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ABSTRACT 

Organizations in today’s rapidly evolving digital economy are relying more than ever 

on their database systems for critical decision-making functions. As a result, speedy and 

timely availability of the information from these systems is one of key factors crucial to 

organizational survival. Operating these database systems at high performance levels under 

highly-integrated, dynamic and complex environments is a knowledge-intensive and an error-

prone human-driven task. Although there have been several developments in the area of 

autonomous performance tuning, such approaches are of limited use because they do not 

include a holistic view of the problem space and the environment under which they operate. 

Specifically, these approaches largely ignore the impact and the extent of organization-

specific environmental changes on the performance of their database systems. This research 

addresses these issues by proposing: 1. A holistic autonomic tuning knowledge model that 

extends the existing autonomic tuning reference model by incorporating the organization-

specific environmental change impact knowledge. 2. A theory based framework called 

“DECIPHER” that that not only acquires this knowledge component but does so in a 

proactive fashion. This framework predicts the potential impact of environmental changes and 

its dependencies by mining the historical change information stored within the existing 

organizational incident management data stores.  3. A new change pattern recurrence metric 

to identify the contexts in which change impact prediction algorithms will be useful and to 

help identify the best subset of data to use for change impact prediction model building. 
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CHAPTER 1 

INTRODUCTION 

This chapter presents a detailed discussion on the background of the research problem 

and the objectives of this research. This chapter begins with an in-depth review of the 

background of the research problem and then discusses the key factors that were critical to the 

formation of research objectives and then concludes with a high level overview of the 

structure and flow of this document. 

Background of the Problem 

Database systems are one of the critical backbone infrastructure components of 

modern organizations. In today’s digital economy, an increasing number of organizations are 

relying on their database systems for their critical decision-making functions (Power and 

Sharda, 2009). As a result, speedy and timely availability of the information from database 

systems is one of key factors crucial to organizational survival (Conway, Vesset, and Earl, 

2009).  This rapidly evolving digital economy has also led organizations to constantly strive 

to maximize the utilization of their Information Technology (IT) assets while reducing their 

operating costs and the total cost of ownership. One initiative that has been very successful in 

this regard is the server virtualization. Using virtualization technologies, more and more 

organizations are using their computing resources as a utility. This setup is typically referred 

to as “Private Clouds” under the cloud computing paradigm (Mell and Grance, 2009). 

Database systems are no exception to this.  Private clouds consisting of databases are typically 

referred to as “Private Database Clouds”(Curino et al., 2011).  

 

Another artifact of this constantly changing digital age is the rate at which 

organizations undergo change. These organization changes are fuelled by factors like mergers, 

acquisitions, explosive data growth, changing competitive landscape and long-term 

investments (McKendrick, 2011). As a result, the Information Technology (IT) environments 

within the organizations are becoming highly-integrated, dynamic and more and more 
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complex (Böhm et al., 2010; Corp, 2005). According to a recent Forrester research report, 

organizations make up to 500 changes per month to their IT infrastructure (Forrester, 2007). 

When virtualization initiatives are added to this mix, it further exacerbates this situation and 

can even lead to severe manageability issues (Kotsovinos, 2011). These virtualization related 

factors coupled with speedy and timely requirement of database information pose new 

performance challenges for the database systems (McKendrick, 2011; Telford et al., 2003).   

 

Operating database systems at high performance levels under complex, dynamic and 

dense environments such as private database clouds, requires the database administrators 

(DBAs) to frequently conduct performance tuning or optimizations (Rabinovitch, 2009; 

Schallehn, 2010; Telford et al., 2003). Database performance tuning or optimization is a very 

broad term and has several perspectives and definitions. In this dissertation, we will use the 

Sasha (1992) definition of database performance tuning since it is a holistic and realistic 

description of the task – “Database tuning is the activity of making a database application 

run more quickly. More quickly usually means higher throughput, though it may mean lower 

response time for some applications. To make a system run more quickly, the database tuner 

may have to change the way applications are constructed, the data structures and parameters 

of a database system, the configuration of the operating system, or the hardware” (Shasha, 

1992).  

  

 Typically,  the database tuner in most organizations is a human (Elnaffar, Powley, 

Benoit, and Martin, 2003; Rabinovitch, 2009).  The tuning of database by a human is referred 

to as manual database tuning or human-driven database performance tuning. 
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Figure 1. Typical Organizational Database Environment Stack 

 As evident from the above definition, the performance tuning is a goal-oriented task. 

These goals are largely organization-specific and typically part of the organization’s service 

level agreements (SLAs), e.g., the order management database application should process 

1000 orders in one minute.  The above definition also highlights the reactive aspect of tuning, 

the complexity involved with this task and also the various factors that come into play in a 

typical database environment. A typical database environment, as shown in Figure 1, has 

several layers (Schallehn, 2010; Shasha, 1992).  Private database clouds are one such example 

of a database environment. The database environment stack represents the IT components 

including the databases that are required for database application(s) to fully function.  A 

typical modern database environment, as shown in Figure 1, has following major components 

(Schallehn, 2010; Shasha, 1992): 

 

a) Users:  These are the end users that use the database either directly or via a database 

application. Some of examples of this component are data-entry operators, system 

analysts, developers etc. 

 

b) Application/Middle Tier:  This consists of queries, Data Manipulation Language 

(DML), database packages/stored procedures or application interfaces. Some of the 

examples of this component are Enterprise Resource Planning (ERP), Order entry, 

reporting application etc. 
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c) Database: This consists of the database management system (DBMS) software 

components and the data that it manages. Examples – Oracle RDBMS, IBM DB2, MS 

SQL Server etc. 

 

d) Operating System: This consists of software components that manage system 

resources and execution of programs and the processes.  Examples – Solaris, Linux, 

AIX etc. 

 

e) Network:  This consists of networking components such as interconnects, LAN, WAN 

that support communication between different components within the database 

environment. 

 

f) Storage: This consists of components that physically store the data, backups, and 

archived data.  Examples – hard disks, flash, tapes etc. 

 

g) Hypervisor: This layer includes server virtualization kernels that virtualize system 

resources. This is the key layer for private database clouds. Examples: Vmware, Xen, 

hyperv etc. 

 

h) System Hardware: This consists of components such as CPU, memory, system bus 

etc. 

 

Given the high density of IT environments, especially in a private database cloud 

setting, an issue at any of these layers of the database environment stack has a high potential 

of causing impact to other layers within the stack. Since organizations have large number of 

database systems within their complex and highly-integrated environments, the impact and 

the extent of environmental changes on the performance of its databases becomes significant 

and far-reaching. 
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Consider the following two scenarios: 

 

1) As part of the quarterly patching policy, a system administrator patches the operating 

system on a database virtual machine (VM) of a database private cloud on a planned 

maintenance window on a Sunday morning. On Monday morning, users experience 

severe performance degradation with some of their analytical queries. The DBA 

working on the issue sees huge waits on logical reads on the database. Based on the 

recommendations of their tuning tools and automatic advisors, the DBA tweaks the 

database configuration parameters and even reboots the VM. After few painful hours 

of trying several options, the problem was narrowed down to a buggy OS patch that 

was applied to the VM. A workaround provided by the OS vendor fixed the issue. 

 

2)  The storage team upgraded the microcode of the SAN storage used by a business 

intelligence (BI) VM cluster’s storage repository on a planned maintenance window 

on a Saturday afternoon. On Sunday evening, scheduled reports using the database on 

one of the VM’s were running almost 3 times slower than usual. Based on the data 

gathered by the performance monitoring tools and through tracing, the DBA’s found 

out that the physical reads on the database were very slow.  DBA’s started adding 

indexes on the tables used by the report queries. This somewhat helped but created 

new performance issues with some other queries. By Tuesday, the problem was traced 

back to the SAN microcode upgrade. The microcode was downgraded to fix the issue. 

 

Had the DBAs known about the potential impact and extent of these environmental 

changes before they were implemented, they could have made better decisions to mitigate the 

risks posed by these changes. In the case of first scenario, DBAs could have asked for a full 

load test on QA VM server or a clone of the production VM with the new OS patch so that 

more realistic testing would have been possible. In the case of the second scenario, the DBAs 

could have prepared themselves for switching to a standby database that used a different SAN 

storage. Incorrect diagnosis and troubleshooting is expensive and error-prone. Also, these 

events end up repeating themselves across time and systems. Furthermore, the human-driven 



15 

performance tuning task is repetitive, expensive, time-consuming and error-prone (Gil et al., 

2002; Oliveira et al., 2006; Wiese and Rabinovitch, 2009).   

  

Although, there have been several developments in the area of autonomous as well as 

semi-autonomous performance tuning research, they are limited in their use because they do 

not holistically understand the problem space and the environment under which they operate. 

These semi-autonomous and autonomous approaches adopt a narrow focus towards the 

organizational database environment stack by focusing primarily on the database layer within 

the environment stack. Furthermore, these approaches largely ignore the impact and the extent 

of organization-specific environmental changes on the components of the stack. Predicting the 

potential impact of environmental changes and knowing its extent before they are executed 

can help human as well as autonomic tuners in proactively mitigating the risks posed by them. 

So, how to accurately predict the potential impact and the extent of environmental changes 

before they are even implemented or executed in an organizational database environment 

stack?  

Research Objectives 

The objective of this project is to address the aforementioned problems: 

 

1. By proposing a holistic autonomic tuning knowledge model that extends the existing 

autonomic tuning knowledge reference model by incorporating the organization-

specific environmental change impact knowledge.  

 

2. A theory based framework called “DECIPHER” that that not only acquires this 

knowledge component but does so in a proactive fashion. This framework predicts the 

potential impact of environmental changes and its dependencies by mining the 

historical change information stored within the existing organizational incident 

management data stores.   
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3. A new change pattern recurrence metric to identify the contexts in which change 

impact prediction algorithms will be useful and to help identify the best subset of data 

to use for change impact prediction model building. 

 

The next six chapters provide the necessary background materials for this project. In 

Chapter 2 an in-depth review of the existing approaches to the database tuning problem is 

presented. This chapter also discusses the limitations of these approaches by adopting a 

knowledge management perspective towards the tuning knowledge.  Chapter 3 discusses the 

research methodology used for the DECIPHER. Chapter 4 presents the relevant theoretical 

foundations for DECIPHER. This chapter also discusses the functional design factors based 

on the identified limitations with existing approaches that were covered in the Chapter 2. 

Chapter 5 presents a detailed discussion of the implementation and evaluation of DECIPHER 

using a real-world incident management system. This chapter discusses in detail the 

algorithms and steps used for DECIPHER implementation and the questions that were used 

for validating the accuracy of DECIPHER’s prediction.  Chapter 6 presents the DECIPHER 

evaluation results that demonstrate its accuracy as well as metrics for identifying conditions 

under which the system will perform effectively. Finally, Chapter 7 presents an overview of 

the contributions of this project and a discussion on the possible future directions for 

DECIPHER. 
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CHAPTER 2 

LITERATURE REVIEW 

 This chapter presents an in-depth review of the existing approaches to the database 

tuning problems. It begins with a review of the issues pertaining to the human-driven database 

performance tuning from various perspectives. This chapter continues with an effort of to 

formalize the existing tuning approaches and solutions by adopting a knowledge management 

perspective towards the tuning knowledge. This chapter concludes with a  discussion on the 

missing knowledge component required for effective database performance tuning in modern 

IT organizational environments such as private database clouds that are highly –integrated 

and complex. 

 

 Database performance tuning is one of the most significant, time-consuming  and 

repetitive tasks performed by the database administrators (DBAs) in order to meet the 

organization-specific performance goals (Belknap, Dageville, Dias, and Yagoub, 2009; 

Boughton, Martin, Powley, and Horman, 2006; Charvet, 2003; DBTA, 2009; Embarcadero-

Technologies, 2010; Oliveira et al., 2006; Wiese, Rabinovitch, Reichert, and Arenswald, 

2008).  The DBA’s that are able to perform such tuning successfully, efficiently and 

consistently are expensive and increasingly harder to find (Chaudhuri and Weikum, 2006; 

Krayzman, 2005; Schallehn, 2010; Sullivan, Seltzer, and Pfeffer, 2004; Wiese et al., 2008). 

Furthermore, this task can also be error prone which can introduce system unpredictability or 

even lead to system unavailability (Oliveira et al., 2006). Since organizations typically have 

large number of database systems, the tuning task consumes most of the DBA’s time, 

preventing them from focussing on strategic and long-term value adding organizational 

initiatives (DBTA, 2009; Embarcadero-Technologies, 2010; Oliveira et al., 2006) . 

 

 More and more organizations are embracing cloud computing technologies in the form 

of private clouds to address their evolving business needs and reduce their operating costs. 



18 

But, organizational Information Technology (IT) environments in today’s rapidly evolving 

digital economy undergo several changes fueled by factors like mergers, acquisitions, 

explosive data growth, changing competitive landscape and long-term investments. As a 

result, the private cloud environments within the organizations are becoming highly-

integrated, complex and very dynamic. Given the high server density of such database 

environments, the potential impact of IT environmental changes to the systems becomes 

significant and far-reaching. Human-driven database performance tuning under such 

environments further exacerbates the aforementioned issues (Kotsovinos, 2011). 

  

 In order to address the aforementioned issues of human-driven database performance 

tuning, the focus adopted by existing research efforts can be broadly classified into 

autonomous and semi-autonomous tuning approaches. These approaches are proposed as 

potential solutions towards reducing or eliminating the need for human-driven performance 

tuning from a maintenance, administration and resource consumption perspective (Chaudhuri 

and Narasayya, 2007; Kephart and Chess, 2003; Shasha, 1992; Wiese et al., 2008). 

 

Autonomous Tuning Approaches 

  

 At a very high level, these approaches can be classified based on their  integration 

with the database and the temporal nature (how and when) of their tuning decision (Chaudhuri 

and Weikum, 2006). This paper assumes a database as a relational database system that is 

designed to function under all types of workloads. There are several specialized database 

technologies and architectures that are designed for specific performance requirements that 

are not considered in this paper. For more information on such technologies/architectures, see 

Stonebraker et al. (2007) and Stonebraker (2010). Autonomous tuning approaches can be 

broadly categorized into Tradeoff elimination-based (Vengurlekar et al., 2008), Feedback-

based (Herodotos Herodotou, 2010), Exploration-based (Sullivan et al., 2004), Model-based 

(Chaudhuri and Weikum, 2006) and Hardware-based (Chaudhuri and Weikum, 2006; 

Herodotos Herodotou, 2010; Krayzman, 2005; Schallehn, 2010; Shasha, 1992; Sullivan et al., 

2004).  A high level summary of these approaches are shown in Table 1 below. 
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Table 1. Summary of Existing Autonomic Tuning Approaches 

 

Tuning  Pros and Cons  References  

                          

Tradeoff 

Elimination-Based  

 

Pros: One-size-fits-all approach; 

Very Flexible.  Cons: Sacrificing 

Optimal Performance for Flexibility; 

close integration to database 

internals.  

 

Vengurlekar et al., (2008); 

Chaudhuri and Weikum 

(2006); Schallehn (2010)  

                        

Feedback-Based  

 

Pros: Control-loop; pay-as-you-go 

approach; Quick adaptability to 

unseen or changing workload 

situations.  Cons: Time-consuming; 

can introduce runtime 

unpredictability.  

 

Chaudhuri and Narasayya, 

(2007); Wiese and 

Rabinovitch (2009); Sullivan 

et al., (2004); Kephart and 

Chess (2003); Elnaffar et al., 

(2003) 

                    

Exploration-Based  

 

Pros: Proactive; less runtime 

overhead.  Cons: Time-consuming 

with large solution search space; 

solutions cannot be generalized 

across different database workloads.  

 

Sullivan et al., (2004); 

Ziauddin et al., (2008); Markl 

et al. (2003); Lee and Zait 

(2008); Brown et al.,(1996) 

                             

Model-Based  

 

Pros: Statistical or Probabilistic 

models to predict optimal parameters 

for different workloads; can tune 

several parameters or knobs. Cons: 

 

Sullivan et al., (2004); 

Chaudhuri and Weikum 

(2006); Schallehn (2010) 
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Needs sufficient training data for 

accurate prediction; difficult to 

model for a complex system.  

                      

Hardware-Based  

Minimal tuning; Minimal change to 

the database objects or application 

code. Cons: Expensive; unable to 

handle all types of performance 

issues.  

Krayzman (2005); Mueller 

and Teubner( 2009); Bigus et 

al.,(2000) 

 

Tradeoff elimination-based approaches are based on the principle that if a policy or 

high level parameter or knob provides near optimal results (sweet-spot) under unseen or 

changing workloads then its low level knobs or parameters can be eliminated (Chaudhuri and 

Weikum, 2006; Schallehn, 2010). The advantage of this approach is its one-size-fits-all 

approach (Vengurlekar, Vallath, and Long, 2008). The disadvantage is the sacrificing of 

optimal performance and also addition of some overhead at the expense of flexibility 

(Chaudhuri and Weikum, 2006). Furthermore, this approach requires detailed understanding 

of the low level parameters and their sensitivities (Chaudhuri and Weikum, 2006). Typically 

these approaches are closely integrated to the database internals (Vengurlekar et al., 2008). 

 

Feedback-based methodologies largely employ exploitation or control-loop or pay-as-

you-go approaches towards performance tuning. Such methodologies follow a step-wise 

performance tuning approach wherein one parameter or knob or a policy is changed at a time 

based on some pre-defined threshold value (Rabinovitch and Wiese, 2007; Sullivan et al., 

2004). Adaptability to workload changes is a key feature of  such approaches (Elnaffar et al., 

2003; Kephart and Chess, 2003).  These approaches typically use a feedback or control loop. 

Such models aim to provide the autonomic managers within a database with the localized and 

internal knowledge about its environment in order to make better tuning decisions. These 

approaches are also online in nature , i.e., tuning is performed continuously (Schallehn, 2010). 
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 These approaches have advantages like quick adaptability to unseen or changing 

workload situations without the need of much prior training (Brown, Carey, and Livny, 1996; 

Chaudhuri and Narasayya, 2007; Chaudhuri, Narasayya, and Ramamurthy, 2008; Markl, 

Lohman, and Raman, 2003; Sullivan et al., 2004). The disadvantage of such approaches is 

that it cannot  effectively handle issues that might require tuning of multiple parameters or 

knobs simultaneously to resolve a performance issue (Sullivan et al., 2004). Furthermore, this 

architecture has a runtime overhead in situations where several iterations are needed to find an 

optimal solution (Sullivan et al., 2004). Moreover, in such situations the system usually does 

not know when an optimal situation or critical value has been reached (Herodotos Herodotou, 

2010; A. W. Lee and Zait, 2008; Sullivan et al., 2004). The feedback –based approaches could 

also introduce runtime unpredictability (Herodotos Herodotou, 2010; Ziauddin, Das, Su, Zhu, 

and Yagoub, 2008). These approaches are also closely integrated to the database system 

(Chaudhuri and Weikum, 2006; Markl et al., 2003).   

 

Exploration-based methodologies utilize explorative or comparison-based approaches 

wherein comparisons can be made proactively or even reactively with past measurements of 

parameters or knobs in order to reach an optimal value using an empirical or experimental 

exploration process (Herodotos Herodotou, 2010; Sullivan et al., 2004). These approaches are 

static in nature , i.e., tuning is not performed continuously but initiated by the database system 

(Schallehn, 2010). The advantage of such approaches are that they can have less runtime 

overhead as the exploration or comparison process can be done off hours or on an 

experimental or sandboxed environment (Herodotos Herodotou, 2010; Sullivan et al., 2004; 

Ziauddin et al., 2008). Furthermore, this approach can avoid runtime unpredictability 

(Ziauddin et al., 2008). The disadvantages of such approaches are that the exploration or 

search process can be very time-consuming in situations where the search space of potential 

solutions is very large (Sullivan et al., 2004). Furthermore,  the solutions in this approach 

cannot be generalized for all workload situations, especially the unseen ones (Sullivan et al., 

2004). In this approach the decision-making and execution of the tuning decision can be de-

coupled with the database system and can also be supported by external tools (Chaudhuri and 

Weikum, 2006; Schallehn, 2010). 
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Model-based methodologies usually employ approaches that use probabilistic or 

statistical models that can predict the database system’s performance under various workload 

situations (Sullivan et al., 2004). These approaches are also static  in nature , i.e., not 

performed continuously but initiated by the database system (Schallehn, 2010). The 

advantages of such approaches are that they have low runtime overhead since they do not 

actually need to test the solution (Sullivan et al., 2004). Furthermore, these models can 

effectively handle issues that require tuning of multiple parameters or knobs simultaneously 

to resolve a performance issue (Sullivan et al., 2004). The disadvantage of such approaches 

are that they need sufficient training data for accurate prediction (Sullivan et al., 2004). 

Moreover, data collection process to train the model can have runtime overhead (Sullivan et 

al., 2004).  Also, in this  approach  the decision-making and execution of the decision can be 

de-coupled with the database system and can also be supported by external tools (Chaudhuri 

and Weikum, 2006; Schallehn, 2010). Model building of a complex system can also be a 

challenge with this approach (Sullivan et al., 2004). 

 

 Hardware-based methodologies employ solutions that involve hardware upgrades or 

hardware accelerators to improve the performance of a database system (Chaudhuri and 

Weikum, 2006; Krayzman, 2005; Mueller and Teubner, 2009). Advantages of these type of 

approaches are that these can provide more system resources to a performance problem 

without having to change the database objects or application code (Krayzman, 2005; Mueller 

and Teubner, 2009). The disadvantages of such approaches are higher costs and inability to 

handle all types of performance issues (Bigus, Hellerstein, Jayram, and Squillante, 2000; 

Krayzman, 2005). 
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Semi-Autonomous Tuning Approaches  

  

 There are very few research efforts that focus on combining autonomous tuning 

approaches with the human knowledge. Sullivan, et al., (2004) research proposes a 

probabilistic reasoning approach as part of a model-based tuning approach to automate 

software tuning in general. The author in this research proposes that the domain experts with 

detailed knowledge of internal workings of a system construct initial models for inter-

dependent low level system functions in order to attain the desired performance goal. These 

models can be trained under various workloads to automatically handle tuning of various 

knobs to achieve the desired tuning goals. Such an approach can be a very challenging task to 

do for today’s database systems given their internal complexity. Also, this approach solely 

focuses on tweaking or tuning of so called knobs or parameters and may not work for 

performance issues that either do not have tunable knobs or may require tuning that is 

applicable to other components within a database environment, e.g., application, database, 

operating system, network, and storage and system hardware.   

 

 Rabinovitch (2009) research formalizes the DBA’s database-specific tuning 

knowledge into textual information called “tuning plans” and saves them in a best practice 

repository. Policies are then used to activate or deactivate these plans to address the 

performance problem as part of feedback-based tuning methodology. Other approaches in this 

category focus on the human database tuner user either reviewing the solutions provided by 

the autonomous approaches or providing higher level workload-specific goals or policies 

(Herodotos Herodotou, 2010; Ziauddin, Das, Su, Zhu, and Yagoub, 2008). 
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Limitations with Existing Approaches 

 

Since performance tuning is a knowledge-intensive task, the component based 

reference tuning knowledge model proposed by Wiese and Rabinovitch (2009) can be used to 

formalize the existing autonomous and semi-autonomous tuning approaches and help us better 

understand the limitations of these approaches.  Furthermore, this model adopts a generic 

view of the database system making it effective to formalize across various database 

technologies and architectures.  

 

This model lays out the knowledge components required for successful database 

performance tuning in an environment under control. In this layered model, shown in Figure 2 

below, each knowledge component builds on top of the each other.  The most general 

knowledge is at the bottom and the very specific knowledge is at the top. Figure 2 is an 

adaptation of Wiese and Rabinovitch (2009) autonomic tuning knowledge reference model.  

 

 

Figure 2. Autonomic Tuning Knowledge Reference Model  

 

This autonomic tuning knowledge reference model divided into two parts – Object 

level that represents the environment under control and meta-level that represents the 
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knowledge components.  The autonomic tuning knowledge reference model, as shown in 

Figure 2,  has following components (Wiese and Rabinovitch, 2009): 

 

1) Database Workload Knowledge: The foundational knowledge component of this 

model is the database workload knowledge. This model considers workload changes 

as the only source of changes in a database environment.  In fact, this knowledge 

component is considered as the “surrounding and influencing environment” for the 

database system. The model also views this knowledge component as non-modifiable 

and is constantly changing, e.g., online transaction processing or batch processing or a 

hybrid of these two. This knowledge component is the most general compared to 

others and can be autonomously obtained through myriad of approaches and tools. 

Furthermore, many modern database systems have the basic instrumentation in their 

kernels to capture and process their workload (Markl et al., 2003; Shasha, 1992).  

 

2) Tuning Policy Knowledge: This knowledge component builds on top of the workload 

knowledge component and refers to the specific knowledge of resources that need to 

be monitored or changed along with their specific thresholds and user-defined 

performance goals.  Even in a fully autonomic system, the DBAs would be required to 

define or update new policies that control the behavior of autonomous managers 

(Herodotos Herodotou, 2010). Hence this knowledge component falls under semi-

autonomously acquired knowledge category.  

 

3) Problem Resolution Knowledge: This knowledge component builds on top of the 

tuning policy knowledge component and refers to the database specific procedural 

knowledge regarding the actions needed to resolve the performance problem. This 

knowledge component can be viewed as a recorded or codified reaction to a particular 

performance problem that happened in past or is current or may occur in future.  

Designing such a plan or action may need human intervention depending upon the 

nature of the problem (Ziauddin et al., 2008). 
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4) Problem Diagnosis Knowledge: This knowledge component builds on top of the 

problem resolution knowledge component and refers to best practices used by DBAs 

to diagnose or troubleshoot performance problems. This knowledge component can be 

considered analogous to the standard operating procedures that are designed and 

maintained by experts (Wiese et al., 2008). 

 

5) Database Internal Knowledge: This knowledge component builds on top of the 

problem diagnosis knowledge component and refers to the expert knowledge of 

internal workings of a database system components and understanding of their inter-

dependencies and inter-reactions. This is the most specific form of knowledge as it 

requires understanding of the underlying database technology, configuration, and 

hierarchy of system components, their behavior, construction and their complex 

interdependent cause-effect relationships. In most cases, this knowledge component is 

acquired through a human expert (Sullivan et al., 2004). 

 

Based on this understanding of the tuning reference knowledge model, the gaps within the 

existing research literature can be broadly classified into the following areas:  

 

a) Narrow Focus of the Database Environment Stack:  Existing tuning approaches do 

not account for the constantly changing and highly-integrated nature of today’s 

database environments such as private database clouds.  Existing approaches focus 

primarily on the database layer of the database environment. As highlighted in Figure 

1, the database environment has several layers and changes to any of these layers can 

have an effect on the performance of the databases. Hence we need to consider a more 

holistic view of the database environment. 

 

b) Lack of Organization Specific Focus: Every organization has its own unique 

database environment stack, its specific change cycles and service level requirements. 

Hence we need to consider an approach that adapts to these organization-specific 

requirements.  
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c) Workload-specific focus: As evident from Figure 2 above, the foundational 

knowledge component for the existing autonomous and semi-autonomous tuning 

approaches is the workload knowledge. These approaches do not account for changes 

that organizational database environments typically go through that have an effect on 

the performance of its database systems, e.g., the addition of disks of different speeds 

to an existing storage system on a database server could result in hotspots for database 

reads resulting in performance degradation, or an operating system patch upgrade 

causes memory issues that in turn have an adverse impact on the database’s 

performance, or a firewall network change causes network latency resulting in 

connection slowness, or timeouts for database applications.  Hence, it is crucial that 

we consider the knowledge of impact and extent of environmental changes within the 

stack besides just the workload changes. 

 

d) Lack of Focus on Proactive Problem Resolution Knowledge: Most of the 

autonomous as well as semi-autonomous tuning approaches adopt a reactive approach 

towards acquiring problem resolution knowledge.  In organizational settings, 

following factors typically come into play in human-driven performance situations 

that influences the tuning task and its outcome: 

 

1) Aggressive tuning deadlines: Speedy and timely requirement of information 

from the database systems dictates the aggressive deadlines for the tuning 

tasks. As a result, this task becomes cognitively taxing for the DBAs. 

 

2) Performance tuning costs: These are the opportunity costs that an organization 

incurs as a result of the performance problem. This is also responsible for 

aggressive deadlines and making the tuning a cognitively taxing task for the 

DBAs. 

 

3) Environmental change impact uncertainty: This is the result of complexity and 

density of the database environment stack as shown in figure 1. This 
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uncertainty makes the troubleshooting of the performance problem a 

challenging task.  

 

Performance tuning under such factors could result in incorrect diagnosis and error-

prone tuning (Endsley, 1995; Oliveira et al., 2006).  Hence, acquiring the problem 

resolution knowledge specific to the environment, i.e., the knowledge of impact and 

extent of environmental changes proactively , i.e., before the changes are even 

implemented could minimize the impact of some of these adverse effects. 

 

 

Figure 3. Holistic Tuning Knowledge Reference Model 

 Based on these limitations the tuning knowledge reference model proposed by Wiese 

and Rabinovitch (2009) can be extended to incorporate the Environment Change Impact 

Knowledge (ECIK) as shown in grid pattern in Figure 3 above. This knowledge component is 

referred to as the impact and extent of environmental changes. This extended knowledge 

model holistically represents the problem space and environment for today’s organizational 

database environmental stacks. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 This chapter discusses the research methodology used for the DECIPHER. It begins 

with a discussion on Design Science research methodology and the reason for using it for the 

DECIPHER. This chapter then continues the discussion presenting the Design Science steps 

for DECIPHER that lays the foundation for the design, development and evaluation of 

DECIPHER. It concludes with a diagram that summarizes the overall Design Science 

approach adopted for DECIPHER. 

 

Design Science Research Methodology  

 

 This research utilizes the Design Science research methodology since it is a 

fundamentally problem-solving paradigm aimed at designing artifacts that solve identified 

organizational problems (Hevner, March, Park, and Ram, 2004; Peffers, Tuunanen, 

Rothenberger, and Chatterjee, 2007). Also, since the motivation for this research also 

originated from the observation of the problems related to human-driven database 

performance tuning at author’s workplace, a problem-centered approach was taken towards 

research design (Blakey and Atkins, 2008; Peffers et al., 2007). Using this research 

methodology enables us to exploit the design process as an opportunity for learning and 

further advancing our understanding of the problem (Blakey and Atkins, 2008).  

 

  In the design science research methodology, design is both a process and a product. 

This research methodology is characterized by two fundamental research activities – build 

and evaluate. Build activity refers to building of the DECIPHER framework that address the 

aforementioned problem and the evaluate activity refers to its evaluation of the framework 
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with respect to its ability in addressing the identified problems (Blakey and Atkins, 2008; 

Hevner et al., 2004). Following are the steps that were taken during the course of this research 

(Blakey and Atkins, 2008; Peffers et al., 2007): 

 

a) Problem Identification and Motivation: A detailed and extensive analysis of 

database performance tuning literature on the current solutions, approaches and future 

trends was conducted. This highlighted the problems and challenges that the DBA’s 

are facing within the organizations and also reinforced the author’s observation of 

these problems at his workplace. The knowledge gained from this step was 

fundamental to the extension of the existing tuning knowledge reference model and 

also artifact design process and also in ensuring the justification of the potential value 

of the proposed solution. The research question that came out of this step is - How to 

accurately predict the potential impact and the extent of environmental changes before 

they are even implemented or executed in an organizational database environment 

stack? 

 

b) Objectives of the Solution: The objective of the solution is to provide a capability to 

accurately predict the potential impact of environmental changes and identify the 

extent of the impact before the changes are even implemented or executed from all 

layers of the database environment stack  

 

c) Design and Development: This entails theory based design of framework called 

“DECIPHER” (Database Environmental Change Impact Prediction in Human-driven 

Tuning in Real-time) that not only acquires this knowledge component but does so in 

a proactive fashion. This framework predicts the potential impact of environmental 

changes and identifies its dependencies by mining the historical change information 

stored within the existing organizational incident management data stores. The 

development process involved implemention of the data processing algorithms to 

prepare the unstructured incident management data, the implementation of predictive 

text mining and similarity matching algorithims. Also, a new change pattern 

recurrence metric is developed to identify the contexts in which change impact 
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prediction algorithms will be useful and to help identify the best subset of data to use 

for change impact prediction model building.  

 

d) Evaluation:  The evaluation involved a prototypical implementation and validation of 

the DECIPHER framework against a real-world organizational incident management 

data store. This step involves validating the accuracy of the prediction of the 

environmental change impact and also the accuracy of identification of the extent of 

impact of the dependencies that unimplemented change have on other factors within 

the database environment stack.  

 

 

Figure 4 is an instantiation of Peffers, et al., (2007) design approach. 
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Figure 4. Research Methodology for DECIPHER 

Research Data   

 

The implementation of DECIPHER uses a real-world incident management system 

called “Request Tracker” (RT) used by a medium sized organization and Oracle data miner as 

the text-mining mining tool. This medium-sized organization has close to 5000 employees 

worldwide and on average experiences 200-300 IT environmental changes per month. These 

environmental changes range for simple changes like resetting password for users that have 

forgotten their passwords to complex changes like upgrading a critical software system or 

migrating systems from one data center to another. A single unit of work is typically captured 

in the form of a “Ticket” within an incident management system. Appendix B shows the 
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webpage with the fields for a typical change management ticket.  Changes within a ticket of 

an Incident Change Management system have the following fields that capture the 

environmental change information:  

 

1) Ticket # 

 

2) Queue 

 

3) Ticket Subject (Text)  

 

4) Change Purpose (Text)  

 

5) Creator of the ticket 

 

6) Owner of the ticket.  

 

7) Approver of the ticket.  

 

8) Last Update User 

 

9) Start Date 

 

10)  End Date 

 

11)  Classification (Regulatory Compliance) 

 

12)  Line of  Business  

 

13) Work-plan for the change (Text).  

 

14) Impact (High or Medium or Low).  
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15)  Impact Description (Text) 

 

16) Back-out plan (Text).  

 

17) General Comments/Notes (Text) 

 

A screenshot of RT’s user interface for the organization under study is shown in 

Appendix B. Impact field has the typical change management impact values , i.e., “Low”, 

“Medium” and “High”. The change information within the incident management system is 

stored in unstructured or textual format. For this research, tickets from 2008 -2011 are 

considered.  This duration resulted in 11,118 unique change tickets and the average word 

count per ticket after the linguistic preprocessing stage of DECIPHER is ~ 40. The breakdown 

of the number of distinct words for the above change ticket’s text fields is shown in Table 2. 

The distinct word count does not include the words that are on the stop list. 

 

Table 2. Distinct Words for Text Ticket Fields for 2008-2011  

 

# Ticket Field Distinct Word 

Count 

Average Word 

Count 

1 Ticket Subject 3086 5 

 Change Purpose 3638 8 

2 Workplan 3059 7 

 Backout Plan 1882 2 

 Impact Description 3008 5 

A General Comments 2324 2 

 

The incident management data stores has environmental changes from all support 

team workflow queues that maintain a specific component of the IT environment, e.g., 

hardware, network, operating system etc as shown in Figure 1 so that change information 
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from all the layers of the environment is taken into account. This collection of change 

information is referred in this research as Change Information Corpus. This is shown in 

Figure 5 below. Most incident management systems have a specific field that is used to enter 

perceived impact. Usually, it has values like “Low”, “Medium”, and “High”.  Table 3 lists the 

ticket count breakdown by queues within the incident management system. 

 

Table 3. Ticket Counts by Queue for 2008-2011 

# Queue Ticket Count 

1 Users 1536 

 Apps 1252 

2 Network 2081 

 Storage 1408 

A Hardware 1379 

 Operating System 1214 

T Database 2248 
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Figure 5. Organizational Change Information Corpus 
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CHAPTER 4 

THEORY AND DESIGN  

This chapter presents the relevant theoretical foundations for DECIPHER and an in-

depth discussion of its design. This chapter has two main sections – DECIPHER theoretical 

foundation and DECIPHER design. DECIPHER theory section begins with a discussion of 

the autonomic tuning reference architecture that highlights the role and the importance of 

knowledge management in database performance tuning domain. This section then continues 

with an explanation on the incident management systems and their role as the source for 

acquiring the Environmental Change Impact Knowledge. The DECIPHER design section 

presents a detailed explanation of the DECIPHER design architecture, including its 

component and concludes with a diagram on the DECIPHER’s process flow.  

Theoretical Underpinnings of DECIPHER 

Since database performance tuning is a knowledge intensive task, a knowledge 

management perspective is well-suited approach for the proposed solution.  The knowledge 

driven autonomic reference architecture proposed by Kephart and Chess (2003) provides an 

ideal holistic theoretical model for database performance tuning process. This process applies 

to both autonomous as well human-driven tuning approaches.  This model is inspired by the 

biological autonomous human nervous system(Bell, 2004). 

According to this architecture, the knowledge is the central component and should 

provide a common and shared understanding of the environment and problem space (Bell, 

2004; Miller, 2005).  The two main components of this architecture are the managed element 

(ME) and the autonomic Manager (AM).  The autonomic manager is a unit that employs the 

autonomic functionality for a dedicated autonomic system management function. For 

example, in the database system, the query optimizer can be an autonomic manager 
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responsible for database query optimization function (Markl et al., 2003).  The managed 

element can be a software or hardware resource. Typically, one or more AM’s exists within 

an autonomic system. 

 

Figure 6.  Knowledge-Driven Autonomic Reference Architecture 

The high level architecture is shown in Figure 6. This diagram is an adaptation of the 

autonomic computing architecture proposed by Kephart and Chess (2003). As shown in 

Figure 5, the sensor collects and retrieves information about the current state of the 

environment stack then compares it with expectations that are held in knowledge base. The 

required action is executed by the effecter.   

In case of human-driven tuning, the DBA can be viewed as the AM.  According to the 

tuning reference architecture shown in the Figure 6, there are four knowledge functions that 

come into play (Corp, 2005; Kephart and Chess, 2003): 

1) Monitor:  The monitor function is responsible for collecting the event details from the 

managed element and organizing them as symptoms using the knowledge base. 

Specifically, the monitor function aggregates, correlates and filters the information. 
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2) Analyze:  The analyze function utilizes the knowledge base in order to analyze the 

event symptoms presented by the previous monitor function by correlating and 

modeling the complex situations to better understand the problem space and the 

environment. This is the key knowledge-intensive step for the MAPE. 

 

3) Plan: After the event is identified and analyzed, the plan function structures the 

actions using the knowledge base that are needed to achieve the goal and objectives.  

 

4) Execute: This function is responsible for changing the behavior of the managed 

element via the effectors using the knowledge base.  

 

Design of DECIPHER 

 

In the context of database performance tuning knowledge components, let us 

understand how this MAPE cycle works. Figure 7  below shows the instantiation of the 

autonomic architecture proposed by Kephart and Chess (2003) to include the complete 

database environment stack from Figure 1 and the extended knowledge model from Figure 3.  
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Figure 7. Reactive Knowledge Driven Autonomic Tuning Architecture  

 

The tuning process can be described using the four MAPE knowledge processes as 

following (Bell, 2004; Kephart and Chess, 2003; Miller, 2005; Wiese and Rabinovitch, 2009):  

 

5) Monitor:  The step involves identifying the existing performance problem. This step 

utilizes the environmental change impact, database workload and tuning policy 

knowledge components. 

 

6) Analyze: This step is the key knowledge intensive step of M-A-P-E. It involves 

troubleshooting or diagnosing the performance problem, e.g., enabling query tracing 

for poor performing application queries. This step utilizes the environmental change 

impact, database workload, problem diagnosis, tuning policy and database internals 
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knowledge components. This step is also responsible for predicting the impact of 

changes (workload as well as environmental) and the dependencies of the impact on 

other environmental factors from a database performance perspective (Bell, 2004; 

Wiese and Rabinovitch, 2009). 

 

7) Plan:  This step involves coming up with a plan for actions that need to be taken to fix 

the performance problem, e.g., adding indexes. This step utilizes the environmental 

change impact, database workload, tuning policy, database internals and problem 

resolution knowledge components. 

 

 

8) Execute: This step involves the execution of the plan to carry out the actions. This 

step utilizes the problem resolution knowledge component. 

 

 Most organizations use some or other form of an organizational incident management  

data store (help desk system or trouble ticketing system) to manage the changes to their 

Information Technology (IT) environment, including the database environments (Hass, 2003). 

Changes to any production IT environment component, e.g., operating system, hardware, and 

database, referred to as change management process, are facilitated by these systems (Conradi 

and Westfechtel, 1998).  Furthermore, the increase of regulatory compliance needs (, e.g., 

Sarbanes-Oxley) have also pushed for a wider adoption of change management processes and 

tools for achieving better traceability(Chen, Kurtz, and Lee, 2009).   

 

 Typically, the organizational incident management data stores have vast amount of 

information about the changes to the organizational IT environment in unstructured form like 

notes or comments, e.g., “added more memory to a database server to increase system 

performance” or “changed kernel parameters for the operating system to fix swapping 

issue”. Before a change is executed in production environments, they go through some form 

of formal or informal approval process.  The approver for these change requests is typically 

the business owner or the stakeholder responsible for the target system. Change requests 

typically include information about the change purpose, date of their execution, the change 
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work plan, perceived impact and a plan for reversing the changes if they result in any issues.  

This process is depicted in Figure 8 below. 

 

   

 

 

Figure 8.  High Level Change Management Process  
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To highlight the contributions of this research, Figure 9 below shows the DECIPHER 

framework along with the database environment stack. This figure depicts the extension of the 

tuning knowledge reference model to include the environment change impact knowledge that 

is proactively extracted from the change information stored within organizational incident 

management data stores. 

 

 

Figure 9.  Overview of DECIPHER 

 

At the core of DECIPHER are two major modules – Impact Prediction Module (IPM) 

and Impact Extent Identification Module (IEIM).  A high level DECIPHER architecture is 

shown in Figure 10 below.  
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Figure 10. High Level DECIPHER Architecture 

 

Let us look at each of these modules in detail. 

 

Impact Prediction Module (IPM)   

 

The core function of IPM is predicting the potential impact for environmental changes 

that have not yet been implemented in real-time.  More than 85% of data within enterprises is 

stored in unstructured formats like web pages, emails, spreadsheets, digital images and videos 

(Guduru, 2006). Organizational incident management data stores such as help-desk or a 

trouble ticketing systems are such types of unstructured or textual data stores that store rich 

information on changes that organizations undergo. Unfortunately, mining of such types of 

stores efficiently and accurately has always been a challenge.  The process of extraction of 

previously unknown and potential useful knowledge from large unstructured textual 

collection is typically referred to as Text Mining (Dumais, 1998; Landau et al., 1998). Text-
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mining differs from traditional data mining in two major ways.  Two such main differentiators 

are (Guduru, 2006; Landau et al., 1998) : 

 

1) Special linguistic pre-processing is required to extract key terms from the textual 

collection. Furthermore, text mining process are also required to handle word 

ambiguities such as spelling mistakes, pronouns, synonyms, acronyms etc. 

 

2) Several of the existing data mining algorithms do not work on textual or 

unstructured data that typically high dimensionality.  

 

Impact Prediction Module (IPM) design at a high level involves two main steps – Data 

Extraction and Term-Extraction.  Data Extraction step involves use of open source Extraction, 

Transformation and Load (ETL) tools that extract unstructured change data from various data 

sources without imposing rigid data format restrictions. Furthermore, these tools offer out-of-

the-box data quality and profiling features that makes it easy to implement DECIPHER under 

various organizational settings. Specifically, this research uses TALEND tool that achieves 

this task using intuitive graphical interface (Majchrzak, Jansen, and Kuchen, 2011). The 

textual change information from historical organizational incident management data stores for 

all environment support workflows data stores, e.g., hardware, network, operating system etc. 

so that change information from all the layers of the environment is taken into account for 

IPM. This collection of change information is referred in this research as Change Information 

Corpus.  

 

Most incident management systems have a specific field that is used by the change 

executor to enter perceived impact. Usually, it has values like “Low”, “Medium”, and “High”. 

IPM considers this impact field is dependent or target attribute and all other fields as 

Independent or predictor variables.  Once the data is extracted, IPM’s term-extraction process 

performs the linguistic pre-processing to extract key terms. This process involves tasks such 

as removing stop-words, stemming and term-weighting. The terms from this process are fed 

to the predictive text mining algorithms to create an impact prediction model. This predictive 
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model can then be used to score new changes. This processing is explained in detail in the 

IPM implementation section in the next chapter. 

 

Another key design requirement for IPM is scoring performance, i.e., how fast IPM 

can predict the potential impact of new environmental changes. Modern organizations 

undergo a very large amount of IT environmental changes (Forrester, 2007).  Furthermore, 

since text mining process is a computationally expensive and a time-consuming approach, it 

needs to produce accurate results in short period of time in order to be practically feasible 

under environments with very high numbers of changes. From a design perspective, this 

implies that the IPM algorithms and the method of processing large amounts of textual data 

needs to be scalable as well as efficient. This design requirement is met by using in-database 

text mining architecture.  In-database mining avoids the traditional data or text mining step of 

moving of data between the source system and compute environment. Furthermore, using the 

massively parallel architectures of database engine, and its advanced memory management 

techniques, DECIPHER’s text-mining algorithms can be processed efficiently and closer to 

the data (Inchiosa, 2011; Oracle, 2011a). Figure 11 below shows the high-level IPM process 

flow. 
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Figure 11. High-Level IPM Process Flow 

 

 

 

Impact Extent Identification Module (IEIM) 

 

The core function of IEIM is that of identifying the potential extent of impact of 

change factors that are not yet implemented. In order to achieve this, relevant change features 

need to be extracted from change terms. IEIM uses feature extraction algorithm on the change 

terms from the IPM processing to create feature sets consisting of semantically related 

features (Solka, 2008). This is described in detail in the IEIM implementation section in the 

next chapter. These feature sets are saved in a repository.  

 

In order to identify the potential extent of impact of changes factors, the 

unimplemented change tickets first undergo data and term extraction process as explained 

above. These new change terms are then scored for impact prediction by IPM. The change 
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factors with high and medium predicted impact are matched for similarity against the factors 

from the saved feature sets. The feature set that has change factors with the high values of 

similarity match with new change factors represent the feature set with other potential change 

factors that have dependencies with the unimplemented change factors. In other words, this 

feature set has change factors that represent the potential extent of the impact of 

unimplemented change factors. For example, a new or unimplemented ticket that has change 

factor for a software application called ERP_HR would be match with historical change 

factors stored in IED. The feature set that has highest match with this factor will be returned 

along with its semantically related change factors like applications such as time_management 

or performance_management that would be dependent on ERP_HR. This knowledge of the 

potential impact and the dependent factors represent the Environmental Change Impact 

Knowledge (ECIK). Similar to IPM, scoring performance of IEIM is also important, i.e., how 

fast IEIM can identify the potential dependent change factors based on the new 

unimplemented environmental changes.  From a design perspective, this implies that the IEIM 

algorithms and the method of processing large amounts of textual data need to be scalable as 

well as efficient.  This design requirement is met by using in-database feature extraction and 

matching architecture.  In-database feature extraction avoids the step of moving of data 

between the source system and compute environment. Furthermore, using the massively 

parallel architectures of database engine, and its advanced memory management techniques, 

DECIPHER’s feature extraction and matching algorithms can be processed efficiently and 

closer to the data (Inchiosa, 2011; Oracle, 2011a). Figure 12 below shows the high-level IEIM 

process flow. 
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Figure 12. High-Level IEIM Process Flow 

 

In order to summarize, the core design of DECIPHER framework is influenced by functional 

requirements listed in Table 4 below. 
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Table 4. Overview of DECIPHER Functional Design Requirements 

 

Limitations with 

Existing Solutions 

Solution Objectives Theory Features/ 

Functionality 

 

1) Existing 

approaches have 

no capability of 

knowing the 

environmental 

changes  to the 

organizational 

database 

environment 

stack 

 

2) Existing 

approaches 

consider 

database layer as 

the only  source 

for changes 

within the entire 

organizational 

database 

environment 

stack 

 

3) Existing  

approaches do 

 

1) The proposed 

solution needs to 

have the 

capability of 

knowing 

environmental 

changes to the 

organizational 

database 

environment 

stack 

 

2) The proposed 

solution needs to 

consider all layers 

(, e.g., hardware, 

network, 

operating system 

etc.) as source for 

changes within 

organizational 

database 

environmental 

stack  

 

 

1) The tuner’s 

knowledge 

base is the 

central 

component 

and should 

provide a 

common and 

shared 

understanding 

of the whole 

environment 

Kephart and 

Chess (2003) 

and Wiese 

and 

Rabinovitch 

(2009) 

 

2) The tuner 

knowledge 

base should 

also provide a 

common and 

shared 

 

1) IPM’s data  

extraction step 

extracts 

environment 

change 

information 

stored within 

the 

organizational 

incident 

management 

data stores 

 

2) IPM’s data 

extraction step 

extracts change 

information 

from all 

organizational 

environment 

work flows 

stores (, e.g., 

hardware, 

network, 

operating 
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not have  

capability of  

knowing the 

impact of an 

environmental 

change  

 

4) Existing  

approaches do 

not have  

capability of  

knowing the 

extent of the 

impact of an 

environmental 

change  

 

 

3) The proposed 

solution needs to 

have the 

capability of 

knowing the 

potential impact 

of an 

environmental 

change  

 

4) The proposed 

solution needs to 

have the 

capability to 

identify the 

potential extent of 

an environmental 

change impact  

understanding 

of problem 

space (, e.g., 

organization-

level) Kephart 

and Chess 

(2003) and 

Wiese and 

Rabinovitch 

(2009) 

 

3) The analyze 

step of M-A-

P-E is 

responsible 

for predicting 

the impact of 

changes to the 

environment 

Kephart and 

Chess (2003) 

and Miller 

(2005) 

 

4) The analyze 

step of  M-A-

P-E is 

responsible 

for predicting 

the 

dependencies 

system etc.) 

stored within 

the 

organizational 

incident 

management 

data stores. 

 

3) IPM predicts 

the potential 

impact of 

unimplemented 

environmental 

changes based 

on the 

historical 

change 

information 

stored within 

the incident 

management 

data stores. 

 

4) IEIM identifies 

the potential 

extent or the 

dependencies 

for  

unimplemented 

changes  
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of the impact 

of changes to 

the 

environment 

Kephart and 

Chess (2003) 

and Miller 

(2005) 

 

A high Level process flow for DECIPHER is shown in Figure 13. 

 

Figure 13. High Level DECIPHER Process Flow 
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As seen from the above DECIPHER process flow diagram, there are two streams of 

processing. On the left hand side, we have the IPM model build and IED build steps. This 

process stream is responsible extracting the change information from the historical change 

information corpus based on a specific change time duration and building an IPM impact 

prediction model after the change information goes through the term extraction process. These 

terms then go through the feature extraction process. The features along with their feature sets 

get stored in an Impact Extent Database (IED).  This database also stores features that are 

specific to the database queue. 

 

The right hand side processing stream in Figure 13 shows the scoring and matching 

features of DECIPHER. In this stream, the new unimplemented change requests undergo the 

same term extraction processing before scoring. During scoring stage, the IPM model built as 

part of left hand side processing stream is used to score the new terms.  Once these are scored, 

a decision is made based on the predicted level of impact. For the change factors or terms that 

have the predicted impact of “Low” are ignored because they represent a localized impact. If 

the IPM model prediction is “Medium” or “High” then additional processing is done. 

 

The change factors or terms that have “Medium” or “High” predicted impact level 

undergo feature extraction process.  The extracted features are probabilistically matched with 

factors stored within IED to determine which feature sets have the maximum match. The 

feature set that has the maximum match with the new features are returned by the matching 

process along with their features ranked in order of their coefficients.  This feature set 

contains the factors that are dependent on the new implemented change factors. From this 

feature set, the features that belong to the database queue are returned. These represent the 

database dependent change factors.  
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Change Pattern Reoccurrence 

 

This research proposes a new change pattern recurrence metric to identify the contexts 

in which change impact prediction and matching algorithms will be useful and to help identify 

the best subset of data to use for change impact prediction model building, matching and 

scoring. 

 

As shown in Figure 13, there are two streams of processing that represent two 

different data sets.  If the left hand side processing represents the historical data set Cj and the 

right had side processing represents the new data set Ci then the pattern reoccurrence can be 

calculated as: 

 

In the above metric, n is the number of NMF feature sets and m is the number of 

unique change factors from Cj. The similarity calculation is part of the similarity matching 

processing shown in Figure 13.  This pattern reoccurrence values are stored in IED. The 

metric can be used for two things: 

1) Understanding the extent of reoccurrence of environmental changes over period of 

time 

2) Selection of the optimal change time duration as represented by the “Select Change 

Time Duration” step in the Figure 13. Selecting the optimal change time duration will 

help in reducing the data set sizes thereby expediting the data processing, model 

building, and model scoring and matching processes. This is very crucial in IT 

environments that undergo large amount of IT environmental changes. 
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CHAPTER 5 

IMPLEMENTATION AND VALIDATION 

This chapter presents a detailed discussion of the implementation and evaluation of 

DECIPHER using a real-world incident management system in a medium sized organization. 

This chapter is divided into two main sections – DECIPHER implementation and DECIPHER 

validation.  The implementation section begins with the background information on the 

incident management system used by a medium sized organization and the text mining tool to 

implement DECIPHER. This chapter then continues with an in-depth discussion on the 

algorithms, their parameters and steps used by the DECIPHER modules. The validation 

section of this chapter begins with a discussion on the data sets for DECIPHER modules and 

the questions that were used for validating the accuracy of DECIPHER’s prediction.  

DECIPHER Implementation 

 In this section we will review the implementation details for DECIPHER. The 

implementation of DECIPHER uses a real-world incident management system called 

“Request Tracker” used by a medium sized organization and Oracle data miner as the text-

mining mining tool. This organization has close to 5000 employees worldwide and on average 

experiences 200-300 IT environmental changes per month.  

 

Request Tracker 

 

Request Tracker (RT) is an open source web-based incident and a workflow 

management system that has been widely used by several organizations ranging from fortune 

500 companies to government agencies under various implementations like bug-tracking, 

help-desk system, change management etc. (Practical, 2011).  Its simplicity, extensibility and 
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ease of customization with general public license (GPL) make it an ideal and powerful issue 

tracking tool for many organizations.   

 

A single unit of work is captured as a “Ticket” within Request tracker.  Change 

Management system’s typically have the following fields that capture the change information:  

 

1) Ticket # 

 

2) Queue 

 

3) Ticket Subject (Text)  

 

4) Change Purpose (Text)  

 

5) Creator of the ticket 

 

6) Owner of the ticket.  

 

7) Approver of the ticket.  

 

8) Last Update User 

 

9) Start Date 

 

10)  End Date 

 

11)  Classification (Regulatory Compliance) 

 

12)  Line of  Business  

 

13) Work-plan for the change (Text).  
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14) Impact (High or Medium or Low).  

 

15)  Impact Description (Text) 

 

16) Back-out plan (Text).  

 

17) General Comments/Notes (Text) 

 

A screenshot of RT’s change request user interface for the organization under study is 

shown in Appendix B. Impact field has the typical change management impact values , i.e., 

“Low”, “Medium” and “High”. From the DECIPHER model building perspective, the impact 

field is dependent or target attribute.  Every ticket has a unique identifier that is represented 

by the Ticket # field. As part of the implementation, this field is referred as case_id. All other 

variables are Independent or predictor variables.  Request tracker also has the ability to 

connect to any leading database for storing the change information. In this implementation, 

the relational store that has the RT information is Oracle RDBMS. Given that the change 

information data was already available within an Oracle database, using Oracle data miner 

was the natural and convenient choice. 

 

Oracle Data Miner 

 

  Oracle Data Miner is a free User Interface (UI) extension to Oracle’s free Integrated 

Development Environment (IDE) – SQL Developer.  The screen shots of Data Miner/SQL 

Developer are shown in Appendix D section. The strength of the tool is its ability in providing 

knowledge discovery using native SQL functions right inside the database. Furthermore, 

Oracle data miner provides powerful algorithms for both structured and unstructured data. 

DECIPHER’s text mining algorithms and its pre-processing steps are implemented using 

Oracle Data Miner tool. The reasons for choosing this tool are two-fold: 
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1) The Request Tracker’s database used by the organization in this study is an Oracle 

database which makes it convenient and efficient for the implementation because the 

data does not have to be moved from the source to the compute environment. 

 

2) Oracle data miner provides a powerful suite of battle-tested text-mining algorithms 

that support in-database knowledge discovery and out-of-the-box scalability (Oracle, 

2011a). One of the design requirements for IPM and IEIM is the need for high 

performance model building and scoring. Oracle data miner’s in-database text mining 

architecture helps in that regard.  Oracle’s in-database mining avoids the traditional 

data or text mining step of moving of data between the source system and compute 

environment. Furthermore, using the massively parallel architectures of Oracle’s 

database engine, and its advanced memory management techniques, DECIPHER’s 

text-mining algorithms can be processed efficiently and closer to the data (Inchiosa, 

2011; Oracle, 2011a). Furthermore, Oracle’s grid database architectures provide the 

flexibility for organizations to scale out based on their business needs (Hamm and 

Burleson, 2006; Serpa, Roncero, Costa, and Ebecken, 2008).  

 

Oracle data miner has a workflow-driven UI and in a workflow, each element is 

represented by a graphical icon called “node”. Each node has a specific function along 

with its properties. These nodes when linked together form a modeling process to solve a 

specific data mining problem. Nodes and links can be simply dragged and dropped from 

the component palette. The component palette is shown in the Appendix D. Next, let us 

review the implementation details of DECIPHER modules – Impact Prediction Module 

(IPM) and Impact Extent Identification Module (IEIM).    

 

Impact Prediction Module (IPM):  

 

At a high level, the IPM implementation involves three major tasks – Data Extraction 

Term Extraction, and Model Building/Scoring.  This is shown in Figure 10.  Data Extraction 

step involves extraction of the textual change information from historical organizational 

incident management data stores for all environment support workflows data stores that 



59 

represent the layers with the database environment stack so that change information from all 

the layers of the environment are taken into account. Request Tracker has an impact field with 

values - “Low”, “Medium”, and “High”. IPM considers this impact field as dependent or 

target attribute and all other fields as Independent or predictor variables. Organizational 

change information corpus may consist of several fields.  Having too much information can 

negatively affect IPM’s performance and accuracy. Some of the fields within the change 

information corpus may not provide meaningful information to the model building process 

and can act as a noise factor increasing the size of the model and the amount of resources 

needed to build and score the model. A feature selection process addresses this issue. 

 

For the IPM implementation, attribute importance function is used for feature 

selection. Attribute importance function ranks attributes in the change information corpus 

according to their significance in predicting the target which is the impact field (Campos, 

Stengard, and Milenova, 2005). Oracle data miner uses Minimum Description Length (MDL) 

to implement the attribute importance function.  MDL assumes that a simple as well as a 

compact representation of data is best and likely explanation of data (Rissanen, 2004). The 

attribute importance settings and output for IPM for some of the Request Tracker fields is 

shown in Table 5.   

 

Table 5. IPM Attribute Importance Results for 2008-2011 

 

# Rank Ticket Field Importance 

1 1 Creator  0.2250 

 2 Owner  0.1843 

 3 Last Update User          0.1741 

 4 Workplan          0.0716 

 5 Change Purpose          0.0683 

 6  Start Date          0.0681 

 7  End Date          0.0634 
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 8                   Backout Plan                                        0.0533 

 9 Ticket Subject            0.0519 

 10 Approver           0.0393 

 11 Impact Description          0.0310 

 12 General Comments          0.0281 

 13 Ticket #          0.0227 

 14 Queue                                           0.0087 

 15 Classification                   0 

 16 Line of Business                   0 

 

The output of attribute importance has the following two main indicators (Campos et 

al., 2005): 

1) Measure of explanatory power: This indicates how useful the attribute is to 

determining the value of the explained column. This is shown by the “Importance” 

column in Table 4. Values range from 0 to 1. Higher values indicate greater 

explanatory power. 

 

2) Measure of relative importance: This indicates the attributes relative importance 

compared to other attributes. 

 

For the IPM implementation, attributes with importance greater than zero are only 

selected. Negative values show presence of noise and hence fields that have importance of 

zero or less indicate non-significant contribution need to be removed for IPM’s term 

extraction process. Based on the results in Table 5, classification and line of business fields 

are removed from further processing since they have insignificant influence to the target 

attribute. Also, as seen from the Table 5, the top three important attributes based on the rank 

and the importance column are the creator, owner and the last update user fields in the change 

ticket.  The creator field is the creator of the change ticket and the owner is the person who 

owns this task and the last update user who lasts updates the ticket before closing it. Typically 

these three are the same person but in some cases like when the actual impact of the change 
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was found to be different from the perceived impact, the ticket might be updated by a 

different person who is responsible of executing that particular change.  

 

Having these fields at the top three positions, implies that knowing the person who 

creates, executes and updates the ticket last, helps determine the level of the impact. 

Typically, the creator of a change ticket is also the person who implements the plan for 

executing the change, including the understanding of the perceived impact and the steps 

needed to roll back the change if needed. Since the creator of the ticket is at the top position, it 

shows that the person who creates the ticket is comparatively most helpful in determining the 

impact level. For example, a more experienced DBA will typically be handling complex 

changes while a less experienced DBA might work on systems that are less critical to the 

organization. The workplan field describes the step by step plan for the change. This implies 

that knowing the terms that describe the plan for the change helps in knowing what the impact 

might be. For example, this workplan field might lay out how one of the critical applications, 

say, ERP_HR is being taken down for an upgrade. Similarly, the terms used in change 

purpose that describe the motive behind the change helps understand the impact level.  

 

In this implementation of IPM, each Request Tracker ticket’s unstructured fields are 

transformed into a vector space model (term vectors or environmental change factor vectors) 

using the term extraction process. The term extraction process using Oracle data miner 

leverages stop lists, stemming and term weighting. Stop lists contain words, called as stop-

words, are the common words that are found in change tickets within Request tracker, e.g., 

“and”, “the”, “or”.  Using Oracle text technology, Oracle data miner creates a stop list that 

can be easily enhanced to make the IPM’s term extraction process  context-aware under 

various organizational settings (Grivolla, 2005).  Figure 14 shows the screen shot of Oracle 

Data Miner’s stop list editor. 

 



62 

 

 

Figure 14. IPM Stop List Editor 

 

Oracle data miner also uses a term-weighting technique to count how many times a 

term is used within a ticket. Specifically, Oracle data miner uses term frequency–inverse 

document frequency (TF-IDF) measure. This measure shows how important a term is to a 

change ticket with respect to the change information corpus.  

 

Figure 15, shows a screen shot of TDIF output for one of the fields called “Change 

Purpose” within the Request tracker. 
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Figure 15. IPM Term weighting Output Example 

 

Once IPM’s term extraction processing is done, the unstructured fields within Request 

tracker are stored within the database. This transformed text is now ready to be used as any 

other attribute in the building, testing, and scoring of models. IPM’s function form can be 

represented as  

 

F(x₁,x₂… xn) = IP 

 

where x₁,x₂,… xn  are the terms that are fed into the IPM after the term extraction 

process and IP is the prediction impact with values “Low”, “Medium” and “High”. 

 

IPM’s input context can be represented as:  

 

 

IPM Input Context = (T, TN) 

 

where T is the finite set of historical change tickets (, e.g., last 4 years) within an 

organizational change information corpus that have already been executed and is represented 

as: 

 

T= {t₁,t₂,…, tn}. 

 

TN is finite set of new change tickets that are captured in real-time but not yet 

implemented and is represented as: 
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TN= {tn₁, tn₂,…, tnn}. 

  

The change information within the tickets is stored in unstructured format. Every new 

ticket has a perceived Impact value (Low, Medium, and High) that is entered by the change 

executor. Once the ticket is executed and if its impact is found to be different than what was 

perceived, the change requester updates the ticket with the actual impact value. 

 

IPM’s model building and scoring tasks is implemented using Oracle data miner’s 

support vector machine (SVM) classification algorithm.  These are supervised or directed 

learning algorithms that work with both structured and unstructured fields of Request tracker. 

These set of algorithms assign the items in the corpus to the target classes.  In our 

implementation the change impact is the target attribute for the classification algorithm with 

classes – Low, Medium and High.  All other fields are independent attributes. Since we have 

three possible values for our target attribute, we will use multi-class classification algorithms.  

 

In IPM’s model building and scoring, Support Vector Machines (SVM) classifier is 

used. In the model build, the classifier finds the relationships between the values of the 

independent attributes and the values of the target attribute (Oracle, 2011a). SVM is a 

powerful algorithm based on statistical learning theory (Milenova, Yarmus, and Campos, 

2005).  SVM also has strong regularization properties, especially on complex problems like 

posed by unstructured data types (Guduru, 2006; Oracle, 2011a).  Regularization means the 

generalization of the classification model to the new change data.  

 

SVM models have a similar functional form to radial basis functions and neural 

networks but compared to these approaches, SVM models have strong theoretical approach to 

regularization which is the key to IPM’s effectiveness to predict impact of new environmental 

changes (Dumais, 1998; Milenova et al., 2005). Furthermore, one of the strengths of SVM 

that is important from the IPM perspective is the number of attributes that it can handle 

without negatively affecting the performance. Organizational change information corpus can 

have large number of fields based on their environmental complexity.  SVM performs well on 

data sets involving many attributes despite the fact that there might be few cases available to 
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train the model (Milenova et al., 2005; Oracle, 2011a). The SVM scalability is dependent on 

IPM’s compute environment.   

 

For creating a predictive model, the unstructured text data in T is extracted into an 

attribute vector and is represented as: 

 

X= {x₁,x₂… xn} 

 

where X belongs to an n-dimensional space R
n 

where x₁,x₂,… xn are components of vector X. 

Output of SVM is given by:  

 

 

 

where fi   is the distance of each point to the decision hyper plane defined by setting fi = 0; 

b is the intercept; αj is the Lagrangian multiplier for the j
th

 training data record xj;  and yj is the 

corresponding  target value (±1) (Milenova et al., 2005). K is a kernel function that can be 

linear or non-linear. In case of non-linear kernel, then the above equation defines a linear 

equation on a new set of attributes that can be as many as the number of rows in the training 

data, making SVM very powerful (Milenova et al., 2005). The input attributes with non-zero 

αj are called support vectors. In case of linear kernel, the above equation is simplified wherein 

the decision hyper plane is defined in terms of input attribute coefficients alone.   

 

 The process of learning in SVM is basically estimating the values of αj which is 

achieved by solving a quadratic optimization problem. For real-time scoring performance, 

SVM’s active learning helps by optimizing the selection of a subset of the support vectors 

(using target stratified sampling) that maintain accuracy while enhancing the speed of the 

model. Furthermore, it increases performance and reduces the size of the kernel thereby 

improving its scalability (Milenova et al., 2005).  Also, active learning forces the SVM 

algorithm to restrict learning to the most  informative examples and not to attempt to use the 

entire body of data (Oracle, 2011a).  Oracle data miner’s SVM algorithm settings screenshot 

is shown in Figure 16. 
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Figure 16. Oracle Data Miner SVM Algorithm Settings  

The convergence tolerance value is the maximum size of a convergence criterion 

violation such that the model is considered to have converged (Guduru, 2006). It is a user-

defined function that specifies for a SVM model to be considered as converged.  Lower 

tolerance values results in a more accurate classification model at the expense of longer 

processing time (Milenova et al., 2005).  

 

Complexity factor setting for SVM decides the trade-off between minimizing model 

error on training data and minimizing the complexity of the model (Dumais, 1998; Guduru, 

2006).  If the SVM model is very complex than it fits the noise present in the training data and 

on the other hand a SVM model that is very simple under-fits the training data (Guduru, 2006; 

Milenova et al., 2005). A large value of the complexity factor leads to high penalty on errors 

and a small value leads to low penalty on errors that can lead to under-fit.  For IPM 
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implementation, no value is specified, which implies that the value of complexity factor is 

automatically determined by the system. This is the default and the recommended approach 

for Oracle data miner (Oracle, 2011a). The same approach is adopted for kernel function for 

SVM.  

 

 

 

 

Figure 17. Oracle Data Miner SVM Performance Settings  

Figure 17 shows the performance setting screen of Oracle Data Miner’s SVM 

algorithm.  Basically, there are three settings – Balanced, Natural and Custom. Balanced is the 

default setting that attempts to achieve best overall accuracy across all values of impact 

attribute.  Under this setting, the model build process is biased using the weight values that 



68 

provide extra weight to impact attribute values that occur less frequently.  Natural 

performance setting builds the model without any biasing and under this setting the model 

uses it natural view of the data to build an accurate model.  The downside of this setting is 

that impact attribute values that are rare will not be predicted as frequently compared to the 

model that was built with balanced setting. Custom performance setting for SVM model 

allows the user to enter a set of weights for each impact attribute values. 

 

IPM’s Output Context is represented as: 

 

IPM Output Context = (SF, IP) 

  

where  SF is finite set of change terms scored in real-time using the built SVM model and is 

represented as: 

 

SF = {sf₁,sf₂,…,sfn}.  

 

 IP is the predicted impact of the terms and is represented as: 

 

IP = {low, medium, high}. 

 

 

 

 

Impact Extent Identification Module Implementation 

 

IEIM implementation, as shown in Figure 12, involves two major steps - Feature 

Extraction and Similarity Matching.  Feature Extraction step implements Non-negative Matrix 

Factorization (NMF) algorithm to extract features from the term vector that was created as 

part of the data transformation stage of IPM.  NMF is found to very effective in text mining 

domains compared to other feature extraction algorithms (Guduru, 2006; D. Lee and Seung, 

1999).  
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NMF algorithm decomposes a text data matrix Amn where columns are tickets and 

rows are terms , into the product of two lower rank matrices Wmk and Hkn represented by the 

below equation (Guduru, 2006). To prevent cancellation, NMF expects Amn and Hkn have non-

negative entries. NMF algorithm employs an iterative procedure to modify the initial values 

of Wmk and Hkn so that the product approaches Amn  (Guduru, 2006; D. Lee and Seung, 1999). 

The procedure terminates based on error convergence value or when the specified number of 

iterations is reached. Each user-defined feature after NMF decomposition is a linear 

combination of the original attribute set and has non-negative coefficients.  

 

 

The matrix decomposition can be represented as:  

 

Amn = Wmk x Hkn. 

where 

   Amn   : (mxn) matrix:  m nonnegative values of n text tickets, 

 Wmk   : (mxk) matrix:  k columns of W feature vectors, 

Hkn     :  (kxn) matrix:  each column of H is called weight column.  

    

Matrix A represent the change information corpus such that Aij is the number of times 

the i
th

 word  appears in the j
th

  ticket (Guduru, 2006). Oracle data miner’s NMF 

implementation is based on the multiplicative update algorithm by Lee and Seung (1999) 

wherein the algorithm iteratively updates the factorization based on an objective function 

(Guduru, 2006; Wild, Curry, and Dougherty, 2003). The general objective function is to 

minimize the Euclidean distance between each column of matrix  Amn and its approximation 

Amn ~ Wmk x Hkn (Guduru, 2006). The objective function is shown as below (Guduru, 2006; 

Wild et al., 2003): 
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The following multiplicative update rules are used for monotonic convergence 

(Guduru, 2006; D. Lee and Seung, 1999):  

 

 

 

The number of feature vectors k is user-defined and decided the accuracy of the 

approximation (Guduru, 2006; D. Lee and Seung, 1999; Oracle, 2011a). The feature sets 

along with the features (change factors) and their NMF coefficients are saved in the Impact 

Extent Database (IED).  

 

Input Context of IEIM is represented as   

 

Input Context = (X, CPI) 

 

where CPI is the classified impact for historical change factors by IPM and is represented as: 

 

CPI = {medium, high}. 

  

CPI impacts with “Low” values are ignored for IEIM analysis because they represent 

localized change impact. X belongs to an n-dimensional space R
n 

where x₁,x₂,… xn are 

components of vector X from IPM. Output context at this stage of IEIM is represented as: 

   

 

Output Context = (CF, FEID, CO). 
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where CF is finite set of change factors that are extracted using NMF; CF   X    and is 

represented as:  

 

CF = {cf₁,cf₂,…,cfn}. 

 

FEID is the NMF feature set ID that the CF is a member of and CO are the NMF coefficients 

for CF represented as: 

 

CO = {c0₁,c0₂,…,c0n}. 

 

 

Figure 18 shows the Oracle data miner’s NMF algorithm settings 

 

 

 

Figure 18. Oracle Data Miner NMF Algorithm Settings 

 

The number of features setting shows the number of feature vectors or k for the 

IEIM’s NMF implementation.  As part of the IEIM implementation, default value for this is 
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selected. This implies not specifying any value for this setting as shown in the Figure above. 

In this case, Oracle data NMF algorithm automatically determines the number of features 

based on computation complexity and the distribution of change factors in each feature set 

(Oracle, 2011a). Convergence tolerance setting indicates the minimum value. Number of 

iterations specifies the maximum number of iterations for the NMF algorithm. Random seed 

is the random seed for the sample. The default value of -1 is used for the IEIM 

implementation. 

 

The similarity matching step of IEIM probabilistically matches the unimplemented 

changes with the change factors stored in IED using the Jaro-Winkler distance similarity 

algorithm (Winkler and Nov, 2006) . The Jaro-Winkler is measure of similarity between 

strings. In case of IEIM, the similarity is measured between the change factors stored in a 

repository referred to as Impact Extent Database (IED) with the change factors extracted from 

the unimplemented change tickets. 

 

Similarity functions such as Jaro-Winkler map a pair of strings s and t to a real number 

r, where a larger value of r indicates greater similarity. Jaro-Winkler metric is given by 

(Cohen, Ravikumar, and Fienberg, 2003; Winkler and Nov, 2006): 

 

 

where,  

 

 
 

where,     

 are the characters in string s that are common with t and  

  are the characters in string t that are common with s 

 = length of the longest common prefix of s and t and   
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= max (P, 4) 

 

IEIM uses Oracle’s implementation of Jaro-Winkler to achieve in-database matching. 

This ensures that matching can leverage database system’s massive parallel processing and 

efficient memory management capabilities. Oracle Jaro-Winkler is a function call using 

Oracle’s native PL/SQL programming language (Oracle, 2011b). The syntax of this function 

is shown below: 

 

 

UTL_MATCH.JARO_WINKLER_SIMILARITY ( 

s1 IN VARCHAR2, 

s2 IN VARCHAR2) 

RETURN PLS_INTEGER; 

 

 

S1 and S2 are the strings that serve as the input to this function. An example use of 

this function is as following (Oracle, 2011b). In this example, the function compares two 

strings “shackleford” and “shackelford” and returns a score 0 (no match) and 100 (perfect 

match).  

 

 

SELECT UTL_MATCH.JARO_WINKLER_SIMILARITY('shackleford', 'shackelford') 

FROM DUAL; 

-------------- 

returns 98 

 

IEIM implementation of this function call is within a procedural context.  A PL/SQL 

block loops through all the change factors that are stored in IED and compare the factors with 

change factors from the unimplemented change ticket to find a similarity match. Score of 

more than 90% is considered for IEIM.  
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The features set whose change factors have maximum number of matches with the 

new features are returned along with the change features ranked by their coefficients. The 

change factors within this feature set, excluding the ones that matched, identify the factors 

that are dependent on the new changes.  

 

 

Input Context at this step is represented as: 

 

Input Context = (CF, FEID, CO) and IEIM Output context = (DCF, FEID, CO) 

 

where DCF is represented as: 

 

DCF = {dcf₁,dcf₂,…,dcfn}. 

        

DCF is finite set of database dependent change factors that are extracted using NMF 

for the database queue that has maximum matched change factors with the new change factors 

such that DCF  CF .  

 

Using in-database feature extraction and similarity matching algorithms, IEIM 

scalability is achieved. Also, similar to IPM, the optimal change time duration will help in the 

performance of feature extraction algorithm as well as similarity matching algorithms. 
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DECIPHER Validation 

 

 Impact Prediction Module (IPM) Validation: The core function of IPM is 

predicting the potential impact for environmental changes that have not yet been implemented 

in real-time. Before IPM can score new environmental changes, the accuracy of IPM needs to 

be validated for accuracy.  This section validates the IPM accuracy by answering the 

following two questions:  

 

1) How accurately does IPM predict the impact of environmental changes?  

 

2) How does SVM’s prediction accuracy compare with another classifier for 

impact prediction?  

 

 In order to validate these two points for IPM, cases or tickets from Request Tracker 

(RT) filed between 2008 -2011 were used to train and test the IPM model.  60% of the data 

was used for training the model and 40% for testing the model in a random fashion(Bramer, 

2007).  Text mining is a computationally expensive process. The following server and 

software configuration was used for this testing: 

 

1) Sun SPARC V490 

 

2) 8 CPU cores 

 

3) Solaris 10 Operating system 

 

4) 32g RAM 

 

5) Oracle RDBMS 11.2.0.3 
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 The tickets were considered from the RT change information corpus, i.e., RT change 

management database across different organizational teams. This is achieved by extracting the 

tickets from all Request Tracker workflow queues (Practical, 2011). This enables us to use the 

changes from all layers, shown in Figure 1, for the analysis. Figure 19 show the Oracle data 

miner’s SVM model train/test setting as part of IPM Model building. As seen in this Figure, 

Target is the IMPACT column from Request Tracker and Case ID is Ticket # field from 

Request Tracker. 

 

 

 

 

Figure 19. Oracle Data Miner IPM Model Train/Test Settings 

 

  

 In order to validate SVM’s prediction accuracy, its results will be compared with 

Naïve Bayes classifier.  Oracle data miner makes it relatively easy to do this.  In order to 

compare multiple algorithms, during classification model build process, Oracle data miner 

provides a way to select various models. Figure 20 shows the IPM’s Classification build node. 
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If multiple models are selected then Oracle data miner, executes them during the build process 

which includes the model test/train process as well for those models. 

 

 

 

Figure 20. IPM Multiple Model Selection 

 

 Naïve Bayes is founded on the principle of conditional probabilities. This algorithm 

uses the Bayes’ Theorem which basically computes the probability by counting the frequency 

of values and the combinations of the values in the data (Bayes and Price, 1763; Oracle, 

2011a). Bayes Theorem evaluates the probability of an event occurrence given the probability 

of another even that has occurred in the past.  Bayes Theorem can be represented as following 

(Bayes and Price, 1763; Oracle, 2011a): 

 

Prob (B given A) =  Prob (A and B) / Prob (A) 

 

where, B is the dependent event and A represents the event that has occurred in the past. 

 

 Oracle Data Miner Naïve Bayes algorithm settings is shown in the Figure 21. There 

are two settings – Singleton Threshold and Pair wise Threshold. Singleton threshold setting 
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specifies the minimum percentage of singleton occurrences required for the inclusion of a 

predictor in the model. Pair wise Threshold specifies the minimum percentage of pair wise 

occurrences required for the inclusion of a predictor in the model. For IPM validation, both 

these settings are at default values of 0. 

 

 

 

 

Figure 21. Oracle Data Miner Naïve Bayes Algorithm Settings 
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 Impact Extent Identification Module (IEIM) Validation: The core function of 

IEIM is that of identifying the potential extent of impact of change factors that are not yet 

implemented.  The validation for IEIM involves validating the accuracy of the identification 

of potential extent of change factors.  This involves, answering the following two questions:  

 

1. Do patterns (change factors) reoccur in future years, and to what extent?  

 

2. What is the time interval across which pattern (change factor) reoccurrence 

is the maximum and how does this impact prediction accuracy? 

 

 For IEIM model validation, two data sets will be created across various time intervals. 

The pattern reoccurrence will be measured using the change pattern reoccurrence metric 

explained in chapter 4. The pseudo code of pattern reoccurrence metric is described in 

Appendix C.  This pattern reoccurrence metric will help us answer the above two questions.  

Also, this metric will help us in identifying the contexts in which change impact prediction 

and matching algorithms will be useful and to help identify the best subset of data to use for 

change impact prediction model building, scoring and matching. 

 

 Answering both these questions requires data sets that are across time intervals. 

Following data sets are used for IEIM validation: 

 

a) 2009 (Q1) with 2010 (Q1) 

 

b) 2009 (Q1 and Q2) with 2010 (Q1 and Q2) 

 

c)  2009 (full year) with 2010 (full year) 

 

d) 2008 and 2009 (full years) with 2010 (full year). 
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In order to validate the similarity matching accuracy, Jaro-Winkler’s matching will be 

compared to that of Levenshtein. Oracle databases’ native Levenshtein function call will be 

used for this (Levenshtein, 1966).  Levenshtein distance between two strings a and b is  

represented as (Levenshtein, 1966): 

 

 

Similar to Jaro-Winkler, Levenshtein matching also leverages the database system’s 

massive parallel processing and efficient memory management capabilities. Oracle 

Levenshtein is a function call using Oracle’s native PL/SQL programming language (Oracle, 

2011b). The syntax of this function is shown below: 

 

UTL_MATCH.EDIT_DISTANCE_SIMILARITY ( 

s1 IN VARCHAR2, 

s2 IN VARCHAR2) 

RETURN PLS_INTEGER; 

 

 

S1 and S2 are the strings that serve as the input to this function. An example use of 

this function is as following (Oracle, 2011b). In this example, the function compares two 

strings “shackleford” and “shackelford” and returns a score 0 (no match) and 100 (perfect 

match).  

 

SELECT UTL_MATCH.EDIT_DISTANCE_SIMILARITY('shackleford', 'shackelford') 

FROM DUAL; 

-------------- 

returns 82 
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CHAPTER 6 

RESULTS AND DISCUSSION 

 

This chapter presents the DECIPHER results that demonstrate its accuracy as well as 

metrics that identify conditions under which the system will perform effectively. This chapter 

starts with a discussion on DECIPHER’s IPM results based on the questions that were 

covered in the previous chapter. The chapter then continues with the IEIM results also based 

on the questions covered in the previous chapter. This chapter concludes with a discussion on 

the impact of IEIM results on the overall DECIPHER accuracy and on the performance of its 

model building, scoring and matching tasks.  

 

IPM Results 

 

The core function of IPM is predicting the potential impact for environmental changes 

that have not yet been implemented in real-time.  This section discusses the results of IPM 

with respect to the following two questions. The goal behind these questions is to validate the 

prediction accuracy of IPM:  

 

1) How accurately does the IPM predict the impact of environmental changes?  

 

2) How does SVM’s prediction accuracy compare with another classifier for 

impact prediction?  

 

These questions are answered using the Oracle data miner’s performance and accuracy 

metrics.  In order to answer these two questions for IPM, cases or tickets from Request 

Tracker (RT) filed between 2008 -2011 were used to train and test the IPM model.  This 

duration resulted in 11,118 unique tickets. 60% of the data was used for training the model 
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and 40% for testing the model (Bramer, 2007).  Based on attribute importance process 

(discussed in the implementation chapter) only independent attributes or change ticket fields 

with greater than zero explanatory power is selected. This ensures that only attributes that are 

useful in explaining the impact are selected. These independent attributes are: 

 

1) Ticket # 

2) Creator 

3) Owner 

4) Last Update User 

5) Workplan 

6) Change Purpose 

7)  Start Date 

8) End Date 

9) Backout Plan 

10) Impact Description                               

11)  Ticket Subject   

12)  Approver  

13)  General Comments 

14)  Queue 

  

 Let us look at the IPM’s prediction performance and accuracy metrics in comparison 

to Naïve Bayes algorithm. Following metrics are used to answer the above two questions for 

IPM. Additional screenshots from Oracle data miner’s IPM for some of these metrics are 

shown in the Appendix D. 

 

a) Predictive Confidence 

 

b) Confusion Matrix 

 

IPM Predictive Confidence: Predictive confidence provides an estimate of the 

overall goodness of the model.  This indicates how much better the predictions made by the 



83 

tested model are than predictions made by a naive model (Oracle, 2011a). The naive model 

always predicts the mean for numerical targets and the mode for categorical targets.  The 

following formula defines Predictive Confidence (Oracle, 2011a):   

 

Predictive Confidence = MAX ((1-((error of model)/(error of naive model))), 

0) 

 

If predictive confidence is 0, the model's predictions are no better than predictions made 

using the naive model. If predictive confidence is 1, the predictions are perfect.  IPM’s 

Support vector machine (SVM) model is ~ 50% better than naïve model and 13% better than 

naïve bayes (NB) model. This is shown in Figure 22 below.   

 

 

 

Figure 22. IPM’s Predictive Confidence (4 years of Change Data) 

 

 

The model build time for SVM and Naïve Bayes is shown in Table 6. 
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Table 6. IPM Predictive Confidence Metrics (4 years of Change Data) 

 

# Models Predictive 

Confidence % 

Model Build and Test Time 

1 Naïve Bayes 66.18 30 minutes and 10 seconds 

2 Support Vector Machines 80.75 18 minutes and 15 seconds 

 

 

IPM Performance Matrix (Confusion Matrix):  This measures the probability of the 

model to predict incorrect and correct values and also indicates the types of errors that the 

model is likely to make.  IPM’s SVM model has identified over 80% accurate predictions.  

The performance matrix is calculated by applying the model to a hold-out sample (the test set, 

created during the split step in a Classification activity) taken from the build data.  This is 

shown in Table 7 below.  The confusion matrix by impact level is shown in Appendix E. 

Table 7. IPM Confusion Matrix (4 years of Change Data) 

 

# Models Correct 

Predictions % 

Correct Prediction 

Count 

Total Count 

1 Naïve Bayes 86.67 3811 4397 

2 Support Vector 

Machines 

92.01 4046 4397 

 

 

While the above tests and metrics are geared towards validating the IPM prediction 

accuracy, the IPM results can also provide us with further insights regarding the change 

terms. Oracle data miner provides detailed information on the SVM coefficients for IPM. 

These coefficients show the statistical significance or importance for the IPM terms in 

reference to the impact category. This is similar to the attribute importance model that 
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provides the importance of attributes or change ticket fields in reference to impact category as 

seen in Table 5 in the previous chapter. The SVM coefficients provide insights into the 

relationship of IPM terms with respect to the impact categories. 

 

Table 8. Top 5 Dominant Key Terms with High Impact 

 

# Ticket Field Change Terms SVM Coefficients 

1 Workplan Roms5.5 0.68 

2 Workplan 

Workplan 

Change Purpose 

Change Purpose 

Tincup  

CV 

Trinidad            

Globalscape         

0.49 

0.42 

0.37 

0.31 

 

The table 8 shows the top 5 dominant change terms for the “High” impact category 

and their corresponding SVM coefficients sorted in descending order. The first factor 

“Roms5.5” refers to a software product for one of the mission critical applications for the 

organization under study. This implies that a change ticket involving this product has been 

found on several high impact tickets across time intervals and is likely to reoccur in future. In 

other words, changes to this application have a high and far-reaching impact to the 

organization and needs to have a thorough risk mitigation plan before any environmental 

component related to this software undergoes change in the future. Similarly, factors “CV” 

and “Globalscape” refer to client-facing applications that have similar impact across time 

intervals and have potential of high impact to the organization. Factors “Trinidad” and 

“Tincup” refer to server names that host shared and critical supply chain processes.   

 

In order to gain further insights into the characteristics of the dominant terms that 

predict a common target, decision trees algorithm can be used. Decision trees are similar to 

Naïve Bayes in the sense that they too are based on conditional probabilities but decision trees 

also provide rules. Decision tree rules are conditional statements that provide model 

transparency by explaining the inner workings of a model (Quinlan, 1986). 
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Figure 23. Decision Tree for Dominant IPM Key Terms 

 

Figure 23 shows the decision tree for the dominant terms. In other words, it shows the 

profile of the dominant terms. The decision tree was built using the dominant terms (SVM 

coefficients > 0.1) for high and medium impact category based on the SVM coefficients 

(Oracle, 2011a). This resulted in 77 terms. The inputs to the decision tree algorithm are these 

terms, their coefficients and the impact level that the terms belong to. The selected section of 

the Figure 23 shows a decision rule for Node 1 that explains the prediction for medium impact 

category and the terms that predict that target. The decision rule describes the terms that have 

been associated to medium impact tickets across time intervals. The terms listed in Node 1 in 

the above figure point to reporting applications changes for the organization. These terms are 
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coming from workplan, change purpose and backout plan ticket fields. This rule implies that 

if the new changes that involve the reporting applications would be classified with potential 

impact of category medium.  These insights help in understanding the classification behavior 

of the IPM and also understand the terms that influence the impact prediction. Now that we 

have a better understanding of the terms and its relationship with the impact levels, let us look 

at how we can understand the extent of the impact. 

 

IPM results can also help us better understand the attribute importance model findings 

presented in the Table 5 in Chapter 5.  Based on that table, we found that creator and owner 

fields were the top two attributes that have comparatively most effect on the target attribute. 

But does this imply that these attributes by themselves are enough to predict the impact? 

Table 9 below presents the findings of IPM model built using only creator and owner fields 

for the four years of change data. 

 

Table 9. IPM Confusion Matrix using Creator and Owner attributes only 

 

# Models Correct 

Predictions % 

Correct Prediction 

Count 

Total Count 

1 Naïve Bayes 58.56 2575 4397 

2 Support Vector 

Machines 

70.59 3104 4397 

 

Based on the results in Table 9 we can see that percentage of correct predictions has 

dropped significantly compared to Table 7 which was for an IPM model that included all the 

attribute fields in the model building process. The confusion matrix by impact level is shown 

in Appendix F.  The results highlight that the other change ticket fields listed in Table 5 are 

also important to IPM’s prediction capability. To further understand this, let us look at Table 

10 below that presents the top 5 dominant terms for Low impact category. This table shows 

the user identification numbers for creators and owners of change ticket as the dominant 

terms. This implies that a change ticket involving these users has been found on several low 
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impact tickets across time intervals and is likely to reoccur in future. The findings from Table 

10 along with the findings from Table 8 and Figure 23, highlight that terms coming from 

unstructured text fields such as workplan and change purpose are important for high and 

medium impact tickets since most of the top terms are coming from those ticket fields. Also 

based on Table 10 and from the attribute importance model results of Table 5, it implies that 

knowing the creators and owners for change tickets is more likely helpful in determining low 

impact tickets but terms found within unstructured text ticket fields have comparatively more 

likely in determining high and medium impact category tickets.  This is important because 

from an IPM perspective, only high and medium impact terms are passed on for IEIM 

processing. Low impacts terms represent local impact and hence do not undergo IEIM 

processing.  

 

Table 10. Top 5 Dominant Key Terms with Low Impact 

 

# Ticket Field Change Terms SVM Coefficients 

1 Creator 1345 0.61 

2 Creator 

Owner 

Creator 

Owner 

112 

38 

442            

1981        

0.51 

0.50 

0.53 

0.55 

 

 

 

IEIM Results 

 

 The core function of IEIM is that of identifying the potential extent of impact of 

change factors that are not yet implemented.  In this section, we will look at the results for 

IEIM with respect to answering the following two questions:  
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1. Do patterns (change factors) reoccur in future years, and to what extent?  

 

2. What is the time interval across which pattern (change factor) reoccurrence 

is the maximum and how does this impact prediction accuracy? 

 

 For IEIM model validation, two data sets were created across various time 

intervals. The data set details are shown in Appendix G: 

 

a) 2009 (Q1) with 2010 (Q1) 

 

b) 2009 (Q1 and Q2) with 2010 (Q1 and Q2) 

 

c)  2009 (full year) with 2010 (full year) 

 

d) 2008 and 2009 (full years) with 2010 (full year). 

 

The matching accuracy for IEIM’s Jaro-Winkler’s matching was compared to that of 

Levenshtein matching algorithm. 

 

IEIM Pattern Reoccurrence: This helps us understand if the patterns (change 

factors) reoccur in future years as explained in Chapter 4. This metric is represented as below: 

 

 

 

where, the new feature set is Ci (, e.g., 2010 Q1 dataset) with older feature set Cj (, e.g., 

2009 Q1 dataset).  The IED details and build times are shown in Table 11 across time 

intervals. The numbers of NMF feature sets are automatically determined by the NMF 

algorithm.  
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Table 11. IED Details 

 

IED Data Set NMF Feature Sets Number of Change 

Factors  

IED Build Time 

2009 Quarter 1 25 2234 3 minutes and 11 

seconds 

2009 Quarter1 and 

2 

49 3408 5 minutes and 2 

seconds 

2009 - full year 101 5053 8 minutes and 17 

seconds 

2008 and 2009 

Full years 

204 7972 16 minutes and 49 

seconds 

 

 Table 12. IEIM Accuracy Results 

 

# Old Data Set New Data Set IEIM Pattern 

Reoccurrence  

Jaro-Winkler  

 Algorithm 

IEIM Pattern 

Reoccurrence   

Levenshtein 

Algorithm 

Runtime 

1 2009 Quarter 

1 

2010 Quarter 

1 

33.33 29.64 5 minutes and 

33 seconds 

2 2009 

Quarter1 and 

2 

2010 Quarter1 

and 2 

78.21 74.90 6 minutes and 

20  seconds 

3 2009 - full 

year 

2010 - full 

year 

84.16 79.55 11 minutes 

and 17 

seconds 

5 2008 and 

2009 Full 

years 

2010 - full 

year 

        83.66   80.11 17 minutes 

and 45 

seconds 
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The results in Table 12 show the IEIM accuracy results. These results highlight that 

there is significant change factor reoccurrence between the old and new change data sets.  

These results reaffirm our core assumption that change patterns reoccur year over year.  

 

 

 IEIM Prediction Accuracy and Optimal Change Duration: This helps us 

understand the optimum change duration or time interval across which change factors reoccur. 

Based on the results in Table 12, the optimum change duration is a full complete year. It also 

evident from these results is that going beyond the year for old data does not yield significant 

benefits.  

These findings can help us to identify the best subset of data to use for change impact 

prediction model building.  In other words, we can use these findings to select the optimal 

change time duration as represented by the “Select Change Time Duration” step in the Figure 

13. Selecting the optimal change time duration will help in reducing the data set sizes thereby 

expediting the data processing, model building, and model scoring and matching processes. 

This is very crucial in IT environments that undergo large amount of changes. Next, we will 

use the data sets based on change time duration similar to what for IEIM and run IPM 

accuracy and performance metrics to evaluate the impact of change data time duration on the 

IPM prediction and accuracy. 

 

 The results in Table 13-15 shows the effect of using change time duration based data 

similar to what was used for IEIM evaluation,  for IPM in order to find out the impact of 

change data time duration on the IPM’s prediction accuracy as well as its model build and test 

times. For this evaluation, 2010 change data is divided into sets similar to IEIM evaluations, 

i.e., 2010 quarter 1, 2010 quarter 1 and 2, and 2010 full year and finally 2009 and 2010 

combined for build the IPM prediction models. 
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Table 13. IPM Predictive Confidence Summary 

 

# Models Predictive 

Confidence %  

(2 yrs Change 

Data) 

Predictive 

Confidence %  

(1 yr Change 

Data) 

Predictive 

Confidence %  

(Q1 and Q2 

Change Data) 

Predictive 

Confidence %  

(Q1 Change 

Data) 

1 Naïve 

Bayes 

62.86 66.92 75.21 70.07 

2 Support 

Vector 

Machines 

74.88 78.04 85.52 90 

 

Table 14. IPM Correct Predictions Summary 

 

# Models Correct 

Predictions   

(2 yrs Change 

Data) 

Correct 

Predictions   

 (1 yr Change 

Data) 

Correct 

Predictions   

 (Q1 and Q2 

Change Data) 

Correct 

Predictions   

 (Q1 Change 

Data) 

1 Naïve 

Bayes 

86.70 87.56 87.93 86.16 

2 Support 

Vector 

Machines 

92.27 95.79 93.88 94.86 
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Table 15. IPM Build and Test Time Summary 

 

# Models Model Build 

and Test 

Time  

(2 yrs Change 

Data) 

Model Build 

and Test 

Time 

 (1 yr Change 

Data) 

Model Build 

and Test Time 

(Q1 and Q2 

Change Data) 

Model Build 

and Test Time 

(Q1 Change 

Data) 

1 Naïve 

Bayes 

15 minutes and 

56 seconds 

8 minutes 32 

seconds 

4 minutes and 

25 seconds 

2 minutes and 30 

seconds 

2 Support 

Vector 

Machines 

11 minutes and 

36 seconds 

6 minutes 8 

seconds 

3 minutes and 

44 seconds 

2 minutes and 26 

seconds 

 

From Tables 13- 15, it is evident that the one year of change data for IPM model build 

and testing has no negative impact on accuracy but significantly reduces the model build and 

test time compared to 4 years of change data, while providing the maximum IEIM change 

pattern reoccurrence compared to other quarterly data sets. The confusion matrix by impact 

for the one year change date is shown in Appendix I. This change time duration implies that 

the potential risks posed by environmental changes can be accurately and quickly surfaced 

and addressed in a constantly changing organizational IT environment with yearly change 

information from the change information corpus without having to store large amounts of 

historical change information. 

 

IEIM’s pattern reoccurrence metric can also be used to highlight the importance of 

including all layers of environments as part of the change information corpus.  Table 16 show 

the IEIM results if we only use the database workflow queue in the change information corpus 

and ignore other workflow queues (network, hardware, operating system etc.).  The Table 16 

results show a significant drop in pattern reoccurrence values across time intervals for this 

data set.   
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Table 16. IEIM Accuracy Metrics with Only Database Workflow Queue 

 

# Old Data Set New Data Set IEIM Pattern 

Reoccurrence   

Jaro-Winkler 

Algorithm 

IEIM Pattern 

Reoccurrence  

Levenshtein 

Algorithm 

Runtime 

1 2009 Quarter 

1 

2010 Quarter 1 29.55 26.67 4 minutes and 

19 seconds 

2 2009 Quarter1 

and 2 

2010 Quarter1 

and 2 

32.66 21.16 5 minutes and 

47 seconds 

3 2009 - full 

year 

2010 - full 

year 

66.16 57.34 8 minutes 

and 1 second 

5 2008 and 2009 

Full years 

2010 - full year 64.11 59.32 11 minutes 

and 15 

seconds 

 

 

In order to better the reason behind significant drop of pattern reoccurrence, two 

different sets of tests are conducted using the change data sets described in Appendix G. The 

first test builds an IPM model using change data from all queues and scores it against the data 

from only database queue. The results of this test are shown in Table 17 across the time 

intervals. The second test builds an IPM model using change data from only database queue 

and scores it against the data for the database queue across time intervals. The results of this 

test are shown in Table 18.  Scoring is the process of running the built model (after it goes 

through test-train phase) on a different data set. Prediction Accuracy of a model is defined as 

number of correct predictions by the model divided by the total number of records in the 

scoring data set. 
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Table 17. IPM Prediction Score Accuracy- All Queues model on DB Queue 

 

# Models Prediction 

Accuracy %  

(2 yrs Change 

Data) 

Prediction 

Accuracy %  

(1 yr Change 

Data) 

Prediction 

Accuracy %  

 (Q1 and Q2 

Change Data) 

Prediction 

Accuracy %  

 (Q1 Change 

Data) 

1 Naïve 

Bayes 

60.21 67.43 73.74 68 

2 Support 

Vector 

Machines 

73.89 77.33 83.45 92.45 

 

Table 18. IPM Prediction Score Accuracy- DB Queue model on DB Queue 

 

# Models Prediction 

Accuracy %  

(2 yrs Change 

Data) 

Prediction 

Accuracy %  

(1 yr Change 

Data) 

Prediction 

Accuracy %  

 (Q1 and Q2 

Change Data) 

Prediction 

Accuracy %  

 (Q1 Change 

Data) 

1 Naïve 

Bayes 

49.12 50.11 54.22 59.01 

2 Support 

Vector 

Machines 

56.54 60.16 65.81 70.47 

 

 

The Table 17 shows that the IPM prediction accuracy for model built using all queues 

change information has higher accuracy than model built with only the database queue change 
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information as seen from the findings from Table 18. In order to better understand these 

results, three different cases were considered from one year change data test. The confusion 

matrix by impact for both these IPM models for one year of change data is shown in 

Appendix J. For sake of this discussion, high and medium impact are treated as same because 

IPM stage passes the terms for both of these impact levels to the IEIM processing. IPM only 

blocks low impact terms because they represent local impact. Having said this, the false 

negatives are the ones that we need to review. False negatives are the tickets that have the 

impact of high/medium but were scored as low by the IPM models. These are important cases 

to review because we do not want a high/medium impact ticket to be scored as a low impact 

and not make it to the IEIM processing.  The first ticket is where the IPM model built only on 

database queue changes got a false negative but the IPM model built using all queue data got 

correct prediction. For the sake of this discussion we will call this ticket as ticket 1. The 

second case is where IPM model built using all queue got false negative but the model built 

using just the database queue got the impact prediction right. This situation did not exist 

across time intervals. Most of the false negatives for the IPM model built using all queues 

model was also found to be false negative for the IPM model built using just the database 

queue. The final case is where both models got a false negative. We will call this ticket as 

ticket 2. 

 

Ticket 1 that was reviewed was for updating data for certain customers within a 

database. The update was a multiple step non-atomic process that modified several customer 

demographics. Furthermore, in order to expedite this process, this update was executed across 

all the clients concurrently.  This process had to be completed within 4 hours per the customer 

service level agreements. This process was found hung after 40 minutes of processing. The 

DBA filed a ticket with the storage team because the process was found to be waiting on the 

storage system. After few hours of investigation, the storage team found that a SAN to SAN 

copy change that was executed around the same time as the update process was the culprit. 

The SAN copy process was aborted until further investigation. The database update had to be 

terminated and the database had to be recovered in order to get it back into a consistent state 

before re-starting the process again. This whole incident added additional 3 hours to the total 

time and ended up violating the customer Service Level Agreements (SLAs). The ticket 1’s 
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impact before it was closed was set to high but the IPM built using just the database queue 

scored it as low. The ticket 1 did not have any of this problem history because that history was 

mentioned in the storage ticket with the storage queue. All, the ticket 1 had was a mention of 

the storage queue ticket number as a comment in its impact description text field. Further 

review of this storage queue ticket showed that this issue was a known issue within the 

storage team and had happened in the past too. The IPM model built only on the database 

queue changes did not have the visibility of this problem history. The IPM model built using 

change information from all queues was able to score the impact correctly for ticket 1. 

 

Based on the review of ticket 1 and also the findings from Table 17 and Table 18 it 

seems that significant change factors that impacts the database workflow queue are coming 

from other queues. A closer look at some of the key terms in Ticket 1 shows that it has 

“Trinidad” server name as one of the terms which from Table 8 tell us is part of the high 

impact category of the IPM model with SVM coefficient of 0.37. This is the server where the 

update process was running. Besides this term, ticket 1 also had terms for 3 customer names 

that were also part of the high category IPM model with SVM coefficients of 0.31, 0.3 and 

0.22. Two of these customers have stringent SLAs for the update process. This finding 

reinforces the core point of this research that in increasingly integrated and dynamic IT 

environments, the impact of changes from all layers within the environment need to be taken 

into account. Adopting a narrow view of the environment does not accurately enable the 

human database tuners to understand the extent or reach of the impact of environment 

changes which may lead to incorrect diagnosis and error-prone tuning efforts. 

 

Ticket 2 that was reviewed was for modifying the profile and preferences for 

customers that are no longer active within the database system. The change information 

within this ticket did not have much information about what the change was or the plan for 

executing the change. The ticket had comments like “Replicate the steps from previous 

release of this app…” and “Following the same steps that I did on QA…”. These comments 

might make sense to the same person who has prior knowledge about this change or similar 

change done on a test system but for a DBA that has no background information on it might 

not understand this. The DBA who created and executed the changes in ticket 2 did not 
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explicitly mention the steps he was planning to execute in ticket 2. For ticket 2, the DBA 

during his testing of the change on QA system found few database packages to become 

invalid which caused other applications to fail. Without mentioning any of this information he 

vaguely referenced his prior knowledge but made the impact of the ticket as high. Both IPM 

models got the prediction for ticket 2 as low.    

 

Based on the review of ticket 2, it seems that if a change executor is not explicit about 

the change in his or her ticket, it most likely will be scored incorrectly by IPM, irrespective of 

what type of change data goes into building the model. This highlights a process issue within 

the change management process. The observations from ticket 2 point to the process failure 

on two levels – first is the lack of explicit change information documentation on part of the 

change executor and second at the change approver level for approving such incomplete 

changes that neither document the plan or scope of the change.  

 

 

Scoring Example of an Unimplemented Change Ticket 

 

The core function of DECIPHER is that of predicting the potential impact and extent 

for environmental changes that have not yet been implemented in real-time. This aspect of 

DECIPHER is called “Scoring of the New Environmental Changes”.   In order to understand 

the scoring function of DECIPHER, let us consider an actual unimplemented incident ticket 

from the organization’s change information corpus.  

 

The network engineering team needs to update the organizations firewall rule policy to 

add a new system to the database environment. In order to get ready to do this change, the 

network engineer goes through the organizational change management process as depicted in 

Figure 7. As part of the change management process, the network engineer creates a new 

incident ticket with the following information. This ticket is submitted for the approval 

process.  
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a) Ticket #: 14356 

 

b) Ticket Subject (Text):  Update firewall rule policy 

 

c) Change Purpose (Text): We need to update the firewall rule policy in order to 

add new forecasting BI server to sales portal.  

 

d) Owner of the ticket: Dylan 

 

e) Approver of the ticket: Susan 

 

f) Work-plan for the change (Text): The new firewall rule for salesportal_dmz is

 as below: 123.0.xx… 

 

g) Perceived Impact (High or Medium or Low): Low 

 

h) Back-out plan (Text): Revert the rule 

 

i)  General Comments/Notes (Text): N/A 

 

This new unimplemented change information is fed to DECIPHER in real-time. 

DECIPHER’s IPM and IEIM modules process this information. Tables 19 and 20 show the 

results of the DECIPHER scoring for ticket 14356: 

Table 19. DECIPHER IPM Scoring Results 

 

# Predicted 

Impact 

Predictive 

Confidence 

1 High 91.23% 
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Table 20. DECIPHER IEIM Scoring Results 

 

# Database 

Dependent 

Change Factors 

NMF Coefficient 

1 Sales_recos_db 0.13 

 

2 Connection 0.12 

 

 Hang  0.12 

   

H Port  0.11 

   

H 1521  0.11 

   

3 … … 

 

 

Based on the findings from Table 19 and 20, we can see that the perceived impact by 

the network engineer for the ticket 14356 was set to “Low” implying a localized impact of his 

change, but DECIPHER’s IPM scored it with a predicted impact of “High” and with a high 

probability of 91.23%.  Also, the IEIM scoring shows the sales_recos_db and hang are 

dependent change factors based on the factors in the 14536 ticket. This implies that if the 

14536 ticket were to be implemented then there is a high probability of a potential hang with 

connections for the sales_recos_db on port 1521.  

 

Incorrect diagnosis and troubleshooting is expensive and error-prone.  Having this 

knowledge ahead of time would allow the DBA to mitigate the potential risk of connection 

hangs by either enabling a different temporary port or even delaying this change request. This 
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case shows how using the environmental change impact knowledge; the DBA can proactively 

mitigate the risks.  This research makes an important assumption that based on the knowledge 

of the potential impact and extent of IT environmental changes, the DBAs can effectively use 

it to ensure that such changes do not negatively impact the organizational database systems.  

 

In general any manual work is prone to human errors and database performance tuning 

is no exception.  DECIPHER in its current form can be a very effective tool for DBA’s in 

enhancing their explicit tuning knowledge sources like best practice repositories or designing 

policies that can automatically trigger a reaction based on an event. The next chapter 

discusses how DECIPHER can be leveraged by DBAs with existing frameworks to 

effectively and safely tune their database systems. 

 

DECIPHER Generalizability 

Effectively and safely managing changes in a highly-integrated database environment 

is a challenge for modern organizations. Predicting the potential impact of environmental 

changes and its extent before they are implemented can help in mitigating these risks and 

reducing their associated costs proactively for organizations (Forrester, 2007). DECIPHER is 

built with this goal in mind. Coming to the generalizability aspect, the architecture of 

DECIPHER is designed in a way that its implementation under different organizational 

settings can be achieved with minimal modifications. 

 

Most organizations use some or other form of an organizational incident management  

data store (help desk system or trouble ticketing system or basic email) to manage the changes 

to their Information Technology (IT) environment, including the database environments 

(Hass, 2003). Changes to any production IT environment component, e.g., operating system, 

hardware, and database are facilitated by these systems (Conradi and Westfechtel, 1998).  

Furthermore, the increase of regulatory compliance needs (, e.g., Sarbanes-Oxley) have also 

pushed for a wider adoption of change management processes and tools for achieving better 

traceability(Chen et al., 2009).   
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The first processing step of DECIPHER which is the IPM’s data Extraction step, as 

shown in Figure 11, is responsible for extracting the unstructured change information from 

any type of organizational incident management data stores like help desk system or trouble 

ticketing system or even basic email. This process within IPM ensures that DECIPHER can 

get change information from various data sources to build its change information corpus 

without imposing rigid data collection requirements. This data extraction step involves use of 

open source Extraction, Transformation and Load (ETL) tool that extracts unstructured 

change data from various data sources without rigid data format restrictions (Majchrzak, 

Jansen, and Kuchen, 2011). Furthermore, such type of ETL tools offer out-of-the-box data 

quality and profiling features that makes it easy to implement DECIPHER under various 

organizational settings (Majchrzak, Jansen, and Kuchen, 2011). Specifically, this research 

uses TALEND ETL tool that achieves this task using intuitive graphical interface (Majchrzak, 

Jansen, and Kuchen, 2011). Once the data is extracted from the organizational incident 

management data stores, other downstream processing steps for DECIPHER remains 

unchanged. Organizations can also enhance the stop list processing of IPM term extraction 

process, as explained in Chapter 5 to make DECIPHER context-aware by incorporating 

organization-specific terms that might add undesirable noise into the DECIPHER’s IED 

repository. 

  

Organizational IT environments undergo changes that are influenced by many external 

factors such as mergers, acquisitions, explosive data growth, changing competitive landscape 

and long-term investments. So from a generalizability perspective, DECIPHER also needs to 

adapt to new change information that deal with new situations and technologies. In order to 

maintain the accuracy and effectiveness of DECIPHER under such changing circumstances, 

DECIPHER’s IPM model needs to get periodically updated or refreshed or challenged. One 

effective approach of managing the IPM Model refresh or update is by using an adaptive 

control to model management. This is often referred to as Champion/Challenger or test and 

learn process (Shyam Varan 2007; Taylor 2010). This is covered in detail in the future work 

chapter.  Basically, the Champion/Challenger process involves building several models using 

the historical change information. The model that has better accuracy based on metrics like 

predictive confidence, confusion matrix and lift is picked as the champion. If the challenger 
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outperforms the current champion IPM model based on some user-defined threshold then the 

challenger becomes the curent champion. This process can be performed iteratively every 

year to ensure that the impact and extent prediction remains accurate throughout the life cycle 

of DECIPHER and without having the end-user(DBA) of this system to understand the 

naunces of the various underlying models and their parameters. 

 

As mentioned earlier, managing environmental changes in a highly-integrated 

database environment is a challenge for modern organizations. Since DECIPHER is designed 

with this goal in mind, it may not be well-suited for organizations that do not have a complex 

and dense database environment stacks. Furthermore, DECIPHER may not work for 

organizations that do not have a standardized change management process. Absence of such a 

process would result in inadequate or inferior change management data which would 

negatively impact the DECIPHER’s ability to accurately predict and impact and extent of 

environmental changes. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

This chapter presents an overview of the contributions of this project and a discussion 

on the possible future directions for DECIPHER.  This chapter begins by summarizing the 

contributions of this research with respect to the identified issues. The chapter then continues 

with the discussion on the two possible areas future work for the DECIPHER framework. The 

chapter concludes with an example of how DECIPHER could be used with some of the 

existing autonomic tuning frameworks. 

Conclusion 

 

More and more organizations are embracing technologies such as cloud computing in 

the form of private clouds to address their evolving business needs and reduce their operating 

costs. But, as organizational Information Technology (IT) environments in today’s rapidly 

evolving digital economy undergo several changes, the database environments within the 

organizations are becoming highly-integrated, complex and very dynamic. 

 

Given the high server density of cloud environments, the potential impact of IT 

environmental changes to the performance of database systems becomes significant and far-

reaching. As a result, human-driven performance tuning is needed to addresses these issues. 

Human-driven performance tuning is expensive, error-prone and time-consuming. With 

organizational IT environments undergoing large number of changes, there is a strong need 

for a solution that can provide fast and accurate decision-support to the DBAs in database 

performance tuning situations.  
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Although there have been several developments in the area of self-managing systems, 

these approaches are rather limited in their use, especially in the cloud computing domain 

because they do not include a holistic view of the problem space and the environment under 

which they operate. Specifically, these approaches largely ignore the impact and the extent of 

IT environmental changes on its systems.  

 

Effectively and safely managing changes in highly-integrated database environments 

such as private database clouds is a challenge. Predicting the potential impact of 

environmental changes and its extent before they are implemented can help in mitigating 

these risks and reducing their associated operating costs proactively.  

 

This research addresses these relevant issues by proposing a novel framework that 

predictively acquires the knowledge of impact and extent of environmental change in 

database environments.  The contributions of this research are significant in the following 

aspects:  

 

1) This research proposes a holistic autonomic tuning knowledge model that extends 

the existing autonomic tuning reference model by incorporating the organization-

specific environmental change impact knowledge.  

 

2) This research also presents a theory based framework called “DECIPHER” that 

that not only acquires this knowledge component but does so in a proactive 

fashion. This framework predicts the potential impact of environmental changes 

and its dependencies by mining the historical change information stored within the 

existing organizational incident management data stores.   

 

3) In addition to demonstrating the validity of the system using a real-world change 

management system, this research also presents a new pattern recurrence metric to 

identify the contexts in which prediction algorithms will useful and helps identify 

the best subset of data to use for model building. 
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Future Work 

 

Future work for DECIPHER can be broadly classified in two main areas: 

 

1.  DECIPHER IPM Model Management 

 

2. Enhancement  of Autonomous Tuning Managers 

 

 

DECIPHER IPM Model Management: The life-cycle for DECIPHER’s IPM model 

can be broken down into three major phases: 

 

1. Model Build 

 

2. Model Deployment 

 

3. Model Management 

 

Figure 25 shows the Model Build phase as well as the Model deployment phase for 

DECIPHER’s IPM Model. IPM Model Build phase refers to the development and building of 

DECIPHER’s IPM model from the historical change information corpus.  The IPM Model 

Deployment or Scoring phase refers to the applying the built IPM model on the 

unimplemented change information.   

 

Organizational IT environements undergo changes that are influenced by many 

external factors such as mergers, acquisitions, explosive data growth, changing competitive 

landscape and long-term investments. As a result, the change information corpus has new 

change information that deal with new situations and technologies. In order to maintain the 

accuracy and effectiveness of DECIPHER under such changing circumstances, the IPM 
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model needs to get periodically updated or refreshed or challenged. This aspect is referred in 

here as IPM Model Management. 

 

Figure 25. DECIPHER IPM Model Build and Deployment Phase 
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One effective approach of managing the IPM Model refresh or update is by using an 

adaptive control to model management.  This is often referred to as Champion/Challenger or 

test and learn process (Shyam Varan, 2007; Taylor, 2010).  The Champion/Challenger process 

involves building several models using the historical change information. The model that has 

better accuracy based on metrics like predictive confidence and confusion matrix is picked as 

the champion. During the IPM Model build phase, we picked SVM over NB because it was 

compartively more accurate. In this SVM can be seen as the champion model and NB as the 

challenger model. This process can be done with several models to create a challenger model 

list. 

 

With SVM in production as the champion model, the challenger models can be 

periodically be executed using a small percentage of the new change information. In this 

small acid test, if one of the challengers have better accuracy and performance metrics, then it 

can be picked to be run against larger percentage of the new change information (Shyam 

Varan, 2007). If the challenger outperforms the current champion IPM model based on some 

user-defined threshold then the challenger becomes the curent champion. This process is 

performed iteratively to ensure that the impact and extent prediction remains accurate 

throughout the life cycle of DECIPHER. 

 

 

Enhancement  of Autonomous Tuning Managers: 

 

Effectively and safely managing changes in highly-integrated database environments 

such as private database cloud environments is a challenge. Predicting the potential impact of 

environmental changes and its extent before they are implemented can help in mitigating 

these risks proactively.  DECIPHER in its current form can be an effective tool for DBA’s in 

this regard.  However, manual intervention by a human tuner is prone to errors.   

 

One possible approach to address this concern would be to use the environmental 

change impact knowledge component by the DBAs to design policies that can be leveraged 

by exisiting policy based feedback or control mechansims to automatically self-regulate the 
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autonomic database tuners before the environmental change are even implemented in an 

anticipation of a need.  This type of architecture can be referred to as an autonomous 

predictive performance tuning.  

 

Since one of the major goals for organizations adopting private clouds is to reduce the 

operating costs, having an autonomous predictive performance tuning framework that can 

self-regulate before a change is even implemented can be very beneficial to minimize the 

costs associated with an undesired change that negatively effects the performance or 

availability of the systems within the private database cloud environments.  

 

A high level architecture of a potential autonomous predictive performance tuning 

framework is shown in Figure 26 below. The Environmental Change Impact Knowledge 

(ECIK) can be used in conjunction with existing policy based frameworks to control the 

autonomic managers (Russell, Morgan, and Chron, 2003; Wiese et al., 2008). On such 

framework is the Automatic Tuning Expert (ATE) that uses best practice databases of 

database  tuning plans that get picked up autonomic tuning manager based on predefined 

policies (Wiese et al., 2008). Such policy based frameworks use a policy database to 

automatically trigger a reaction based on a predefined performance situation or an 

event(Wiese et al., 2008). ECIK from the predictive change management framework can be 

used to lookup an existing policy or define a new policy that can be applied before a change is 

implemented in order to self-manage the autonomic manager in an anticipation of a need. 
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Figure 26. Autonomous Predictive Performance Tuning Framework 
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APPENDICES 

APPENDIX A: GLOSSARY 

Acronym Definition 

CDB Change Management Database 

CDSS Cognitive Decision Support System 

CF change factors that are extracted using NMF 

CIK Change Impact Knowledge 

CO NMF coefficients 

CPI  Classified impact for historical terms by IPM  

DBA Database Administrator 

DCF Dependent change factors that are part of the NMF Feature identifications 

DECIPHER Database Environmental Change Impact Predictive-analysis for Human-

driven Tuning Efforts in Real-time 

DML Data Manipulation Language 

DSS Decision Support System 

DW Data Warehouse 

ECIK Environmental Change Impact Knowledge 

ETL Extraction Transformation Loading 

ERP Enterprise Resource Planning 

FEID  NMF Feature Identification 

IED Impact Extent Database 

IEIM Impact Extent Identification Module 

IP Predicted Impact 

IPM Impact Prediction Module 

IT Information Technology 

GPL General Public License 

MAPE Monitor Analyze Plan Execute 

MDL Minimum Descriptor Length 

NMF Non-Negative Matrix Factorization 

OLTP Online Transaction Processing 

RT Request Tracker 

SA Situation Assessment 
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SAW Situation Awareness 

SF Change factors scored in real-time 

SLA Service Level Agreement 

SVM Support Vector Machine 

TF-IDF Term Frequency-Inverse Document Frequency 

WCIK Workload Change Impact Knowledge 
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APPENDIX B: REQUEST TRACKER SCREENSHOTS  

1) RT Main Screen 
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2) Change Request Creation Web Form 
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APPENDIX C: PATTERN REOCCURRENCE 

PSEUDOCODE  

for each unimplemented change factor grouped by NMF feature id and sorted by NMF   

coefficient in descending order  

loop 

  for each IED change factor sorted by NMF coefficient in descending order  

  loop 

     match factors using the jaro-winkler similarity function; 

     get the score of the match; 

     if the match score greater than or equal to the user-defined match score threshold   

     then 

       save the unimplemented change factor and the score in a temporary match result     

       table; 

  end inner loop; 

end outer loop; 

for each feature id  loop 

  get max similarity value;  

  save the max similarity values of each feature set in a temporary table; 

end loop; 

get average of the max similarity; 

return the result; 

end; 
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APPENDIX D: ORACLE DATA MINER SCREENSHOTS  

1. Oracle SQL Developer Main Screen 
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2. Oracle Data Miner Component Palette 
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APPENDIX E: ORACLE DATA MINER IPM 

SCREENSHOTS  

IPM Overall Performance Measures (4 years of change data): 
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Confusion Matrix by Impact level for 4 years of change data: 

 

SVM IPM Model (4 years of Change Data): 

 

# Impact Correct 

Predictions % 

Correct 

Prediction Count 

Total Count 

1 High 80 68 85 

2 Medium 87.18 1177 1350 

 Low 94.56 2801 2962 

 

 

NB IPM Model (4 years of Change Data): 

 

 

# Impact Correct 

Predictions % 

Correct 

Prediction Count 

Total Count 

1 High 67.05 57 85 

2 Medium 71.25 962 1350 

 Low 94.42 2792 2962 
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APPENDIX F: CONFUSION MATRIX BY IMPACT FOR 

CREATOR-OWNER MODELS 

 

SVM IPM Model (4 years of Change Data): 

 

# Impact Correct 

Predictions % 

Correct 

Prediction Count 

Total Count 

1 High 11.76 10 85 

2 Medium 37.85 511 1350 

 Low 87.20 2583 2962 

 

 

NB IPM Model (4 years of Change Data): 

 

# Impact Correct 

Predictions % 

Correct 

Prediction Count 

Total Count 

1 High 9.41 8 85 

2 Medium 23.18 313 1350 

 Low 76.09 2254 2962 
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APPENDIX G: OLD AND NEW CHANGE DATA SET 

DETAILS 

 

 

# Old Change Data Set New Change Data Set 

1 2009 Quarter 1 2010 Quarter 1 

2 2009 Quarter1 and 2 2010 Quarter1 and 2 

3 2009 - full year 2010 - full year 

5 2008 and 2009 Full years 2010 - full year 
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APPENDIX I: CONFUSION MATRIX BY IMPACT FOR 

ONE YEAR DATA  

SVM IPM Model (1 year of Change Data): 

 

# Impact Correct 

Predictions % 

Correct 

Prediction Count 

Total Count 

1 High 92.85 26 28 

2 Medium 93.41 908 972 

 Low 96.89 2062 2128 

 

 

NB IPM Model (1 year of Change Data): 

 

 

# Impact Correct 

Predictions % 

Correct 

Prediction Count 

Total Count 

1 High 67.85 19 28 

2 Medium 73.86 718 972 

 Low 94.07 2002 2128 
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APPENDIX J: CONFUSION MATRIX BY IMPACT FOR 

DB AND ALL QUEUE MODELS 

 

ALL Queue IPM model built using 2009 full year Change Data scored against 

2010 DB Queue Change Data: 

 

 

SVM: 

 

# Impact Correct 

Predictions % 

Correct 

Prediction Count 

Total Count 

1 High 86.95 20 23 

2 Medium 87.77 201 229 

 Low 72.86 419 575 

 

 

NB: 

 

# Impact Correct 

Predictions % 

Correct 

Prediction Count 

Total Count 

1 High 73.91 17 23 

2 Medium 79.91 183 229 

 Low 62.26 358 575 
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DB Queue IPM model built using only 2009 DB Change Data scored against 2010 

DB Queue Change Data: 

 

 

SVM: 

 

# Impact Correct 

Predictions % 

Correct 

Prediction Count 

Total Count 

1 High 47.82 11 23 

2 Medium 50.21 115 229 

 Low 64.69 372 575 

 

 

 

NB: 

 

# Impact Correct 

Predictions % 

Correct 

Prediction Count 

Total Count 

1 High 34.78 8 23 

2 Medium 43.66 100 229 

 Low 53.39 307 575 
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