter security

approaches and attacks from

mischievous users who have

penetrated the perimeter

security controls.

A need to improve the

monitoring of security

system alerts and more

importantly knowing

which events to act upon

immediately exists within

cloud environments.

New security controls are

needed to detect and

prevent insider data theft.

This is especially true in

multi-tenant cloud

environments.

Define Objectives of a

Solution

The creation of a hypervisor-

based intrusion detection

system for cloud

environments.

The creation of a system

and approach to assist

administrators with

gaining a better

understanding of

important events and

classification of such

events.

The creation of a new

approach and system for

detecting insider data

theft.

Design & Develop The system is designed and

developed using libvirt,

Python, and IBM Streams.

The system consists of

three steps: 1) Summarize

and Score, 2) Detect

Anomalies, and 3)

Classify Attacks and is

developed using Python

and IBM Streams.

A system profiling

approach is used for

detecting abnormal login

activity and data transfers

from IaaS cloud

computing nodes hosting

tenant virtual machines

using Python and IBM

Streams.

Demonstration We demonstrate and verify

the effectiveness of the

proposed system in a small

cloud environment using the

Eucalyptus infrastructure.

We demonstrate and

verify the effectiveness of

the proposed system in a

small cloud environment

using the Eucalyptus

infrastructure.

We demonstrate and

verify the effectiveness of

the proposed system in a

small cloud environment

using the Eucalyptus

infrastructure.

Evaluation Using developed signatures,

we are able to detect 100

percent of two types of

denial of service attacks

within a cloud environment:

denial of service attacks

against a cloud instance and

a denial of service attacks

from a cloud instance against

another cloud instance.

We observe a total alert

reduction of 95.9 percent

with a zero miss rate for

problematic alarms. In

addition, we demonstrate

a 100 percent

classification rate for

trained attacks.

We observe 100 percent

detection of abnormal

login activity and data

copies to outside systems

and a zero false positive

detection rate when

anomalies in active user

counts and bytes

transmitted is detected

along with supporting

system state data.

Communication IEEE International

Conference on Computing,

Networking and

Communication (ICNC),

CNC Workshop, Honolulu,

Hawaii, USA, Feb 3-6, 2014.

IEEE International

Conference on Cloud

Computing (CLOUD),

San Francisco, USA, June

27 - July 2, 2016.

IEEE Global

Communications

Conference

(GLOBECOM),

December 4-8 December,

2016.

24

In accordance with the Hevner, et al. research framework, each component in our

system contributes relevant work to the cloud computing environment along with rigorous

design science research to the knowledge base. Table 2 summarizes the contributions of our

work according to the Hevner, et al framework.

Table 2. Hevner, et al. Research Framework Mapping

Artifact Application in the

Appropriate Environment

Addition to the Knowledge

Base

Hypervisor-based Cloud

Intrusion Detection System

Technology: Infrastructure

Technology: Applications

Foundations: Methods

Foundations: Instantiations

SCIMCS Technology: Infrastructure

Technology: Applications

Foundations: Methods

Foundations: Instantiations

Insider Data Theft Detector Technology: Infrastructure

Technology: Applications

Foundations: Methods

Foundations: Instantiations

Each artifact of the overall system contributes to IaaS cloud computing infrastructure

security through instantiation and demonstration of novel security components that reduce

cloud deployment risk by improving security in these environments. Additionally, the

research introduces new methods for detecting attacks and better understanding alerts in these

environments.

Summary

In chapter four, we introduced each of our research components and discussed how the

components fit into an overall system. Then, we elaborated on the methodology used to

construct the artifacts and provided a mapping to information systems design science research

concepts. Chapters five, six, and seven provide the details for each of the research

components.

25

CHAPTER 5

HYPERVISOR-BASED CLOUD INTRUSION

DETECTION SYSTEM

One of the significant challenges in Infrastructure as a Service (IaaS) cloud computing

is the lack of ability for cloud users to control security protection in the cloud infrastructure.

In a survey of more than 170 businesses, 50 percent of the respondents stated concerns with

security issues relating to cloud computing resources (Biggs & Vidalis, 2009). To help

address these concerns, controls have been proposed by the Cloud Security Alliance, many of

which are process based and are subject to noncompliance and human error. For the controls

that are automated and machine based, a gap exists between protecting the cloud users from

outsider attacks using perimeter security approaches and attacks from mischievous users who

have penetrated the perimeter security controls. These outside attackers become insiders

within the cloud environment and can attack other virtual machines within the cloud

infrastructure.

One automated security control recommended by the Cloud Security Alliance for

cloud computing environments is an intrusion detection system (Cloud Security Alliance,

2011). There are two traditional types of intrusion detection systems: host based and network

intrusion detection systems (Dhage & Meshram, 2012). Host based intrusion detection

systems are composed of an agent on a host system that examines system calls, logs, file-

system modifications, and other host activities to detect intrusions. Network intrusion

detection systems monitor network traffic and the content of packets in order to discover

malicious traffic.

Both host based and network based intrusion detection systems have advantages and

limitations. Network intrusion detection systems attempt to address attacks from outsiders and

generally have limited effectiveness against insider attacks (M. B. Salem, Hershkop, & Stolfo,

2008). These and other perimeter security controls, such as firewalls, may be less effective in

cloud computing environments because of the shared multi-tenancy nature of cloud

computing (Sheridan & Cooper, 2012). It is common for multiple cloud users to reside

26

virtually partitioned on a single physical machine which opens up the possibility for attacks

over virtual or internal networks (Lori, 2010). Host based intrusion detection systems can be

effective but typically must be monitored and managed by cloud users. This approach can be

difficult for cloud users who have several instances in a cloud environment. Furthermore, host

based intrusion detection systems can be disabled by a skilled attacker that has breached the

instance.

In this chapter, we propose a new type of intrusion detection system, a Hypervisor-

based Cloud Intrusion Detection System (HCIDS), to address some of the challenges with

traditional intrusion detection systems in cloud environments. HCIDS examines system

metrics for cloud instances directly from the hypervisor to seek out potential misuse patterns.

Our contributions in this work include, but are not limited to:

 We propose a hypervisor-based intrusion detection system for cloud environments.

 We demonstrate and verify the effectiveness of the proposed system in a real cloud

environment.

 Using developed signatures, we are able to detect 100 percent of two types of denial of

service attacks within a cloud environment: denial of service attacks against a cloud

instance and a denial of service attacks from a cloud instance against another cloud

instance.

The remainder of the chapter is organized as follows. First, related work is discussed.

Second, the system design of our hypervisor-based cloud intrusion detection system is

presented. Third, the system is demonstrated and results are discussed. Fourth, our work is

summarized and we discuss future works.

Related Work

Our work consists of three components: the use of performance signatures for

detecting attacks on a system, detecting anomalies in virtualized environments from outside of

the virtual machine, and an intrusion detection framework for cloud environments.

The use of performance signatures to detect malicious activity and intrusions is

proposed by Avritzer, et. al and Oppenheimer and Martonosi (Avritzer, Tanikella, James,

Cole, & Weyuker, 2010; Oppenheimer & Martonosi, 1997). Oppenheimer and Martonosi

present a model for using performance signature data to detect system security violations.

27

More recently, Avritzer, Cole, and Weyuker demonstrate an approach for detecting attacks on

software systems using system performance signatures. In their work, they model the

performance characteristics of a system with a reasonable background load to simulate system

usage and examine CPU, memory, I/O and network usage metrics to detect buffer overflow,

stack overflow, SQL injection, denial of service (DoS), and man-in-the-middle attacks. The

results from their work show promise for using performance signatures to profile attacks.

An approach for detecting attacks in a virtualized environment outside of the virtual

machine instance is to use virtual machine monitor introspection (Christodorescu, Sailer,

Schales, Sgandurra, & Zamboni, 2009). Garkinkel and Rosenblum present an architecture and

prototype using virtual machine introspection to detect attacks in virtual machine instances

(Garfinkel & Rosenblum, 2003). In their work, they demonstrate how introspection of the

virtual machine can detect rootkits and backdoors, Trojan horses, packet sniffers, and worms

by inferring software state based on a priori knowledge of its structure.

Cloud computing intrusion detection is an active research area. To address

performance issues with intrusion detection in a cloud computing environment, Dhage, et al

propose a distributed intrusion detection system which averts heavy loads on a central

intrusion detection server (Dhage & Meshram, 2012). Their work places multiple mini

intrusion detection instances throughout the cloud environment which communicate with a

controller. The controller stores pertinent data in cloud logs and uses it for intrusion detection

analysis. To enhance the effectiveness and efficiency of network intrusion detection systems,

Lin, et al. present a technique for using hypervisors in the cloud to inventory operating

systems and services on nodes (Lin, 2009). Larger security solutions are also suggested such

as the Security Audit as a Service architecture for cloud computing environments posited by

Doelitzscher, et. al (Doelitzscher, Reich, & Sulistio, 2010). Their six-layer security model

utilizes modules, including a crypto module, a customer public key infrastructure, an SLA

monitoring system, a policy module, a logging module, and an intrusion detection system.

Design and Development

Hypervisors have access to performance data for the virtual machines that they host.

This data provides insight into the activities occurring within a virtual machine without

having direct knowledge of the actual operating system, applications or private data residing

28

within the virtual machine. In our proposed Hypervisor-based Cloud Intrusion Detection

System (HCIDS), we utilize performance metrics from hypervisors within a cloud

environment to detect attack patterns. This approach differs from other performance based

intrusion detection systems in that it removes the requirement of having software installed on

the host computer, or virtual machine in a virtualized cloud environment. Forcing cloud

computing users to install additional software in their instances can be problematic and may

be resisted by cloud users. Furthermore, gathering performance metrics directly from the

hypervisor and not from the operating system makes our solution operating system agnostic.

Using patterns in streaming performance metrics from the hypervisor, we are able to detect

and classify abnormal usage.

Performance Metrics

The performance metrics used in our work are retrieved from the hypervisors hosting

virtual machines within the cloud computing environment. Performance metric data for

network data transmitted, network data received, block device read data, block device write

data, and CPU utilization is analyzed and is commonly available from all the major

virtualization platforms using application programming interfaces (APIs). Our approach

retrieves each of these metrics every second. We do not analyze memory utilization because

memory allocation is performed once at startup and does not vary with usage making it

irrelevant for detecting attacks.

Framework

Our proposed framework consists of three high level components: a controller node,

end point nodes, and a notification service. First, the controller node is responsible for near

real time analysis of performance data for every virtual machine in the cloud computing

environment. Second, the end point nodes gather data on every virtual machine running in the

cloud environment from the virtual machine hypervisor and present the data to the controller

node. Third, the notification service provides notification when an attack signature has been

identified. Figure 6 illustrates our proposed design architecture.

29

Figure 6. Conceptual Diagram of Proposed System

Controller Node

The controller node is a service that resides within the cloud environment. Its purpose

is to collect and analyze data in near real time from the end point nodes. As data arrives, it is

analyzed using a sliding window approach. Windows of performance metrics are analyzed

for signatures that suggest suspicious activity.

Endpoint Nodes

Endpoint nodes are a conceptual component. They may be agents on each physical

system that contains a hypervisor, built within a hypervisor, or API calls to the hypervisor.

The purpose of these nodes is to gather and format data from hypervisors and send it to the

controller node for analysis. These nodes reside outside of virtual machines and cannot be

controlled or manipulated by cloud computing users.

30

Notification Service

The notification service is used to provide alerts that the system has detected a

signature of a potential attack. The notification can be a message in a log file, an email, or

input into another intrusion detection system.

Demonstration and Evaluation

We demonstrate the feasibility of using hypervisor performance metrics to detect

attacks on virtual machines in a cloud computing environment using the Eucalyptus

infrastructure. Eucalyptus is a private and hybrid cloud solution that is in use by a number of

large organizations.

Eucalyptus Test Environment

The Eucalyptus cloud computing system is composed of five main components: cloud

controller, Walrus, cluster controller, storage controller, and one or more node controllers

(“Eucalyptus Components,” 2013). In our test cloud environment, the cloud controller,

Walrus server, cluster controller and storage controller all reside on a single physical server.

Furthermore, our environment consists of two node controllers which reside on independent

physical machines. Table 3 summarizes the hardware configuration of our test environment.

Table 3. Simulated Cloud Environment Specification

Component Configuration

Controller AMD Athon™ 64x2 Dual Core Processor

4 GB RAM

Two gigabit network interface cards (NICs)

Endpoint 1 AMD Phenom™ II X4 965 Quad Core Processor

8 GB RAM

Two gigabit network interface cards (NICs)

Endpoint 2 AMD Phenom™ 9150e Quad Core Processor

6 GB RAM

Two gigabit network interface cards (NICs)

31

Simulation Implementation Detail

 This section describes the components of our system. First, the controller node is

explained. Second, the endpoint nodes are examined. And, third, the notification service is

discussed. Figure 7 illustrates the implementation detail and flow between components.

Figure 7. Implementation Detail

Controller Node

The controller node resides on a machine outside of the Eucalyptus infrastructure and

is prototyped using the IBM Streams product. The controller node logic is implemented using

IBM Streams Processing Language (SPL) (Zikopoulos & Eaton, 2011) and listens on a UDP

socket. Hypervisor performance data is rapidly ingested and analyzed using two sets of

sliding windows. First, ten second sliding windows aggregate data on CPU percent

utilization, block device reads, block device writes, network packets received, and network

packets transmitted. As metric values enter sliding windows, the mean and maximum values

are calculated. Anomalies are defined as values that exceed two times the mean. Second, a

three second sliding window is used to detect attacks. This window populates with anomalies

detected from the first sliding window. If an anomaly occurs three times, consecutively, it is

32

labeled as a potential attack pattern and compared to a set of known attack patterns.

Unrecognized patterns are ignored.

Endpoint Nodes

Two Eucalyptus nodes are used which contain multiple virtual machines. A Python

script gathers CPU, block device, and network device metrics using the libvirt API and is

deployed on each node. This script samples performance metrics every second and sends the

data in comma separated value (csv) format to the Controller Node using the UDP protocol

for each virtual machine running on the node.

Notification Service

The IBM Streams product performs the role of the notification service. The attacks are

visualized in a table and written to a file. The file can be monitored using any common file

monitoring tool.

Simulated Activities

The effectiveness of the system is demonstrated by running denial of service attacks

from and against a virtual machine in the cloud environment with and without a simulated

valid user workload.

Simulated Workload

An Apache web server resides on the cloud instance which serves up a web page that

randomly performs different sized reads and writes at intervals of two and five seconds. For

each simulated activity, three runs are conducted three times. The first run is performed

without a user workload. The second run is conducted with five concurrent users accessing

the cloud instance’s HTTP server webpage. And, the third run is performed with 10 users

concurrently accessing the cloud instance’s HTTP server webpage.

Simulated Attacks

Two types of denial of service (DoS) attacks are performed to examine the

effectiveness of our approach: a HTTP flood attack against a cloud instance and a syn flood

33

attack from the cloud instance against another virtual machine in the cloud environment.

First, a denial of service attack against the cloud instance is performed using the tool

DoSHTTP (“Socketsoft.net,” 2013) from outside the cloud environment using a Windows 7

machine. This attack uses 500 sockets to issue 10,000 requests. Second, hping3 (Sanfilippo,

2013) is used to create a syn flood attack from within the virtual machine to attack another

virtual machine in the cloud.

Attack analysis approach

The primary purpose of our analysis is to determine whether hypervisor performance

metrics can be used to detect and classify attacks while minimally flagging normal usage as

attacks. We do this by manually observing patterns in performance data when DoS attacks

are occurring and creating signatures from these patterns. There are three goals for the attack

signatures. The first goal is to reduce or eliminate false positives. A false positive occurs

when normal usage is labeled as an attack. An intrusion detection system with a high false

positive rate will be ignored or disabled. The second goal is to detect all valid attacks. The

more attacks not detected, the less effective the system becomes. And, the third goal is to

properly classify the type of an attack. Proper classification is useful for responding to

attacks.

With these goals in mind, we perform both DoS attacks three times for approximately

15 minutes under three stress conditions: no users, five concurrent users, and a load of 10

concurrent users. The variability in workload improves the quality of the experimentation by

better reflecting a real world cloud application. Furthermore, each run is performed three

times to examine the repeatability of results.

We manually observe repeatable anomaly patterns in the hypervisor performance

metrics while the attacks occur and create signatures for the attacks. Each signature is

composed of five commonly available hypervisor metric variables: Packets Transmitted

(Packets TX), Packets Received (Packets RX), Block Device Read Requests (Block Device

Read Req), Block Device Write Request (Block Device Write Req), and CPU Utilization

(CPU Util.)

A signature is defined by Boolean values for each performance metric. A metric is

considered true in a signature if it is repeatedly detected as an anomaly for three consecutive

34

10 second sliding windows. As previously described, an anomaly is defined as a metric value

exceeding twice the mean in a 10 second sliding window. We find that this technique reduces

false positives caused by normal system variability. Using this approach, we code patterns for

the DoS attacks from and against a cloud instance. The patterns represent the signature for an

attack.

The system is applied to normal running conditions without attacks in order to

measure false positives. The same three system stress conditions (e.g., no user activity, five

concurrent users, and 15 concurrent users) are performed and the results are recorded.

Results and Observations

The coding of performance metrics reveals repeatable signature patterns for the two

DoS attacks. Table 4 summarizes the attack signatures derived from manual observations

during multiple system runs under the three stress conditions.

Table 4. Signatures

Attack CPU

Utilization

Block

Device Read

Request

Block

Device

Write

Request

Packets

Received

Packets

Transmitted

HTTP DoS

attack

against cloud

instance

True False False True True

Syn Flood

attack from

cloud

instance

True False Any False True

To measure the accuracy of signatures, three test runs are performed: DoS attack

against the instance, DoS attack from the instance, and no attack for a baseline measurement.

Each test run is conducted over a 45 minute period consisting of three 15 minute stress

conditions: no user activity, five concurrent users, and 10 concurrent users. Attacks are issued

three times during each stress condition, or nine times total per test run. Table 5 summarizes

the results of our findings.

35

Table 5. Accuracy

Attack False Positives

(number of false

positives / number of

metric sets analyzed

that were not

attacks)

False Negatives

(number of attacks

not detected /

number of attacks

issued)

Misclassifications

(number of attacks

incorrectly classified

/ number of attacks

issued)

HTTP DoS attack

against cloud

instance

<1% (8/3043) 0% (0/9) 0% (0/9)

Syn Flood attack

from cloud instance

1.4% (43/3179) 0% (0/9) 0% (0/9)

No attack 0% (0/3091) N/A N/A

A false positive is counted when a set of performance metric data is detected as an

attack during normal usage. A false negative is defined as an attack that is not detected. And,

misclassifications are attacks that are incorrectly classified as other attacks (e.g., a syn flood

attack is classified as a HTTP DoS attack.)

The data from our findings indicate that streaming hypervisor performance metrics can

be used to detect denial of service attacks within a cloud environment. Every denial of

service attack performed by the instance and against the instance is detected and properly

classified. The false positives are mostly detected during the 10 user workload run. We

theorize that this workload may emulate a denial of service attack in the environment.

Additional investigation is needed to prevent these false positives. Also, it is noteworthy that

no false positives are detected when an attack is not applied.

Comparison with other approaches

The work presented in Avritzer et al (2010) and Oppenheimer & Martonosi (1997)

uses a host-based intrusion detection approach to run a monitoring agent on a computer to

retrieve performance metrics from the operating system or applications. Our proposed

approach does not require any additional software installed in virtual machines. In

Christodorescu et al. (2009) and Garfinkel & Rosenblum (2003), virtual machine

introspection is used. Virtual machine introspection is effective to detect malicious behavior

in virtual machines. However, it examines the detailed state of the virtual machine such as

memory and register contents and I/O device flags. Cloud users storing confidential data on a

36

cloud instance may have concerns with the snooping of memory on their virtual machines.

Further, it also requires knowledge and modification of the underlying operating system. Our

approach does not require direct knowledge of the operating system running in virtual

machines. We examine the performance metric usage patterns over time. The work in Dhage

& Meshram (2012), Doelitzscher et al. (2010), and Lin (2009) uses distributed intrusion

detection system which averts heavy loads on a central intrusion detection server. In our

work, an agent is installed on each hypervisor node which communicates with a central

decision node.

HCIDS offers at least two advantages over existing intrusion detection techniques.

First, monitoring is done outside of the virtual machine and is independent of the operating

system or applications running within the virtual machines. This removes the burden of users

having to install additional software in their images and cannot be compromised from within

the virtual machine instance. Second, insider attacks that potentially would not be detected

using perimeter security controls can be detected. If an attacker takes over an instance and

then uses that instance to attack other instances in the cloud computing environment,

perimeter firewalls and intrusion detection systems generally would not detect this malicious

activity.

Conclusion and Future Work

The initial findings from this work indicate that hypervisor performance signatures can

indeed be successfully used to detect attacks in a cloud computing environment. This

approach offers advantages over other intrusion detection systems alone. First, our

framework does not require knowledge of the underlying operating system or applications run

on cloud instances. We examine patterns of performance metrics from outside of the instance

directly from the hypervisor without placing a burden on the cloud user. Second, the

proposed hypervisor-based cloud intrusion detection system can be integrated with and

complement existing intrusion detection systems and perimeter defenses to improve the

security within cloud environments. When using a defense in depth security strategy,

multiple security systems should be considered to detect and thwart attackers.

Our experiments and testing demonstrate the feasibility of using hypervisor metrics for

detecting denial of service attacks both against and from a cloud instance. Additional

37

statistical approaches to extract attack patterns and system tuning will be explored next.

Further attacks, including enumeration, insider password cracking, and network sniffing will

be profiled to test the accuracy of detection and classification systems. Approaches to reduce

false positives will be examined. And, a comparison analysis of traditional approaches and

our system will be conducted.

38

CHAPTER 6

A STREAMING INTRUSION MONITORING AND

CLASSIFICATION SYSTEM

A data breach reported on December 18, 2013 occurred against the Target

Corporation. It is believed that the bad actors captured 40 million payment card reports and

70 million customer records. The cause of this significant loss is believed to be the result of

inadequate monitoring and alert response (Cobb, 2014). Unfortunately, security attacks and

breaches occur against organizations of all types and sizes. Security professionals and

researchers accept the premise that no system has perfect security (Mandiant, 2014).

Furthermore, security challenges have been noted as primary reasons for avoiding adoption of

cloud computing by organizations (Hay, Nance, Bishop, Brian, & Hay, 2011; Ren et al.,

2012).

Cloud computing offers unique challenges over single tenant data centers. More

specifically, cloud computing infrastructure as a service (IaaS) environments generally consist

of multiple tenants running a variety of applications with differing privacy and confidentiality

requirements. Although IaaS cloud environments introduce challenges above and beyond

private data centers, the techniques for securing both environments are similar. The Cloud

Security Alliance suggests an approach that includes a defense in depth (SANS, 2001)

strategy where people, process, and layers of technology all play a role in securing the cloud

environment (Cloud Security Alliance, 2011).

As observed from incidents such as the Target Corporation breach, monitoring

intrusion detection system alerts and more importantly knowing which events to act upon

immediately may be the difference between a minor breach and significant damage to an

organization. This challenge is amplified in a multi-tenant IaaS environment where multiple

tenants may host sensitive data and run services that perform diverse computing activities.

Our work supports a defense in depth approach by leveraging multiple distributed

intrusion detection and security system sensors in an IaaS cloud computing environment. We

propose a streaming cloud intrusion monitoring and classification system (SCIMCS) to assist

39

cloud providers with multiple security systems by filtering noisy alert messages and

classifying previously observed attacks.

Our approach consists of three steps: 1) Summarize and Score, 2) Detect Anomalies,

and 3) Classify Attacks. In this chapter, we detail our approach and demonstrate its

effectiveness through implementation and experimentation in an IaaS cloud environment

using the Eucalyptus cloud framework. We observe a total alert reduction of 95.9 percent

with a zero miss rate for problematic alarms. In addition, we demonstrate a 100 percent

classification rate for trained attacks. Our contributions from this work include, but are not

limited to:

 A weighted noisiness approach for alert prioritization and classification.

 A framework for IaaS cloud environments using the proposed approach consisting of

five components: Sensor Agents, Ingestor, Analyzer, Detector, and Classifier.

 We demonstrate the effectiveness of our framework in an IaaS cloud environment

using the Eucalyptus cloud infrastructure by executing and classifying real attacks.

The remainder of the chapter is organized as follows. First, related work is discussed.

Second, the system design of our streaming cloud intrusion monitoring and classification

system is presented. Third, the system is demonstrated and results are discussed. Fourth, our

work is summarized and we discuss future works.

Related Work

In this section, first, we summarize existent related work in four subcategories: alert

aggregation, alert correlation, alert ranking and classification, as well as cloud based

approaches. Second, we summarize how our approach is novel.

Alert Aggregation

Debar and Wespi introduce a system using Tivoli Enterprise Console that aggregates

and correlates data from probes. Correlation relationships are created using explicit rules and

derived rules from configuration information. Aggregation relationships are created using an

algorithm that groups events together using these rules. They demonstrate the effectiveness

of their solution and display the results using alert and alarm views (Debar & Wespi, 2001).

Fan, Ye, and Deng demonstrate a distributed alert aggregation system model that uses a

40

transform agent to convert intrusion detection system (IDS) messages. Original alerts are

categorized into classes and actions which can be issued. Their work is tested using network

data (Fan, Jihua, & Mingxing, 2009). Hofmann and Sick propose algorithms for alert

aggregation based on probabilistic models of a current situation using alert attributes. They

provide both an offline and data stream alert aggregation approach (Hofmann & Sick, 2011).

Saad and Traore present semantic analysis and ontology engineering techniques to aggregate

and fuse intrusion detection system alerts. Their work demonstrates an approach for lossless

alert aggregation that does not require perfect matches of alert attributes (Saad & Traore,

2011).

Alert Correlation

Valeur, et al. present a correlation process and framework for addressing large

volumes of messages output from intrusion detection systems. They use alerts from multiple

systems and create intrusion reports or tag them as non-relevant. Their approach uses alert ids

and alert names to perform mapping and normalization (Valeur, Vigna, Kruegel, &

Kemmerer, 2004). Qin and Lee put forth an approach to analyze INFOSEC alerts and detect

attack strategies. In their work, Bayesian inference and the Granger Causality test is used to

correlate alerts (Singhal, Qin, & Lee, 2007). Ma, Li, and Zhang present an approach to fuse

alerts based on timestamp and remove duplicates to reduce alerts. Evidence threat probability

is calculated using Dempster-Shafer theory. Furthermore, they combine network and

intrusion detection data and use Hidden Markov Models (HMM) to calculate a network risk

distribution (Ma, Li, & Zhang, 2009). Wen, Xian and Zhou introduce a system for alert

fusion and correlation. In their work, they use a target-oriented policy where alerts are

clustered when requirements of duplication categorization and co-operating are met (Wen,

Xiang, & Zhou, 2010).

Alert Ranking and Classification

Jiang, et al. present work on importance ranking of alerts using invariant relationships

to map metric thresholds to other metric thresholds. They use Autoregressive models to learn

linear relationships between metrics. And, they use alert peer review to assist with

trustworthiness of alerts (Jiang, Chen, Yoshihira, & Saxena, 2011). Gupta, et al. present the

41

PIKE architecture which uses a binary classifier to classify an alert as relevant or irrelevant

based on knowledge-based evaluation. They propose a classifier that uses a calculated score

as the characteristic for classification. The effectiveness is demonstrated using contextual

information as a basis of IDS alert classification (Gupta, Joshi, Bhattacharjee, & Mundada,

2012).

Cloud Based Approaches

The Cloud Security Alliance suggests an approach that includes a defense in depth

strategy where people, process, and layers of technology all play a role in securing a cloud

environment (Cloud Security Alliance, 2011). Furthermore, NIST provides Guidelines on

Security and Privacy in Public Cloud Computing in SP800-144 (Jansen & Grance, 2011).

Both of these pragmatic works provide recommendations for securing a cloud environment

but leave the specific details to cloud providers.

Technical cloud solutions exist in literature. Gul and Hussain present a cloud

intrusion detection model. They put forth a multi-threaded cloud intrusion detection system

that monitors the network along with a third party monitoring system (Gul & Hussain, 2011).

Log monitoring and management systems in cloud computing environments based on usage

are also known (Lee, Park, Eom, & Chung, 2011). And, collaborative intrusion detection

systems in cloud environments have been posited (Mohamed, Adil, Saida, & Hicham, 2013).

Our Approach

Information overload theory has been applied to the field of advertising (Anderson &

de Palma, 2005). In marketing, the outcome of too much information is the reduced

effectiveness of advertising investment. Information overload theory can be applied to

security control effectiveness. Accuracy aside, the effectiveness of a security system

dramatically decreases when an administrator is overwhelmed with too much information.

We set out to reduce the information overload problem in IaaS cloud by

accomplishing three objectives: 1) to present cloud providers with alerts of importance from

multiple systems while filtering lesser important alarms without sensor reconfiguration, 2) to

properly classify attacks based on filtered alerts, and 3) to present a scalable and dynamic

approach. We accomplish our objectives using a novel three step approach: 1) Summarize

42

and Score, 2) Detect Anomalies, and 3) Classify Attacks. To the best of our knowledge, we

are the first to examine alert prioritization and classification in IaaS Cloud Environments

using anomalies in calculated urgency scores. Using these reduced alerts, attacks are

classified. We demonstrate the effectiveness of our framework by executing, detecting, and

classifying real attacks. Unlike previous works, we do not use simulation on test data sets, but

actual system state and attacks.

Design and Development

An IaaS cloud environment typically consists of virtual machines hosted on physical

nodes. A single node may host virtual machine instances from multiple tenants. To secure

this shared dynamic environment, the Cloud Security Alliance recommends a defense in depth

approach (Cloud Security Alliance, 2011). Similarly, NIST provides security guidance for

cloud providers (Jansen & Grance, 2011). However, managing a defense in depth approach is

non-trivial. Several layers of security mechanisms must be deployed and monitored. When a

threat is detected, it must be appropriately acted upon. A common problem with monitoring

such approaches is the sheer volume of alarms generated, some of which are false positives,

and others are informational. It is challenging for cloud providers to quickly interpret which

events to act upon and the priority of such events.

Another challenge is the dynamic nature of cloud environments. Tenant instances

may come and go. As the needs of providers grow, nodes are added dynamically to the

environment. In other cases, nodes are removed due to system faults or maintenance.

Security sensors may come and go in these environments. Therefore, our system must

tolerate the inherent changing nature of these environments.

Approach

To address the problem of information overload from security sensors in dynamic IaaS

cloud environments, we propose our distributed cloud intrusion monitoring and classification

system. Our system consists of a three step approach: 1) Summarize and Score, 2) Detect

Anomalies, and 3) Classify Attacks shown in Figure 8.

43

Figure 8. Three Step Approach

Summarize and Score

Summarize and score ingests alerts from security sensors in a cloud environment and

calculates an urgency score for the alert message. This approach is based on the concept of

black swan events, or rare events that have a significant future impact (Damiani, 2009; Taleb,

2010; Taylor & Williams, 2008). In an IaaS cloud environment with several sensors reporting

data, we derive a formula for detecting these rare events. The urgency score is calculated

using the number of times a message is reported historically in the entire cloud environment,

by the individual node, and the count of alerts generated by the sensor.

First, we calculate the message noise in the overall cloud environment:

where 𝑚 is the number of times the alert message occurred and 𝑐 is the total count of all

historical alert messages. Next, we calculate the message noise for the reporting node (e.g.,

we determine how many times this alert has occurred at the node level):

where 𝑚′ is the number of times the alert message occurred on the node and 𝑐′ is the total

number of messages reported by the node. Third, we calculate the message urgency score:

where 𝑛 is the number of nodes in the cloud environment. In addition to message urgency,

we calculate sensor urgency:

where 𝑚𝑠 is the total number of messages reported by all sensors and 𝑠 is the sensor count in

the environment. Then, we calculate the urgency by the specific sensor reporting the message:

 𝑓(𝑚, 𝑐) = (
𝑚

𝑐
)

𝑓(𝑚′, 𝑐′) = (
𝑚′

𝑐′
)

𝑈𝑀 = 1 − (𝑓(𝑚′, 𝑐′) × (1 − (1 −
1

𝑛
)) + 𝑓(𝑚, 𝑐) × (1 −

1

𝑛
))

𝑓(𝑚𝑠, 𝑠) = (
𝑚𝑠

𝑠
)

𝑓(𝑚𝑠′, 𝑠′) = (
𝑚𝑠′

𝑠′
)

44

where 𝑚𝑠′ is the number of times the alert occurred from the sensor and 𝑠′ is the total number

of alerts reported from the sensor. Finally, we calculate the sensor urgency score 𝑈𝑆:

where 𝑡 is the total number of sensors in the cloud environment. Using these two scores, we

derive an overall urgency value, 𝑈, for the alert:

This value is used as the urgency score for the alert message in the system. A value of 1.0 is

most urgent, or a possible black swan event, while a value of 0 is least urgent. In addition,

sensors that infrequently report are given higher weight than those that commonly report. The

combination of weighted event messages and sensor output increases the priority of rare

anomalous events and ranks alerts properly amongst peers.

Detect Anomalies

Detect anomalies utilizes alert messages and the urgency score from Summarize and

Score to detect abnormal patterns in scores using a time series k nearest neighbor approach

(Sutton, 2012). We use window sizes of 15 and 30 tuples based on empirical

experimentation. The choice to use this approach is based on simplicity, accuracy, and

performance.

In addition, Detect Anomalies uses the mean and standard deviation of previously

observed urgency scores to rank anomalous messages as important. Values that fall outside of

one standard deviation and within two standard deviations from the mean are labeled with

medium importance. Values that fall outside of two standard deviations from the mean are

labeled as high importance. Both medium and high alerts are considered potential threats.

Classify Attacks

Classify attacks ingests anomalous alert messages from Detect Anomalies and uses 10

second tumbling windows to create signatures of alert messages and sensor ids. Bayesian

classification (Mihaescu, n.d.) is applied to signatures for classification of the potential attack.

𝑈𝑆 = 1 − (𝑓(𝑚𝑠
′, 𝑠′) × (1 − (1 −

1

𝑡
)) + 𝑓(𝑚𝑠, 𝑠) × (1 −

1

𝑡
))

𝑈 = 𝑈𝑀 × 𝑈𝑆

45

Naive Bayesian classification is chosen because the classifier model is easily implemented,

performs quickly, and has a history of success for classification (Rish, 2001).

In addition to attack pattern classification, prioritized alert messages are displayed

based on the standard deviation of the urgency score compared to previously observed scores.

If an attack pattern is unknown, the window of alert messages may be used to train the

classifier by applying the alerts to a classification rule. If an unclassified attack occurs, the

classifier can be placed into train mode and the attack is replayed and labeled. Future similar

patterns are recognized and classified as an attack defined by the specified label.

Framework

Our proposed framework consists of five components: Sensor Agents, Ingestor,

Analyzer, Detector, and Classifier. Figure 9 provides a visual representation of the

components.

Figure 9. SCIMCS Framework Components

Sensor Agents

Sensor agents run on nodes hosting virtual machines. The sensor agents receive the

input message from a security module, format the alert message, and pass it to the Ingestor.

For example, the sensor agent for the common intrusion detection system, Snort, receives the

output from the Snort system, formats the message and appends metadata consisting of time

stamp, date stamp, node, and sensor id. The formatted message is then sent on to the Ingestor.

Ingestor

The Ingestor receives messages from sensor agents using the UDP protocol and has

the capability to buffer events. A throttling control is implemented to avoid back pressure

46

from the Analyzer. The primary purpose of this component is to rapidly process event

messages and to perform flow control to prevent message loss.

Analyzer

The Analyzer performs the Summarize and Score step of our system. As sensor

events arrive from the Ingestor, the Analyzer inserts each message along with a count into a

persistent in memory data store. Messages and counts are summarized at the cloud and node

level. In addition, sensor ids for types and specific sensors are persisted with counts of

messages reported by the sensor.

The Analyzer uses message counts to calculate an urgency value from the number of

times the message has occurred historically in the cloud environment along with the number

of messages generated by the sensor as described earlier in this chapter. Furthermore, a decay

time is introduced to reduce the count of messages every n seconds. The reduction of

message counts ensures that future critical messages are not overlooked.

Detector

 The Detector performs two roles. First, it detects anomalies in urgency scores using k-

nearest neighbors over a sliding window. The first time a high score arrives, it is flagged as

an anomaly. As the same score continues to arrive, the anomaly score decreases, resulting in

in a reduction of messages passed to the classifier. Second, the Detector labels alerts as high,

medium, or low based upon the output from the Analyzer and standard deviations from the

mean of alerts.

Classifier

The Classifier provides step three of our approach, Classify Attacks. This component

uses Naive Bayes Classification to label the attack using concatenated sensor and alerts in 10

second data widows. As previously mentioned, The Classifier also provides a training mode

for adding new attack patterns.

47

System Instantiation

We demonstrate our system in an IaaS cloud environment running Eucalyptus shown

in Figure 10. The environment consists of three nodes containing up to four virtual machines

each, a cloud controller machine, and two machines dedicated to the SCIMCS. This

configuration is similar to a small business private IaaS cloud environment.

Figure 10. Cloud Environment

Cloud Environment

Figure 10 provides a conceptual view of the experimentation environment. This

environment consists of five physical multicore systems connected over Gigabit Ethernet on a

private network. The cloud computing environment is made up of the cloud controller and

three node machines. The Streaming Cloud Intrusion Monitoring and Classification system is

distributed across two physical machines. The Cloud Controller contains the management

components for the Eucalyptus cloud infrastructure (Nurmi et al., 2009). The nodes contain

security agents as well as the Eucalyptus node controller component for cloud management.

The SCIMCS consists of two physical systems which communicate with Agents on the nodes.

48

SCIMCS Implementation

The SCIMCS implementation consists of the five components: Sensors, Ingestor,

Analyzer, Detector, and Classifier.

Sensors

Five sensors are deployed on each of the nodes in the IaaS environment: HCIDS,

Snort Sensor, Log Sensor, Network Sensor, and Rootkit Sensor. HCIDS is a hypervisor based

cloud intrusion detection system proposed in (Nikolai & Wang, 2014). It monitors virtual

machine performance metrics such as packets transmitted/received, block device read/write

requests, and CPU utilization then seeks out anomalies. A signature based categorization

approach is used to emit alerts, as described in chapter five.

The Snort sensor retrieves messages emitted from the Snort intrusion detection system

(Kumar, 2012). The Snort deployment is configured with all rules turned on. This

configuration ensures that valid attacks are not missed. It also demonstrates the dilemma

security administrators face with rule based systems. If too few rules are active, attacks are

missed. If too many rules are active, large volumes of messages are generated.

The log sensor retrieves node log messages from operating system logs. Log

messages can reveal abnormal system state and attacks. We monitor two logs: /var/log/secure

and /var/log/audit/audit.log. These logs provide operating system audit and security alerts.

The network sensor monitors network flow using a Python script to sniff traffic and

IBM Streams Anomaly Detection operator (Cancilla, 2015) to find anomalous patterns. Two

flow patterns are analyzed: the number of packets and packet rate. A 60 second training

window trains the anomaly detector and 30 second windows are used to detect anomalies.

When an anomaly is detected, an alert is generated.

Finally, the rootkit sensor runs a rootkit scan of the operating system which checks for

signatures of abnormal behavior on a node. If checks fail, an alert is generated with text from

the failed check. A modified version of the chkrootkit (Murilo & Steding-Jessen, n.d.) utility

is used.

49

Ingestor

The Ingestor is written in the IBM programming language SPL and runs within the

IBM Streams (Ballard et al., 2010) distributed architecture. This architecture provides the

underlying high performance stream computing model and operators to throttle and buffer

alert event messages. In our implementation, we buffer up to 1,000 tuples and throttle the

flow rate to 20 tuples per second.

Analyzer

The Analyzer is coded in Python. Four dictionaries, which persist to disk upon

program shutdown, are used to store summary data about alerts. More specifically, messages

are stored along with counts by cloud, node, sensor, and sensor type. As described earlier in

this chapter, the summary data is used to dynamically calculate the weighted urgency score

based on message frequency. Labels of high, medium and low are given to alert messages

based on the number of standard deviations from the mean of urgency scores in the

environment.

Detector

The Detector is implemented using IBM InfoSphere Streams. The Streams Anomaly

Detector operator (Cancilla, 2015) is used to perform anomaly detection using 15 values with

a training data set of 30 tuples on the urgency scores generated by the Analyzer. When an

anomaly is detected, all of the messages that occurred during the anomalous time window are

passed to the Classifier.

Classifier

The Classifier is written in Python using the Reverend Python module for Bayesian

classification (Bakhtiar, 2009) and has two modes of operation: train and monitor. In train

mode, the administrator reproduces an attack. The anomalous event sensor ids and messages

are concatenated together for each alert message event during an attack in 10 second

windows. After attacks have been issued, the administrator applies a label defining the

pattern (e.g., [nmap], [dos], etc).

In monitor mode, the Classifier applies Bayesian classification to message patterns

using the classification data from train mode. When anomalous messages are detected by the

50

Detector, they are passed to the Classifier where concatenation with sensor ids is performed

for each message in the 10 second window. Then, Bayesian classification is used to find the

closest match and display the type of attack. A threshold of .50 is applied for displaying

attack types based on empirical observation. Pattern matches with less than a .50 probability

match are not displayed. In addition to the labeled attack, the Classifier outputs anomalous

message alerts ranked as high, medium, or low based upon the score given by the Analyzer.

An example of output from the Classifier is shown in Figure 11.

Figure 11. Classifer Output

Demonstration and Evaluation

This section details system analysis, training, experimentation attacks, and results.

First, we demonstrate the effectiveness of our urgency score algorithm. Next, we detail our

experimentation approach. Finally, we discuss the results.

Urgency Score

The proposed approach utilizes urgency score for alert prioritization. To illustrate the

effectiveness of our posited urgency score, we run simulated event messages against the

51

system. First, 11 distinct messages (i.e., m1, m2… m11) are simulated for a total of 2,047

messages. The messages are broadcast in powers of two after the first message is sent. In

other words, m1 is broadcast one time, m2 is sent two times, m3 is pushed four times and m11 is

passed to the analyzer 1,024 times. Each unique message is generated from a different sensor

on the same node.

The results are shown in Figure 12. The message urgency scores, UM, sensor urgency

scores, US, and overall urgency score, U, are plotted for message m11. Note that curve UM and

curve US result in the same value because the message event is broadcast from a single node

and sensor.

The first occurrence of message arrival is scored high and falls above three standard

deviations (3σ) from the mean of all message occurrences. As previously mentioned, scores

occurring beyond 1σ are considered potential threats, or black swan events. As illustrated, the

urgency score, U, decreases in importance over time as expected.

Figure 12. Urgency Score Simulation - One Node

To demonstrate the effectiveness of the overall urgency score using both the message

urgency score and sensor urgency score, the simulation continues on two additional nodes.

The scores for message m11 on node3 are plotted in Figure 13. The overall urgency score is

reduced in this instance when both message count and sensor count are taken into account. A

52

black swan event message from a sensor never previously reporting the message ranks higher

than an event reported in the past.

The dynamic component of the scoring system assures rare events are properly scored.

In addition, our system prevents rare events from getting stale over time by incorporating a

decay factor which decrements each message count every n seconds of system operation. In

our experimentation, n is set to 600.

Figure 13. Urgency Score Simulation - Three Nodes

Streaming Intrusion Monitoring

Our system scores and analyzes streaming events from sensors by utilizing IBM

Streams which provides a scalable and high performing infrastructure along with analytical

support for anomaly detection. To demonstrate the effectiveness of our streaming system, we

examine the times from sensor generation to classification. A sample of 500 messages reveals

a minimum generation to classification time of less than one second, a maximum time of 20

seconds and a mean time of five seconds during our experimentation.

This sample suggests that an attacker would be detected within 20 seconds and if the

attack has been previously classified, the attack type would also be known. Counter actions

could be automatically initiated in a production system.

53

Training the System

Two components of the system are trained: Analyzer and Classifier. This section

describes the training procedure.

Analyzer

The Analyzer self-trains over time as messages are generated by the sensors. High

volume alert messages and noisy sensors are given a lower urgency score. We complete this

training by running the system for one hour in normal operational state without attack.

Classifier

To train the Classifier, we run the component in training mode. Then, we conduct five

attacks: an nmap scan, a syn flood attack, an ssh password crack attack, malware insertion,

and we perform forensic counter measures by clearing logs. The detail for each attack is

provided in the next section. After an attack is run, an appropriate label is assigned to the

attack (e.g., [nmap], [synflood], etc.)

Experimentation Attacks

To demonstrate the effectiveness of our approach, we perform attacks on the test

environment using a four-step attack approach (Dell, 2012) to simulate a real attack. The four

steps consist of a reconnaissance phase, an intrusion and advanced attack phase, a malware

insertion phase, and a cleanup phase.

First, in the reconnaissance phase, an attacker attempts to learn about potential target

systems. In our experimentation, we use the nmap tool (Lyon, 2015) to scan systems in our

cloud environment. We pass the nmap tool parameters ’-T4 -A -v’ to conduct an intense scan.

The goal is to discover more information about vulnerable systems.

Second, the intrusion and advanced attack phase occurs after attackers find vulnerable

systems. For this phase of attack we perform a synflood using the hping tool (Sanfilippo,

2015) with the parameter ’–flood’ against port 80 and a ssh password attack using the ncrack

tool (Hantzis, 2015). The ncrack tool performs a dictionary attack against the root user on

multiple nodes.

54

Third, in the malware insertion phase, malware is inserted into the environment to give

the attacker future access to the system. In our experimentation, we use the netcat tool

(Anonymous, 2007) to open a bindshell using the ’-L’ parameter.

And, fourth, in the cleanup phase, forensic evidence is removed from the system. We

clear two logs to remove traces that we logged into the system by clearing the files

/var/log/wtmp and /var/log/lastlog. These logs contain user login history to the system.

Results

We demonstrate the effectiveness of our approach by examining our initial goals.

First, we show how our work reduces the volume of alarms without reducing the effectiveness

of security systems. Second, we demonstrate through experimentation the effectiveness of

using Bayesian classification for proper attack classification. Table 6 summarizes our

findings for message reduction results.

Table 6. Message Reduction Results

Attack Number of

total alerts

generated

during attack

Number of

alerts

determined to

be important

Number of

attack

messages not

reported

Percentage of

alert reduction

Reconnaissance:

nmap

4795 163 0 96.6%

Intrusion and

advanced attack

1: synflood

4598 561 0 87.8%

Intrusion and

advanced attack

2: nCrack

3242 442 0 86.4%

Malware

Insertion: bind

attack

4112 50 0 98.5%

Clean-up:

Remove logs

5050 86 0 98.3%

No attack 1 (20

minutes)

7468 88 n/a 98.8%

No attack 2 (20

minutes)

7441 122 n/a 98.4%

55

From Table 6, the results of our experimentation are promising. We observe an

average 95.9 percent message reduction. To verify that critical alerts were not missed, we

manually compare the generated alarm messages with those reported by the Classifier.

Table 7. Attack Classification Results

Attack Number of

attacks

Number of

attacks

properly

classified

Number of

attacks

improperly

classified

Attack

classification

accuracy

Reconnaissance:

nmap

10 10 0 100%

Intrusion and

advanced attack

1: synflood

10 10 0 100%

Intrusion and

advanced attack

2: nCrack

10 10 0 100%

Malware

Insertion: bind

attack

10 10 0 100%

Clean-up:

Remove logs

10 10 0 100%

No attack 1 (20

minutes)

54* 40* 14* 74.1%

No attack 2 (20

minutes)

58 58 0 100%

Table 7 summarizes our classification findings. When not under attack, sensors

occasionally generate low volume messages which are displayed by the Classifier. To

address this issue, we trained the Classifier to flag these patterns are none threats. After the

attacks are trained in the system, we achieve a 100 percent accuracy in attack classification.

However, as previously discussed, when attack patterns have not been trained (labeled with a

* in the table), we observe a 25.9 percent misclassification rate in our environment. After

training the message patterns, the classification accuracy returns to 100 percent. Table 8

provides a summary of the sensors generating messages by type of attacks.

56

Table 8. Signatures

Attack Sensor

HCIDS Snort

Sensor

Log Sensor Network

Sensor

Rootkit

Sensor

Reconnaissance:

nmap
- X - - -

Intrusion and

advanced attack

1: synflood

X - - X -

Intrusion and

advanced attack

2: nCrack

- - X - -

Malware

Insertion: bind

attack

- - - - X

Clean-up:

Remove logs

- - - - X

Other Observations

During our experimentation, a rogue log sensor was introduced into the environment.

This noisy sensor emitted several messages per second. The system classified the noise as a

potential synflood providing further supporting evidence for our approach.

Conclusion and Future Work

The multi-tenant, diverse nature of an IaaS cloud environment increases security

complexity. Lack of control over the data and applications running on tenant instances makes

securing these environments challenging for cloud providers. One approach recommended by

the Cloud Security Alliance is a defense in depth strategy where multiple layers of protection

provide a defense against bad actors. To implement this approach, multiple security

technologies are deployed. Monitoring these technologies and knowing which alerts to act

upon is non-trivial for cloud providers.

57

Our work demonstrates that sensors which ingest output from these security

technologies can be used to feed a multistep approach that summarizes and scores alerts,

detects anomalies, and classifies attack patterns. First, our approach utilizes security

technology alert messages and sensor ids along with message and sensor volume data to score

the importance of a particular alert message. Next, time series analysis is applied using k

nearest neighbor anomaly detection over sliding windows of alert urgency scores. Finally, we

classify the anomalous alerts using Bayesian classification. In addition to classification, alerts

are output with a priority value of high, medium or low based upon how the alert score

deviates from the mean of alert scores for all historical alerts in the IaaS cloud environment.

We demonstrate our approach through implementation and experimentation. During

experimentation, we observe a total alert reduction of 95.9 percent with a zero percent miss

rate for attack messages. In addition, a 100 percent classification rate is demonstrated for

previously trained attacks. We suggest five areas for future research. First, more attack

experimentation is needed to determine the effectiveness of Bayesian classification as well as

other machine learning techniques. Second, we recommend introducing more sensors in the

environment. As the number of sensors increase, the effectiveness of our classification

approach should improve. We hypothesize that the use of more sensors which can detect

specific attacks will improve our Bayesian classification technique as well as other similar

techniques. Third, we encourage scaling the approach to a large IaaS cloud environment.

Our test bed is a small cloud environment, similar to a small business. At this time, we can

only extrapolate our results to larger cloud environments. Fourth, we suggest a technique of

multilayer classification using our technique in this chapter. In other words, we hypothesize

using multiple layers of classification could allow for detection of attack phases.

Longitudinal analysis of detected attacks could reveal patterns relating to how far the bad

actor has progressed in an attack. And, fifth, we encourage research in applying other

machine learning, anomaly detection, and classification techniques.

58

CHAPTER 7

A SYSTEM FOR DETECTING MALICIOUS INSIDER

DATA THEFT

On August 25, 2006, Amazon EC2, one of the leading Infrastructure as a Service

(IaaS) cloud offerings, went into beta (Barr, 2006). Since then, cloud computing has become

big business. The largest technology companies in the world now provide cloud computing

offerings and solutions (Google, 2015; IBM, 2015; Microsoft, 2015). However, cloud

computing is not without challenges. According to the Cloud Security Alliance (Cloud

Security Alliance, 2013), data theft and insider attacks are two of the nine critical threats

facing cloud security.

Insider attacks fall into three categories: malicious, accidental, and non-malicious

(Willis-Ford, 2015). Malicious insiders conduct activities such as ip theft, information

technology sabotage, fraud, and espionage, with intent of doing harm or for personal gain.

Accidental insider attacks occur when unintentional misuse of systems is performed by a user

without the intent of harm. And, non-malicious insider attacks are intentional attacks where

the user attempts to perform self-benefiting activities but without malicious intent.

Technical controls exist for reducing the risk of insider attacks, including intrusion

detection systems, security information and event management, data loss prevention, access

control systems, and honey-tokens. In addition, non-technical controls are used and consist of

psychology prediction models, education and awareness, as well as information security

policies (Elmrabit, Yang, & Yang, 2015). While controls exist, not all insider attacks can be

detected. Furthermore, several approaches for addressing insider attacks are reactive and not

predictive in nature. Techniques for preventing such attacks are needed (Maxim, 2011).

Although no single approach can prevent all insider threats, a multi-faceted proactive

technique can be used to reduce the risk of damage caused by inside attackers (Maxim, 2011).

Several types of attacks exist, including unauthorized extraction of data, data tampering, asset

destruction, illegal downloading, eavesdropping, spoofing, social engineering, resource

misuse, and installing of malicious software (M. Ben Salem, Hershkop, & Stolfo, 2008).

59

Our work puts forth a new security control for detecting one type of insider attack,

unauthorized extraction of data, or data theft. The importance of reducing the risk of data

theft gained recent international attention when the National Security Agency contractor,

Edward Snowden, downloaded and disseminated classified documents about intelligence

programs (Elmrabit et al., 2015). A system to detect and possibly thwart such actions has

significant potential to contribute to a successful defense in depth (SANS, 2001) security

strategy and reduce the damage of data theft from inside attackers.

We posit a system profiling approach for detecting abnormal login activity and data

transfers from IaaS cloud computing nodes hosting tenant virtual machines. This approach

aims to address the problem of rogue administrators as described in Claycomb and Nicoll

(Claycomb & Nicoll, 2012) who attempt to steal data from nodes as discussed in Duncan,

Creese and Goldsmith (Duncan, Creese, & Goldsmith, 2012). Our approach uses k-nearest

neighbors anomaly detection to detect abnormal variations in bytes sent over the network and

number of active users on the cloud node. Furthermore, we examine system state data

consisting of open files and network connections to improve detection and provide forensic

data for investigation.

Unauthorized extraction attacks are especially important to address in IaaS cloud

environments to prevent theft of tenant virtual machine data. Although encryption may

reduce risk of insiders having the ability to use stolen data, encrypted virtual machine images

and data store files may be copied from nodes and attacked off line.

In our system, agents are installed on cloud nodes hosting virtual machines and data.

The system is trained under normal cloud operating conditions. Then, the system monitors

for anomalies in transmitted network data and active user logins using k-nearest neighbors

anomaly detection. This data is used to detect anomalies that exceed normal operating

thresholds established during training.

Our results suggest that using k-nearest neighbors anomaly detection to monitor node

network transmissions and number of active users along with system state information can be

used to detect 100 percent of abnormal login activity and data copies to outside systems by

users. Furthermore, we observe a zero false positive detection rate when anomalies in active

user counts and bytes transmitted are detected along with supporting system state data.

60

The remainder of the chapter is organized as follows. First, related work is discussed.

Second, the design of our system for detecting malicious insider data theft presented. Third,

the system is demonstrated and results are discussed. Fourth, our work is summarized and we

discuss future works.

Related Work

A number of works have been posited to reduce the threat of insider attacks. Stolfo,

Salm, and Keromytis posit an approach to mitigate attacks using fog computing where they

detect abnormal usage patterns and present potential attackers with misinformation (Stolfo,

Salem, & Keromytis, 2012). Claycomb and Nicoll discuss the threat of rogue administrators

and suggest process based approaches to deal with the threat. Furthermore, they discuss

future research topics which include predictive models (Claycomb & Nicoll, 2012). Colombe

and Stephens suggest an approach to visualize intrusion detection system data to detect insider

attacks (Colombe & Stephens, 2004). Babu and Bhanu research an approach for using key

stroke dynamics to detect insiders (Bondada & Bhanu, 2014). A more related and interesting

technique for detecting insider attacks is the use of machine learning and rule based detection

posited by Khorshed and Wasimi (Khorshed, Ali, & Wasimi, 2011). They suggest that rule

based learning can be used to detect insider attacks in a cloud environment and that

continuous cloud monitoring is an important part of cloud security. Sriram, Patel, and

Lakshmanan posit a hybrid protocol using selective encryption and data cleaning along with

user profiling and decoy technology to address the problem of inside attackers. One aspect of

their work related to our approach is the use of a neural network that examines volume of data

downloaded, nature of the operations, division of the task, ip address, and log files (Sriram,

Patel, Harishma, & Lakshmanan, 2014). In previous work, we have put forth a system for

detecting attacks from and against virtual machines in an IaaS cloud environment using

anomalies in performance metrics obtained from the hypervisor (Nikolai & Wang, 2014).

To the best of our knowledge, applying the approach described in this chapter is novel.

While insider attack detection and prevention is an active research area, we are unable to find

existent works specifically targeting the problem of insider data theft using anomaly

detection, system metrics, and system state information. Furthermore, we demonstrate our

work through instantiation and experimentation with promising results.

61

Design and Development

An IaaS cloud environment typically consists of virtual machines hosted on physical

nodes which run node controller agents. A single node may host virtual machine instances of

different tenants. Each tenant may run various applications and workloads. In addition,

virtual machines are dynamic and may be created and destroyed by tenant requests at any time

resulting in an ever changing environment. Our work posits an approach to detect data theft

within an IaaS cloud environment. More specifically, we seek to detect rogue administrators

following the flow in Figure 14.

Figure 14. Insider Data Theft Flow Chart

Most production deployment policies restrict administrator login to systems. Our

approach supports these controls by logging unusual login events. In addition, knowledgeable

attackers are aware of forensic countermeasures. Hence, all of our detection and analysis

must be performed on near real time data and persisted to a remote system.

62

The specific pattern that our system detects is shown in Figure 14 and consists of three

steps: attacker logs in node, attacker copies data to outside system, and attacker logs out from

node. Each event is considered an attack anomaly. In our approach, we examine the anomaly

value for the number of active users and amount of data sent from the node. This approach

allows the system to adapt to various environments and adjust to normal fluctuations that can

occur in the environment. Furthermore, we examine system state forensic data for open

connections and open files. In order for data theft to occur, an external connection must exist

and a data file open for reading.

Approach

Our approach for detecting insider data theft uses a three step technique illustrated in

Figure 15. First, the system is trained. Then, the system is put into monitoring mode. And,

finally, a state-based rules approach is used to detect signatures of insider data theft.

Figure 15. Insider Data Theft Detection Approach

Train

A goal of training mode is to not burden security operations with excessive tuning in

order to achieve accurate results. A system with a complicated training requirement lacks

scalability. To achieve this goal, the system is placed into training mode while normal IaaS

cloud activities occur. Our assumption is that attacks are not occurring during this period.

Restricted access and additional manual monitoring may be applied during this period to

reduce the likelihood of an attack.

Virtual machines are created and terminated. Tenants run various workloads. Data is

sent from an agent on each cloud node hosting virtual machines to our system. During this

time, we examine two system metrics for detecting insider attacks: number of active users on

nodes and number of tcp bytes transmitted to the network from these nodes. Maximum k-

63

nearest neighbors anomaly scores derived using the IBM InfoSphere Streams anomaly

detection operator (Cancilla, 2015) are calculated to be used later in monitoring mode.

Values arrive separately for each metric every second and are stored in memory. The

first 20 values create the reference pattern. A current pattern of 10 values is compared to a

subsequence of the reference pattern calculating an anomaly score. A total score is computed

from the subsequence comparison scores. As each value arrives, a score is computed, and the

window slides to the left. As anomalous events occur, the score increases. This total score is

the anomaly value used by our system.

The pattern sizes of 20 and 10 are derived through empirical analysis with a goal of

accuracy and performance in mind. Tuning these values is beyond the scope of this work and

is considered as future work. In addition, although thr number of active users and bytes sent

over the network are the two metrics used for insider data theft detection, we collect metric

anomaly data on user space, cpu usage, virtual memory, network connections, input/output

read bytes, input/output write bytes, network bytes received, network bytes sent, number of

users logged into node, and number of processes. In future work, we plan to investigate

machine learning techniques with the goal of deriving more complex insider attack signatures.

Monitor

The system is placed into monitor mode with no attack assumptions. Similar to

training mode, system metric data is sent from agents on cloud nodes to our system. Virtual

machines are created, terminated, and tenant workloads run. Anomaly scores are calculated

as previously done in training mode. However, instead of calculating maximum anomalous

scores for each system metric, the calculated values are compared to the maximum values

derived during the training period. Values that do not exceed the maximum scores are filtered

from the system and ignored.

The plot in Figure 16 illustrates sample anomaly values for network transmission.

Figure 17 shows the anomaly values compared to the trained reference pattern.

64

Figure 16. Network txbytes Anomaly Scores under Normal Conditions

Figure 17. Network txbytes Anomaly Scores Normal Conditions with Trained Max

From Figure 17, one can observe that the trained maximum anomaly score is greater

than the current tcp bytes transmitted anomaly score. Hence, anomalous activity is not

detected.

65

Detect

Detection of insider data theft involves three events: a login anomaly (E1), a data

transfer anomaly (E2), and forensic evidence (E3) as shown in Figure 18. When all three

events are present (A3), we observe a 100 percent detection rate with a zero percent false

positive rate. In this case, a login anomaly (E1) is detected followed by an abnormal data

transfer (E2). And, forensic evidence (E3) is detected for both a network connection to the

node and open files being copied. The forensic evidence is collected by the agent and is

analyzed after E1 and E2 anomaly events occur.

Figure 18. Detection of Insider Data Theft Venn Diagram

During experimentation, we examine condition A1 and A2 in isolation to determine

whether a single event can be used for detection. We produce false positives for condition A2

by performing denial of service attacks between virtual machines hosted on nodes in the

environment. In the case where E1 is present, a false positive is generated. This is considered

a false positive because a denial of service attack is not a data theft scenario. To simulate A1,

we turn off forensic evidence detection to examine the false positive and negative rates. We

find that using both E1 and E2 as a vehicle to detect insider attacks is mostly successful.

However, instances such as Denial of Service attacks or massive data transfers from virtual

machines hosted on nodes can result in false positives and false negatives.

66

Figure 19 illustrates one sample from our experimentation for event E2.

Figure 19. Network txbytes Anomaly

Figure 20 shows a sample from our experimentation for event E1.

Figure 20. Active User Anomaly

67

Both Figure 19 and Figure 20 illustrate significant anomaly scores above the trained

maximum for network transmitted bytes and active user logins. The detection of all three

conditions is required to eliminate false positives.

System Instantiation

We demonstrate our system in an IaaS cloud environment running the Eucalyptus

cloud infrastructure shown in Figure 21.

Figure 21. Cloud Environment

Cloud Environment

Figure 21 provides a conceptual view of the experimentation environment. The

Eucalyptus cloud framework is used because of its similarities to the popular Amazon cloud

infrastructure. IBM Streams provides a scalable infrastructure with built in analytical

functions. Furthermore, both technologies are available free of charge for research purposes.

The physical environment consists of five multi-core systems connected over Gigabit

Ethernet on a private network. The Cloud Controller contains the management components

for the Eucalyptus cloud infrastructure (Nurmi et al., 2009). The Nodes contain Eucalyptus

68

node controllers and our agent written in Python to gather system metrics. The Insider Data

Theft Detector runs IBM Streams and our system implementation code.

Insider Data Theft Detection System Implementation

Our system implementation consists of two components, agents that gather system

metrics from cloud nodes and a detector which analyzes the data.

Agents

The Agent component is written in Python and runs on every node hosting virtual

machines. It uses the psutil package along with calls to netstat to gather, format, and send

data to the detector using a UDP socket connection. The output includes system metrics as

described earlier and open connections as well as file state data.

Detector

The Detector is written in two programming languages: Python and Streams

Processing Language (SPL). The Python script has two modes of operations, training and

monitoring. Similarly, two SPL programs are used for training and monitoring.

In training mode, the Python script ingests metric data from agents and sends it to the

SPL program. The anomaly detector operator is used to calculate an anomaly score and

maximum training data is persisted in a JSON formatted file.

In monitoring mode, the Python script loads the JSON file into memory and enriches

agent data with maximum anomaly values established during training. The SPL program

ingests the data from the Python script and calculates the anomaly score similar to training

mode. However, instead of saving scores to a file, anomaly values are compared in real time

with the maximum values established during training. Values that exceed the maximum

anomaly value for a given metric are passed to an alert script written in Python. System state

data is persisted to a file as it arrives from each agent and acts as a forensic trail.

The alert Python script listens for abnormal login events and data transfer events.

When an event is detected, the forensic data associated with the event is retrieved from the

data file. If forensic data related to open connections and files is retrieved from the data file

69

for the event, an alert is logged indicating that a data theft attack occurred. Login events are

always logged.

Demonstration and Evaluation

This section details training the system, data theft attacks executed, attack messages

reported, and summarizes our results.

Training the System

Training of the system occurred over a one hour period of time. To test the

effectiveness of our approach, we refrain from applying tenant virtual machine workloads

during the training period. Instead, we train the system by launching and terminating several

different virtual machines. We create up to 12 medium and small virtual machines with

Centos 6, Centos 7 and Ubuntu precise images. After the virtual machines become accessible,

they are terminated. This approach creates a baseline of activity for the Eucalyptus

environment without attempting to predict the workload of users. Furthermore, this meets the

goal for a practical and simplistic training approach.

Normal Operating Conditions

Under normal operating conditions, tenant virtual machines are randomly created and

terminated placing the cloud environment into various states consisting of starting, stopping,

and running virtual machines under load and in idle state. Furthermore, at times, tenant

virtual machines place excessive network traffic load on 50 percent of the virtual machines

transferring data to and from nodes. Load is placed on the virtual machine using system

updates and web data transfers.

Data Theft Attacks

The goal of our experimentation is to demonstrate the effectiveness for using our

system to detect data theft of tenant data on IaaS cloud nodes and virtual machines. We use

copies of actual virtual machine data which is approximately five gigabytes in size. In

addition, we test the system with smaller data theft events, including the theft of data files 500

70

megabytes and 100 megabytes in size. Various data sizes provide supporting evidence for the

effectiveness of the system.

Attack Messages Reported

We conduct 48 attacks during our experimentation. An attack is considered an

unapproved login or data transfer event. Of these attacks, 48 are detected and reported. A

sample of the system output is shown below in the following format: [node reporting],[date

reported],[time reported], [alert message], [forensic data]. The forensic data is reduced

because of space constraints.

...”node1.cloud.res”,”2016-03-12”,”14:09:42”,”[INSIDER] [Node: node1.cloud.res]

[Attack Detected: Abnormal user login activity detected] ”, ”@sconn(...laddr=(192.168.1.98

22) raddr=(192.168.1.110 52925)...”

”node1.cloud.res”,”2016-03-12”,”14:13:49”,”[INSIDER] [Node: node1.cloud.res]

[Attack Detected: Abnormally large data transfer detected] ”,”...popenfile(path=

/root/theft1...”

From the sample data above, one can observe that the forensic data reveals the IP

address of the attacker and file being copied along with supporting evidence to assist with an

investigation.

Results

The goal of our work is to detect insider data theft in IaaS cloud environments. Our

approach uses three events, login anomalies, data transfer anomalies, and forensic data to

detect attacks. During experimentation, we perform attacks using all three events for attack

detection and observe a 100 percent detection rate in under 60 seconds with zero false

positives for 48 attacks contained in 233,829 data sets sent by node agents. The results are

shown in Table 9.

71

Table 9. Experimentation Results

IaaS State VM Workload Type of Attack Number of

Attacks

Percent

Detected

No VMs

running

None Login 3 100%

No VMs

running

None Five GB data

theft

3 100%

10 VMs starting None Login 3 100%

10 VMs starting None Five GB data

theft

3 100%

10 VMs running None Login 3 100%

10 VMs running None Five GB data

theft

3 100%

10 VMs

stopping

None Login 3 100%

10 VMs

stopping

None Five GB data

theft

3 100%

10 VMs running Five VM

workload

Login 3 100%

10 VMs running Five VM

workload

Five GB data

theft

3 100%

10 VMs

stopping

Five VM

workload

Login 3 100%

10 VMs

stopping

Five VM

workload

Five GB data

theft

3 100%

10 VMs running Five VM

workload

Login 3 100%

10 VMs running Five VM

workload

500 MB data

theft

3 100%

10 VMs running Five VM

workload

Login 3 100%

10 VMs running Five VM

workload

100 MB data

theft

3 100%

We also examine each event in isolation and find flaws in the use of single events:

Login Events (E1) Only

Examining login events in isolation using our approach detects 100 percent of

anomalous user login and logout activity. However, this cannot be used to detect insider data

theft.

72

Data Transfer Anomaly Events (E2) Only

Data transfer anomalies can be solely used to detect data theft events. However, we

observe an unacceptably high 22.6 percent false positive rate under extreme operating

conditions. These extremes occur during excessive starting and stopping of all virtual

machines in the cloud environment and under heavy cloud tenant data transfer workload.

Furthermore, when performing denial of service attacks between tenant nodes, we observe a

100 percent false positive rate using these events in isolation.

Forensic Data (E3) Only

System state data for open connections and open files also can be used to detect both

abnormal login activity and data theft attacks. However, this approach is unreliable. During

our experimentation, we observe normal connection activity between the node controller and

the cloud controller. While rules could be created to filter out known connections, the

complexity of creating rules and filters would complicate the system and not meet our

requirement for usability and ease of use.

Conclusion and Future Work

We put forth a train, monitor, detect pattern for detecting insider data theft attacks.

Our system profiling approach utilizes a combination of system metric anomalies and system

state data. More specifically, we use a k-nearest neighbors anomaly detection algorithm to

score the number of active users on nodes and bytes sent over the network. Excessive scores

compared to scores calculated during training indicate an attack event. In addition, system

state data on open connections and files is collected and analyzed. Our experimentation

suggests that the combination of login events, data transfer events and system state events

results in a 100 percent detection rate for insider data theft attacks with a zero percent false

positive rate.

To expand on our work, three areas should be explored. First, scalability of the

approach needs to be tested in a large IaaS cloud environment. Second, various anomaly

detection approaches should be explored. And, third, leveraging machine learning techniques

to find rules may reveal combinations of system metrics for better detection of insider attacks.

73

CHAPTER 8

CONCLUSIONS

In this dissertation, we set out to explore security and privacy concerns in IaaS cloud

computing environments. More specially, our research focuses on the instantiation of new

security control artifacts that make up a system of novel security controls to reduce the risk of

deploying in these multi-tenant and dynamic environments. We set out to explore three

research questions. First, how can we detect attacks on cloud tenant instances without

specific knowledge of tenant applications in order to preserve privacy? Second, how can we

assist cloud providers with interpretation of the output from security controls in an IaaS cloud

environment to improve security? And, third, how can we help protect cloud tenants from

insider data theft attacks?

Based on the research questions, we aim to achieve three research objectives through

the instantiation of new security control artifacts making up an overall system. The first

objective is achieved through the instantiation of a new system for detecting abnormal usage

in virtual machines using system performance metrics obtained by the hypervisor, or our

Hypervisor-based Cloud Intrusion Detection System. In this work, we demonstrate and

publish our work which lays the ground work for using performance signatures from

hypervisors and rule based attack classification to detect and halt attacks from and against

virtual machine instances in cloud environments without knowing the precise workload

running on the virtual machine. Instantiation and demonstration of the system reveals a 100

percent detection rate for denial of service attacks from and against the virtual machine.

The second objective is accomplished through the instantiation of a new approach and

system for reducing the vast numbers of alarms that can occur from a defense in depth

approach with many sensors in the cloud environment. We derive a three step approach

consisting of summarize and score, detect anomalies, and classify attacks. Construction and

demonstration of this system reveals that we are able to reduce the alarm volume by 95.9

percent. In addition, when properly trained, this approach has a 100 percent classification rate

74

using Bayesian classification. This work lays the ground work for future research on alert

reduction and attack classification from multiple security sensors in cloud environments.

The third objective set forth in our research is the detection of insider data theft

attacks. We develop and instantiate a system which detects the transfer of files from cloud

nodes which can be used to detect the theft of virtual machines and data stores by examining

system state along with anomalies in bytes transmitted and number of active users on the

system. We demonstrate the effectiveness of this approach with a 100 percent detection rate

of simulated data thefts in a cloud environment. Our research lays the ground work for

further research in node system usage metrics and system state from the granular detection of

insider attacks.

We accomplished the goals that we set out to achieve of examining the three research

questions with an objective to create an artifact for each question. Furthermore, our work is

or will soon be published in the proceedings from three flagship IEEE conferences (Nikolai &

Wang, 2014, 2016a, 2016b) which further validates our work, demonstrates the relevance of

our research, and contributes back to the knowledge base. Although we are successful in our

research, we merely lay the ground work for additional exploration and research. Much work

is still needed to explore the scalability of our approaches and system. Each artifact must be

demonstrated in large scale cloud environments to ensure the effectiveness of the solution.

Also, new anomaly detection approaches should be researched to determine optimal

techniques for each component. Machine learning and advanced rules engines should also be

considered in future research.

75

REFERENCES

Anderson, S. P., & de Palma, A. (2005). A theory of information overload. Unpublished

Manuscript, Department of Economics, University of Virginia. JOUR.

Anonymous. (2007). Netcat: the TCP/IP swiss army. Retrieved June 23, 2015, from

http://nc110.sourceforge.net/

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., … Stoica, I.

(2009). Above the Clouds: A Berkeley View of Cloud Computing. EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 53(UCB/EECS-

2009-28), 07–013. JOUR. http://doi.org/10.1145/1721654.1721672

Avritzer, A., Tanikella, R., James, K., Cole, R. G., & Weyuker, E. (2010). Monitoring for

security intrusion using performance signatures (pp. 93–104). CONF, ACM. Retrieved

from internal-pdf://p93-avritzer-1674896640/p93-avritzer.pdf

Bakhtiar, A. (2009). Reverend : 0.4. Retrieved October 21, 2015, from

https://www.versioneye.com/python/Reverend/0.4

Ballard, C., Farrell, D. M., Lee, M., Stone, P. D., Thibault, S., & Tucker, S. (2010). IBM

Infosphere Streams: Harnessing Data in Motion. GEN, IBM.

Barr, J. (2006). Amazon EC2 Beta. Retrieved October 31, 2015, from

https://aws.amazon.com/blogs/aws/amazon_ec2_beta/

Biggs, S., & Vidalis, S. (2009). Cloud Computing: The Impact on Digital Forensic

Investigations (pp. 1–6). CONF, IEEE. Retrieved from internal-pdf://05402561-

4005005324/05402561.pdf

Bondada, M. B., & Bhanu, S. M. S. (2014). Analyzing User Behavior Using Keystroke

Dynamics to Protect Cloud from Malicious Insiders. Cloud Computing in Emerging

Markets (CCEM), 2014 IEEE International Conference on. CONF.

http://doi.org/10.1109/CCEM.2014.7015481

Cancilla, J. (2015). Anomaly Detection in Streams. Retrieved October 21, 2015, from

https://developer.ibm.com/streamsdev/docs/anomaly-detection-in-streams/

76

Christodorescu, M., Sailer, R., Schales, D. L., Sgandurra, D., & Zamboni, D. (2009). Cloud

security is not (just) virtualization security: a short paper (pp. 97–102). CONF, ACM.

Claycomb, W. R., & Nicoll, A. (2012). Insider Threats to Cloud Computing: Directions for

New Research Challenges. Computer Software and Applications Conference

(COMPSAC), 2012 IEEE 36th Annual. CONF.

http://doi.org/10.1109/COMPSAC.2012.113

Cloud Security Alliance. (2011). Security guidance for critical areas of focus in cloud

computing v3.0 (article). Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Security+Guidance+C

ritical+Areas+of+Focus+for#0

Cloud Security Alliance. (2013). The Notorious Nine Cloud Computing Top Threats in 2013

(Report). Cloud Security Alliance. Retrieved from

https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_

Cloud_Computing_Top_Threats_in_2013.pdf

Cobb, S. (2014). Target breach 12 months on a year of lessons learned. Retrieved September

1, 2015, from http://www.welivesecurity.com/2014/12/18/target-breach-lessons-

learned/#lessons

Colombe, J. B., & Stephens, G. (2004). Statistical profiling and visualization for detection of

malicious insider attacks on computer networks. In Proceedings of the 2004 ACM

workshop on Visualization and data mining for computer security (pp. 138–142). CONF,

ACM.

Damiani, E. (2009). Composite intrusion detection in process control networks. JOUR.

Debar, H., & Wespi, A. (2001). Aggregation and correlation of intrusion-detection alerts.

Recent Advances in Intrusion Detection, 85–103. http://doi.org/10.1007/3-540-45474-

8_6

Dell. (2012). Anatomy of a cyber-attack. Retrieved October 1, 2015, from

http://software.dell.com/documents/anatomy-of-a-cyber-attack-ebook-24640.pdf

Dhage, S. N., & Meshram, B. B. (2012). Intrusion detection system in cloud computing

environment. International Journal of Cloud Computing, 1(2), 261–282. Journal Article.

77

Doelitzscher, F., Reich, C., & Sulistio, A. (2010). Designing Cloud Services Adhering to

Government Privacy Laws (pp. 930–935). CONF, IEEE. Retrieved from internal-

pdf://crl-2010-02-0785593356/CRL-2010-02.pdf

Duncan, A. J., Creese, S., & Goldsmith, M. (2012). Insider Attacks in Cloud Computing.

Trust, Security and Privacy in Computing and Communications (TrustCom), 2012 IEEE

11th International Conference on. CONF. http://doi.org/10.1109/TrustCom.2012.188

Elmrabit, N., Yang, S.-H., & Yang, L. (2015). Insider threats in information security

categories and approaches. Automation and Computing (ICAC), 2015 21st International

Conference on. CONF. http://doi.org/10.1109/IConAC.2015.7313979

Eucalyptus Components. (2013). [Web Page]. Retrieved February 15, 2015, from

http://www.eucalyptus.com/docs/3.1/ig/euca_components.html

Fan, G., Jihua, Y., & Mingxing, D. (2009). Design and implementation of a distributed IDS

alert aggregation model. Computer Science & Education, 2009. ICCSE ’09. 4th

International Conference on. CONF. http://doi.org/10.1109/ICCSE.2009.5228172

Garfinkel, T., & Rosenblum, M. (2003). A virtual machine introspection based architecture

for intrusion detection (Vol. 1, pp. 253–285). CONF, Citeseer. Retrieved from internal-

pdf://garfinkel2003-0560777473/Garfinkel2003.pdf

Google. (2015). Google Cloud Platform. Retrieved October 31, 2015, from

https://cloud.google.com/

Gul, I., & Hussain, M. (2011). Distributed Cloud Intrusion Detection Model. International

Journal of Advanced Science and Technology, 34, 71–82. JOUR.

Gupta, D., Joshi, P. S. S., Bhattacharjee, A. K. K., & Mundada, R. S. S. (2012). IDS alerts

classification using knowledge-based evaluation. In 2012 Fourth International

Conference on Communication Systems and Networks COMSNETS 2012 (pp. 1–8).

http://doi.org/10.1109/COMSNETS.2012.6151339

Hantzis, F. (2015). Ncrack - High-speed network authentication cracker. Retrieved February

13, 2015, from https://nmap.org/ncrack/

Hay, B., Nance, K., Bishop, M., Brian, H., & Hay, B. (2011). Storm Clouds Rising: Security

Challenges for IaaS Cloud Computing. In N. Kara & B. Matt (Eds.), System Sciences

78

(HICSS), 2011 44th Hawaii International Conference on (Vol. 0, pp. 1–7). CONF,

Kauai, HI: IEEE Computer Society. Retrieved from internal-pdf://10-03-03-

2160270622/10-03-03.pdf

Hofmann, A., & Sick, B. (2011). Online Intrusion Alert Aggregation with Generative Data

Stream Modeling. Dependable and Secure Computing, IEEE Transactions on. JOUR.

http://doi.org/10.1109/TDSC.2009.36

IBM. (2015). IBM Cloud. Retrieved October 31, 2015, from http://www.softlayer.com/

IDG. (2014). IDG Enterprise Cloud Computing Study 2014. Retrieved October 31, 2015,

from http://www.idgenterprise.com/report/idg-enterprise-cloud-computing-study-2014

Jansen, W., & Grance, T. (2011). Guidelines on security and privacy in public cloud

computing. NIST Special Publication, 800, 144. JOUR.

Jiang, G., Chen, H., Yoshihira, K., & Saxena, A. (2011). Ranking the importance of alerts for

problem determination in large computer systems. Cluster Computing, 14(3), 213–227.

http://doi.org/10.1007/s10586-010-0120-0

Kandukuri, B. R., Paturi, V. R., & Rakshit, A. (2009). Cloud Security Issues. In Services

Computing, 2009. SCC ’09. IEEE International Conference on (pp. 517–520). CONF.

Retrieved from internal-pdf://05283911-1171854084/05283911.pdf

Khorshed, M. T., Ali, A. B. M. S., & Wasimi, S. A. (2011). Monitoring Insiders Activities in

Cloud Computing Using Rule Based Learning. Trust, Security and Privacy in Computing

and Communications (TrustCom), 2011 IEEE 10th International Conference on. CONF.

http://doi.org/10.1109/TrustCom.2011.99

Kumar, V. (2012). Signature Based Intrusion Detection System Using SNORT. IJCAIT, 1(3),

35–41. Journal Article.

Lee, J.-H., Park, M.-W., Eom, J.-H., & Chung, T.-M. (2011). Multi-level Intrusion Detection

System and log management in Cloud Computing. Advanced Communication

Technology (ICACT), 2011 13th International Conference on. CONF.

Lin, C. (2009). Modeling and Analyzing Dynamic Forensics System Based on Intrusion

Tolerance. In L. Zhitang, G. Cuixia, & L. Yingshu (Eds.), Computer and Information

Technology, International Conference on (Vol. 2, pp. 230–235). CONF. Retrieved from

79

internal-pdf://3836b230-3469768729/3836b230.pdf

Lori, M. K. (2010). Can Public-Cloud Security Meet Its Unique Challenges?, 8, 55–57.

MGZN. Retrieved from internal-pdf://msp2010040055-

0820948992/msp2010040055.pdf

Lyon, G. (2015). Nmap: The Network Mapper. Retrieved March 2, 2015, from

https://nmap.org/

Ma, J., Li, Z., & Zhang, H. (2009). A fusion model for network threat identification and risk

assessment. In Artificial Intelligence and Computational Intelligence, 2009. AICI’09.

International Conference on (Vol. 1, pp. 314–318). CONF, IEEE.

Mandiant. (2014). M-Trends: Beyond the Breach - 2014 Threat Report. 2014. Retrieved from

https://dl.mandiant.com/EE/library/WP_M-Trends2014_140409.pdf

Maxim, M. (2011). Defending against insider threats to reduce your IT risk. Security and

Compliance, Jan. JOUR.

Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing.[Online]

http://csrc.nist.gov/publications/nistpubs/800-145. SP800-145.pdf. JOUR.

Microsoft. (2015). Microsoft Cloud. Retrieved October 31, 2015, from

http://www.microsoft.com/enterprise/microsoftcloud/default.aspx#fbid=Sz0L-G7AlOP

Mihaescu, C. (n.d.). Naive-Bayes Classification Algorithm. Retrieved October 15, 2015, from

http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf

Mohamed, H., Adil, L., Saida, T., & Hicham, M. (2013). A collaborative intrusion detection

and Prevention System in Cloud Computing. AFRICON, 2013. CONF.

http://doi.org/10.1109/AFRCON.2013.6757727

Murilo, N., & Steding-Jessen, K. (n.d.). chkrootkit. Retrieved March 13, 2015, from

http://www.chkrootkit.org/

Nikolai, J., & Wang, Y. (2014). Hypervisor-based cloud intrusion detection system. In 2014

International Conference on Computing, Networking and Communications (ICNC) (pp.

989–993). http://doi.org/10.1109/ICCNC.2014.6785472

Nikolai, J., & Wang, Y. (2016a). A Streaming Intrusion Monitoring and Classification System

80

for IaaS Cloud. In 2016 IEEE 9th International Conference on Cloud Computing.

Nikolai, J., & Wang, Y. (2016b). A System for Detecting Malicious Insider Data Theft in IaaS

Cloud Environments. In IEEE GLOBECOM 2016.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., &

Zagorodnov, D. (2009). The eucalyptus open-source cloud-computing system (pp. 124–

131). CONF, IEEE.

Oppenheimer, D. L., & Martonosi, M. R. (1997). Performance signatures: A mechanism for

intrusion detection. In Proceedings of the 1997 IEEE Information Survivability

Workshop. Conference Proceedings.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science

research methodology for information systems research. Journal of Management

Information Systems, 24(3), 45–77. JOUR.

Ren, K., Wang, C., & Wang, Q. (2012). Security challenges for the public cloud. IEEE

Internet Computing, 16(1), 69–73. http://doi.org/10.1109/MIC.2012.14

Rish, I. (2001). An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on

empirical methods in artificial intelligence (Vol. 3, pp. 41–46). CONF, IBM New York.

Saad, S., & Traore, I. (2011). A semantic analysis approach to manage IDS alerts flooding.

Proceedings of the 2011 7th International Conference on Information Assurance and

Security, IAS 2011, 156–161. http://doi.org/10.1109/ISIAS.2011.6122812

Salem, M. B., Hershkop, S., & Stolfo, S. J. (2008). A survey of insider attack detection

research. Insider Attack and Cyber Security, 69–90. JOUR.

Salem, M. Ben, Hershkop, S., & Stolfo, S. J. (2008). A survey of insider attack detection

research. In Insider Attack and Cyber Security (pp. 69–90). CHAP, Springer.

Sanfilippo, S. (2013). Hping [Web Page]. Retrieved January 15, 2015, from

http://www.hping.org/

Sanfilippo, S. (2015). hping. Retrieved July 12, 2015, from http://www.hping.org/

SANS. (2001). Defense in Depth. http://doi.org/10.1038/scientificamerican0502-101

Sheridan, J., & Cooper, C. (2012). Whitepaper: Defending the Cloud (Report). (R. I. Security,

81

Ed.).

Singhal, A., Qin, X., & Lee, W. (2007). Discovering Novel Attack Strategies from Infosec

Alerts. Data Warehousing and Data Mining Techniques for Cyber Security, 31, 109–

157. Retrieved from http://dx.doi.org/10.1007/978-0-387-47653-7_7

Socketsoft.net. (2013). [Web Page]. Retrieved from http://www.socketsoft.net/

Sriram, M., Patel, V., Harishma, D., & Lakshmanan, N. (2014). A Hybrid Protocol to Secure

the Cloud from Insider Threats. Cloud Computing in Emerging Markets (CCEM), 2014

IEEE International Conference on. CONF. http://doi.org/10.1109/CCEM.2014.7015476

Stolfo, S. J., Salem, M. B., & Keromytis, A. D. (2012). Fog Computing: Mitigating Insider

Data Theft Attacks in the Cloud. Security and Privacy Workshops (SPW), 2012 IEEE

Symposium on. CONF. http://doi.org/10.1109/SPW.2012.19

Sutton, O. (2012). Introduction to k Nearest Neighbour Classification and Condensed Nearest

Neighbour Data Reduction. University Lectures, University of Leicester. JOUR.

Takabi, H., Joshi, J. B. D., & Ahn, G. J. (2010). Security and privacy challenges in cloud

computing environments. Security & Privacy, IEEE, 8(6), 24–31. JOUR.

Taleb, N. N. (2010). The black swan:: The impact of the highly improbable fragility (Vol. 2).

BOOK, Random House.

Taylor, J. B., & Williams, J. C. (2008). A black swan in the money market (RPRT). National

Bureau of Economic Research.

Valeur, F., Vigna, G., Kruegel, C., & Kemmerer, R. A. (2004). Comprehensive approach to

intrusion detection alert correlation. In Dependable and Secure Computing, IEEE

Transactions on (Vol. 1, pp. 146–169). JOUR. http://doi.org/10.1109/TDSC.2004.21

Wen, S., Xiang, Y., & Zhou, W. (2010). A Lightweight Intrusion Alert Fusion System. 2010

IEEE 12th International Conference on High Performance Computing and

Communications (HPCC), (1), 695–700. CONF. http://doi.org/10.1109/HPCC.2010.120

Willis-Ford, C. (2015). Education & Awareness: Manage the Insider Threat. In Fissea

Working Group. Retrieved from http://csrc.nist.gov/organizations/fissea/2015-

conference/presentations/march-24/fissea-2015-willis-ford.pdf

82

Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class

hadoop and streaming data. Book, McGraw-Hill Osborne Media.

83

APPENDICES

APPENDIX A: HCIDS SYSTEM DESIGN

System Design

Figure 22. Hypervisor-Based Cloud Intrusion Detection System Design

Snode.py

This program retrieves system metric data every second from the hypervisor and passes it to

CHIDS.spl for analysis.

CHIDS.spl

This program looks for abnormal spikes in metric data and then compares to known attack

patterns. Then, it sends the attack information to the SCIMCS system.

84

APPENDIX B: SCIMCS SYSTEM DESIGN

System Design

Figure 23. Streaming Intrusion Monitoring and Classification System Design

Launch.sh

This script was used for starting the sensors during experimentation.

Snortsensor.py

This program retrieves data from the popular Snort intrusion detection system, formats it, and

passes it the MSIDS.spl.

checkrootkit.py

This program uses the chkrootkit package to search for known rootkits. It formats the output

and passes any results to MSIDS.spl.

85

Logsensor.py

This program retrieves and formats data from log files. Then, it sends the data to MSIDS.spl.

Tcpipsensor.py

This code was originally written by someone going under the handle Silver Moon. It was

modified to sniff tcp/ip traffic, format it and send the data to tcpanomalyfinder.spl.

MSIDS.spl

This program ingests data from sensors, buffers the data, and controls the flow rate into

analyzer.py.

Tcpanomalyfinder.spl

This program ingests sniffed formatted data from tcpipsensor.py and looks for anomalies in

the rate at which packets are sent and the size. Then, abnormal activity is labeled using rules

based on observation. The output is sent to MSIDS.spl.

Analyzer.py

This program does the counting, weighting, and persistence of alerts. It can be considered the

brain of the system. The major calculations are done here. As alerts come into the program,

they are given a value and passed to detector.spl.

Detector.spl

This program looks for anomalies in alert message scores from analyzer. This performs a

filtration effect to stop overwhelming administrators with redundant alerts. In addition, alerts

are ranked high, medium, or low and passed to classifer.py

86

Classifer.py

This program has two modes: training and monitor. In training mode, it takes groups of

alerts and stores. A label can be assigned. In monitor mode, the program looks for groups of

messages that match previously observed patterns using Bayes classification. The alert data is

sent off to be rendered on a web page.

visualize.html

This html script utilizes Google visualization APIs to visualize the output from classifer.py.

Get_data.cgi

This script feeds data to the visualize.html page for visualizing the output from classifer.py.

87

APPENDIX C: A SYSTEM FOR DETECTING INSIDER DATA

THEFT DESIGN

System Design

Figure 24. Insider Data Theft Detector System Design

Insider.py

This program gathers the data from the nodes and performs the agent role in the research.

insider_scoring.py

This program has two modes: training and monitoring. In training mode, data is sent to

InsiderThreatDetectorTrainer.spl where normal patterns are learned. In monitoring mode,

data is enriched from the training data and is sent to InsiderThreatDetectorMonitor.spl where

abnormal usage is detected.

88

InsiderThreatDetectorTrainer.spl

This program calculates anomaly values for each metric passed in and then writes to data

files.

Parse_training_data.py

This program reads data files and generates insiderdata.json with the max values observed

during the training period.

InsiderThreatDetectorMonitor.spl

This program takes in metric data, calculates an anomaly score and compares the score to the

maximum score observed during training.

insider_detection.py

This program ingests the anomaly data from InsiderThreatDetectorMonitor.spl and issues the

alerts.

	Dakota State University
	Beadle Scholar
	Fall 12-1-2016

	Distributed Multi-component Approach and System for Enhanced Security of Public Infrastructure as a Service (IAAS) Cloud Computing Environments
	Jason Nikolai
	Recommended Citation

	Nikolai, Jason -- 2016
	Nikolai, Jason -- Approval -- 2016
	Nikolai, Jason -- 2016

