
Dakota State University
Beadle Scholar

Masters Theses & Doctoral Dissertations

Spring 5-1-2013

Database Environmental Change Impact
Prediction for Human-driven Tuning in Real-time
(DECIPHER)
Monish Sharma
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses & Doctoral
Dissertations by an authorized administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

Recommended Citation
Sharma, Monish, "Database Environmental Change Impact Prediction for Human-driven Tuning in Real-time (DECIPHER)" (2013).
Masters Theses & Doctoral Dissertations. 287.
https://scholar.dsu.edu/theses/287

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Beadle Scholar at Dakota State University

https://core.ac.uk/display/234675415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Ftheses%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/287?utm_source=scholar.dsu.edu%2Ftheses%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

Database Environmental Change Impact Prediction for

Human-driven Tuning in Real-time (DECIPHER)

A graduate project submitted to Dakota State University in partial fulfillment of the

requirements for the degree of

Doctor of Science

In

Information Systems

May, 2013

By

Monish Sharma

Advisor

Dr. Surendra Sarnikar

Project Committee:

Dr. Amit Deokar

Dr. Stephen Krebsbach

Dr. Maureen Murphy

2

PROJECT APPROVAL FORM

We certify that we have read this project and that, in our opinion, it is satisfactory in scope

and quality as a project for the degree of Doctor of Science in Information Systems.

Student Name: Monish Sharma

Project Title: Database Environmental Change Impact Prediction for

 Human-driven Tuning in Real-time (DECIPHER)

Faculty supervisor: Dr. Surendra Sarnikar Date:

Committee member: Dr. Amit Deokar Date:

Committee member: Dr. Stephen Krebsbach Date:

Committee member: Dr. Maureen Murphy Date:

3

ACKNOWLEDGMENT

This dissertation would not have been possible without the contributions of so many

people in so many different ways. I would like to extend my appreciation especially to the

following.

Thank God for the knowledge, courage and determination that he has bestowed upon

me during this research, and indeed, throughout my life.

I could not have done this without the love, encouragement and support of my family

members, who allowed me to remain, focused on the important things in life. I would like to

thank my parents for instilling within me the desire to keep learning and their unconditional

love that fuelled my inspiration and became my driving force.

I would like to thank my wife Neelam and my son Vicranth from bottom of my heart

for their unequivocal personal support and great patience at all times. I immensely thank

Neelam for single handedly managing the family responsibilities during times when I had to

focus on the my doctoral studies and also Vicranth for his understanding that his dad could

not play with him or take him to his friend’s birthday parties or sporting events because he

needs to work on his doctoral thesis. I am truly grateful and blessed for having you both in my

life for which my mere expression of thanks does not suffice.

I am also immensely thankful to my advisor, Dr. Surendra Sarnikar and my committee

members, Dr. Amit Deokar, Dr. Stephen Krebsbach and Dr. Maureen Murphy for their

guidance, insights and encouragement throughout this process.

4

ABSTRACT

Organizations in today’s rapidly evolving digital economy are relying more than ever

on their database systems for critical decision-making functions. As a result, speedy and

timely availability of the information from these systems is one of key factors crucial to

organizational survival. Operating these database systems at high performance levels under

highly-integrated, dynamic and complex environments is a knowledge-intensive and an error-

prone human-driven task. Although there have been several developments in the area of

autonomous performance tuning, such approaches are of limited use because they do not

include a holistic view of the problem space and the environment under which they operate.

Specifically, these approaches largely ignore the impact and the extent of organization-

specific environmental changes on the performance of their database systems. This research

addresses these issues by proposing: 1. A holistic autonomic tuning knowledge model that

extends the existing autonomic tuning reference model by incorporating the organization-

specific environmental change impact knowledge. 2. A theory based framework called

“DECIPHER” that that not only acquires this knowledge component but does so in a

proactive fashion. This framework predicts the potential impact of environmental changes and

its dependencies by mining the historical change information stored within the existing

organizational incident management data stores. 3. A new change pattern recurrence metric

to identify the contexts in which change impact prediction algorithms will be useful and to

help identify the best subset of data to use for change impact prediction model building.

5

DECLARATION

I hereby certify that this project constitutes my own product, that where the language

of others is set forth, quotation marks so indicate, and that appropriate credit is given where I

have used the language, ideas, expressions or writings of another.

I declare that the project describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

Monish Sharma

6

TABLE OF CONTENTS

PROJECT APPROVAL FORM .. 2

ACKNOWLEDGMENT ... 3

ABSTRACT ... 4

DECLARATION ... 5

TABLE OF CONTENTS .. 6

LIST OF TABLES ... 8

LIST OF FIGURES ... 9

INTRODUCTION ... 10

BACKGROUND OF THE PROBLEM ... 10

RESEARCH OBJECTIVES ... 15

LITERATURE REVIEW ... 17

AUTONOMOUS TUNING APPROACHES .. 18

SEMI-AUTONOMOUS TUNING APPROACHES .. 23

LIMITATIONS WITH EXISTING APPROACHES .. 24

RESEARCH METHODOLOGY ... 29

DESIGN SCIENCE RESEARCH METHODOLOGY ... 29

RESEARCH DATA ... 32

THEORY AND DESIGN .. 37

THEORETICAL UNDERPINNINGS OF DECIPHER .. 37

DESIGN OF DECIPHER ... 39

IMPLEMENTATION AND VALIDATION ... 55

DECIPHER IMPLEMENTATION ... 55

DECIPHER VALIDATION .. 75

RESULTS AND DISCUSSION .. 81

IPM RESULTS .. 81

IEIM RESULTS... 88

SCORING EXAMPLE OF AN UNIMPLEMENTED CHANGE TICKET ... 98

7

DECIPHER GENERALIZABILITY ... 101

CONCLUSION AND FUTURE WORK ... 104

CONCLUSION ... 104

FUTURE WORK .. 106

APPENDIX A: GLOSSARY .. 118

APPENDIX B: REQUEST TRACKER SCREENSHOTS .. 120

1) RT MAIN SCREEN .. 120

2) CHANGE REQUEST CREATION WEB FORM ... 121

APPENDIX C: PATTERN REOCCURRENCE PSEUDOCODE .. 122

APPENDIX D: ORACLE DATA MINER SCREENSHOTS .. 123

1. ORACLE SQL DEVELOPER MAIN SCREEN .. 123

2. ORACLE DATA MINER COMPONENT PALETTE ... 124

APPENDIX E: ORACLE DATA MINER IPM SCREENSHOTS .. 125

IPM OVERALL PERFORMANCE MEASURES (4 YEARS OF CHANGE DATA): .. 125

CONFUSION MATRIX BY IMPACT LEVEL FOR 4 YEARS OF CHANGE DATA: .. 126

APPENDIX F: CONFUSION MATRIX BY IMPACT FOR CREATOR-OWNER MODELS ... 127

APPENDIX G: OLD AND NEW CHANGE DATA SET DETAILS .. 128

APPENDIX I: CONFUSION MATRIX BY IMPACT FOR ONE YEAR DATA 129

APPENDIX J: CONFUSION MATRIX BY IMPACT FOR DB AND ALL QUEUE MODELS 130

8

LIST OF TABLES

Table 1. Summary of Existing Autonomic Tuning Approaches 19

Table 2. Distinct Words for Text Ticket Fields for 2008-2011 34

Table 3. Ticket Counts by Queue for 2008-2011 ... 35

Table 4. Overview of DECIPHER Functional Design Requirements 50

Table 5. IPM Attribute Importance Results for 2008-2011 59

Table 6. IPM Predictive Confidence Metrics (4 years of Change Data) 84

Table 7. IPM Confusion Matrix (4 years of Change Data) 84

Table 8. Top 5 Dominant Key Terms with High Impact .. 85

Table 9. IPM Confusion Matrix using Creator and Owner attributes only 87

Table 10. Top 5 Dominant Key Terms with Low Impact 88

Table 11. IED Details ... 90

Table 12. IEIM Accuracy Results ... 90

Table 13. IPM Predictive Confidence Summary ... 92

Table 14. IPM Correct Predictions Summary ... 92

Table 15. IPM Build and Test Time Summary ... 93

Table 16. IEIM Accuracy Metrics with Only Database Workflow Queue 94

Table 17. IPM Prediction Score Accuracy- All Queues model on DB Queue 95

Table 18. IPM Prediction Score Accuracy- DB Queue model on DB Queue 95

Table 19. DECIPHER IPM Scoring Results.. 99

Table 20. DECIPHER IEIM Scoring Results .. 100

9

LIST OF FIGURES

Figure 1. Typical Organizational Database Environment Stack 12

Figure 2. Autonomic Tuning Knowledge Reference Model 24

Figure 3. Holistic Tuning Knowledge Reference Model ... 28

Figure 4. Research Methodology for DECIPHER .. 32

Figure 5. Organizational Change Information Corpus .. 36

Figure 6. Knowledge-Driven Autonomic Reference Architecture 38

Figure 7. Reactive Knowledge Driven Autonomic Tuning Architecture 40

Figure 8. High Level Change Management Process .. 42

Figure 9. Overview of DECIPHER ... 43

Figure 10. High Level DECIPHER Architecture .. 44

Figure 11. High-Level IPM Process Flow .. 47

Figure 12. High-Level IEIM Process Flow .. 49

Figure 13. High Level DECIPHER Process Flow ... 52

Figure 14. IPM Stop List Editor ... 62

Figure 15. IPM Term weighting Output Example .. 63

Figure 16. Oracle Data Miner SVM Algorithm Settings .. 66

Figure 17. Oracle Data Miner SVM Performance Settings 67

Figure 18. Oracle Data Miner NMF Algorithm Settings 71

Figure 19. Oracle Data Miner IPM Model Train/Test Settings 76

Figure 20. IPM Multiple Model Selection .. 77

Figure 21. Oracle Data Miner Naïve Bayes Algorithm Settings 78

Figure 22. IPM’s Predictive Confidence (4 years of Change Data) 83

Figure 23. Decision Tree for Dominant IPM Key Terms 86

Figure 25. DECIPHER IPM Model Build and Deployment Phase 107

Figure 26. Autonomous Predictive Performance Tuning Framework 110

10

CHAPTER 1

INTRODUCTION

This chapter presents a detailed discussion on the background of the research problem

and the objectives of this research. This chapter begins with an in-depth review of the

background of the research problem and then discusses the key factors that were critical to the

formation of research objectives and then concludes with a high level overview of the

structure and flow of this document.

Background of the Problem

Database systems are one of the critical backbone infrastructure components of

modern organizations. In today’s digital economy, an increasing number of organizations are

relying on their database systems for their critical decision-making functions (Power and

Sharda, 2009). As a result, speedy and timely availability of the information from database

systems is one of key factors crucial to organizational survival (Conway, Vesset, and Earl,

2009). This rapidly evolving digital economy has also led organizations to constantly strive

to maximize the utilization of their Information Technology (IT) assets while reducing their

operating costs and the total cost of ownership. One initiative that has been very successful in

this regard is the server virtualization. Using virtualization technologies, more and more

organizations are using their computing resources as a utility. This setup is typically referred

to as “Private Clouds” under the cloud computing paradigm (Mell and Grance, 2009).

Database systems are no exception to this. Private clouds consisting of databases are typically

referred to as “Private Database Clouds”(Curino et al., 2011).

Another artifact of this constantly changing digital age is the rate at which

organizations undergo change. These organization changes are fuelled by factors like mergers,

acquisitions, explosive data growth, changing competitive landscape and long-term

investments (McKendrick, 2011). As a result, the Information Technology (IT) environments

within the organizations are becoming highly-integrated, dynamic and more and more

11

complex (Böhm et al., 2010; Corp, 2005). According to a recent Forrester research report,

organizations make up to 500 changes per month to their IT infrastructure (Forrester, 2007).

When virtualization initiatives are added to this mix, it further exacerbates this situation and

can even lead to severe manageability issues (Kotsovinos, 2011). These virtualization related

factors coupled with speedy and timely requirement of database information pose new

performance challenges for the database systems (McKendrick, 2011; Telford et al., 2003).

Operating database systems at high performance levels under complex, dynamic and

dense environments such as private database clouds, requires the database administrators

(DBAs) to frequently conduct performance tuning or optimizations (Rabinovitch, 2009;

Schallehn, 2010; Telford et al., 2003). Database performance tuning or optimization is a very

broad term and has several perspectives and definitions. In this dissertation, we will use the

Sasha (1992) definition of database performance tuning since it is a holistic and realistic

description of the task – “Database tuning is the activity of making a database application

run more quickly. More quickly usually means higher throughput, though it may mean lower

response time for some applications. To make a system run more quickly, the database tuner

may have to change the way applications are constructed, the data structures and parameters

of a database system, the configuration of the operating system, or the hardware” (Shasha,

1992).

 Typically, the database tuner in most organizations is a human (Elnaffar, Powley,

Benoit, and Martin, 2003; Rabinovitch, 2009). The tuning of database by a human is referred

to as manual database tuning or human-driven database performance tuning.

12

Figure 1. Typical Organizational Database Environment Stack

 As evident from the above definition, the performance tuning is a goal-oriented task.

These goals are largely organization-specific and typically part of the organization’s service

level agreements (SLAs), e.g., the order management database application should process

1000 orders in one minute. The above definition also highlights the reactive aspect of tuning,

the complexity involved with this task and also the various factors that come into play in a

typical database environment. A typical database environment, as shown in Figure 1, has

several layers (Schallehn, 2010; Shasha, 1992). Private database clouds are one such example

of a database environment. The database environment stack represents the IT components

including the databases that are required for database application(s) to fully function. A

typical modern database environment, as shown in Figure 1, has following major components

(Schallehn, 2010; Shasha, 1992):

a) Users: These are the end users that use the database either directly or via a database

application. Some of examples of this component are data-entry operators, system

analysts, developers etc.

b) Application/Middle Tier: This consists of queries, Data Manipulation Language

(DML), database packages/stored procedures or application interfaces. Some of the

examples of this component are Enterprise Resource Planning (ERP), Order entry,

reporting application etc.

13

c) Database: This consists of the database management system (DBMS) software

components and the data that it manages. Examples – Oracle RDBMS, IBM DB2, MS

SQL Server etc.

d) Operating System: This consists of software components that manage system

resources and execution of programs and the processes. Examples – Solaris, Linux,

AIX etc.

e) Network: This consists of networking components such as interconnects, LAN, WAN

that support communication between different components within the database

environment.

f) Storage: This consists of components that physically store the data, backups, and

archived data. Examples – hard disks, flash, tapes etc.

g) Hypervisor: This layer includes server virtualization kernels that virtualize system

resources. This is the key layer for private database clouds. Examples: Vmware, Xen,

hyperv etc.

h) System Hardware: This consists of components such as CPU, memory, system bus

etc.

Given the high density of IT environments, especially in a private database cloud

setting, an issue at any of these layers of the database environment stack has a high potential

of causing impact to other layers within the stack. Since organizations have large number of

database systems within their complex and highly-integrated environments, the impact and

the extent of environmental changes on the performance of its databases becomes significant

and far-reaching.

14

Consider the following two scenarios:

1) As part of the quarterly patching policy, a system administrator patches the operating

system on a database virtual machine (VM) of a database private cloud on a planned

maintenance window on a Sunday morning. On Monday morning, users experience

severe performance degradation with some of their analytical queries. The DBA

working on the issue sees huge waits on logical reads on the database. Based on the

recommendations of their tuning tools and automatic advisors, the DBA tweaks the

database configuration parameters and even reboots the VM. After few painful hours

of trying several options, the problem was narrowed down to a buggy OS patch that

was applied to the VM. A workaround provided by the OS vendor fixed the issue.

2) The storage team upgraded the microcode of the SAN storage used by a business

intelligence (BI) VM cluster’s storage repository on a planned maintenance window

on a Saturday afternoon. On Sunday evening, scheduled reports using the database on

one of the VM’s were running almost 3 times slower than usual. Based on the data

gathered by the performance monitoring tools and through tracing, the DBA’s found

out that the physical reads on the database were very slow. DBA’s started adding

indexes on the tables used by the report queries. This somewhat helped but created

new performance issues with some other queries. By Tuesday, the problem was traced

back to the SAN microcode upgrade. The microcode was downgraded to fix the issue.

Had the DBAs known about the potential impact and extent of these environmental

changes before they were implemented, they could have made better decisions to mitigate the

risks posed by these changes. In the case of first scenario, DBAs could have asked for a full

load test on QA VM server or a clone of the production VM with the new OS patch so that

more realistic testing would have been possible. In the case of the second scenario, the DBAs

could have prepared themselves for switching to a standby database that used a different SAN

storage. Incorrect diagnosis and troubleshooting is expensive and error-prone. Also, these

events end up repeating themselves across time and systems. Furthermore, the human-driven

15

performance tuning task is repetitive, expensive, time-consuming and error-prone (Gil et al.,

2002; Oliveira et al., 2006; Wiese and Rabinovitch, 2009).

Although, there have been several developments in the area of autonomous as well as

semi-autonomous performance tuning research, they are limited in their use because they do

not holistically understand the problem space and the environment under which they operate.

These semi-autonomous and autonomous approaches adopt a narrow focus towards the

organizational database environment stack by focusing primarily on the database layer within

the environment stack. Furthermore, these approaches largely ignore the impact and the extent

of organization-specific environmental changes on the components of the stack. Predicting the

potential impact of environmental changes and knowing its extent before they are executed

can help human as well as autonomic tuners in proactively mitigating the risks posed by them.

So, how to accurately predict the potential impact and the extent of environmental changes

before they are even implemented or executed in an organizational database environment

stack?

Research Objectives

The objective of this project is to address the aforementioned problems:

1. By proposing a holistic autonomic tuning knowledge model that extends the existing

autonomic tuning knowledge reference model by incorporating the organization-

specific environmental change impact knowledge.

2. A theory based framework called “DECIPHER” that that not only acquires this

knowledge component but does so in a proactive fashion. This framework predicts the

potential impact of environmental changes and its dependencies by mining the

historical change information stored within the existing organizational incident

management data stores.

16

3. A new change pattern recurrence metric to identify the contexts in which change

impact prediction algorithms will be useful and to help identify the best subset of data

to use for change impact prediction model building.

The next six chapters provide the necessary background materials for this project. In

Chapter 2 an in-depth review of the existing approaches to the database tuning problem is

presented. This chapter also discusses the limitations of these approaches by adopting a

knowledge management perspective towards the tuning knowledge. Chapter 3 discusses the

research methodology used for the DECIPHER. Chapter 4 presents the relevant theoretical

foundations for DECIPHER. This chapter also discusses the functional design factors based

on the identified limitations with existing approaches that were covered in the Chapter 2.

Chapter 5 presents a detailed discussion of the implementation and evaluation of DECIPHER

using a real-world incident management system. This chapter discusses in detail the

algorithms and steps used for DECIPHER implementation and the questions that were used

for validating the accuracy of DECIPHER’s prediction. Chapter 6 presents the DECIPHER

evaluation results that demonstrate its accuracy as well as metrics for identifying conditions

under which the system will perform effectively. Finally, Chapter 7 presents an overview of

the contributions of this project and a discussion on the possible future directions for

DECIPHER.

17

CHAPTER 2

LITERATURE REVIEW

 This chapter presents an in-depth review of the existing approaches to the database

tuning problems. It begins with a review of the issues pertaining to the human-driven database

performance tuning from various perspectives. This chapter continues with an effort of to

formalize the existing tuning approaches and solutions by adopting a knowledge management

perspective towards the tuning knowledge. This chapter concludes with a discussion on the

missing knowledge component required for effective database performance tuning in modern

IT organizational environments such as private database clouds that are highly –integrated

and complex.

 Database performance tuning is one of the most significant, time-consuming and

repetitive tasks performed by the database administrators (DBAs) in order to meet the

organization-specific performance goals (Belknap, Dageville, Dias, and Yagoub, 2009;

Boughton, Martin, Powley, and Horman, 2006; Charvet, 2003; DBTA, 2009; Embarcadero-

Technologies, 2010; Oliveira et al., 2006; Wiese, Rabinovitch, Reichert, and Arenswald,

2008). The DBA’s that are able to perform such tuning successfully, efficiently and

consistently are expensive and increasingly harder to find (Chaudhuri and Weikum, 2006;

Krayzman, 2005; Schallehn, 2010; Sullivan, Seltzer, and Pfeffer, 2004; Wiese et al., 2008).

Furthermore, this task can also be error prone which can introduce system unpredictability or

even lead to system unavailability (Oliveira et al., 2006). Since organizations typically have

large number of database systems, the tuning task consumes most of the DBA’s time,

preventing them from focussing on strategic and long-term value adding organizational

initiatives (DBTA, 2009; Embarcadero-Technologies, 2010; Oliveira et al., 2006) .

 More and more organizations are embracing cloud computing technologies in the form

of private clouds to address their evolving business needs and reduce their operating costs.

18

But, organizational Information Technology (IT) environments in today’s rapidly evolving

digital economy undergo several changes fueled by factors like mergers, acquisitions,

explosive data growth, changing competitive landscape and long-term investments. As a

result, the private cloud environments within the organizations are becoming highly-

integrated, complex and very dynamic. Given the high server density of such database

environments, the potential impact of IT environmental changes to the systems becomes

significant and far-reaching. Human-driven database performance tuning under such

environments further exacerbates the aforementioned issues (Kotsovinos, 2011).

 In order to address the aforementioned issues of human-driven database performance

tuning, the focus adopted by existing research efforts can be broadly classified into

autonomous and semi-autonomous tuning approaches. These approaches are proposed as

potential solutions towards reducing or eliminating the need for human-driven performance

tuning from a maintenance, administration and resource consumption perspective (Chaudhuri

and Narasayya, 2007; Kephart and Chess, 2003; Shasha, 1992; Wiese et al., 2008).

Autonomous Tuning Approaches

 At a very high level, these approaches can be classified based on their integration

with the database and the temporal nature (how and when) of their tuning decision (Chaudhuri

and Weikum, 2006). This paper assumes a database as a relational database system that is

designed to function under all types of workloads. There are several specialized database

technologies and architectures that are designed for specific performance requirements that

are not considered in this paper. For more information on such technologies/architectures, see

Stonebraker et al. (2007) and Stonebraker (2010). Autonomous tuning approaches can be

broadly categorized into Tradeoff elimination-based (Vengurlekar et al., 2008), Feedback-

based (Herodotos Herodotou, 2010), Exploration-based (Sullivan et al., 2004), Model-based

(Chaudhuri and Weikum, 2006) and Hardware-based (Chaudhuri and Weikum, 2006;

Herodotos Herodotou, 2010; Krayzman, 2005; Schallehn, 2010; Shasha, 1992; Sullivan et al.,

2004). A high level summary of these approaches are shown in Table 1 below.

19

Table 1. Summary of Existing Autonomic Tuning Approaches

Tuning Pros and Cons References

Tradeoff

Elimination-Based

Pros: One-size-fits-all approach;

Very Flexible. Cons: Sacrificing

Optimal Performance for Flexibility;

close integration to database

internals.

Vengurlekar et al., (2008);

Chaudhuri and Weikum

(2006); Schallehn (2010)

Feedback-Based

Pros: Control-loop; pay-as-you-go

approach; Quick adaptability to

unseen or changing workload

situations. Cons: Time-consuming;

can introduce runtime

unpredictability.

Chaudhuri and Narasayya,

(2007); Wiese and

Rabinovitch (2009); Sullivan

et al., (2004); Kephart and

Chess (2003); Elnaffar et al.,

(2003)

Exploration-Based

Pros: Proactive; less runtime

overhead. Cons: Time-consuming

with large solution search space;

solutions cannot be generalized

across different database workloads.

Sullivan et al., (2004);

Ziauddin et al., (2008); Markl

et al. (2003); Lee and Zait

(2008); Brown et al.,(1996)

Model-Based

Pros: Statistical or Probabilistic

models to predict optimal parameters

for different workloads; can tune

several parameters or knobs. Cons:

Sullivan et al., (2004);

Chaudhuri and Weikum

(2006); Schallehn (2010)

20

Needs sufficient training data for

accurate prediction; difficult to

model for a complex system.

Hardware-Based

Minimal tuning; Minimal change to

the database objects or application

code. Cons: Expensive; unable to

handle all types of performance

issues.

Krayzman (2005); Mueller

and Teubner(2009); Bigus et

al.,(2000)

Tradeoff elimination-based approaches are based on the principle that if a policy or

high level parameter or knob provides near optimal results (sweet-spot) under unseen or

changing workloads then its low level knobs or parameters can be eliminated (Chaudhuri and

Weikum, 2006; Schallehn, 2010). The advantage of this approach is its one-size-fits-all

approach (Vengurlekar, Vallath, and Long, 2008). The disadvantage is the sacrificing of

optimal performance and also addition of some overhead at the expense of flexibility

(Chaudhuri and Weikum, 2006). Furthermore, this approach requires detailed understanding

of the low level parameters and their sensitivities (Chaudhuri and Weikum, 2006). Typically

these approaches are closely integrated to the database internals (Vengurlekar et al., 2008).

Feedback-based methodologies largely employ exploitation or control-loop or pay-as-

you-go approaches towards performance tuning. Such methodologies follow a step-wise

performance tuning approach wherein one parameter or knob or a policy is changed at a time

based on some pre-defined threshold value (Rabinovitch and Wiese, 2007; Sullivan et al.,

2004). Adaptability to workload changes is a key feature of such approaches (Elnaffar et al.,

2003; Kephart and Chess, 2003). These approaches typically use a feedback or control loop.

Such models aim to provide the autonomic managers within a database with the localized and

internal knowledge about its environment in order to make better tuning decisions. These

approaches are also online in nature , i.e., tuning is performed continuously (Schallehn, 2010).

21

 These approaches have advantages like quick adaptability to unseen or changing

workload situations without the need of much prior training (Brown, Carey, and Livny, 1996;

Chaudhuri and Narasayya, 2007; Chaudhuri, Narasayya, and Ramamurthy, 2008; Markl,

Lohman, and Raman, 2003; Sullivan et al., 2004). The disadvantage of such approaches is

that it cannot effectively handle issues that might require tuning of multiple parameters or

knobs simultaneously to resolve a performance issue (Sullivan et al., 2004). Furthermore, this

architecture has a runtime overhead in situations where several iterations are needed to find an

optimal solution (Sullivan et al., 2004). Moreover, in such situations the system usually does

not know when an optimal situation or critical value has been reached (Herodotos Herodotou,

2010; A. W. Lee and Zait, 2008; Sullivan et al., 2004). The feedback –based approaches could

also introduce runtime unpredictability (Herodotos Herodotou, 2010; Ziauddin, Das, Su, Zhu,

and Yagoub, 2008). These approaches are also closely integrated to the database system

(Chaudhuri and Weikum, 2006; Markl et al., 2003).

Exploration-based methodologies utilize explorative or comparison-based approaches

wherein comparisons can be made proactively or even reactively with past measurements of

parameters or knobs in order to reach an optimal value using an empirical or experimental

exploration process (Herodotos Herodotou, 2010; Sullivan et al., 2004). These approaches are

static in nature , i.e., tuning is not performed continuously but initiated by the database system

(Schallehn, 2010). The advantage of such approaches are that they can have less runtime

overhead as the exploration or comparison process can be done off hours or on an

experimental or sandboxed environment (Herodotos Herodotou, 2010; Sullivan et al., 2004;

Ziauddin et al., 2008). Furthermore, this approach can avoid runtime unpredictability

(Ziauddin et al., 2008). The disadvantages of such approaches are that the exploration or

search process can be very time-consuming in situations where the search space of potential

solutions is very large (Sullivan et al., 2004). Furthermore, the solutions in this approach

cannot be generalized for all workload situations, especially the unseen ones (Sullivan et al.,

2004). In this approach the decision-making and execution of the tuning decision can be de-

coupled with the database system and can also be supported by external tools (Chaudhuri and

Weikum, 2006; Schallehn, 2010).

22

Model-based methodologies usually employ approaches that use probabilistic or

statistical models that can predict the database system’s performance under various workload

situations (Sullivan et al., 2004). These approaches are also static in nature , i.e., not

performed continuously but initiated by the database system (Schallehn, 2010). The

advantages of such approaches are that they have low runtime overhead since they do not

actually need to test the solution (Sullivan et al., 2004). Furthermore, these models can

effectively handle issues that require tuning of multiple parameters or knobs simultaneously

to resolve a performance issue (Sullivan et al., 2004). The disadvantage of such approaches

are that they need sufficient training data for accurate prediction (Sullivan et al., 2004).

Moreover, data collection process to train the model can have runtime overhead (Sullivan et

al., 2004). Also, in this approach the decision-making and execution of the decision can be

de-coupled with the database system and can also be supported by external tools (Chaudhuri

and Weikum, 2006; Schallehn, 2010). Model building of a complex system can also be a

challenge with this approach (Sullivan et al., 2004).

 Hardware-based methodologies employ solutions that involve hardware upgrades or

hardware accelerators to improve the performance of a database system (Chaudhuri and

Weikum, 2006; Krayzman, 2005; Mueller and Teubner, 2009). Advantages of these type of

approaches are that these can provide more system resources to a performance problem

without having to change the database objects or application code (Krayzman, 2005; Mueller

and Teubner, 2009). The disadvantages of such approaches are higher costs and inability to

handle all types of performance issues (Bigus, Hellerstein, Jayram, and Squillante, 2000;

Krayzman, 2005).

23

Semi-Autonomous Tuning Approaches

 There are very few research efforts that focus on combining autonomous tuning

approaches with the human knowledge. Sullivan, et al., (2004) research proposes a

probabilistic reasoning approach as part of a model-based tuning approach to automate

software tuning in general. The author in this research proposes that the domain experts with

detailed knowledge of internal workings of a system construct initial models for inter-

dependent low level system functions in order to attain the desired performance goal. These

models can be trained under various workloads to automatically handle tuning of various

knobs to achieve the desired tuning goals. Such an approach can be a very challenging task to

do for today’s database systems given their internal complexity. Also, this approach solely

focuses on tweaking or tuning of so called knobs or parameters and may not work for

performance issues that either do not have tunable knobs or may require tuning that is

applicable to other components within a database environment, e.g., application, database,

operating system, network, and storage and system hardware.

 Rabinovitch (2009) research formalizes the DBA’s database-specific tuning

knowledge into textual information called “tuning plans” and saves them in a best practice

repository. Policies are then used to activate or deactivate these plans to address the

performance problem as part of feedback-based tuning methodology. Other approaches in this

category focus on the human database tuner user either reviewing the solutions provided by

the autonomous approaches or providing higher level workload-specific goals or policies

(Herodotos Herodotou, 2010; Ziauddin, Das, Su, Zhu, and Yagoub, 2008).

24

Limitations with Existing Approaches

Since performance tuning is a knowledge-intensive task, the component based

reference tuning knowledge model proposed by Wiese and Rabinovitch (2009) can be used to

formalize the existing autonomous and semi-autonomous tuning approaches and help us better

understand the limitations of these approaches. Furthermore, this model adopts a generic

view of the database system making it effective to formalize across various database

technologies and architectures.

This model lays out the knowledge components required for successful database

performance tuning in an environment under control. In this layered model, shown in Figure 2

below, each knowledge component builds on top of the each other. The most general

knowledge is at the bottom and the very specific knowledge is at the top. Figure 2 is an

adaptation of Wiese and Rabinovitch (2009) autonomic tuning knowledge reference model.

Figure 2. Autonomic Tuning Knowledge Reference Model

This autonomic tuning knowledge reference model divided into two parts – Object

level that represents the environment under control and meta-level that represents the

25

knowledge components. The autonomic tuning knowledge reference model, as shown in

Figure 2, has following components (Wiese and Rabinovitch, 2009):

1) Database Workload Knowledge: The foundational knowledge component of this

model is the database workload knowledge. This model considers workload changes

as the only source of changes in a database environment. In fact, this knowledge

component is considered as the “surrounding and influencing environment” for the

database system. The model also views this knowledge component as non-modifiable

and is constantly changing, e.g., online transaction processing or batch processing or a

hybrid of these two. This knowledge component is the most general compared to

others and can be autonomously obtained through myriad of approaches and tools.

Furthermore, many modern database systems have the basic instrumentation in their

kernels to capture and process their workload (Markl et al., 2003; Shasha, 1992).

2) Tuning Policy Knowledge: This knowledge component builds on top of the workload

knowledge component and refers to the specific knowledge of resources that need to

be monitored or changed along with their specific thresholds and user-defined

performance goals. Even in a fully autonomic system, the DBAs would be required to

define or update new policies that control the behavior of autonomous managers

(Herodotos Herodotou, 2010). Hence this knowledge component falls under semi-

autonomously acquired knowledge category.

3) Problem Resolution Knowledge: This knowledge component builds on top of the

tuning policy knowledge component and refers to the database specific procedural

knowledge regarding the actions needed to resolve the performance problem. This

knowledge component can be viewed as a recorded or codified reaction to a particular

performance problem that happened in past or is current or may occur in future.

Designing such a plan or action may need human intervention depending upon the

nature of the problem (Ziauddin et al., 2008).

26

4) Problem Diagnosis Knowledge: This knowledge component builds on top of the

problem resolution knowledge component and refers to best practices used by DBAs

to diagnose or troubleshoot performance problems. This knowledge component can be

considered analogous to the standard operating procedures that are designed and

maintained by experts (Wiese et al., 2008).

5) Database Internal Knowledge: This knowledge component builds on top of the

problem diagnosis knowledge component and refers to the expert knowledge of

internal workings of a database system components and understanding of their inter-

dependencies and inter-reactions. This is the most specific form of knowledge as it

requires understanding of the underlying database technology, configuration, and

hierarchy of system components, their behavior, construction and their complex

interdependent cause-effect relationships. In most cases, this knowledge component is

acquired through a human expert (Sullivan et al., 2004).

Based on this understanding of the tuning reference knowledge model, the gaps within the

existing research literature can be broadly classified into the following areas:

a) Narrow Focus of the Database Environment Stack: Existing tuning approaches do

not account for the constantly changing and highly-integrated nature of today’s

database environments such as private database clouds. Existing approaches focus

primarily on the database layer of the database environment. As highlighted in Figure

1, the database environment has several layers and changes to any of these layers can

have an effect on the performance of the databases. Hence we need to consider a more

holistic view of the database environment.

b) Lack of Organization Specific Focus: Every organization has its own unique

database environment stack, its specific change cycles and service level requirements.

Hence we need to consider an approach that adapts to these organization-specific

requirements.

27

c) Workload-specific focus: As evident from Figure 2 above, the foundational

knowledge component for the existing autonomous and semi-autonomous tuning

approaches is the workload knowledge. These approaches do not account for changes

that organizational database environments typically go through that have an effect on

the performance of its database systems, e.g., the addition of disks of different speeds

to an existing storage system on a database server could result in hotspots for database

reads resulting in performance degradation, or an operating system patch upgrade

causes memory issues that in turn have an adverse impact on the database’s

performance, or a firewall network change causes network latency resulting in

connection slowness, or timeouts for database applications. Hence, it is crucial that

we consider the knowledge of impact and extent of environmental changes within the

stack besides just the workload changes.

d) Lack of Focus on Proactive Problem Resolution Knowledge: Most of the

autonomous as well as semi-autonomous tuning approaches adopt a reactive approach

towards acquiring problem resolution knowledge. In organizational settings,

following factors typically come into play in human-driven performance situations

that influences the tuning task and its outcome:

1) Aggressive tuning deadlines: Speedy and timely requirement of information

from the database systems dictates the aggressive deadlines for the tuning

tasks. As a result, this task becomes cognitively taxing for the DBAs.

2) Performance tuning costs: These are the opportunity costs that an organization

incurs as a result of the performance problem. This is also responsible for

aggressive deadlines and making the tuning a cognitively taxing task for the

DBAs.

3) Environmental change impact uncertainty: This is the result of complexity and

density of the database environment stack as shown in figure 1. This

28

uncertainty makes the troubleshooting of the performance problem a

challenging task.

Performance tuning under such factors could result in incorrect diagnosis and error-

prone tuning (Endsley, 1995; Oliveira et al., 2006). Hence, acquiring the problem

resolution knowledge specific to the environment, i.e., the knowledge of impact and

extent of environmental changes proactively , i.e., before the changes are even

implemented could minimize the impact of some of these adverse effects.

Figure 3. Holistic Tuning Knowledge Reference Model

 Based on these limitations the tuning knowledge reference model proposed by Wiese

and Rabinovitch (2009) can be extended to incorporate the Environment Change Impact

Knowledge (ECIK) as shown in grid pattern in Figure 3 above. This knowledge component is

referred to as the impact and extent of environmental changes. This extended knowledge

model holistically represents the problem space and environment for today’s organizational

database environmental stacks.

29

CHAPTER 3

RESEARCH METHODOLOGY

 This chapter discusses the research methodology used for the DECIPHER. It begins

with a discussion on Design Science research methodology and the reason for using it for the

DECIPHER. This chapter then continues the discussion presenting the Design Science steps

for DECIPHER that lays the foundation for the design, development and evaluation of

DECIPHER. It concludes with a diagram that summarizes the overall Design Science

approach adopted for DECIPHER.

Design Science Research Methodology

 This research utilizes the Design Science research methodology since it is a

fundamentally problem-solving paradigm aimed at designing artifacts that solve identified

organizational problems (Hevner, March, Park, and Ram, 2004; Peffers, Tuunanen,

Rothenberger, and Chatterjee, 2007). Also, since the motivation for this research also

originated from the observation of the problems related to human-driven database

performance tuning at author’s workplace, a problem-centered approach was taken towards

research design (Blakey and Atkins, 2008; Peffers et al., 2007). Using this research

methodology enables us to exploit the design process as an opportunity for learning and

further advancing our understanding of the problem (Blakey and Atkins, 2008).

 In the design science research methodology, design is both a process and a product.

This research methodology is characterized by two fundamental research activities – build

and evaluate. Build activity refers to building of the DECIPHER framework that address the

aforementioned problem and the evaluate activity refers to its evaluation of the framework

30

with respect to its ability in addressing the identified problems (Blakey and Atkins, 2008;

Hevner et al., 2004). Following are the steps that were taken during the course of this research

(Blakey and Atkins, 2008; Peffers et al., 2007):

a) Problem Identification and Motivation: A detailed and extensive analysis of

database performance tuning literature on the current solutions, approaches and future

trends was conducted. This highlighted the problems and challenges that the DBA’s

are facing within the organizations and also reinforced the author’s observation of

these problems at his workplace. The knowledge gained from this step was

fundamental to the extension of the existing tuning knowledge reference model and

also artifact design process and also in ensuring the justification of the potential value

of the proposed solution. The research question that came out of this step is - How to

accurately predict the potential impact and the extent of environmental changes before

they are even implemented or executed in an organizational database environment

stack?

b) Objectives of the Solution: The objective of the solution is to provide a capability to

accurately predict the potential impact of environmental changes and identify the

extent of the impact before the changes are even implemented or executed from all

layers of the database environment stack

c) Design and Development: This entails theory based design of framework called

“DECIPHER” (Database Environmental Change Impact Prediction in Human-driven

Tuning in Real-time) that not only acquires this knowledge component but does so in

a proactive fashion. This framework predicts the potential impact of environmental

changes and identifies its dependencies by mining the historical change information

stored within the existing organizational incident management data stores. The

development process involved implemention of the data processing algorithms to

prepare the unstructured incident management data, the implementation of predictive

text mining and similarity matching algorithims. Also, a new change pattern

recurrence metric is developed to identify the contexts in which change impact

31

prediction algorithms will be useful and to help identify the best subset of data to use

for change impact prediction model building.

d) Evaluation: The evaluation involved a prototypical implementation and validation of

the DECIPHER framework against a real-world organizational incident management

data store. This step involves validating the accuracy of the prediction of the

environmental change impact and also the accuracy of identification of the extent of

impact of the dependencies that unimplemented change have on other factors within

the database environment stack.

Figure 4 is an instantiation of Peffers, et al., (2007) design approach.

32

Figure 4. Research Methodology for DECIPHER

Research Data

The implementation of DECIPHER uses a real-world incident management system

called “Request Tracker” (RT) used by a medium sized organization and Oracle data miner as

the text-mining mining tool. This medium-sized organization has close to 5000 employees

worldwide and on average experiences 200-300 IT environmental changes per month. These

environmental changes range for simple changes like resetting password for users that have

forgotten their passwords to complex changes like upgrading a critical software system or

migrating systems from one data center to another. A single unit of work is typically captured

in the form of a “Ticket” within an incident management system. Appendix B shows the

33

webpage with the fields for a typical change management ticket. Changes within a ticket of

an Incident Change Management system have the following fields that capture the

environmental change information:

1) Ticket #

2) Queue

3) Ticket Subject (Text)

4) Change Purpose (Text)

5) Creator of the ticket

6) Owner of the ticket.

7) Approver of the ticket.

8) Last Update User

9) Start Date

10) End Date

11) Classification (Regulatory Compliance)

12) Line of Business

13) Work-plan for the change (Text).

14) Impact (High or Medium or Low).

34

15) Impact Description (Text)

16) Back-out plan (Text).

17) General Comments/Notes (Text)

A screenshot of RT’s user interface for the organization under study is shown in

Appendix B. Impact field has the typical change management impact values , i.e., “Low”,

“Medium” and “High”. The change information within the incident management system is

stored in unstructured or textual format. For this research, tickets from 2008 -2011 are

considered. This duration resulted in 11,118 unique change tickets and the average word

count per ticket after the linguistic preprocessing stage of DECIPHER is ~ 40. The breakdown

of the number of distinct words for the above change ticket’s text fields is shown in Table 2.

The distinct word count does not include the words that are on the stop list.

Table 2. Distinct Words for Text Ticket Fields for 2008-2011

Ticket Field Distinct Word

Count

Average Word

Count

1 Ticket Subject 3086 5

 Change Purpose 3638 8

2 Workplan 3059 7

 Backout Plan 1882 2

 Impact Description 3008 5

A General Comments 2324 2

The incident management data stores has environmental changes from all support

team workflow queues that maintain a specific component of the IT environment, e.g.,

hardware, network, operating system etc as shown in Figure 1 so that change information

35

from all the layers of the environment is taken into account. This collection of change

information is referred in this research as Change Information Corpus. This is shown in

Figure 5 below. Most incident management systems have a specific field that is used to enter

perceived impact. Usually, it has values like “Low”, “Medium”, and “High”. Table 3 lists the

ticket count breakdown by queues within the incident management system.

Table 3. Ticket Counts by Queue for 2008-2011

Queue Ticket Count

1 Users 1536

 Apps 1252

2 Network 2081

 Storage 1408

A Hardware 1379

 Operating System 1214

T Database 2248

36

Figure 5. Organizational Change Information Corpus

37

CHAPTER 4

THEORY AND DESIGN

This chapter presents the relevant theoretical foundations for DECIPHER and an in-

depth discussion of its design. This chapter has two main sections – DECIPHER theoretical

foundation and DECIPHER design. DECIPHER theory section begins with a discussion of

the autonomic tuning reference architecture that highlights the role and the importance of

knowledge management in database performance tuning domain. This section then continues

with an explanation on the incident management systems and their role as the source for

acquiring the Environmental Change Impact Knowledge. The DECIPHER design section

presents a detailed explanation of the DECIPHER design architecture, including its

component and concludes with a diagram on the DECIPHER’s process flow.

Theoretical Underpinnings of DECIPHER

Since database performance tuning is a knowledge intensive task, a knowledge

management perspective is well-suited approach for the proposed solution. The knowledge

driven autonomic reference architecture proposed by Kephart and Chess (2003) provides an

ideal holistic theoretical model for database performance tuning process. This process applies

to both autonomous as well human-driven tuning approaches. This model is inspired by the

biological autonomous human nervous system(Bell, 2004).

According to this architecture, the knowledge is the central component and should

provide a common and shared understanding of the environment and problem space (Bell,

2004; Miller, 2005). The two main components of this architecture are the managed element

(ME) and the autonomic Manager (AM). The autonomic manager is a unit that employs the

autonomic functionality for a dedicated autonomic system management function. For

example, in the database system, the query optimizer can be an autonomic manager

38

responsible for database query optimization function (Markl et al., 2003). The managed

element can be a software or hardware resource. Typically, one or more AM’s exists within

an autonomic system.

Figure 6. Knowledge-Driven Autonomic Reference Architecture

The high level architecture is shown in Figure 6. This diagram is an adaptation of the

autonomic computing architecture proposed by Kephart and Chess (2003). As shown in

Figure 5, the sensor collects and retrieves information about the current state of the

environment stack then compares it with expectations that are held in knowledge base. The

required action is executed by the effecter.

In case of human-driven tuning, the DBA can be viewed as the AM. According to the

tuning reference architecture shown in the Figure 6, there are four knowledge functions that

come into play (Corp, 2005; Kephart and Chess, 2003):

1) Monitor: The monitor function is responsible for collecting the event details from the

managed element and organizing them as symptoms using the knowledge base.

Specifically, the monitor function aggregates, correlates and filters the information.

39

2) Analyze: The analyze function utilizes the knowledge base in order to analyze the

event symptoms presented by the previous monitor function by correlating and

modeling the complex situations to better understand the problem space and the

environment. This is the key knowledge-intensive step for the MAPE.

3) Plan: After the event is identified and analyzed, the plan function structures the

actions using the knowledge base that are needed to achieve the goal and objectives.

4) Execute: This function is responsible for changing the behavior of the managed

element via the effectors using the knowledge base.

Design of DECIPHER

In the context of database performance tuning knowledge components, let us

understand how this MAPE cycle works. Figure 7 below shows the instantiation of the

autonomic architecture proposed by Kephart and Chess (2003) to include the complete

database environment stack from Figure 1 and the extended knowledge model from Figure 3.

40

Figure 7. Reactive Knowledge Driven Autonomic Tuning Architecture

The tuning process can be described using the four MAPE knowledge processes as

following (Bell, 2004; Kephart and Chess, 2003; Miller, 2005; Wiese and Rabinovitch, 2009):

5) Monitor: The step involves identifying the existing performance problem. This step

utilizes the environmental change impact, database workload and tuning policy

knowledge components.

6) Analyze: This step is the key knowledge intensive step of M-A-P-E. It involves

troubleshooting or diagnosing the performance problem, e.g., enabling query tracing

for poor performing application queries. This step utilizes the environmental change

impact, database workload, problem diagnosis, tuning policy and database internals

41

knowledge components. This step is also responsible for predicting the impact of

changes (workload as well as environmental) and the dependencies of the impact on

other environmental factors from a database performance perspective (Bell, 2004;

Wiese and Rabinovitch, 2009).

7) Plan: This step involves coming up with a plan for actions that need to be taken to fix

the performance problem, e.g., adding indexes. This step utilizes the environmental

change impact, database workload, tuning policy, database internals and problem

resolution knowledge components.

8) Execute: This step involves the execution of the plan to carry out the actions. This

step utilizes the problem resolution knowledge component.

 Most organizations use some or other form of an organizational incident management

data store (help desk system or trouble ticketing system) to manage the changes to their

Information Technology (IT) environment, including the database environments (Hass, 2003).

Changes to any production IT environment component, e.g., operating system, hardware, and

database, referred to as change management process, are facilitated by these systems (Conradi

and Westfechtel, 1998). Furthermore, the increase of regulatory compliance needs (, e.g.,

Sarbanes-Oxley) have also pushed for a wider adoption of change management processes and

tools for achieving better traceability(Chen, Kurtz, and Lee, 2009).

 Typically, the organizational incident management data stores have vast amount of

information about the changes to the organizational IT environment in unstructured form like

notes or comments, e.g., “added more memory to a database server to increase system

performance” or “changed kernel parameters for the operating system to fix swapping

issue”. Before a change is executed in production environments, they go through some form

of formal or informal approval process. The approver for these change requests is typically

the business owner or the stakeholder responsible for the target system. Change requests

typically include information about the change purpose, date of their execution, the change

42

work plan, perceived impact and a plan for reversing the changes if they result in any issues.

This process is depicted in Figure 8 below.

Figure 8. High Level Change Management Process

43

To highlight the contributions of this research, Figure 9 below shows the DECIPHER

framework along with the database environment stack. This figure depicts the extension of the

tuning knowledge reference model to include the environment change impact knowledge that

is proactively extracted from the change information stored within organizational incident

management data stores.

Figure 9. Overview of DECIPHER

At the core of DECIPHER are two major modules – Impact Prediction Module (IPM)

and Impact Extent Identification Module (IEIM). A high level DECIPHER architecture is

shown in Figure 10 below.

44

Figure 10. High Level DECIPHER Architecture

Let us look at each of these modules in detail.

Impact Prediction Module (IPM)

The core function of IPM is predicting the potential impact for environmental changes

that have not yet been implemented in real-time. More than 85% of data within enterprises is

stored in unstructured formats like web pages, emails, spreadsheets, digital images and videos

(Guduru, 2006). Organizational incident management data stores such as help-desk or a

trouble ticketing systems are such types of unstructured or textual data stores that store rich

information on changes that organizations undergo. Unfortunately, mining of such types of

stores efficiently and accurately has always been a challenge. The process of extraction of

previously unknown and potential useful knowledge from large unstructured textual

collection is typically referred to as Text Mining (Dumais, 1998; Landau et al., 1998). Text-

45

mining differs from traditional data mining in two major ways. Two such main differentiators

are (Guduru, 2006; Landau et al., 1998) :

1) Special linguistic pre-processing is required to extract key terms from the textual

collection. Furthermore, text mining process are also required to handle word

ambiguities such as spelling mistakes, pronouns, synonyms, acronyms etc.

2) Several of the existing data mining algorithms do not work on textual or

unstructured data that typically high dimensionality.

Impact Prediction Module (IPM) design at a high level involves two main steps – Data

Extraction and Term-Extraction. Data Extraction step involves use of open source Extraction,

Transformation and Load (ETL) tools that extract unstructured change data from various data

sources without imposing rigid data format restrictions. Furthermore, these tools offer out-of-

the-box data quality and profiling features that makes it easy to implement DECIPHER under

various organizational settings. Specifically, this research uses TALEND tool that achieves

this task using intuitive graphical interface (Majchrzak, Jansen, and Kuchen, 2011). The

textual change information from historical organizational incident management data stores for

all environment support workflows data stores, e.g., hardware, network, operating system etc.

so that change information from all the layers of the environment is taken into account for

IPM. This collection of change information is referred in this research as Change Information

Corpus.

Most incident management systems have a specific field that is used by the change

executor to enter perceived impact. Usually, it has values like “Low”, “Medium”, and “High”.

IPM considers this impact field is dependent or target attribute and all other fields as

Independent or predictor variables. Once the data is extracted, IPM’s term-extraction process

performs the linguistic pre-processing to extract key terms. This process involves tasks such

as removing stop-words, stemming and term-weighting. The terms from this process are fed

to the predictive text mining algorithms to create an impact prediction model. This predictive

46

model can then be used to score new changes. This processing is explained in detail in the

IPM implementation section in the next chapter.

Another key design requirement for IPM is scoring performance, i.e., how fast IPM

can predict the potential impact of new environmental changes. Modern organizations

undergo a very large amount of IT environmental changes (Forrester, 2007). Furthermore,

since text mining process is a computationally expensive and a time-consuming approach, it

needs to produce accurate results in short period of time in order to be practically feasible

under environments with very high numbers of changes. From a design perspective, this

implies that the IPM algorithms and the method of processing large amounts of textual data

needs to be scalable as well as efficient. This design requirement is met by using in-database

text mining architecture. In-database mining avoids the traditional data or text mining step of

moving of data between the source system and compute environment. Furthermore, using the

massively parallel architectures of database engine, and its advanced memory management

techniques, DECIPHER’s text-mining algorithms can be processed efficiently and closer to

the data (Inchiosa, 2011; Oracle, 2011a). Figure 11 below shows the high-level IPM process

flow.

47

Figure 11. High-Level IPM Process Flow

Impact Extent Identification Module (IEIM)

The core function of IEIM is that of identifying the potential extent of impact of

change factors that are not yet implemented. In order to achieve this, relevant change features

need to be extracted from change terms. IEIM uses feature extraction algorithm on the change

terms from the IPM processing to create feature sets consisting of semantically related

features (Solka, 2008). This is described in detail in the IEIM implementation section in the

next chapter. These feature sets are saved in a repository.

In order to identify the potential extent of impact of changes factors, the

unimplemented change tickets first undergo data and term extraction process as explained

above. These new change terms are then scored for impact prediction by IPM. The change

48

factors with high and medium predicted impact are matched for similarity against the factors

from the saved feature sets. The feature set that has change factors with the high values of

similarity match with new change factors represent the feature set with other potential change

factors that have dependencies with the unimplemented change factors. In other words, this

feature set has change factors that represent the potential extent of the impact of

unimplemented change factors. For example, a new or unimplemented ticket that has change

factor for a software application called ERP_HR would be match with historical change

factors stored in IED. The feature set that has highest match with this factor will be returned

along with its semantically related change factors like applications such as time_management

or performance_management that would be dependent on ERP_HR. This knowledge of the

potential impact and the dependent factors represent the Environmental Change Impact

Knowledge (ECIK). Similar to IPM, scoring performance of IEIM is also important, i.e., how

fast IEIM can identify the potential dependent change factors based on the new

unimplemented environmental changes. From a design perspective, this implies that the IEIM

algorithms and the method of processing large amounts of textual data need to be scalable as

well as efficient. This design requirement is met by using in-database feature extraction and

matching architecture. In-database feature extraction avoids the step of moving of data

between the source system and compute environment. Furthermore, using the massively

parallel architectures of database engine, and its advanced memory management techniques,

DECIPHER’s feature extraction and matching algorithms can be processed efficiently and

closer to the data (Inchiosa, 2011; Oracle, 2011a). Figure 12 below shows the high-level IEIM

process flow.

49

Figure 12. High-Level IEIM Process Flow

In order to summarize, the core design of DECIPHER framework is influenced by functional

requirements listed in Table 4 below.

50

Table 4. Overview of DECIPHER Functional Design Requirements

Limitations with

Existing Solutions

Solution Objectives Theory Features/

Functionality

1) Existing

approaches have

no capability of

knowing the

environmental

changes to the

organizational

database

environment

stack

2) Existing

approaches

consider

database layer as

the only source

for changes

within the entire

organizational

database

environment

stack

3) Existing

approaches do

1) The proposed

solution needs to

have the

capability of

knowing

environmental

changes to the

organizational

database

environment

stack

2) The proposed

solution needs to

consider all layers

(, e.g., hardware,

network,

operating system

etc.) as source for

changes within

organizational

database

environmental

stack

1) The tuner’s

knowledge

base is the

central

component

and should

provide a

common and

shared

understanding

of the whole

environment

Kephart and

Chess (2003)

and Wiese

and

Rabinovitch

(2009)

2) The tuner

knowledge

base should

also provide a

common and

shared

1) IPM’s data

extraction step

extracts

environment

change

information

stored within

the

organizational

incident

management

data stores

2) IPM’s data

extraction step

extracts change

information

from all

organizational

environment

work flows

stores (, e.g.,

hardware,

network,

operating

51

not have

capability of

knowing the

impact of an

environmental

change

4) Existing

approaches do

not have

capability of

knowing the

extent of the

impact of an

environmental

change

3) The proposed

solution needs to

have the

capability of

knowing the

potential impact

of an

environmental

change

4) The proposed

solution needs to

have the

capability to

identify the

potential extent of

an environmental

change impact

understanding

of problem

space (, e.g.,

organization-

level) Kephart

and Chess

(2003) and

Wiese and

Rabinovitch

(2009)

3) The analyze

step of M-A-

P-E is

responsible

for predicting

the impact of

changes to the

environment

Kephart and

Chess (2003)

and Miller

(2005)

4) The analyze

step of M-A-

P-E is

responsible

for predicting

the

dependencies

system etc.)

stored within

the

organizational

incident

management

data stores.

3) IPM predicts

the potential

impact of

unimplemented

environmental

changes based

on the

historical

change

information

stored within

the incident

management

data stores.

4) IEIM identifies

the potential

extent or the

dependencies

for

unimplemented

changes

52

of the impact

of changes to

the

environment

Kephart and

Chess (2003)

and Miller

(2005)

A high Level process flow for DECIPHER is shown in Figure 13.

Figure 13. High Level DECIPHER Process Flow

53

As seen from the above DECIPHER process flow diagram, there are two streams of

processing. On the left hand side, we have the IPM model build and IED build steps. This

process stream is responsible extracting the change information from the historical change

information corpus based on a specific change time duration and building an IPM impact

prediction model after the change information goes through the term extraction process. These

terms then go through the feature extraction process. The features along with their feature sets

get stored in an Impact Extent Database (IED). This database also stores features that are

specific to the database queue.

The right hand side processing stream in Figure 13 shows the scoring and matching

features of DECIPHER. In this stream, the new unimplemented change requests undergo the

same term extraction processing before scoring. During scoring stage, the IPM model built as

part of left hand side processing stream is used to score the new terms. Once these are scored,

a decision is made based on the predicted level of impact. For the change factors or terms that

have the predicted impact of “Low” are ignored because they represent a localized impact. If

the IPM model prediction is “Medium” or “High” then additional processing is done.

The change factors or terms that have “Medium” or “High” predicted impact level

undergo feature extraction process. The extracted features are probabilistically matched with

factors stored within IED to determine which feature sets have the maximum match. The

feature set that has the maximum match with the new features are returned by the matching

process along with their features ranked in order of their coefficients. This feature set

contains the factors that are dependent on the new implemented change factors. From this

feature set, the features that belong to the database queue are returned. These represent the

database dependent change factors.

54

Change Pattern Reoccurrence

This research proposes a new change pattern recurrence metric to identify the contexts

in which change impact prediction and matching algorithms will be useful and to help identify

the best subset of data to use for change impact prediction model building, matching and

scoring.

As shown in Figure 13, there are two streams of processing that represent two

different data sets. If the left hand side processing represents the historical data set Cj and the

right had side processing represents the new data set Ci then the pattern reoccurrence can be

calculated as:

In the above metric, n is the number of NMF feature sets and m is the number of

unique change factors from Cj. The similarity calculation is part of the similarity matching

processing shown in Figure 13. This pattern reoccurrence values are stored in IED. The

metric can be used for two things:

1) Understanding the extent of reoccurrence of environmental changes over period of

time

2) Selection of the optimal change time duration as represented by the “Select Change

Time Duration” step in the Figure 13. Selecting the optimal change time duration will

help in reducing the data set sizes thereby expediting the data processing, model

building, and model scoring and matching processes. This is very crucial in IT

environments that undergo large amount of IT environmental changes.

55

CHAPTER 5

IMPLEMENTATION AND VALIDATION

This chapter presents a detailed discussion of the implementation and evaluation of

DECIPHER using a real-world incident management system in a medium sized organization.

This chapter is divided into two main sections – DECIPHER implementation and DECIPHER

validation. The implementation section begins with the background information on the

incident management system used by a medium sized organization and the text mining tool to

implement DECIPHER. This chapter then continues with an in-depth discussion on the

algorithms, their parameters and steps used by the DECIPHER modules. The validation

section of this chapter begins with a discussion on the data sets for DECIPHER modules and

the questions that were used for validating the accuracy of DECIPHER’s prediction.

DECIPHER Implementation

 In this section we will review the implementation details for DECIPHER. The

implementation of DECIPHER uses a real-world incident management system called

“Request Tracker” used by a medium sized organization and Oracle data miner as the text-

mining mining tool. This organization has close to 5000 employees worldwide and on average

experiences 200-300 IT environmental changes per month.

Request Tracker

Request Tracker (RT) is an open source web-based incident and a workflow

management system that has been widely used by several organizations ranging from fortune

500 companies to government agencies under various implementations like bug-tracking,

help-desk system, change management etc. (Practical, 2011). Its simplicity, extensibility and

56

ease of customization with general public license (GPL) make it an ideal and powerful issue

tracking tool for many organizations.

A single unit of work is captured as a “Ticket” within Request tracker. Change

Management system’s typically have the following fields that capture the change information:

1) Ticket #

2) Queue

3) Ticket Subject (Text)

4) Change Purpose (Text)

5) Creator of the ticket

6) Owner of the ticket.

7) Approver of the ticket.

8) Last Update User

9) Start Date

10) End Date

11) Classification (Regulatory Compliance)

12) Line of Business

13) Work-plan for the change (Text).

57

14) Impact (High or Medium or Low).

15) Impact Description (Text)

16) Back-out plan (Text).

17) General Comments/Notes (Text)

A screenshot of RT’s change request user interface for the organization under study is

shown in Appendix B. Impact field has the typical change management impact values , i.e.,

“Low”, “Medium” and “High”. From the DECIPHER model building perspective, the impact

field is dependent or target attribute. Every ticket has a unique identifier that is represented

by the Ticket # field. As part of the implementation, this field is referred as case_id. All other

variables are Independent or predictor variables. Request tracker also has the ability to

connect to any leading database for storing the change information. In this implementation,

the relational store that has the RT information is Oracle RDBMS. Given that the change

information data was already available within an Oracle database, using Oracle data miner

was the natural and convenient choice.

Oracle Data Miner

 Oracle Data Miner is a free User Interface (UI) extension to Oracle’s free Integrated

Development Environment (IDE) – SQL Developer. The screen shots of Data Miner/SQL

Developer are shown in Appendix D section. The strength of the tool is its ability in providing

knowledge discovery using native SQL functions right inside the database. Furthermore,

Oracle data miner provides powerful algorithms for both structured and unstructured data.

DECIPHER’s text mining algorithms and its pre-processing steps are implemented using

Oracle Data Miner tool. The reasons for choosing this tool are two-fold:

58

1) The Request Tracker’s database used by the organization in this study is an Oracle

database which makes it convenient and efficient for the implementation because the

data does not have to be moved from the source to the compute environment.

2) Oracle data miner provides a powerful suite of battle-tested text-mining algorithms

that support in-database knowledge discovery and out-of-the-box scalability (Oracle,

2011a). One of the design requirements for IPM and IEIM is the need for high

performance model building and scoring. Oracle data miner’s in-database text mining

architecture helps in that regard. Oracle’s in-database mining avoids the traditional

data or text mining step of moving of data between the source system and compute

environment. Furthermore, using the massively parallel architectures of Oracle’s

database engine, and its advanced memory management techniques, DECIPHER’s

text-mining algorithms can be processed efficiently and closer to the data (Inchiosa,

2011; Oracle, 2011a). Furthermore, Oracle’s grid database architectures provide the

flexibility for organizations to scale out based on their business needs (Hamm and

Burleson, 2006; Serpa, Roncero, Costa, and Ebecken, 2008).

Oracle data miner has a workflow-driven UI and in a workflow, each element is

represented by a graphical icon called “node”. Each node has a specific function along

with its properties. These nodes when linked together form a modeling process to solve a

specific data mining problem. Nodes and links can be simply dragged and dropped from

the component palette. The component palette is shown in the Appendix D. Next, let us

review the implementation details of DECIPHER modules – Impact Prediction Module

(IPM) and Impact Extent Identification Module (IEIM).

Impact Prediction Module (IPM):

At a high level, the IPM implementation involves three major tasks – Data Extraction

Term Extraction, and Model Building/Scoring. This is shown in Figure 10. Data Extraction

step involves extraction of the textual change information from historical organizational

incident management data stores for all environment support workflows data stores that

59

represent the layers with the database environment stack so that change information from all

the layers of the environment are taken into account. Request Tracker has an impact field with

values - “Low”, “Medium”, and “High”. IPM considers this impact field as dependent or

target attribute and all other fields as Independent or predictor variables. Organizational

change information corpus may consist of several fields. Having too much information can

negatively affect IPM’s performance and accuracy. Some of the fields within the change

information corpus may not provide meaningful information to the model building process

and can act as a noise factor increasing the size of the model and the amount of resources

needed to build and score the model. A feature selection process addresses this issue.

For the IPM implementation, attribute importance function is used for feature

selection. Attribute importance function ranks attributes in the change information corpus

according to their significance in predicting the target which is the impact field (Campos,

Stengard, and Milenova, 2005). Oracle data miner uses Minimum Description Length (MDL)

to implement the attribute importance function. MDL assumes that a simple as well as a

compact representation of data is best and likely explanation of data (Rissanen, 2004). The

attribute importance settings and output for IPM for some of the Request Tracker fields is

shown in Table 5.

Table 5. IPM Attribute Importance Results for 2008-2011

Rank Ticket Field Importance

1 1 Creator 0.2250

 2 Owner 0.1843

 3 Last Update User 0.1741

 4 Workplan 0.0716

 5 Change Purpose 0.0683

 6 Start Date 0.0681

 7 End Date 0.0634

60

 8 Backout Plan 0.0533

 9 Ticket Subject 0.0519

 10 Approver 0.0393

 11 Impact Description 0.0310

 12 General Comments 0.0281

 13 Ticket # 0.0227

 14 Queue 0.0087

 15 Classification 0

 16 Line of Business 0

The output of attribute importance has the following two main indicators (Campos et

al., 2005):

1) Measure of explanatory power: This indicates how useful the attribute is to

determining the value of the explained column. This is shown by the “Importance”

column in Table 4. Values range from 0 to 1. Higher values indicate greater

explanatory power.

2) Measure of relative importance: This indicates the attributes relative importance

compared to other attributes.

For the IPM implementation, attributes with importance greater than zero are only

selected. Negative values show presence of noise and hence fields that have importance of

zero or less indicate non-significant contribution need to be removed for IPM’s term

extraction process. Based on the results in Table 5, classification and line of business fields

are removed from further processing since they have insignificant influence to the target

attribute. Also, as seen from the Table 5, the top three important attributes based on the rank

and the importance column are the creator, owner and the last update user fields in the change

ticket. The creator field is the creator of the change ticket and the owner is the person who

owns this task and the last update user who lasts updates the ticket before closing it. Typically

these three are the same person but in some cases like when the actual impact of the change

61

was found to be different from the perceived impact, the ticket might be updated by a

different person who is responsible of executing that particular change.

Having these fields at the top three positions, implies that knowing the person who

creates, executes and updates the ticket last, helps determine the level of the impact.

Typically, the creator of a change ticket is also the person who implements the plan for

executing the change, including the understanding of the perceived impact and the steps

needed to roll back the change if needed. Since the creator of the ticket is at the top position, it

shows that the person who creates the ticket is comparatively most helpful in determining the

impact level. For example, a more experienced DBA will typically be handling complex

changes while a less experienced DBA might work on systems that are less critical to the

organization. The workplan field describes the step by step plan for the change. This implies

that knowing the terms that describe the plan for the change helps in knowing what the impact

might be. For example, this workplan field might lay out how one of the critical applications,

say, ERP_HR is being taken down for an upgrade. Similarly, the terms used in change

purpose that describe the motive behind the change helps understand the impact level.

In this implementation of IPM, each Request Tracker ticket’s unstructured fields are

transformed into a vector space model (term vectors or environmental change factor vectors)

using the term extraction process. The term extraction process using Oracle data miner

leverages stop lists, stemming and term weighting. Stop lists contain words, called as stop-

words, are the common words that are found in change tickets within Request tracker, e.g.,

“and”, “the”, “or”. Using Oracle text technology, Oracle data miner creates a stop list that

can be easily enhanced to make the IPM’s term extraction process context-aware under

various organizational settings (Grivolla, 2005). Figure 14 shows the screen shot of Oracle

Data Miner’s stop list editor.

62

Figure 14. IPM Stop List Editor

Oracle data miner also uses a term-weighting technique to count how many times a

term is used within a ticket. Specifically, Oracle data miner uses term frequency–inverse

document frequency (TF-IDF) measure. This measure shows how important a term is to a

change ticket with respect to the change information corpus.

Figure 15, shows a screen shot of TDIF output for one of the fields called “Change

Purpose” within the Request tracker.

63

Figure 15. IPM Term weighting Output Example

Once IPM’s term extraction processing is done, the unstructured fields within Request

tracker are stored within the database. This transformed text is now ready to be used as any

other attribute in the building, testing, and scoring of models. IPM’s function form can be

represented as

F(x₁,x₂… xn) = IP

where x₁,x₂,… xn are the terms that are fed into the IPM after the term extraction

process and IP is the prediction impact with values “Low”, “Medium” and “High”.

IPM’s input context can be represented as:

IPM Input Context = (T, TN)

where T is the finite set of historical change tickets (, e.g., last 4 years) within an

organizational change information corpus that have already been executed and is represented

as:

T= {t₁,t₂,…, tn}.

TN is finite set of new change tickets that are captured in real-time but not yet

implemented and is represented as:

64

TN= {tn₁, tn₂,…, tnn}.

The change information within the tickets is stored in unstructured format. Every new

ticket has a perceived Impact value (Low, Medium, and High) that is entered by the change

executor. Once the ticket is executed and if its impact is found to be different than what was

perceived, the change requester updates the ticket with the actual impact value.

IPM’s model building and scoring tasks is implemented using Oracle data miner’s

support vector machine (SVM) classification algorithm. These are supervised or directed

learning algorithms that work with both structured and unstructured fields of Request tracker.

These set of algorithms assign the items in the corpus to the target classes. In our

implementation the change impact is the target attribute for the classification algorithm with

classes – Low, Medium and High. All other fields are independent attributes. Since we have

three possible values for our target attribute, we will use multi-class classification algorithms.

In IPM’s model building and scoring, Support Vector Machines (SVM) classifier is

used. In the model build, the classifier finds the relationships between the values of the

independent attributes and the values of the target attribute (Oracle, 2011a). SVM is a

powerful algorithm based on statistical learning theory (Milenova, Yarmus, and Campos,

2005). SVM also has strong regularization properties, especially on complex problems like

posed by unstructured data types (Guduru, 2006; Oracle, 2011a). Regularization means the

generalization of the classification model to the new change data.

SVM models have a similar functional form to radial basis functions and neural

networks but compared to these approaches, SVM models have strong theoretical approach to

regularization which is the key to IPM’s effectiveness to predict impact of new environmental

changes (Dumais, 1998; Milenova et al., 2005). Furthermore, one of the strengths of SVM

that is important from the IPM perspective is the number of attributes that it can handle

without negatively affecting the performance. Organizational change information corpus can

have large number of fields based on their environmental complexity. SVM performs well on

data sets involving many attributes despite the fact that there might be few cases available to

65

train the model (Milenova et al., 2005; Oracle, 2011a). The SVM scalability is dependent on

IPM’s compute environment.

For creating a predictive model, the unstructured text data in T is extracted into an

attribute vector and is represented as:

X= {x₁,x₂… xn}

where X belongs to an n-dimensional space R
n

where x₁,x₂,… xn are components of vector X.

Output of SVM is given by:

where fi is the distance of each point to the decision hyper plane defined by setting fi = 0;

b is the intercept; αj is the Lagrangian multiplier for the j
th

 training data record xj; and yj is the

corresponding target value (±1) (Milenova et al., 2005). K is a kernel function that can be

linear or non-linear. In case of non-linear kernel, then the above equation defines a linear

equation on a new set of attributes that can be as many as the number of rows in the training

data, making SVM very powerful (Milenova et al., 2005). The input attributes with non-zero

αj are called support vectors. In case of linear kernel, the above equation is simplified wherein

the decision hyper plane is defined in terms of input attribute coefficients alone.

 The process of learning in SVM is basically estimating the values of αj which is

achieved by solving a quadratic optimization problem. For real-time scoring performance,

SVM’s active learning helps by optimizing the selection of a subset of the support vectors

(using target stratified sampling) that maintain accuracy while enhancing the speed of the

model. Furthermore, it increases performance and reduces the size of the kernel thereby

improving its scalability (Milenova et al., 2005). Also, active learning forces the SVM

algorithm to restrict learning to the most informative examples and not to attempt to use the

entire body of data (Oracle, 2011a). Oracle data miner’s SVM algorithm settings screenshot

is shown in Figure 16.

66

Figure 16. Oracle Data Miner SVM Algorithm Settings

The convergence tolerance value is the maximum size of a convergence criterion

violation such that the model is considered to have converged (Guduru, 2006). It is a user-

defined function that specifies for a SVM model to be considered as converged. Lower

tolerance values results in a more accurate classification model at the expense of longer

processing time (Milenova et al., 2005).

Complexity factor setting for SVM decides the trade-off between minimizing model

error on training data and minimizing the complexity of the model (Dumais, 1998; Guduru,

2006). If the SVM model is very complex than it fits the noise present in the training data and

on the other hand a SVM model that is very simple under-fits the training data (Guduru, 2006;

Milenova et al., 2005). A large value of the complexity factor leads to high penalty on errors

and a small value leads to low penalty on errors that can lead to under-fit. For IPM

67

implementation, no value is specified, which implies that the value of complexity factor is

automatically determined by the system. This is the default and the recommended approach

for Oracle data miner (Oracle, 2011a). The same approach is adopted for kernel function for

SVM.

Figure 17. Oracle Data Miner SVM Performance Settings

Figure 17 shows the performance setting screen of Oracle Data Miner’s SVM

algorithm. Basically, there are three settings – Balanced, Natural and Custom. Balanced is the

default setting that attempts to achieve best overall accuracy across all values of impact

attribute. Under this setting, the model build process is biased using the weight values that

68

provide extra weight to impact attribute values that occur less frequently. Natural

performance setting builds the model without any biasing and under this setting the model

uses it natural view of the data to build an accurate model. The downside of this setting is

that impact attribute values that are rare will not be predicted as frequently compared to the

model that was built with balanced setting. Custom performance setting for SVM model

allows the user to enter a set of weights for each impact attribute values.

IPM’s Output Context is represented as:

IPM Output Context = (SF, IP)

where SF is finite set of change terms scored in real-time using the built SVM model and is

represented as:

SF = {sf₁,sf₂,…,sfn}.

 IP is the predicted impact of the terms and is represented as:

IP = {low, medium, high}.

Impact Extent Identification Module Implementation

IEIM implementation, as shown in Figure 12, involves two major steps - Feature

Extraction and Similarity Matching. Feature Extraction step implements Non-negative Matrix

Factorization (NMF) algorithm to extract features from the term vector that was created as

part of the data transformation stage of IPM. NMF is found to very effective in text mining

domains compared to other feature extraction algorithms (Guduru, 2006; D. Lee and Seung,

1999).

69

NMF algorithm decomposes a text data matrix Amn where columns are tickets and

rows are terms , into the product of two lower rank matrices Wmk and Hkn represented by the

below equation (Guduru, 2006). To prevent cancellation, NMF expects Amn and Hkn have non-

negative entries. NMF algorithm employs an iterative procedure to modify the initial values

of Wmk and Hkn so that the product approaches Amn (Guduru, 2006; D. Lee and Seung, 1999).

The procedure terminates based on error convergence value or when the specified number of

iterations is reached. Each user-defined feature after NMF decomposition is a linear

combination of the original attribute set and has non-negative coefficients.

The matrix decomposition can be represented as:

Amn = Wmk x Hkn.

where

 Amn : (mxn) matrix: m nonnegative values of n text tickets,

 Wmk : (mxk) matrix: k columns of W feature vectors,

Hkn : (kxn) matrix: each column of H is called weight column.

Matrix A represent the change information corpus such that Aij is the number of times

the i
th

 word appears in the j
th

 ticket (Guduru, 2006). Oracle data miner’s NMF

implementation is based on the multiplicative update algorithm by Lee and Seung (1999)

wherein the algorithm iteratively updates the factorization based on an objective function

(Guduru, 2006; Wild, Curry, and Dougherty, 2003). The general objective function is to

minimize the Euclidean distance between each column of matrix Amn and its approximation

Amn ~ Wmk x Hkn (Guduru, 2006). The objective function is shown as below (Guduru, 2006;

Wild et al., 2003):

70

The following multiplicative update rules are used for monotonic convergence

(Guduru, 2006; D. Lee and Seung, 1999):

The number of feature vectors k is user-defined and decided the accuracy of the

approximation (Guduru, 2006; D. Lee and Seung, 1999; Oracle, 2011a). The feature sets

along with the features (change factors) and their NMF coefficients are saved in the Impact

Extent Database (IED).

Input Context of IEIM is represented as

Input Context = (X, CPI)

where CPI is the classified impact for historical change factors by IPM and is represented as:

CPI = {medium, high}.

CPI impacts with “Low” values are ignored for IEIM analysis because they represent

localized change impact. X belongs to an n-dimensional space R
n

where x₁,x₂,… xn are

components of vector X from IPM. Output context at this stage of IEIM is represented as:

Output Context = (CF, FEID, CO).

71

where CF is finite set of change factors that are extracted using NMF; CF X and is

represented as:

CF = {cf₁,cf₂,…,cfn}.

FEID is the NMF feature set ID that the CF is a member of and CO are the NMF coefficients

for CF represented as:

CO = {c0₁,c0₂,…,c0n}.

Figure 18 shows the Oracle data miner’s NMF algorithm settings

Figure 18. Oracle Data Miner NMF Algorithm Settings

The number of features setting shows the number of feature vectors or k for the

IEIM’s NMF implementation. As part of the IEIM implementation, default value for this is

72

selected. This implies not specifying any value for this setting as shown in the Figure above.

In this case, Oracle data NMF algorithm automatically determines the number of features

based on computation complexity and the distribution of change factors in each feature set

(Oracle, 2011a). Convergence tolerance setting indicates the minimum value. Number of

iterations specifies the maximum number of iterations for the NMF algorithm. Random seed

is the random seed for the sample. The default value of -1 is used for the IEIM

implementation.

The similarity matching step of IEIM probabilistically matches the unimplemented

changes with the change factors stored in IED using the Jaro-Winkler distance similarity

algorithm (Winkler and Nov, 2006) . The Jaro-Winkler is measure of similarity between

strings. In case of IEIM, the similarity is measured between the change factors stored in a

repository referred to as Impact Extent Database (IED) with the change factors extracted from

the unimplemented change tickets.

Similarity functions such as Jaro-Winkler map a pair of strings s and t to a real number

r, where a larger value of r indicates greater similarity. Jaro-Winkler metric is given by

(Cohen, Ravikumar, and Fienberg, 2003; Winkler and Nov, 2006):

where,

where,

 are the characters in string s that are common with t and

 are the characters in string t that are common with s

 = length of the longest common prefix of s and t and

73

= max (P, 4)

IEIM uses Oracle’s implementation of Jaro-Winkler to achieve in-database matching.

This ensures that matching can leverage database system’s massive parallel processing and

efficient memory management capabilities. Oracle Jaro-Winkler is a function call using

Oracle’s native PL/SQL programming language (Oracle, 2011b). The syntax of this function

is shown below:

UTL_MATCH.JARO_WINKLER_SIMILARITY (

s1 IN VARCHAR2,

s2 IN VARCHAR2)

RETURN PLS_INTEGER;

S1 and S2 are the strings that serve as the input to this function. An example use of

this function is as following (Oracle, 2011b). In this example, the function compares two

strings “shackleford” and “shackelford” and returns a score 0 (no match) and 100 (perfect

match).

SELECT UTL_MATCH.JARO_WINKLER_SIMILARITY('shackleford', 'shackelford')

FROM DUAL;

returns 98

IEIM implementation of this function call is within a procedural context. A PL/SQL

block loops through all the change factors that are stored in IED and compare the factors with

change factors from the unimplemented change ticket to find a similarity match. Score of

more than 90% is considered for IEIM.

74

The features set whose change factors have maximum number of matches with the

new features are returned along with the change features ranked by their coefficients. The

change factors within this feature set, excluding the ones that matched, identify the factors

that are dependent on the new changes.

Input Context at this step is represented as:

Input Context = (CF, FEID, CO) and IEIM Output context = (DCF, FEID, CO)

where DCF is represented as:

DCF = {dcf₁,dcf₂,…,dcfn}.

DCF is finite set of database dependent change factors that are extracted using NMF

for the database queue that has maximum matched change factors with the new change factors

such that DCF CF .

Using in-database feature extraction and similarity matching algorithms, IEIM

scalability is achieved. Also, similar to IPM, the optimal change time duration will help in the

performance of feature extraction algorithm as well as similarity matching algorithms.

75

DECIPHER Validation

 Impact Prediction Module (IPM) Validation: The core function of IPM is

predicting the potential impact for environmental changes that have not yet been implemented

in real-time. Before IPM can score new environmental changes, the accuracy of IPM needs to

be validated for accuracy. This section validates the IPM accuracy by answering the

following two questions:

1) How accurately does IPM predict the impact of environmental changes?

2) How does SVM’s prediction accuracy compare with another classifier for

impact prediction?

 In order to validate these two points for IPM, cases or tickets from Request Tracker

(RT) filed between 2008 -2011 were used to train and test the IPM model. 60% of the data

was used for training the model and 40% for testing the model in a random fashion(Bramer,

2007). Text mining is a computationally expensive process. The following server and

software configuration was used for this testing:

1) Sun SPARC V490

2) 8 CPU cores

3) Solaris 10 Operating system

4) 32g RAM

5) Oracle RDBMS 11.2.0.3

76

 The tickets were considered from the RT change information corpus, i.e., RT change

management database across different organizational teams. This is achieved by extracting the

tickets from all Request Tracker workflow queues (Practical, 2011). This enables us to use the

changes from all layers, shown in Figure 1, for the analysis. Figure 19 show the Oracle data

miner’s SVM model train/test setting as part of IPM Model building. As seen in this Figure,

Target is the IMPACT column from Request Tracker and Case ID is Ticket # field from

Request Tracker.

Figure 19. Oracle Data Miner IPM Model Train/Test Settings

 In order to validate SVM’s prediction accuracy, its results will be compared with

Naïve Bayes classifier. Oracle data miner makes it relatively easy to do this. In order to

compare multiple algorithms, during classification model build process, Oracle data miner

provides a way to select various models. Figure 20 shows the IPM’s Classification build node.

77

If multiple models are selected then Oracle data miner, executes them during the build process

which includes the model test/train process as well for those models.

Figure 20. IPM Multiple Model Selection

 Naïve Bayes is founded on the principle of conditional probabilities. This algorithm

uses the Bayes’ Theorem which basically computes the probability by counting the frequency

of values and the combinations of the values in the data (Bayes and Price, 1763; Oracle,

2011a). Bayes Theorem evaluates the probability of an event occurrence given the probability

of another even that has occurred in the past. Bayes Theorem can be represented as following

(Bayes and Price, 1763; Oracle, 2011a):

Prob (B given A) = Prob (A and B) / Prob (A)

where, B is the dependent event and A represents the event that has occurred in the past.

 Oracle Data Miner Naïve Bayes algorithm settings is shown in the Figure 21. There

are two settings – Singleton Threshold and Pair wise Threshold. Singleton threshold setting

78

specifies the minimum percentage of singleton occurrences required for the inclusion of a

predictor in the model. Pair wise Threshold specifies the minimum percentage of pair wise

occurrences required for the inclusion of a predictor in the model. For IPM validation, both

these settings are at default values of 0.

Figure 21. Oracle Data Miner Naïve Bayes Algorithm Settings

79

 Impact Extent Identification Module (IEIM) Validation: The core function of

IEIM is that of identifying the potential extent of impact of change factors that are not yet

implemented. The validation for IEIM involves validating the accuracy of the identification

of potential extent of change factors. This involves, answering the following two questions:

1. Do patterns (change factors) reoccur in future years, and to what extent?

2. What is the time interval across which pattern (change factor) reoccurrence

is the maximum and how does this impact prediction accuracy?

 For IEIM model validation, two data sets will be created across various time intervals.

The pattern reoccurrence will be measured using the change pattern reoccurrence metric

explained in chapter 4. The pseudo code of pattern reoccurrence metric is described in

Appendix C. This pattern reoccurrence metric will help us answer the above two questions.

Also, this metric will help us in identifying the contexts in which change impact prediction

and matching algorithms will be useful and to help identify the best subset of data to use for

change impact prediction model building, scoring and matching.

 Answering both these questions requires data sets that are across time intervals.

Following data sets are used for IEIM validation:

a) 2009 (Q1) with 2010 (Q1)

b) 2009 (Q1 and Q2) with 2010 (Q1 and Q2)

c) 2009 (full year) with 2010 (full year)

d) 2008 and 2009 (full years) with 2010 (full year).

80

In order to validate the similarity matching accuracy, Jaro-Winkler’s matching will be

compared to that of Levenshtein. Oracle databases’ native Levenshtein function call will be

used for this (Levenshtein, 1966). Levenshtein distance between two strings a and b is

represented as (Levenshtein, 1966):

Similar to Jaro-Winkler, Levenshtein matching also leverages the database system’s

massive parallel processing and efficient memory management capabilities. Oracle

Levenshtein is a function call using Oracle’s native PL/SQL programming language (Oracle,

2011b). The syntax of this function is shown below:

UTL_MATCH.EDIT_DISTANCE_SIMILARITY (

s1 IN VARCHAR2,

s2 IN VARCHAR2)

RETURN PLS_INTEGER;

S1 and S2 are the strings that serve as the input to this function. An example use of

this function is as following (Oracle, 2011b). In this example, the function compares two

strings “shackleford” and “shackelford” and returns a score 0 (no match) and 100 (perfect

match).

SELECT UTL_MATCH.EDIT_DISTANCE_SIMILARITY('shackleford', 'shackelford')

FROM DUAL;

returns 82

81

CHAPTER 6

RESULTS AND DISCUSSION

This chapter presents the DECIPHER results that demonstrate its accuracy as well as

metrics that identify conditions under which the system will perform effectively. This chapter

starts with a discussion on DECIPHER’s IPM results based on the questions that were

covered in the previous chapter. The chapter then continues with the IEIM results also based

on the questions covered in the previous chapter. This chapter concludes with a discussion on

the impact of IEIM results on the overall DECIPHER accuracy and on the performance of its

model building, scoring and matching tasks.

IPM Results

The core function of IPM is predicting the potential impact for environmental changes

that have not yet been implemented in real-time. This section discusses the results of IPM

with respect to the following two questions. The goal behind these questions is to validate the

prediction accuracy of IPM:

1) How accurately does the IPM predict the impact of environmental changes?

2) How does SVM’s prediction accuracy compare with another classifier for

impact prediction?

These questions are answered using the Oracle data miner’s performance and accuracy

metrics. In order to answer these two questions for IPM, cases or tickets from Request

Tracker (RT) filed between 2008 -2011 were used to train and test the IPM model. This

duration resulted in 11,118 unique tickets. 60% of the data was used for training the model

82

and 40% for testing the model (Bramer, 2007). Based on attribute importance process

(discussed in the implementation chapter) only independent attributes or change ticket fields

with greater than zero explanatory power is selected. This ensures that only attributes that are

useful in explaining the impact are selected. These independent attributes are:

1) Ticket #

2) Creator

3) Owner

4) Last Update User

5) Workplan

6) Change Purpose

7) Start Date

8) End Date

9) Backout Plan

10) Impact Description

11) Ticket Subject

12) Approver

13) General Comments

14) Queue

 Let us look at the IPM’s prediction performance and accuracy metrics in comparison

to Naïve Bayes algorithm. Following metrics are used to answer the above two questions for

IPM. Additional screenshots from Oracle data miner’s IPM for some of these metrics are

shown in the Appendix D.

a) Predictive Confidence

b) Confusion Matrix

IPM Predictive Confidence: Predictive confidence provides an estimate of the

overall goodness of the model. This indicates how much better the predictions made by the

83

tested model are than predictions made by a naive model (Oracle, 2011a). The naive model

always predicts the mean for numerical targets and the mode for categorical targets. The

following formula defines Predictive Confidence (Oracle, 2011a):

Predictive Confidence = MAX ((1-((error of model)/(error of naive model))),

0)

If predictive confidence is 0, the model's predictions are no better than predictions made

using the naive model. If predictive confidence is 1, the predictions are perfect. IPM’s

Support vector machine (SVM) model is ~ 50% better than naïve model and 13% better than

naïve bayes (NB) model. This is shown in Figure 22 below.

Figure 22. IPM’s Predictive Confidence (4 years of Change Data)

The model build time for SVM and Naïve Bayes is shown in Table 6.

84

Table 6. IPM Predictive Confidence Metrics (4 years of Change Data)

Models Predictive

Confidence %

Model Build and Test Time

1 Naïve Bayes 66.18 30 minutes and 10 seconds

2 Support Vector Machines 80.75 18 minutes and 15 seconds

IPM Performance Matrix (Confusion Matrix): This measures the probability of the

model to predict incorrect and correct values and also indicates the types of errors that the

model is likely to make. IPM’s SVM model has identified over 80% accurate predictions.

The performance matrix is calculated by applying the model to a hold-out sample (the test set,

created during the split step in a Classification activity) taken from the build data. This is

shown in Table 7 below. The confusion matrix by impact level is shown in Appendix E.

Table 7. IPM Confusion Matrix (4 years of Change Data)

Models Correct

Predictions %

Correct Prediction

Count

Total Count

1 Naïve Bayes 86.67 3811 4397

2 Support Vector

Machines

92.01 4046 4397

While the above tests and metrics are geared towards validating the IPM prediction

accuracy, the IPM results can also provide us with further insights regarding the change

terms. Oracle data miner provides detailed information on the SVM coefficients for IPM.

These coefficients show the statistical significance or importance for the IPM terms in

reference to the impact category. This is similar to the attribute importance model that

85

provides the importance of attributes or change ticket fields in reference to impact category as

seen in Table 5 in the previous chapter. The SVM coefficients provide insights into the

relationship of IPM terms with respect to the impact categories.

Table 8. Top 5 Dominant Key Terms with High Impact

Ticket Field Change Terms SVM Coefficients

1 Workplan Roms5.5 0.68

2 Workplan

Workplan

Change Purpose

Change Purpose

Tincup

CV

Trinidad

Globalscape

0.49

0.42

0.37

0.31

The table 8 shows the top 5 dominant change terms for the “High” impact category

and their corresponding SVM coefficients sorted in descending order. The first factor

“Roms5.5” refers to a software product for one of the mission critical applications for the

organization under study. This implies that a change ticket involving this product has been

found on several high impact tickets across time intervals and is likely to reoccur in future. In

other words, changes to this application have a high and far-reaching impact to the

organization and needs to have a thorough risk mitigation plan before any environmental

component related to this software undergoes change in the future. Similarly, factors “CV”

and “Globalscape” refer to client-facing applications that have similar impact across time

intervals and have potential of high impact to the organization. Factors “Trinidad” and

“Tincup” refer to server names that host shared and critical supply chain processes.

In order to gain further insights into the characteristics of the dominant terms that

predict a common target, decision trees algorithm can be used. Decision trees are similar to

Naïve Bayes in the sense that they too are based on conditional probabilities but decision trees

also provide rules. Decision tree rules are conditional statements that provide model

transparency by explaining the inner workings of a model (Quinlan, 1986).

86

Figure 23. Decision Tree for Dominant IPM Key Terms

Figure 23 shows the decision tree for the dominant terms. In other words, it shows the

profile of the dominant terms. The decision tree was built using the dominant terms (SVM

coefficients > 0.1) for high and medium impact category based on the SVM coefficients

(Oracle, 2011a). This resulted in 77 terms. The inputs to the decision tree algorithm are these

terms, their coefficients and the impact level that the terms belong to. The selected section of

the Figure 23 shows a decision rule for Node 1 that explains the prediction for medium impact

category and the terms that predict that target. The decision rule describes the terms that have

been associated to medium impact tickets across time intervals. The terms listed in Node 1 in

the above figure point to reporting applications changes for the organization. These terms are

87

coming from workplan, change purpose and backout plan ticket fields. This rule implies that

if the new changes that involve the reporting applications would be classified with potential

impact of category medium. These insights help in understanding the classification behavior

of the IPM and also understand the terms that influence the impact prediction. Now that we

have a better understanding of the terms and its relationship with the impact levels, let us look

at how we can understand the extent of the impact.

IPM results can also help us better understand the attribute importance model findings

presented in the Table 5 in Chapter 5. Based on that table, we found that creator and owner

fields were the top two attributes that have comparatively most effect on the target attribute.

But does this imply that these attributes by themselves are enough to predict the impact?

Table 9 below presents the findings of IPM model built using only creator and owner fields

for the four years of change data.

Table 9. IPM Confusion Matrix using Creator and Owner attributes only

Models Correct

Predictions %

Correct Prediction

Count

Total Count

1 Naïve Bayes 58.56 2575 4397

2 Support Vector

Machines

70.59 3104 4397

Based on the results in Table 9 we can see that percentage of correct predictions has

dropped significantly compared to Table 7 which was for an IPM model that included all the

attribute fields in the model building process. The confusion matrix by impact level is shown

in Appendix F. The results highlight that the other change ticket fields listed in Table 5 are

also important to IPM’s prediction capability. To further understand this, let us look at Table

10 below that presents the top 5 dominant terms for Low impact category. This table shows

the user identification numbers for creators and owners of change ticket as the dominant

terms. This implies that a change ticket involving these users has been found on several low

88

impact tickets across time intervals and is likely to reoccur in future. The findings from Table

10 along with the findings from Table 8 and Figure 23, highlight that terms coming from

unstructured text fields such as workplan and change purpose are important for high and

medium impact tickets since most of the top terms are coming from those ticket fields. Also

based on Table 10 and from the attribute importance model results of Table 5, it implies that

knowing the creators and owners for change tickets is more likely helpful in determining low

impact tickets but terms found within unstructured text ticket fields have comparatively more

likely in determining high and medium impact category tickets. This is important because

from an IPM perspective, only high and medium impact terms are passed on for IEIM

processing. Low impacts terms represent local impact and hence do not undergo IEIM

processing.

Table 10. Top 5 Dominant Key Terms with Low Impact

Ticket Field Change Terms SVM Coefficients

1 Creator 1345 0.61

2 Creator

Owner

Creator

Owner

112

38

442

1981

0.51

0.50

0.53

0.55

IEIM Results

 The core function of IEIM is that of identifying the potential extent of impact of

change factors that are not yet implemented. In this section, we will look at the results for

IEIM with respect to answering the following two questions:

89

1. Do patterns (change factors) reoccur in future years, and to what extent?

2. What is the time interval across which pattern (change factor) reoccurrence

is the maximum and how does this impact prediction accuracy?

 For IEIM model validation, two data sets were created across various time

intervals. The data set details are shown in Appendix G:

a) 2009 (Q1) with 2010 (Q1)

b) 2009 (Q1 and Q2) with 2010 (Q1 and Q2)

c) 2009 (full year) with 2010 (full year)

d) 2008 and 2009 (full years) with 2010 (full year).

The matching accuracy for IEIM’s Jaro-Winkler’s matching was compared to that of

Levenshtein matching algorithm.

IEIM Pattern Reoccurrence: This helps us understand if the patterns (change

factors) reoccur in future years as explained in Chapter 4. This metric is represented as below:

where, the new feature set is Ci (, e.g., 2010 Q1 dataset) with older feature set Cj (, e.g.,

2009 Q1 dataset). The IED details and build times are shown in Table 11 across time

intervals. The numbers of NMF feature sets are automatically determined by the NMF

algorithm.

90

Table 11. IED Details

IED Data Set NMF Feature Sets Number of Change

Factors

IED Build Time

2009 Quarter 1 25 2234 3 minutes and 11

seconds

2009 Quarter1 and

2

49 3408 5 minutes and 2

seconds

2009 - full year 101 5053 8 minutes and 17

seconds

2008 and 2009

Full years

204 7972 16 minutes and 49

seconds

 Table 12. IEIM Accuracy Results

Old Data Set New Data Set IEIM Pattern

Reoccurrence

Jaro-Winkler

 Algorithm

IEIM Pattern

Reoccurrence

Levenshtein

Algorithm

Runtime

1 2009 Quarter

1

2010 Quarter

1

33.33 29.64 5 minutes and

33 seconds

2 2009

Quarter1 and

2

2010 Quarter1

and 2

78.21 74.90 6 minutes and

20 seconds

3 2009 - full

year

2010 - full

year

84.16 79.55 11 minutes

and 17

seconds

5 2008 and

2009 Full

years

2010 - full

year

 83.66 80.11 17 minutes

and 45

seconds

91

The results in Table 12 show the IEIM accuracy results. These results highlight that

there is significant change factor reoccurrence between the old and new change data sets.

These results reaffirm our core assumption that change patterns reoccur year over year.

 IEIM Prediction Accuracy and Optimal Change Duration: This helps us

understand the optimum change duration or time interval across which change factors reoccur.

Based on the results in Table 12, the optimum change duration is a full complete year. It also

evident from these results is that going beyond the year for old data does not yield significant

benefits.

These findings can help us to identify the best subset of data to use for change impact

prediction model building. In other words, we can use these findings to select the optimal

change time duration as represented by the “Select Change Time Duration” step in the Figure

13. Selecting the optimal change time duration will help in reducing the data set sizes thereby

expediting the data processing, model building, and model scoring and matching processes.

This is very crucial in IT environments that undergo large amount of changes. Next, we will

use the data sets based on change time duration similar to what for IEIM and run IPM

accuracy and performance metrics to evaluate the impact of change data time duration on the

IPM prediction and accuracy.

 The results in Table 13-15 shows the effect of using change time duration based data

similar to what was used for IEIM evaluation, for IPM in order to find out the impact of

change data time duration on the IPM’s prediction accuracy as well as its model build and test

times. For this evaluation, 2010 change data is divided into sets similar to IEIM evaluations,

i.e., 2010 quarter 1, 2010 quarter 1 and 2, and 2010 full year and finally 2009 and 2010

combined for build the IPM prediction models.

92

Table 13. IPM Predictive Confidence Summary

Models Predictive

Confidence %

(2 yrs Change

Data)

Predictive

Confidence %

(1 yr Change

Data)

Predictive

Confidence %

(Q1 and Q2

Change Data)

Predictive

Confidence %

(Q1 Change

Data)

1 Naïve

Bayes

62.86 66.92 75.21 70.07

2 Support

Vector

Machines

74.88 78.04 85.52 90

Table 14. IPM Correct Predictions Summary

Models Correct

Predictions

(2 yrs Change

Data)

Correct

Predictions

 (1 yr Change

Data)

Correct

Predictions

 (Q1 and Q2

Change Data)

Correct

Predictions

 (Q1 Change

Data)

1 Naïve

Bayes

86.70 87.56 87.93 86.16

2 Support

Vector

Machines

92.27 95.79 93.88 94.86

93

Table 15. IPM Build and Test Time Summary

Models Model Build

and Test

Time

(2 yrs Change

Data)

Model Build

and Test

Time

 (1 yr Change

Data)

Model Build

and Test Time

(Q1 and Q2

Change Data)

Model Build

and Test Time

(Q1 Change

Data)

1 Naïve

Bayes

15 minutes and

56 seconds

8 minutes 32

seconds

4 minutes and

25 seconds

2 minutes and 30

seconds

2 Support

Vector

Machines

11 minutes and

36 seconds

6 minutes 8

seconds

3 minutes and

44 seconds

2 minutes and 26

seconds

From Tables 13- 15, it is evident that the one year of change data for IPM model build

and testing has no negative impact on accuracy but significantly reduces the model build and

test time compared to 4 years of change data, while providing the maximum IEIM change

pattern reoccurrence compared to other quarterly data sets. The confusion matrix by impact

for the one year change date is shown in Appendix I. This change time duration implies that

the potential risks posed by environmental changes can be accurately and quickly surfaced

and addressed in a constantly changing organizational IT environment with yearly change

information from the change information corpus without having to store large amounts of

historical change information.

IEIM’s pattern reoccurrence metric can also be used to highlight the importance of

including all layers of environments as part of the change information corpus. Table 16 show

the IEIM results if we only use the database workflow queue in the change information corpus

and ignore other workflow queues (network, hardware, operating system etc.). The Table 16

results show a significant drop in pattern reoccurrence values across time intervals for this

data set.

94

Table 16. IEIM Accuracy Metrics with Only Database Workflow Queue

Old Data Set New Data Set IEIM Pattern

Reoccurrence

Jaro-Winkler

Algorithm

IEIM Pattern

Reoccurrence

Levenshtein

Algorithm

Runtime

1 2009 Quarter

1

2010 Quarter 1 29.55 26.67 4 minutes and

19 seconds

2 2009 Quarter1

and 2

2010 Quarter1

and 2

32.66 21.16 5 minutes and

47 seconds

3 2009 - full

year

2010 - full

year

66.16 57.34 8 minutes

and 1 second

5 2008 and 2009

Full years

2010 - full year 64.11 59.32 11 minutes

and 15

seconds

In order to better the reason behind significant drop of pattern reoccurrence, two

different sets of tests are conducted using the change data sets described in Appendix G. The

first test builds an IPM model using change data from all queues and scores it against the data

from only database queue. The results of this test are shown in Table 17 across the time

intervals. The second test builds an IPM model using change data from only database queue

and scores it against the data for the database queue across time intervals. The results of this

test are shown in Table 18. Scoring is the process of running the built model (after it goes

through test-train phase) on a different data set. Prediction Accuracy of a model is defined as

number of correct predictions by the model divided by the total number of records in the

scoring data set.

95

Table 17. IPM Prediction Score Accuracy- All Queues model on DB Queue

Models Prediction

Accuracy %

(2 yrs Change

Data)

Prediction

Accuracy %

(1 yr Change

Data)

Prediction

Accuracy %

 (Q1 and Q2

Change Data)

Prediction

Accuracy %

 (Q1 Change

Data)

1 Naïve

Bayes

60.21 67.43 73.74 68

2 Support

Vector

Machines

73.89 77.33 83.45 92.45

Table 18. IPM Prediction Score Accuracy- DB Queue model on DB Queue

Models Prediction

Accuracy %

(2 yrs Change

Data)

Prediction

Accuracy %

(1 yr Change

Data)

Prediction

Accuracy %

 (Q1 and Q2

Change Data)

Prediction

Accuracy %

 (Q1 Change

Data)

1 Naïve

Bayes

49.12 50.11 54.22 59.01

2 Support

Vector

Machines

56.54 60.16 65.81 70.47

The Table 17 shows that the IPM prediction accuracy for model built using all queues

change information has higher accuracy than model built with only the database queue change

96

information as seen from the findings from Table 18. In order to better understand these

results, three different cases were considered from one year change data test. The confusion

matrix by impact for both these IPM models for one year of change data is shown in

Appendix J. For sake of this discussion, high and medium impact are treated as same because

IPM stage passes the terms for both of these impact levels to the IEIM processing. IPM only

blocks low impact terms because they represent local impact. Having said this, the false

negatives are the ones that we need to review. False negatives are the tickets that have the

impact of high/medium but were scored as low by the IPM models. These are important cases

to review because we do not want a high/medium impact ticket to be scored as a low impact

and not make it to the IEIM processing. The first ticket is where the IPM model built only on

database queue changes got a false negative but the IPM model built using all queue data got

correct prediction. For the sake of this discussion we will call this ticket as ticket 1. The

second case is where IPM model built using all queue got false negative but the model built

using just the database queue got the impact prediction right. This situation did not exist

across time intervals. Most of the false negatives for the IPM model built using all queues

model was also found to be false negative for the IPM model built using just the database

queue. The final case is where both models got a false negative. We will call this ticket as

ticket 2.

Ticket 1 that was reviewed was for updating data for certain customers within a

database. The update was a multiple step non-atomic process that modified several customer

demographics. Furthermore, in order to expedite this process, this update was executed across

all the clients concurrently. This process had to be completed within 4 hours per the customer

service level agreements. This process was found hung after 40 minutes of processing. The

DBA filed a ticket with the storage team because the process was found to be waiting on the

storage system. After few hours of investigation, the storage team found that a SAN to SAN

copy change that was executed around the same time as the update process was the culprit.

The SAN copy process was aborted until further investigation. The database update had to be

terminated and the database had to be recovered in order to get it back into a consistent state

before re-starting the process again. This whole incident added additional 3 hours to the total

time and ended up violating the customer Service Level Agreements (SLAs). The ticket 1’s

97

impact before it was closed was set to high but the IPM built using just the database queue

scored it as low. The ticket 1 did not have any of this problem history because that history was

mentioned in the storage ticket with the storage queue. All, the ticket 1 had was a mention of

the storage queue ticket number as a comment in its impact description text field. Further

review of this storage queue ticket showed that this issue was a known issue within the

storage team and had happened in the past too. The IPM model built only on the database

queue changes did not have the visibility of this problem history. The IPM model built using

change information from all queues was able to score the impact correctly for ticket 1.

Based on the review of ticket 1 and also the findings from Table 17 and Table 18 it

seems that significant change factors that impacts the database workflow queue are coming

from other queues. A closer look at some of the key terms in Ticket 1 shows that it has

“Trinidad” server name as one of the terms which from Table 8 tell us is part of the high

impact category of the IPM model with SVM coefficient of 0.37. This is the server where the

update process was running. Besides this term, ticket 1 also had terms for 3 customer names

that were also part of the high category IPM model with SVM coefficients of 0.31, 0.3 and

0.22. Two of these customers have stringent SLAs for the update process. This finding

reinforces the core point of this research that in increasingly integrated and dynamic IT

environments, the impact of changes from all layers within the environment need to be taken

into account. Adopting a narrow view of the environment does not accurately enable the

human database tuners to understand the extent or reach of the impact of environment

changes which may lead to incorrect diagnosis and error-prone tuning efforts.

Ticket 2 that was reviewed was for modifying the profile and preferences for

customers that are no longer active within the database system. The change information

within this ticket did not have much information about what the change was or the plan for

executing the change. The ticket had comments like “Replicate the steps from previous

release of this app…” and “Following the same steps that I did on QA…”. These comments

might make sense to the same person who has prior knowledge about this change or similar

change done on a test system but for a DBA that has no background information on it might

not understand this. The DBA who created and executed the changes in ticket 2 did not

98

explicitly mention the steps he was planning to execute in ticket 2. For ticket 2, the DBA

during his testing of the change on QA system found few database packages to become

invalid which caused other applications to fail. Without mentioning any of this information he

vaguely referenced his prior knowledge but made the impact of the ticket as high. Both IPM

models got the prediction for ticket 2 as low.

Based on the review of ticket 2, it seems that if a change executor is not explicit about

the change in his or her ticket, it most likely will be scored incorrectly by IPM, irrespective of

what type of change data goes into building the model. This highlights a process issue within

the change management process. The observations from ticket 2 point to the process failure

on two levels – first is the lack of explicit change information documentation on part of the

change executor and second at the change approver level for approving such incomplete

changes that neither document the plan or scope of the change.

Scoring Example of an Unimplemented Change Ticket

The core function of DECIPHER is that of predicting the potential impact and extent

for environmental changes that have not yet been implemented in real-time. This aspect of

DECIPHER is called “Scoring of the New Environmental Changes”. In order to understand

the scoring function of DECIPHER, let us consider an actual unimplemented incident ticket

from the organization’s change information corpus.

The network engineering team needs to update the organizations firewall rule policy to

add a new system to the database environment. In order to get ready to do this change, the

network engineer goes through the organizational change management process as depicted in

Figure 7. As part of the change management process, the network engineer creates a new

incident ticket with the following information. This ticket is submitted for the approval

process.

99

a) Ticket #: 14356

b) Ticket Subject (Text): Update firewall rule policy

c) Change Purpose (Text): We need to update the firewall rule policy in order to

add new forecasting BI server to sales portal.

d) Owner of the ticket: Dylan

e) Approver of the ticket: Susan

f) Work-plan for the change (Text): The new firewall rule for salesportal_dmz is

 as below: 123.0.xx…

g) Perceived Impact (High or Medium or Low): Low

h) Back-out plan (Text): Revert the rule

i) General Comments/Notes (Text): N/A

This new unimplemented change information is fed to DECIPHER in real-time.

DECIPHER’s IPM and IEIM modules process this information. Tables 19 and 20 show the

results of the DECIPHER scoring for ticket 14356:

Table 19. DECIPHER IPM Scoring Results

Predicted

Impact

Predictive

Confidence

1 High 91.23%

100

Table 20. DECIPHER IEIM Scoring Results

Database

Dependent

Change Factors

NMF Coefficient

1 Sales_recos_db 0.13

2 Connection 0.12

 Hang 0.12

H Port 0.11

H 1521 0.11

3 … …

Based on the findings from Table 19 and 20, we can see that the perceived impact by

the network engineer for the ticket 14356 was set to “Low” implying a localized impact of his

change, but DECIPHER’s IPM scored it with a predicted impact of “High” and with a high

probability of 91.23%. Also, the IEIM scoring shows the sales_recos_db and hang are

dependent change factors based on the factors in the 14536 ticket. This implies that if the

14536 ticket were to be implemented then there is a high probability of a potential hang with

connections for the sales_recos_db on port 1521.

Incorrect diagnosis and troubleshooting is expensive and error-prone. Having this

knowledge ahead of time would allow the DBA to mitigate the potential risk of connection

hangs by either enabling a different temporary port or even delaying this change request. This

101

case shows how using the environmental change impact knowledge; the DBA can proactively

mitigate the risks. This research makes an important assumption that based on the knowledge

of the potential impact and extent of IT environmental changes, the DBAs can effectively use

it to ensure that such changes do not negatively impact the organizational database systems.

In general any manual work is prone to human errors and database performance tuning

is no exception. DECIPHER in its current form can be a very effective tool for DBA’s in

enhancing their explicit tuning knowledge sources like best practice repositories or designing

policies that can automatically trigger a reaction based on an event. The next chapter

discusses how DECIPHER can be leveraged by DBAs with existing frameworks to

effectively and safely tune their database systems.

DECIPHER Generalizability

Effectively and safely managing changes in a highly-integrated database environment

is a challenge for modern organizations. Predicting the potential impact of environmental

changes and its extent before they are implemented can help in mitigating these risks and

reducing their associated costs proactively for organizations (Forrester, 2007). DECIPHER is

built with this goal in mind. Coming to the generalizability aspect, the architecture of

DECIPHER is designed in a way that its implementation under different organizational

settings can be achieved with minimal modifications.

Most organizations use some or other form of an organizational incident management

data store (help desk system or trouble ticketing system or basic email) to manage the changes

to their Information Technology (IT) environment, including the database environments

(Hass, 2003). Changes to any production IT environment component, e.g., operating system,

hardware, and database are facilitated by these systems (Conradi and Westfechtel, 1998).

Furthermore, the increase of regulatory compliance needs (, e.g., Sarbanes-Oxley) have also

pushed for a wider adoption of change management processes and tools for achieving better

traceability(Chen et al., 2009).

102

The first processing step of DECIPHER which is the IPM’s data Extraction step, as

shown in Figure 11, is responsible for extracting the unstructured change information from

any type of organizational incident management data stores like help desk system or trouble

ticketing system or even basic email. This process within IPM ensures that DECIPHER can

get change information from various data sources to build its change information corpus

without imposing rigid data collection requirements. This data extraction step involves use of

open source Extraction, Transformation and Load (ETL) tool that extracts unstructured

change data from various data sources without rigid data format restrictions (Majchrzak,

Jansen, and Kuchen, 2011). Furthermore, such type of ETL tools offer out-of-the-box data

quality and profiling features that makes it easy to implement DECIPHER under various

organizational settings (Majchrzak, Jansen, and Kuchen, 2011). Specifically, this research

uses TALEND ETL tool that achieves this task using intuitive graphical interface (Majchrzak,

Jansen, and Kuchen, 2011). Once the data is extracted from the organizational incident

management data stores, other downstream processing steps for DECIPHER remains

unchanged. Organizations can also enhance the stop list processing of IPM term extraction

process, as explained in Chapter 5 to make DECIPHER context-aware by incorporating

organization-specific terms that might add undesirable noise into the DECIPHER’s IED

repository.

Organizational IT environments undergo changes that are influenced by many external

factors such as mergers, acquisitions, explosive data growth, changing competitive landscape

and long-term investments. So from a generalizability perspective, DECIPHER also needs to

adapt to new change information that deal with new situations and technologies. In order to

maintain the accuracy and effectiveness of DECIPHER under such changing circumstances,

DECIPHER’s IPM model needs to get periodically updated or refreshed or challenged. One

effective approach of managing the IPM Model refresh or update is by using an adaptive

control to model management. This is often referred to as Champion/Challenger or test and

learn process (Shyam Varan 2007; Taylor 2010). This is covered in detail in the future work

chapter. Basically, the Champion/Challenger process involves building several models using

the historical change information. The model that has better accuracy based on metrics like

predictive confidence, confusion matrix and lift is picked as the champion. If the challenger

103

outperforms the current champion IPM model based on some user-defined threshold then the

challenger becomes the curent champion. This process can be performed iteratively every

year to ensure that the impact and extent prediction remains accurate throughout the life cycle

of DECIPHER and without having the end-user(DBA) of this system to understand the

naunces of the various underlying models and their parameters.

As mentioned earlier, managing environmental changes in a highly-integrated

database environment is a challenge for modern organizations. Since DECIPHER is designed

with this goal in mind, it may not be well-suited for organizations that do not have a complex

and dense database environment stacks. Furthermore, DECIPHER may not work for

organizations that do not have a standardized change management process. Absence of such a

process would result in inadequate or inferior change management data which would

negatively impact the DECIPHER’s ability to accurately predict and impact and extent of

environmental changes.

104

CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter presents an overview of the contributions of this project and a discussion

on the possible future directions for DECIPHER. This chapter begins by summarizing the

contributions of this research with respect to the identified issues. The chapter then continues

with the discussion on the two possible areas future work for the DECIPHER framework. The

chapter concludes with an example of how DECIPHER could be used with some of the

existing autonomic tuning frameworks.

Conclusion

More and more organizations are embracing technologies such as cloud computing in

the form of private clouds to address their evolving business needs and reduce their operating

costs. But, as organizational Information Technology (IT) environments in today’s rapidly

evolving digital economy undergo several changes, the database environments within the

organizations are becoming highly-integrated, complex and very dynamic.

Given the high server density of cloud environments, the potential impact of IT

environmental changes to the performance of database systems becomes significant and far-

reaching. As a result, human-driven performance tuning is needed to addresses these issues.

Human-driven performance tuning is expensive, error-prone and time-consuming. With

organizational IT environments undergoing large number of changes, there is a strong need

for a solution that can provide fast and accurate decision-support to the DBAs in database

performance tuning situations.

105

Although there have been several developments in the area of self-managing systems,

these approaches are rather limited in their use, especially in the cloud computing domain

because they do not include a holistic view of the problem space and the environment under

which they operate. Specifically, these approaches largely ignore the impact and the extent of

IT environmental changes on its systems.

Effectively and safely managing changes in highly-integrated database environments

such as private database clouds is a challenge. Predicting the potential impact of

environmental changes and its extent before they are implemented can help in mitigating

these risks and reducing their associated operating costs proactively.

This research addresses these relevant issues by proposing a novel framework that

predictively acquires the knowledge of impact and extent of environmental change in

database environments. The contributions of this research are significant in the following

aspects:

1) This research proposes a holistic autonomic tuning knowledge model that extends

the existing autonomic tuning reference model by incorporating the organization-

specific environmental change impact knowledge.

2) This research also presents a theory based framework called “DECIPHER” that

that not only acquires this knowledge component but does so in a proactive

fashion. This framework predicts the potential impact of environmental changes

and its dependencies by mining the historical change information stored within the

existing organizational incident management data stores.

3) In addition to demonstrating the validity of the system using a real-world change

management system, this research also presents a new pattern recurrence metric to

identify the contexts in which prediction algorithms will useful and helps identify

the best subset of data to use for model building.

106

Future Work

Future work for DECIPHER can be broadly classified in two main areas:

1. DECIPHER IPM Model Management

2. Enhancement of Autonomous Tuning Managers

DECIPHER IPM Model Management: The life-cycle for DECIPHER’s IPM model

can be broken down into three major phases:

1. Model Build

2. Model Deployment

3. Model Management

Figure 25 shows the Model Build phase as well as the Model deployment phase for

DECIPHER’s IPM Model. IPM Model Build phase refers to the development and building of

DECIPHER’s IPM model from the historical change information corpus. The IPM Model

Deployment or Scoring phase refers to the applying the built IPM model on the

unimplemented change information.

Organizational IT environements undergo changes that are influenced by many

external factors such as mergers, acquisitions, explosive data growth, changing competitive

landscape and long-term investments. As a result, the change information corpus has new

change information that deal with new situations and technologies. In order to maintain the

accuracy and effectiveness of DECIPHER under such changing circumstances, the IPM

107

model needs to get periodically updated or refreshed or challenged. This aspect is referred in

here as IPM Model Management.

Figure 25. DECIPHER IPM Model Build and Deployment Phase

108

One effective approach of managing the IPM Model refresh or update is by using an

adaptive control to model management. This is often referred to as Champion/Challenger or

test and learn process (Shyam Varan, 2007; Taylor, 2010). The Champion/Challenger process

involves building several models using the historical change information. The model that has

better accuracy based on metrics like predictive confidence and confusion matrix is picked as

the champion. During the IPM Model build phase, we picked SVM over NB because it was

compartively more accurate. In this SVM can be seen as the champion model and NB as the

challenger model. This process can be done with several models to create a challenger model

list.

With SVM in production as the champion model, the challenger models can be

periodically be executed using a small percentage of the new change information. In this

small acid test, if one of the challengers have better accuracy and performance metrics, then it

can be picked to be run against larger percentage of the new change information (Shyam

Varan, 2007). If the challenger outperforms the current champion IPM model based on some

user-defined threshold then the challenger becomes the curent champion. This process is

performed iteratively to ensure that the impact and extent prediction remains accurate

throughout the life cycle of DECIPHER.

Enhancement of Autonomous Tuning Managers:

Effectively and safely managing changes in highly-integrated database environments

such as private database cloud environments is a challenge. Predicting the potential impact of

environmental changes and its extent before they are implemented can help in mitigating

these risks proactively. DECIPHER in its current form can be an effective tool for DBA’s in

this regard. However, manual intervention by a human tuner is prone to errors.

One possible approach to address this concern would be to use the environmental

change impact knowledge component by the DBAs to design policies that can be leveraged

by exisiting policy based feedback or control mechansims to automatically self-regulate the

109

autonomic database tuners before the environmental change are even implemented in an

anticipation of a need. This type of architecture can be referred to as an autonomous

predictive performance tuning.

Since one of the major goals for organizations adopting private clouds is to reduce the

operating costs, having an autonomous predictive performance tuning framework that can

self-regulate before a change is even implemented can be very beneficial to minimize the

costs associated with an undesired change that negatively effects the performance or

availability of the systems within the private database cloud environments.

A high level architecture of a potential autonomous predictive performance tuning

framework is shown in Figure 26 below. The Environmental Change Impact Knowledge

(ECIK) can be used in conjunction with existing policy based frameworks to control the

autonomic managers (Russell, Morgan, and Chron, 2003; Wiese et al., 2008). On such

framework is the Automatic Tuning Expert (ATE) that uses best practice databases of

database tuning plans that get picked up autonomic tuning manager based on predefined

policies (Wiese et al., 2008). Such policy based frameworks use a policy database to

automatically trigger a reaction based on a predefined performance situation or an

event(Wiese et al., 2008). ECIK from the predictive change management framework can be

used to lookup an existing policy or define a new policy that can be applied before a change is

implemented in order to self-manage the autonomic manager in an anticipation of a need.

110

Figure 26. Autonomous Predictive Performance Tuning Framework

111

REFERENCES

Bayes, M., and Price, M. (1763). An Essay towards Solving a Problem in the Doctrine of

Chances. By the Late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John

Canton, M. A. and F. R. S. Philosophical Transactions (1683-1775). doi: citeulike-

article-id:2306393

Belknap, P., Dageville, B., Dias, K., and Yagoub, K. (2009). Self-Tuning for SQL

Performance in Oracle Database 11g. Paper presented at the Proceedings of the 2009

IEEE International Conference on Data Engineering.

Bell, J. (2004). Understand the autonomic manager concept.

http://www.ibm.com/developerworks/autonomic/library/ac-amconcept/index.html

Bigus, J., Hellerstein, J., Jayram, T., and Squillante, M. (2000). AutoTune: A Generic Agent

for Automated Performance Tuning. Paper presented at the Practical Application of

Intelligent Agents and Multi Agent Technology.

Blakey, J. P., and Atkins, C., Crump, B. J. (2008). Using Design Research to Improve Data

Modelling Performance among Novice End Users. Paper presented at the 19th

Australasian Conference on Information Systems, Christchurch, NZ.

Boughton, H., Martin, P., Powley, W., and Horman, R. (2006). Workload Class Importance

Policy in Autonomic Database Management Systems. Paper presented at the

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed

Systems and Networks.

Bramer, M. (2007). Principles of Data Mining (Undergraduate Topics in Computer Science):

Springer.

Brown, K. P., Carey, M. J., and Livny, M. (1996). Goal-oriented buffer management

revisited. Paper presented at the Proceedings of the 1996 ACM SIGMOD international

conference on Management of data, Montreal, Quebec, Canada.

Böhm, M., Nominacher, B., Fähling, J., Leimeister, J. M., Yetton, P., and Krcmar, H. (2010).

IT Challenges in MandA Transactions – The IT Carve-Out View on Divestments.

http://www.ibm.com/developerworks/autonomic/library/ac-amconcept/index.html

112

Paper presented at the Proceedings of 31st International Conference on Information

Systems (ICIS).

Campos, M. M., Stengard, P. J., and Milenova, B. L. (2005). Data-Centric Automated Data

Mining. Paper presented at the Proceedings of the Fourth International Conference on

Machine Learning and Applications.

Charvet, F. P., Ashish. (2003). Database Performance Study: University of Missouri - St.

Louis.

Chaudhuri, S., and Narasayya, V. (2007). Self-tuning database systems: a decade of progress.

Paper presented at the Proceedings of the 33rd international conference on Very large

data bases, Vienna, Austria.

Chaudhuri, S., Narasayya, V., and Ramamurthy, R. (2008). A pay-as-you-go framework for

query execution feedback. Proc. VLDB Endow., 1(1), 1141-1152. doi:

10.1145/1453856.1453977

Chaudhuri, S., and Weikum, G. (2006). Foundations of automated database tuning. Paper

presented at the Proceedings of the 32nd international conference on Very large data

bases, Seoul, Korea.

Chen, J. Q., Kurtz, J. M., and Lee, O. F. (2009). Information management and regulatory

compliance\and\#58; a case analysis. Int. J. Inf. Syst. Chang. Manage., 4(1), 42-56.

doi: 10.1504/ijiscm.2009.030050

Cohen, W., Ravikumar, P., and Fienberg, S. (2003). A comparison of string distance metrics

for name-matching tasks.

Conradi, R., and Westfechtel, B. (1998). Version models for software configuration

management. ACM Computing Surveys, 30(2), 232-282. doi: citeulike-article-

id:1658340

Conway, s., Vesset, D., and Earl, J. (2009). Rasing the Bar on Business Analytics: Innovation

Powered by Grid: SAS Institue.

Corp, I. (2005). An architectural blueprint for autonomic computing. doi: citeulike-article-

id:821263

Curino, C., Jones, E., Popa, R., Malviya, N., Wu, E., Madden, S., . . . Zeldovich, N. (2011).

Relational Cloud: a Database Service for the cloud. Paper presented at the In

Conference on Innovative Data Systems Research (CIDR).

113

DBTA. (2009). Surveying the Role of Today's DBA.

http://www.dbta.com/Articles/Editorial/News-Flashes/GoldenGate-Survey-Highlights-

Top-Database-Management-Challenges-in-the-Year-Ahead-54316.aspx

Dumais, S. (1998). Using {SVMs} for Text Categorization. IEEE Intelligent Systems, 13(4).

doi: citeulike-article-id:619385

Elnaffar, S., Powley, W., Benoit, D., and Martin, P. (2003). Today's DBMSs: How autonomic

are they? Paper presented at the Proceedings of the 14th International Workshop on

Database and Expert Systems Applications.

Embarcadero-Technologies. (2010). Database Trends Survey Report. Retrieved from

www.embarcadero.com website: http://www.embarcadero.com/reports/database-

trends-survey

Endsley, M. R. (1995). Toward a Theory of Situation Awareness in Dynamic-Systems.

Human Factors, 37(1), 32-64.

Forrester, R. (2007). CMDB: GET Ready, Get Set, Go.

Gil, P., Arlat, J., Madeira, H., Crouzet, Y., Jarboui, T., Kanoun, K., . . . Gil, D. (2002). Fault

representativeness. Deliverable ETIE2 of Dependability Benchmarking Project, IST-

2000, 25245.

Grivolla, J. (2005). Using Oracle\and\#174; for natural language document retrieval an

automatic query reformulation approach. Paper presented at the Proceedings of the

28th annual international ACM SIGIR conference on Research and development in

information retrieval, Salvador, Brazil.

Guduru, N. (2006). Text mining with support vector machines and non-negative matrix

factorization algorithms: University of Rhode Island.

Hamm, C., and Burleson, D. K. (2006). Oracle Data Mining: Mining Gold from Your

Warehouse (Oracle In-Focus series): Rampant TechPress.

Hass, G. (2003). Configuration Management Principles and Practice: Addison-Wesley

Longman Publishing Co., Inc.

Herodotos Herodotou, S. B. (2010). Xplus: A SQL-Tuning-Aware Query Optimizer.

VLDB'10.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information

systems research. MIS Q., 28(1), 75-105.

http://www.dbta.com/Articles/Editorial/News-Flashes/GoldenGate-Survey-Highlights-Top-Database-Management-Challenges-in-the-Year-Ahead-54316.aspx
http://www.dbta.com/Articles/Editorial/News-Flashes/GoldenGate-Survey-Highlights-Top-Database-Management-Challenges-in-the-Year-Ahead-54316.aspx
http://www.embarcadero.com/
http://www.embarcadero.com/reports/database-trends-survey
http://www.embarcadero.com/reports/database-trends-survey

114

Inchiosa, M. E. (2011). Accelerating large-scale data mining using in-database analytics.

Paper presented at the Proceedings of the 17th ACM SIGKDD international

conference on Knowledge discovery and data mining, San Diego, California, USA.

Kephart, J. O., and Chess, D. M. (2003). The Vision of Autonomic Computing. Computer,

36(1), 41-50. doi: 10.1109/mc.2003.1160055

Kotsovinos. (2011). Virtualization: Blessing or Curse? Communications of the {ACM, 54(1),

61-65. doi: citeulike-article-id:10265743

Krayzman, E. (2005). development of self-tuning and autonomic databases and latest

achievements:. Paper presented at the 21st Computer Science Seminar SE2-T4-1.

Landau, D., Feldman, R., Aumann, Y., Fresko, M., Lindell, Y., Liphstat, O., and Zamir, O.

(1998). TextVis: An Integrated Visual Environment for Text Mining. Paper presented

at the Proceedings of the Second European Symposium on Principles of Data Mining

and Knowledge Discovery.

Lee, A. W., and Zait, M. (2008). Closing the query processing loop in Oracle 11g. Proc.

VLDB Endow., 1(2), 1368-1378. doi: http://doi.acm.org/10.1145/1454159.1454178

Lee, D., and Seung, S. (1999). Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755), 788-791. doi: citeulike-article-id:83540

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and reversals

(Vol. 10, pp. 707-710).

Majchrzak, T. A., Jansen, T., and Kuchen, H. (2011). Efficiency evaluation of open source

ETL tools. Paper presented at the Proceedings of the 2011 ACM Symposium on

Applied Computing, TaiChung, Taiwan.

Markl, V., Lohman, G. M., and Raman, V. (2003). LEO: An autonomic query optimizer for

DB2. IBM Syst. J., 42(1), 98-106. doi: 10.1147/sj.421.0098

McKendrick, J. (2011). The Petabyte Challenge: 2011 IOUG Database Growth Survey.

Mell, P., and Grance, T. (2009). The NIST definition of cloud computing. National Institute

of Standards and Technology (NIST). doi: citeulike-article-id:8789668

Milenova, B., Yarmus, J., and Campos, M. (2005). SVM in oracle database 10g: removing

the barriers to widespread adoption of support vector machines. Paper presented at

the VLDB '05: Proceedings of the 31st international conference on Very large data

bases, Trondheim, Norway.

http://doi.acm.org/10.1145/1454159.1454178

115

Miller, B. (2005). The autonomic computing edge: The role of knowledge in autonomic

systems. doi: citeulike-article-id:335721

Mueller, R., and Teubner, J. (2009). FPGA: what's in it for a database? Paper presented at the

Proceedings of the 35th SIGMOD international conference on Management of data,

Providence, Rhode Island, USA.

Oliveira, F., Nagaraja, K., Bachwani, R., Bianchini, R., Martin, R. P., and Nguyen, T. D.

(2006). Understanding and validating database system administration. Paper

presented at the Proceedings of the annual conference on USENIX '06 Annual

Technical Conference, Boston, MA.

Oracle. (2011a). Oracle Data Mining Documentation.

http://www.oracle.com/technetwork/database/options/odm/documentation/datamining-

091203.html

Oracle. (2011b). Oracle PL/SQL Packages and Types Reference.

Peffers, K., Tuunanen, T., Rothenberger, M., and Chatterjee, S. (2007). A Design Science

Research Methodology for Information Systems Research. J. Manage. Inf. Syst.,

24(3), 45-77. doi: 10.2753/mis0742-1222240302

Power, D. J., and Sharda, R. (2009). Decision Support Systems

Springer Handbook of Automation. In S. Y. Nof (Ed.), (pp. 1539-1548): Springer Berlin

Heidelberg.

Practical, B. (2011). Request Tracker. from http://bestpractical.com/rt/

Quinlan, J. R. (1986). Induction of Decision Trees. Mach. Learn., 1(1), 81-106. doi:

10.1023/a:1022643204877

Rabinovitch, G. (2009). Policy-Based Coordination of Best-Practice Oriented Autonomic

Database Tuning. Paper presented at the Proceedings of the 2009 Computation World:

Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns.

Rabinovitch, G., and Wiese, D. (2007). Non-linear Optimization of Performance Functions

for Autonomic Database Performance Tuning. Paper presented at the Proceedings of

the Third International Conference on Autonomic and Autonomous Systems.

Rissanen, J. (2004). Minimum Description Length Principle Encyclopedia of Statistical

Sciences: John Wiley and Sons, Inc.

http://www.oracle.com/technetwork/database/options/odm/documentation/datamining-091203.html
http://www.oracle.com/technetwork/database/options/odm/documentation/datamining-091203.html
http://bestpractical.com/rt/

116

Russell, L. W., Morgan, S. P., and Chron, E. G. (2003). Clockwork: A new movement in

autonomic systems. IBM Syst. J., 42(1), 77-84. doi: 10.1147/sj.421.0077

Schallehn, E. (2010). Database Tuning and Self-Tuning.

Serpa, A. A., Roncero, V. G., Costa, M. C., and Ebecken, N. F. (2008). Text Mining Grid

Services for Multiple Environments. In Jos, M. Palma, R. A. Patrick, D. Michel, M.

Marta, Jo and L. o Correia (Eds.), High Performance Computing for Computational

Science - VECPAR 2008 (pp. 576-587): Springer-Verlag.

Shasha, D. E. (1992). Database tuning: a principled approach: Prentice-Hall, Inc.

Shyam Varan, N. (2007). Champion-challenger based predictive model selection. CORD

Conference Proceedings, 254-254. doi: 10.1109/SECON.2007.342897

Solka, J. (2008). Text Data Mining: Theory and Methods. Statistics Surveys, 2. doi: citeulike-

article-id:3021047

Sullivan, D. G., Seltzer, M. I., and Pfeffer, A. (2004). Using probabilistic reasoning to

automate software tuning. SIGMETRICS Perform. Eval. Rev., 32(1), 404-405. doi:

10.1145/1012888.1005739

Taylor, J. (2010). Operational Analytics: Putting Analytics to work in Operational Systems.

http://www.oracle.com/us/products/applications/hyperion/operational-analytics-report-

081829.pdf

Telford, R., Horman, R., Lightstone, S., Markov, N., O'Connell, S., and Lohman, G. (2003).

Usability and design considerations for an autonomic relational database management

system. IBM Syst. J., 42(4), 568-581. doi: 10.1147/sj.424.0568

Vengurlekar, N., Vallath, M., and Long, R. (2008). Oracle Automatic Storage Management:

Under-the-Hood \\and Practical Deployment Guide: McGraw-Hill, Inc.

Wiese, D., and Rabinovitch, G. (2009). Knowledge Management in Autonomic Database

Performance Tuning. Paper presented at the Proceedings of the 2009 Fifth

International Conference on Autonomic and Autonomous Systems.

Wiese, D., Rabinovitch, G., Reichert, M., and Arenswald, S. (2008). Autonomic tuning

expert: a framework for best-practice oriented autonomic database tuning. Paper

presented at the Proceedings of the 2008 conference of the center for advanced studies

on collaborative research: meeting of minds, Ontario, Canada.

http://www.oracle.com/us/products/applications/hyperion/operational-analytics-report-081829.pdf
http://www.oracle.com/us/products/applications/hyperion/operational-analytics-report-081829.pdf

117

Wild, S., Curry, J., and Dougherty, A. (2003). Motivating non-negative matrix factorizations.

Paper presented at the SIAM Conference on Applied Linear Algebra.

Winkler, W., and Nov, P. (2006). Overview of record linkage and current research directions.

Ziauddin, M., Das, D., Su, H., Zhu, Y., and Yagoub, K. (2008). Optimizer plan change

management: improved stability and performance in Oracle 11g. Proc. VLDB Endow.,

1(2), 1346-1355. doi: 10.1145/1454159.1454175

118

APPENDICES

APPENDIX A: GLOSSARY

Acronym Definition

CDB Change Management Database

CDSS Cognitive Decision Support System

CF change factors that are extracted using NMF

CIK Change Impact Knowledge

CO NMF coefficients

CPI Classified impact for historical terms by IPM

DBA Database Administrator

DCF Dependent change factors that are part of the NMF Feature identifications

DECIPHER Database Environmental Change Impact Predictive-analysis for Human-

driven Tuning Efforts in Real-time

DML Data Manipulation Language

DSS Decision Support System

DW Data Warehouse

ECIK Environmental Change Impact Knowledge

ETL Extraction Transformation Loading

ERP Enterprise Resource Planning

FEID NMF Feature Identification

IED Impact Extent Database

IEIM Impact Extent Identification Module

IP Predicted Impact

IPM Impact Prediction Module

IT Information Technology

GPL General Public License

MAPE Monitor Analyze Plan Execute

MDL Minimum Descriptor Length

NMF Non-Negative Matrix Factorization

OLTP Online Transaction Processing

RT Request Tracker

SA Situation Assessment

119

SAW Situation Awareness

SF Change factors scored in real-time

SLA Service Level Agreement

SVM Support Vector Machine

TF-IDF Term Frequency-Inverse Document Frequency

WCIK Workload Change Impact Knowledge

120

APPENDIX B: REQUEST TRACKER SCREENSHOTS

1) RT Main Screen

121

2) Change Request Creation Web Form

122

APPENDIX C: PATTERN REOCCURRENCE

PSEUDOCODE

for each unimplemented change factor grouped by NMF feature id and sorted by NMF

coefficient in descending order

loop

 for each IED change factor sorted by NMF coefficient in descending order

 loop

 match factors using the jaro-winkler similarity function;

 get the score of the match;

 if the match score greater than or equal to the user-defined match score threshold

 then

 save the unimplemented change factor and the score in a temporary match result

 table;

 end inner loop;

end outer loop;

for each feature id loop

 get max similarity value;

 save the max similarity values of each feature set in a temporary table;

end loop;

get average of the max similarity;

return the result;

end;

123

APPENDIX D: ORACLE DATA MINER SCREENSHOTS

1. Oracle SQL Developer Main Screen

124

2. Oracle Data Miner Component Palette

125

APPENDIX E: ORACLE DATA MINER IPM

SCREENSHOTS

IPM Overall Performance Measures (4 years of change data):

126

Confusion Matrix by Impact level for 4 years of change data:

SVM IPM Model (4 years of Change Data):

Impact Correct

Predictions %

Correct

Prediction Count

Total Count

1 High 80 68 85

2 Medium 87.18 1177 1350

 Low 94.56 2801 2962

NB IPM Model (4 years of Change Data):

Impact Correct

Predictions %

Correct

Prediction Count

Total Count

1 High 67.05 57 85

2 Medium 71.25 962 1350

 Low 94.42 2792 2962

127

APPENDIX F: CONFUSION MATRIX BY IMPACT FOR

CREATOR-OWNER MODELS

SVM IPM Model (4 years of Change Data):

Impact Correct

Predictions %

Correct

Prediction Count

Total Count

1 High 11.76 10 85

2 Medium 37.85 511 1350

 Low 87.20 2583 2962

NB IPM Model (4 years of Change Data):

Impact Correct

Predictions %

Correct

Prediction Count

Total Count

1 High 9.41 8 85

2 Medium 23.18 313 1350

 Low 76.09 2254 2962

128

APPENDIX G: OLD AND NEW CHANGE DATA SET

DETAILS

Old Change Data Set New Change Data Set

1 2009 Quarter 1 2010 Quarter 1

2 2009 Quarter1 and 2 2010 Quarter1 and 2

3 2009 - full year 2010 - full year

5 2008 and 2009 Full years 2010 - full year

129

APPENDIX I: CONFUSION MATRIX BY IMPACT FOR

ONE YEAR DATA

SVM IPM Model (1 year of Change Data):

Impact Correct

Predictions %

Correct

Prediction Count

Total Count

1 High 92.85 26 28

2 Medium 93.41 908 972

 Low 96.89 2062 2128

NB IPM Model (1 year of Change Data):

Impact Correct

Predictions %

Correct

Prediction Count

Total Count

1 High 67.85 19 28

2 Medium 73.86 718 972

 Low 94.07 2002 2128

130

APPENDIX J: CONFUSION MATRIX BY IMPACT FOR

DB AND ALL QUEUE MODELS

ALL Queue IPM model built using 2009 full year Change Data scored against

2010 DB Queue Change Data:

SVM:

Impact Correct

Predictions %

Correct

Prediction Count

Total Count

1 High 86.95 20 23

2 Medium 87.77 201 229

 Low 72.86 419 575

NB:

Impact Correct

Predictions %

Correct

Prediction Count

Total Count

1 High 73.91 17 23

2 Medium 79.91 183 229

 Low 62.26 358 575

131

DB Queue IPM model built using only 2009 DB Change Data scored against 2010

DB Queue Change Data:

SVM:

Impact Correct

Predictions %

Correct

Prediction Count

Total Count

1 High 47.82 11 23

2 Medium 50.21 115 229

 Low 64.69 372 575

NB:

Impact Correct

Predictions %

Correct

Prediction Count

Total Count

1 High 34.78 8 23

2 Medium 43.66 100 229

 Low 53.39 307 575

	Dakota State University
	Beadle Scholar
	Spring 5-1-2013

	Database Environmental Change Impact Prediction for Human-driven Tuning in Real-time (DECIPHER)
	Monish Sharma
	Recommended Citation

	Sharma, Monish -- 2013
	Sharma, Monish -- Approval -- 2013
	Sharma, Monish -- 2013

