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ABSTRACT 

This dissertation addresses the pressing and difficult problem of assessing the risk of 

re-offending for parolees. The prison system in the state of California has been given a strong 

mandate to dramatically reduce the prison population. Before final discharge, prisoners often 

serve a portion of their sentence on parole release, but they are at high risk to re-offend. A 

number of systems have been developed to aid practitioners in parolee risk assessment, but 

the recommendations of these systems have not been consistently followed. Field 

practitioners were skeptical that recommendations adequately accounted for repeat offending 

histories, and did not believe that the recommendations were logical. We propose a hazard 

pattern based risk assessment approach to address these concerns. In this work, we 

demonstrate this approach using real world data, and rigorously evaluate the discovered 

patterns. 

The design science nominal process flow was selected as the methodological 

framework for this undertaking. The motivating case is a business problem, in context. The 

search for and development of a solution is documented, including the careful evaluation of 

existing technologies and development of novel approaches and artifacts where necessary. An 

IT artifact is developed, demonstrated and evaluated within the context of the motivating case. 

The driving question behind this work is this: How can we assess risk of future 

offending? A substantial body of work has explored this question, reflecting the importance of 

the question and the difficulty of finding an answer. A number of risk assessment tools have 

been developed but their accuracy has been moderate and their acceptance by practitioners 

has been lukewarm. We are thus faced with a need for a way to make accurate risk 

assessments that can be justified to field practitioners. 

As necessary components of a solution, two key contributions are highlighted in this 

work: a) hazard patterns, which extend existing work in event sequence patterns, and b) a 

method of selecting and presenting a relatively small number of interesting patterns that 

codify the rationale underlying the assessment of risk. 
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The solution was evaluated according to design objectives of parsimony, 

generalizability across data sets, meaningfulness, and predictiveness over time. We satisfied 

the objective of parsimony by selecting only those hazard patterns showing statistically 

significant differences in relative risk. To demonstrate generalizability and guard against 

over-fitting, ten-fold cross validation testing was performed. The selected patterns were 

consistent indicators of increase or decrease in arrest risk across folds in cross-validation 

trials. To test for meaningfulness, pattern discovery and selection was repeated with the 

underlying data randomly shuffled. The differences in the resulting output empirically 

demonstrate that the patterns were dependent on the input rather than on the pattern discovery 

process. Finally, to test for predictiveness over time, hazard patterns discovered in one time 

frame were compared to arrest outcomes in subsequent time frames. A moderate relationship 

between antecedent hazard patterns and future outcomes was observed, with lower accuracy 

near the beginning and end of criminal careers. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

The facilities in California’s prison system were designed to house approximately 

85,000 inmates. These facilities held approximately 156,000 inmates in 2011, when the 

Supreme court upheld an order that would require the state to decrease the prison population 

by 46,000 (Newman & Scott). In the face of California’s growing prison population, policy 

makers are under pressure to reduce the number of individuals housed in the prison system, as 

mandated by the U.S. Supreme court. 

One key way to reduce the number of individuals serving their sentence in prison is 

through parole release. Individuals may serve a portion of their sentence outside of prison, 

provided they abide by the terms of their release. However, identifying candidates for 

successful parole release is no easy task when recidivism rate is high and the number of life-

long desisters is low. In the context of a criminal career, recidivism is the re-occurrence of an 

arrest charge or conviction, while desistance is the absence of such a re-occurrence. The rate 

of recidivism will vary depending on whether the subject of interest is an arrest or a 

conviction. In California, 84% of individuals released from prison during the fiscal year 2007-

2008 were re-arrested within three years of release, and 60% were convicted (Cate et al.). 

1.2 Problem Statement 

The California Parole Violation Decision-Making Instrument (PVDMI) is a risk 

assessment tool that utilizes risk and severity scores from the California Static Risk 

Assessment Instrument (CSRA). This tool was recently deployed to select locations in a pilot 

study. A process evaluation showed that the tool as used by the pilot sites did not result in 

consistency in parole release decisions and did not lead to a reduction in recidivism. This may 

be due to the deviation of practitioners from the recommendations of this tool. Two key 

concerns were that practitioners did not see the recommendations as logical, and that criminal 
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histories with repeat offending did not appear to be adequately accounted for (Turner, 

Braithwaite, Kearney, Murphy, & Haerle, 2012). Thus, in addition to the difficult task of 

assessing risk of recidivism, we are presented with the challenge of justifying the risk 

assessment to the decision maker. 

1.3 Research Objectives 

We propose hazard pattern analysis both for the discovery of patterns leading to 

recidivism, as well as for communicating the risk of recidivism to a decision maker. Hazard 

patterns can capture commonalities in the order as well as the time between many different 

types of events in criminal histories. 

There are two primary goals for this work. The first goal is to find how we can assess 

risk of recidivism based on past offending behavior. The second goal is to codify the risk, as 

well as the basis for the risk in simple terms. 

In this work, we make two key contributions. First, we demonstrate that hazard pattern 

mining can be used to discover patterns that can reliably predict differences in risk of re-arrest 

following parole release. Second, we propose and demonstrate a test of meaningfulness for 

hazard patterns. Without such a test, it can be difficult to differentiate between patterns that 

occur by chance and genuine meaningful patterns. 

1.4 Scope of the Study 

This study examines the relationship between prior events and parole violations, and 

provides a way to summarize and codify that relationship in a concise manner. Two data sets 

were analyzed for this purpose. 

The first data set (data set A) consists of arrest charge, disposition type, parole, and 

discharge data for a group of young male offenders in 1964 and 1965 entering the California 

Youth Authority (CYA). For 3,652 of the original 4,165 of these individuals, criminal 

histories were collected for both their juvenile record and the subsequent 20 years. Dates were 

discretized to the nearest 15
th

 day of the month. In total, 54,175 arrest records were evaluated. 

This data set is available through the Inter-University Consortium for Political and Social 
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Research at the University of Michigan (ICPSR). This data was originally collected for the 

study of recidivism rates. For further details, see (Wenk, 2006). 

The second data set (data set B) consists of intensive parole supervision records for 

146 parolees in Milwaukee, released in 1980-1981. This data set consists of parole officer 

contacts as well as violation data, including the method of contact, over a two year period. 

Given the short time span, only a descriptive evaluation was performed for this data set. 

For both data sets, pattern mining yielded a large collection of hazard patterns. Of 

these patterns, a subset was highlighted as indicating a statistically significant increase in 

relative risk of parole violation. The data mining process was repeated with the same data, but 

with the ordering of the events shuffled. The discovered patterns were evaluated for 

robustness using ten-cross validation, and for significant differences between ordered and 

shuffled inputs.  

Additionally, data set A was evaluated to determine whether patterns discovered in 

one period also corresponded to patterns in a subsequent time period. We noted a moderately 

strong relationship across different time periods, suggesting that other time related covariates 

also play an important role in determining risk of parole violations.  

Further, in both data sets, a test for over-fitting was performed by ten-cross validation. 

We show that the discovered hazard patterns were consistent between validation folds, 

supporting the conclusion that such patterns may be generalizable to other similar data. 

Finally, a test for meaningless output was performed. The design of this test follows 

from (Keogh & Lin, 2004) where a clustering technique used in a large number of 

publications was shown to produce output that was independent of the input. We demonstrate 

support for the conclusion that hazard patterns are meaningful based on dramatic differences 

in quantity and content of patterns discovered in ordered versus shuffled data. 
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CHAPTER 2 

LITERATURE REVIEW 

In this section, we discuss the problem context and the motivation for this work. We 

provide a review of relevant criminology literature with attention to recidivism prediction in 

parolees. 

2.1 Risk Assessment 

Risk assessment instruments may draw on static predictors of recidivism, dynamic 

factors, and theory. Static predictors are those characteristics that cannot be changed, such as 

prior offenses. Dynamic factors are those which can be changed, such as the attitude of an 

individual. In the most advanced systems, these are supplemented by theory and the 

integration of needs assessments. 

Due to the many differences in the populations and correctional systems of different 

regions, it is not surprising to see development of state-specific risk assessment tools. 

Examples of state specific systems are Ohio’s progressive sanction grid (Martin & Dine, 

2008), the Minnesota Screening Tool Assessing Recidivism Risk (MnSTARR) (Duwe, 2013), 

and the California Parole Violation Decision Making Instrument (PVDMI) (Turner et al., 

2012). Ohio’s progressive sanction grid and the Minnesota Screening tool both make use of 

static and dynamic predictors, but the PVDMI relies only on static predictors as rated by the 

California Static Risk Assessment Instrument (CSRA). 

A commonality of these systems is the incorporation of multiple predictive factors and 

the use of statistical methods to produce an objective decision. Further, both the Ohio 

screening tool and the PVDMI encountered considerable resistance from practitioners in the 

field. Parole officers using the Ohio screening tool questioned whether the decisions of the 

tool were logical, and parole officers in California consistently escalated the recommended 

sanction for parolees with significant prior criminal behavior. Turner et al. (2012) suggested 
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that parole officers may not have been confident that criminal histories were properly taken 

into account by the system. It remains to be seen whether the deployment of MnSTARR will 

fare better. 

Resistance to actuarial tools is not altogether surprising, since predicting recidivism is 

very difficult. The accuracy of available tools has been moderate. A meta-analysis of risk 

assessment instruments found these produced area under curve  scores ranging from 0.65 to 

0.71 (Min, Wong, & Coid, 2010). 

2.2 Criminal career analysis 

Research in the area of quantitative criminal career analysis often makes use of group 

trajectory modeling. First introduced by (Nagin & Land, 1993) and since used in many other 

studies, this technique can be used to make predictions of criminal behavior over the life 

course of the individual. Criminal career analysis using group trajectory modeling involves 

clustering offenders by their offense rate over the span of their criminal careers. Comparisons 

can then be made across cluster groups. For instance, chronic offenders might be compared 

with early desisters to identify demographic or early offending patterns that predict which 

group a young offender will eventually belong to. 

A Canadian study by (Haviland, Nagin, & Rosenbaum, 2007) examined the 

relationship between adolescent gang joining and future offending. For this comparison, the 

treatment group consisted of gang joiners and the control group consisted of non-joiners. 

Since assignment to either group was non-random, propensity score matching (PSM) was 

used to adjust for selection bias. PSM is a technique where comparisons are made between 

matched pairs of individuals across groups, where each individual has the same propensity to 

belong to the treatment group. PSM has been shown to be useful, but is not applicable when 

the significant predictors of group membership are unknown. 

In (Bhati & Piquero, 2007), group trajectory modeling formed part of a strategy to 

predict increasing or decreasing offense rate following incarceration, in a cohort of American 

prisoners released from state prisons in 1994. In order to more effectively characterize 

important predictive characteristics of offender histories, the analysis included variables to 

represent age at first arrest, number of previous arrests, whether the previous arrest resulted in 

confinement, and a variable that characterizes the amount of time between preceding arrests. 
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Offenders were clustered according to life-long offense rates. A measure of individual 

heterogeneity was calculated based on the selected variables. Based on this heterogeneity 

score, a confidence interval was estimated for offense rate in the subsequent three years, in 

relation to the rest of the trajectory group. After a three year follow-up period, 40% of the 

prisoners had an offense rate that was significantly lower than estimated, and 4% of the 

prisoners had an offense rate that was significantly higher than estimated. However, the 

analysis did not address arrest hazard beyond the first post-release arrest, or the different types 

of subsequent events that may occur. 

In (Bersani, Nieuwbeerta, & Laub, 2009), group trajectory modeling was used to 

cluster a cohort of Dutch offenders to find predictive demographic factors for group 

membership. Overall predictive accuracy was informative, with a 71% accuracy rate, but 

accuracy for low-rate offenders, classic desister and chronic offender groups was under 10% 

(names of groups are qualitative descriptions of the shape of the offense rate plot over the 

span of the criminal career). Researchers cautioned against the use of risk assessment tools to 

support policy, and expressed skepticism that better results could be obtained using new 

analysis methods. 

2.3 Event Sequence Mining 

There are two major approaches to event sequence mining: (a) sequential pattern 

mining, and (b) frequent episode mining. (Blanchard, Guillet, & Gras, 2008). Sequential 

pattern mining is the discovery of subsequences that are deemed frequent if they occur in 

many input sequences. The approach was first introduced by Agrawal and Srikant (1995b) 

and is also commonly called “sequence mining” (Abraham, 2006b; Eichinger, Nauck, & 

Klawonn, 2006a; Spiliopoulou, 1999; Mohammed J Zaki, 2000). Frequent episode mining is 

the discovery of frequent subsequences in a single sequence, within a window of opportunity 

and was introduced by Mannila and Toivonen (1995a).  

Data mining tasks shown to be suitable for sequence mining include classification 

(Eichinger et al., 2006a; Ferreira & Azevedo; Srivastava, Sural, & Majumdar; M.J. Zaki, 

Lesh, & Ogihara), clustering (Abraham, 2006b), and pattern discovery (Zhang, Zhou, Yang, 

& Zhong). Similarly, there are also examples of frequent episode mining used for 
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classification (Qin & Hwang, 2004b), clustering (Bathoorn, Welten, & Richardson, 2010a), 

and pattern discovery (Fujikawa, Kida, & Katoh, 2011a) tasks. 

To guide the selection of an appropriate event sequence mining method, we return to 

the research problem and to the characteristics of the data. Key to expressing criminal 

histories as event sequences is the relationship between the antecedent and the subsequent. 

The approach to counting sequential patterns depends on the number of input sequences rather 

than number of occurrences. Thus, the frequency of a shorter pattern, when compared to a 

longer pattern does not capture the proportion of antecedents that lead to the subsequent. 

Rather, the relationship simply captures the proportion of individuals for whom the 

subsequent occurred at least once. However, frequent episode mining does not include a 

notion of multiple input sequences. A review of the frequent episode mining literature showed 

considerable disagreement on how to count the number of episodes (pattern occurrences). 

(Achar, Laxman, & Sastry, 2011) describes ten different methods of frequent episode support 

counting.  

Event sequence mining is a problem with a complexity of ϴ(m
k
) where m is the 

number of possible itemsets and k is the number of elements in the discovered patterns. A 

number of researchers have addressed the challenge of mining the explosive number of 

possible frequent patterns by enhancing the efficiency of the algorithm with pattern growth 

(Pei, Han, & Wang, 2002) and vertical database (Gouda, Hassaan, & Zaki, 2007; Mohammed 

J Zaki, 2001) approaches. To narrow the focus to only the most meaningful rules, there has 

been some exploration of rule interestingness for sequence mining and frequent episode 

mining (Blanchard et al., 2008; Spiliopoulou, 1999) There have also been efforts to reduce the 

overall number of discovered patterns, such as the reduction to closed and maximal patterns  

(Yan, Han, & Afshar, 2003), as well as numerous efforts to introduce various domain and gap 

constraints (Leleu, Rigotti, Boulicaut, & Euvrard; Masseglia, Poncelet, & Teisseire, 2009; Pei 

et al.; Wang & Han, 2004). 

With the introduction of constraints comes the challenge of finding appropriate 

parameters that might be suitable for a particular dataset. The current practice is to use 

operator-specified parameters for domain constraints, gap constraints, and rule interestingness 

parameters. To make event sequence mining accessible to more practitioners, there is a need 

to reduce this requirement for operator specified parameters.  
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The VOGUE algorithm combines sequence mining for pattern discovery with a hidden 

Markov model (HMM) that represents various gaps and elements as states (M J Zaki, 2010). 

This approach is suitable for protein sequences, where the size of the alphabet is relatively 

small. However, as the size of the alphabet and number of gap constraints grows, the HMM 

grows exponentially. Furthermore, as the number of sequence segments grows, precision of 

the Markov model suffers. Nonetheless, the success of this hybrid approach for biological 

sequence discovery, and the success of the aforementioned T-pattern discovery method 

(Magnusson, 2000) both support the case for a versatile gap constraint discovery mechanism. 

2.4 Summary 

There is a substantial body of literature in the field of developmental criminology 

involving criminal career trajectory analysis, but there is a need for a method to discover ad 

hoc relationships between different types of criminal life course events. Existing approaches 

to criminal career analysis involve classification and clustering, and focus on offense rate 

predictions. Research in behavioral pattern analysis has shown the usefulness of pattern 

discovery in sequential interactions using event types and interval constraints rather than 

event rate. Event sequence mining is applicable to classification, clustering and pattern 

discovery, but existing notions of pattern support and constraints are not well suited for 

expressing sequential relationships. Further, although event sequence mining does include the 

notion of gap constraints, where events must be separated by a given minimum and maximum 

time interval, it does not include the notion of periods of time during which an event does not 

occur. 

In this work we address each of these limitations by designing and implementing a 

new type of event hazard pattern designed to capture periods during which an event does not 

occur (periods of desistance), and to accurately encode sequential relationships using a new 

measure of support. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

This chapter describes the research methodology employed in this work. It also 

includes a brief review of the design science research guidelines as they shaped the 

methodological framework. 

3.1 Design Science Research Methodology 

Design Science is a problem solving process that produces knowledge and 

understanding. Hevner, March, Park, and Ram (2004) describe seven key guidelines for 

design science research: 

 

Table 1: Research guidelines 

1) Design science research 

must produce a viable 

artifact in the form of a 

construct, a model, a 

method, or an instantiation. 

 

This work describes the design of a software instantiation 

designed to discover hazard patterns used to assess risk of 

recidivism and to justify the risk by concisely representing 

the antecedents leading to increases in relative risk of 

recidivism. 

 

2) The objective of design 

science research is to 

develop technology-based 

solutions to important and 

relevant business problems. 

 

The problem identified in this work is both pressing and 

important. Practitioners are faced with a Supreme Court 

mandate to reduce the California prison population by tens of 

thousands of individuals. 

 

3) The utility, quality, and 

efficacy of a design artifact 

must be rigorously 

demonstrated via well-

executed evaluation 

methods 

 

Based on a review of the literature, a number of key 

requirements for a technological solution were identified. 

The discovered patterns should not be over-fitted to the 

training data. They should be meaningful and should codify 

the logic supporting a particular risk assessment. Finally, 

they should be generalizable over time. These form the 

design objectives and the evaluation criteria of the artifact. 



10 

4) Effective design science 

research must provide clear 

and verifiable contributions 

in the areas of the design 

artifact, design foundations, 

and/or design 

methodologies. 

 

The developed artifact is a contribution in its own right, 

extending the sub-field of event sequence mining in a new 

direction. Existing event sequence mining techniques were 

individually examined and found to be missing one or more 

key design requirements. The most fundamental of these is 

the cross-fertilization of survival analysis with event 

sequence mining. Hazard patterns are event sequence 

patterns that are frequent occurrences of time-to-event 

sequences (Janzen, Deokar, & El-Gayar, 2013a). 

 

5) Design science research 

relies upon the application 

of rigorous methods in both 

the construction and 

evaluation of the design 

artifact. 

 

The design and construction of the artifact was guided by 

gaps identified in the literature. In the domain space, there 

was an identified need for a risk assessment tool that both 

incorporates prior offending history and codifies that risk in 

a logical manner. In the solution space, there was a need for 

a way to express durations of desistance, and to express the 

relationship between antecedent event sequences and 

subsequent events. 

 

6) The search for an effective 

artifact requires utilizing 

available means to reach 

desired ends while 

satisfying the laws in the 

problem domain 

 

The design of the artifact was conducted through an iterative 

generate/test cycle. The first iteration lead to the exploration 

of event sequence mining as a potential tool to demonstrate 

and explain the sequential relationships in criminal histories. 

However, existing approaches to event sequence mining did 

not account for periods during which events do not occur. 

Further, existing event sequence support counting methods 

were not well suited for quantifying the relationship between 

antecedent sequences and their subsequent extensions. The 

existing methods were examined in detail and formed the 

requirements for a new approach to event sequence mining, 

developed in a second iteration of the development cycle. 

These were then evaluated according to identified domain 

space objectives. Limitations identified during this latest 

iteration will form the requirements of future work. 

 

7) Design science research 

must be presented 

effectively both to 

technology-oriented as well 

as management-oriented 

audiences 

 

In the course of the development of a solution to the 

presenting problem, two conference presentations were 

made. Hazard patterns with heterogeneous constraints were 

introduced in a presentation at a technology-oriented 

conference in (Janzen, Deokar, & El-Gayar, 2013b). 

Subsequently, the use of time oriented pattern selection 

mechanisms was presented to a technical and managerial 

audience in (Janzen et al., 2013a). 
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Figure 1: Nominal DSRM process model (Peffers et al., 2007) 

The research process for this work follows the Design Science Research Methodology 

(DSRM) proposed by Peffers, Tuunanen, Rothenberger, and Chatterjee (2007). A DSRM 

nominal process sequence, with a problem-centered initiation, is applicable to this research 

study. The problem importance has been demonstrated as an important and current question 

asked by researchers and practitioners in the field of criminology. The literature was 

consulted to learn what has already been accomplished toward addressing the problem, and to 

what extent existing solutions have been found effective. This has led to the identification of 

specific missing advances. Based on the motivation from the problem domain, and based on 

the key missing advances identified in the literature review, specific design objectives have 

been formulated. Based on these design objectives, a new algorithm and an encompassing 

crime analytics prototype system was designed and implemented, then demonstrated in the 

application domain, and subsequently evaluated. Finally, the results were communicated 

through conference presentations and scholarly publications. 

3.3 Objectives of a Solution 

Based on the process review of the PVDMI pilot deployment in California, 

practitioners lacked confidence in the logic supporting the tool’s risk determinations, and did 

not believe the tool properly accounted for changes in risk associated with repeat offending 

behavior (Turner et al., 2012). We are presented with the challenge, not only of assessing risk, 
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but of justifying that risk assessment to a decision maker, particularly with respect to prior 

offending record. 

We identified two key requirements that a recidivism risk assessment tool should 

satisfy: 

1. Incorporate salient characteristics of prior record to determine risk. 

2. Concisely present the logic leading to the determined risk level. 

Each individual’s prior record consists of a series of discrete events over the course of 

the criminal career. Such events include arrest and charge, disposition, parole, and discharge. 

A risk assessment based on criminal history is a static risk assessment – a determination based 

on factors that cannot be changed. The PVDMI utilizes the California Static Risk Assessment 

Instrument (CSRA). This instrument incorporates indicators for repeat offending behavior by 

including counts for number of incidents of various types, such as convictions, sentences, and 

supervision violations. More details about this instrument are available in a working paper 

(Turner, Ph, Hess, & Jannetta, 2009). 

One way to represent a criminal history is as an ordered sequence of many different 

types of events. Event sequences that occur frequently can be represented as patterns for 

classification, clustering, or prediction tasks. Hazard patterns are frequent sequences of events 

where each successive event in a pattern represents the first subsequent event of that type, and 

where the time between events in a pattern represents time-to-failure or time-to-event (Janzen 

et al., 2013b). As already noted in (Bhati & Piquero, 2007), time between preceding arrests is 

a useful predictor of future arrest risk. 

A hazard pattern representing a history of many arrest charges for various offenses 

will also capture periods of desistance, during which no arrest occurred. Hazard patterns draw 

on survival analysis techniques, and allow the analyst to include potentially significant 

information about time between events. However, to demonstrate usefulness and reliability of 

these patterns for risk assessment, we must address some important concerns: 

Over-fitting: 

Are the patterns generalizable to other similar data sets? 

Meaningfulness: 

Are patterns found even when there are no patterns in the data? 

Predictiveness: 

Can patterns discovered in the past be useful predictors of future behavior? 
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Parsimony: 

Can we produce output with minimal redundancy? 

Each of these concerns must be addressed if a risk assessment tool is to be useful and 

credible. 

A common way to address the concern of over-fitting is to rely on some form of 

validation on a hold-out sample. One portion of the data set is set aside only for validation, 

while the remainder of the dataset is used to train the model. A straightforward strategy is to 

split the data in half. In cases where there is little available data, setting aside half of the data 

for validation may substantially disadvantage the model training process. For this reason, it 

can be advantageous to perform  -fold validation. The data is divided in to   subsets, each of 

which serves as a validation set for a model trained using the remainder of the data. If the 

discovered patterns are characteristic of the population, they will also be found in the hold-out 

sample. If the discovered patterns are merely characteristic of the training data, few patterns 

found in the training data will be found in the hold-out sample. 

The second issue of meaningfulness is both subtle and important. We applied a test for 

meaningless results, to support the belief that the discovered patterns are meaningful. Keogh 

and Lin (2004) presented the surprising result that a subsequence clustering technique used in 

dozens of published papers produced meaningless results. For our test, we draw on their 

formal definition: “We call an algorithm meaningless if the output is independent of the 

input.” We can prepare a minimally differentiated data set where all of the same events occur, 

but their order is randomly shuffled. If the discovered patterns are dependent on the ordering 

of the underlying events, the tool should not discover any patterns in the shuffled data. 

The third concern of predictiveness is of vital importance. We can demonstrate 

predictiveness by showing that patterns discovered in one time period can reliably predict 

arrest risk in a subsequent time period. This is also the most difficult test, since patterns 

learned in the past cannot account for future changes in the environment. 

Finally, to avoid producing an output of thousands or even millions of patterns that 

may or may not be useful, we must apply a pattern selection strategy. One approach is to 

apply a test of statistical significance to determine whether complex patterns predict risk that 

is different from simpler alternatives. However, there is a danger that, in a large enough 

sample, some patterns will appear to be significant due to chance alone. If we rely on 
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statistical tests of significance for pattern selection, we must also guard against, and if 

necessary, correct for multiple testing bias. 
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CHAPTER 4 

THEORY AND ARTIFACT DESIGN 

In this section we describe the system design by example, using a collection of three 

contrived criminal histories. We first present the events on a time line, and then refer to this 

example as we describe our search for a solution. 

4.1 Hazard Patterns 

Figure 2 contains three contrived example criminal histories for individuals  , , and  . 

The data set used for demonstration of this pattern discovery tool includes many more event 

types including a range of arrest charges and dispositions. This example is simplified for the 

sake of illustration. However, even in this simplified case, it is difficult to see whether there 

might be a pattern between antecedent events and arrest after parole release. Keeping in mind 

that these are contrived histories; can we find a relationship between past behavior and risk of 

arrest after parole release? 

 

Figure 2: Contrived histories 

Frequently occurring patterns of events might be used to discover behavior patterns 

that are characteristic of a particular type of offender or that are indicative of increased re-

arrest risk. 

An event occurrence is denoted      , where   represents the event type and   

represents the time of the event occurrence. For example,               is the occurrence of 

event (or event type) Paroled at time 909 (in this case, the number of months since the 

beginning of the 20
th

 century). 
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An event sequence of length   is denoted                              where    

represents the type of the i
th

 event,    represents the time of the i
th

 event, and        . An 

event sequence is a time oriented arrangement of event occurrences. For example, 

                               is an event sequence. Note that in this work we address 

only serial event sequences, where each subsequent event occurs after the preceding event. 

Event sequence mining has been widely used to discover characteristic patterns for 

classification (Eichinger et al., 2006b; Ferreira & Azevedo, 2005; Qin & Hwang, 2004a; 

Srivastava, Sural, & Majumdar, 2006b; M.J. Zaki, Lesh, & Ogihara, 1998a), clustering 

(Abraham, 2006a; Bathoorn, Welten, & Richardson, 2010b), and pattern discovery (Fujikawa, 

Kida, & Katoh, 2011b; Zhang, Zhou, Yang, & Zhong, 2010b). In each of the examples of 

classification and clustering, event sequence mining was used indirectly, to produce the input 

for classification or clustering algorithms. Common application domains are the analysis of 

biological sequences and malicious activity. 

Constraints between event occurrences 

To discover time-based relationships between events in a criminal history, it is useful 

to apply a constraint that limits the amount of time between the events of interest. In event 

sequence mining, mingap and maxgap constraints can be applied for this purpose. 

A gap constraint is the requirement that except for the initial event occurrence, for 

any event occurrence         in an event sequence, there exists at least one event occurrence 

            where                            . For example, two events in an 

event sequence satisfy a minimum gap constraint if they are separated by at least        and 

they satisfy a maximum gap constraint if they are separated by at most       . For a more 

detailed discussion of gap constraints, see (Leleu et al., 2003). 

The practical application of gap constraints brings with it the challenge of selecting 

useful minimum and maximum allowable gaps. The discovered patterns will vary greatly 

depending on the operator-specified parameters. Further, some patterns with both short term 

and long term relationships will only be found when multiple different constraints are 

specified. For instance, Han and Dong (1999) describe the strategy of combining of weekly 

and yearly periodicity in patterns, and Giannella, Han, Pei, Yan, and Yu (2004) applied a 

tilted time window framework, mining for patterns in windows of 15 minutes, 24 hours and 

31 days. 
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We can apply multiple different gap constraints to a criminal event history to 

characterize clustering of events over time. However, gap constraints do not include 

information about whether the event of interest occurs additional times prior to       . To 

describe a relationship between previous events and time to re-arrest, hazard patterns with 

heterogeneous constraints were proposed in (Janzen et al., 2013b). 

A hazard pattern is a frequently occurring sequence of events where each subsequent 

event occurrence is the first subsequent occurrence of that particular event type. A hazard 

pattern can be denoted as Paroled   Arrested. For all occurrences of this pattern, Arrested 

refers to the first arrest after parole release. 

We can also apply a constraint whereby the period of time between two events in a 

pattern must fall within a specified minimum and maximum time interval. A given hazard 

pattern Paroled   Arrested can be expressed with a hazard constraint as Paroled 

               ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   Arrested. For instance, occurrences of Paroled     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Arrested satisfy the 

condition that more than three and at most six months elapsed between parole release and the 

next arrest. We can also apply hazard constraints of increasing sizes, to capture patterns that 

reflect both short term and long term relationships. 

Table 2: Months until re-arrest (contrived data set) 

 

Counting pattern occurrences 

A straightforward way to describe relationships between antecedent patterns and 

subsequent events is to describe the proportion of antecedents that lead to the subsequent. For 

instance, the relationship can be expressed as the occurrences of Paroled that also occur in 

Paroled      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Arrested as shown in Table 2. 
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Table 3: Months until paroled (contrived data set) 

 

There are six occurrences of Paroled. Of these six Paroled events, we see in Table 3 

that five lead to re-arrest within 4-12 months, aggregated as a proportion of 0.83 re-arrests per 

parole release. When more than one antecedent parole release leads to the same subsequent 

arrest, counting varies based on the approach to event sequence mining. 

Event sequence mining includes both sequential pattern (or sequence) mining, and 

frequent episode mining. The support of an event sequence pattern is a measure of pattern 

frequency. Sequential patterns are frequent if they occur in many input sequences (Agrawal & 

Srikant, 1995a). Event sequences are frequent if they occur in many windows of opportunity 

(Mannila & Toivonen, 1995b). Sequential patterns may be useful for discovering 

commonalities between offenders, but since our primary interest is to predict future risk of 

recidivism, we primarily examined support counting methods based on opportunities, as used 

in frequent episode mining. 

There is no agreed upon way to count the number of event sequence pattern 

occurrences. For instance, (Achar et al., 2011) describes 10 different support counting 

methods, each of which was evaluated for the presenting problem. For all support counting 

methods we encountered, one or more of the following were true: (a) counts were non-

independent of other occurrences of the same pattern (non-overlapping, non-interleaved, 

distinct occurrence, and minimal window based), (b) longer patterns were unduly penalized 

(window and expiry time based) and (c) unrelated event occurrences can inflate support 

counts (head frequency, total frequency). 

In the case of non-overlapping, non-interleaved, and distinct occurrence based 

patterns, a pattern occurrence that would otherwise have been counted might not be counted 

due to the existence of other pattern instances. Distinct patterns may not share any events in 

common. For instance, in event sequence 

                                                 , there are three potential occurrences 

of    :              ,              , and              . Since each of these shares an 

event with common. For instance, in event sequence 

                                                 , there are three potential occurrences 
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of    :              ,              , and              . Since each of these shares an 

event with at least one of the other potential pattern occurrences, we only count one distinct 

occurrence. Non-interleaved patterns maintain the relative order of their events with events in 

at least one of the other potential pattern occurrences. Non-interleaved patterns maintain the 

relative order of their events with events in other pattern occurrences. For instance, in the 

above example,               and               are non-interleaved but               and 

              are interleaved. Non-overlapping patterns occur in distinct time spans. For 

instance,               and               are non-overlapping but               and 

              are overlapped. Minimal occurrence-based support includes only those 

occurrences during which there exist no occurrences of the same pattern over a smaller time 

window. For instance,               is not a minimal occurrence because it contains 

              in a sub-window. The interdependencies between pattern occurrences make it 

difficult to establish a relationship between a shorter pattern and an extension of that pattern. 

For instance, even the simple relationship between an antecedent   and the subsequent 

extension to     is not accurately represented by the differing support counts for each of 

these patterns. In fact, for each of these counting methods, there are three occurrences of   

and only one occurrence of    , leading us to conclude that these support counting methods 

cannot be used to express a sequential relationship between an antecedent   and a subsequent 

 . For each of these approaches, any single occurrence of     is not independent of another 

occurrence of the same pattern. 

Window and expiry-time constraint based counting methods disproportionately 

penalize longer patterns. In the case of an expiry-time constraint, the time between the first 

and last events in a pattern occurrence must not occur farther apart than a specified expiry 

time. This has no impact on patterns consisting of a single event, such as  , but for     in 

the preceding example, the choice of expiry time constraint dramatically affects the support 

count. For window-based support, the number of windows that contain at least one pattern 

occurrence are counted. In addition to the impact on longer patterns as seen with an expiry 

time constraint, window-based counting adds a further distortion by over-inflating the 

prevalence of very short patterns. For instance, there are 5 windows of size 2 that contain an 

occurrence of  , and only 1 window of size 2 that contains an occurrence of    . Given the 

penalty against longer patterns and given the inflation of support for shorter patterns, we were 
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unable to use window-based and expiry-time based counting methods for modelling 

sequential relationships. 

We also considered head frequency and total frequency counting methods. Head 

frequency is the number of windows of opportunity that begin with the first event in the 

pattern. This is quite effective for patterns consisting of up to two events, but is problematic 

for longer patterns, particularly when the first event is very frequent. For instance, the head 

frequency of     for a window size of 5 is 3 and the head frequency of       is 2 for 

the same window size. The frequent   over-inflates the number of potential     that might 

lead to a subsequent  . Total frequency partially addresses this problem by counting support 

as the lowest head frequency of any sub-pattern. The support of     is limited by the 

support of  . However, as we see in the above example, the support of sub-patterns may 

depend on completely unrelated occurrences, in this case,      . Thus, in addition to the 

penalty against long sequences introduced by use of a window of opportunity, both head 

frequency and total frequency cannot be used to accurately describe the relationship between 

an antecedent and subsequent because the support counts can be distorted by unrelated events 

(frequent head, sub-pattern occurrences without the antecedent of interest). 

To be able to adequately express the relationship between the antecedent and the 

subsequent, a new measure of support was proposed in Janzen et al. (2013b). Relative 

Support is the number of distinct or unique antecedent event occurrences that are followed by 

a subsequent event of a particular type in a hazard pattern. For instance, in Table 3, of 11 

occurrences of Arrested, 5 are eventually followed by Paroled in 4-6 months. However, there 

are only 4 distinct occurrences of Paroled that participate in this relationship. Two of the 

Arrested events lead to one Paroled event (see individual b in Figure 2). Further applying this 

concept, in Table 2, the antecedent pattern Arrested      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Paroled has a support of 5, but we 

only consider 4 distinct antecedents when calculating the proportion that participates in 

Arrested      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Paroled      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Arrested. 

Selecting interesting patterns 

An additional problem we faced, particularly in a large data set, is the large number of 

patterns discovered. To determine whether a particular pattern might convey useful 

information, we can calculate a measure of interest and apply a statistical test of significance. 
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Relative Risk is the ratio of the risk within a treatment group over the risk of the 

control group. It is used to measure the cumulative treatment effect at the end of a period of 

time. For a discussion of practical application of relative risk ratios, see (Bewick, Cheek, & 

Ball, 2004). 

We evaluated the use of pattern selection using significance tests on Relative Risk 

(RR). Patterns shown to significantly affect the RR coefficient in training data were also 

shown to have a similar effect in test data. For further details, see (Janzen et al., 2013a). 

RR expresses the ratio between survival proportion in a treatment group compared to 

the same in a control group. Since we value parsimony, to reduce the number of patterns that 

a decision maker might need to review, we compare the RR for a presented pattern with the 

RR for the same pattern with the first antecedent removed. In Table 2, RR could only be 

calculated in this way for one of the patterns. The risk of arrest in the four distinct antecedent 

parole releases in Arrested      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Paroled (¾) is compared against the risk of arrest in the two 

distinct parole releases in Paroled that are not already counted in Arrested      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Paroled  (½). 

The RR of      indicates that the risk of re-arrest during the subsequent 4-6 months is one 

and a half times higher if parole release is 4-6 months after arrest. A RR of 1 indicates no 

change. To see whether the increase in risk might be generalizable to the broader population, 

we draw on the statistical significance of RR. In this case, as we can expect with such a small 

sample, the resulting Z-score of 0.32 (      ) indicates that we do not have enough 

evidence to conclude that the RR is different than 1. 

4.2 Algorithm design 

Data structures 

To facilitate indexing, constraint and offset values were stored in a lookup table. 

Events were encoded as integers, constraints of increasing sizes were represented as 

successive integers, and offset values were represented as ordinals. Offsets were kept 

separated per individual, as illustrated in Figure 3. 
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Figure 3: Example offset and constraint lookup tables 

Using these simplified representations of events, offsets and constraints, an index was 

constructed to enable easy lookup of both when the next event of a given type might occur, as 

well as what constraint is satisfied by that occurrence. 

 

Figure 4: Ordinal and constraint indexes 

For instance, by referencing ordinal 6 in Figure 4 we see in the ordinal index that the 

next Arrested event occurs at ordinal 8 and we see in the constraint index that constraint 3 is 

satisfied for that next ordinal. A value of zero indicates that there is no applicable next 

ordinal. Note that histories of different individuals are indexed back to back. Ordinals 1,10 

and 16 contain zeroes because the subsequent ordinal belongs to a different individual’s 

history. 

We can also see convergence from multiple antecedents to a single subsequent. For 

ordinals 5 and 6 (columns 5 and 6), we see that two distinct Arrested events occurred. For 

each of the arrest events, the next Paroled event is the same occurrence. This convergence is 

also seen in Figure 2 in individual   at the end of 1966, and is the reason for the difference 
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between the support and the distinct count in Arrested     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗Paroled (see Table 3). The 

algorithms used to construct the above indexes and lookup tables are not detailed here. 

Pattern discovery algorithm 

The discovery of frequent patterns follows a depth first tree-traversal search pattern 

(though breadth first traversal is certainly possible due to lack of dependencies between 

search branches, affording an opportunity for parallel processing) Frequent antecedent 

ordinals are collected, and for each type of subsequent event, the subsequent ordinals are 

grouped according to the constraint they satisfy (each ordinal satisfies only one constraint). 

Within each type of subsequent event, constraint groupings that are larger than a specified 

support threshold become candidates for further extension. 

 

Figure 5: Pattern discovery algorithms 

The Grow function shown in Figure 5 relies on the constraint and ordinal indexes. 

Ordinals are translated to offsets at      cost as needed for constraint calculations. Input 

ordinals are supplied in a matrix indexed by                 , where each                   

represents the antecedent ordinals for the current pattern growth step. In Line 4, those 

antecedents with cardinality that is high enough to meet a specified support threshold are 

added to the frequent pattern database, and are passed to the Next function, where a new 

matrix of candidate ordinals is created, and passed to the subsequent recursive Grow attempt 

on line 7. 

The Next function in Algorithm 2 takes as input a collection of antecedent ordinals, 

grouped by event, and produces the Ordinal matrix          needed in line 6 of 

algorithm 1. This function uses two indexes:                and               . See Figure 4 for 
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the   and   indexes corresponding to event histories shown inFigure 2. Ordinals in   and 

constraint identifiers in   have corresponding values in the lookup tables shown in Figure 3. 

  and   are matrices of dimension       where   is the alphabet of all possible events, and 

  is the number of distinct offsets. Multiple events may occur at the same offset.   contains 

the ordinal of the subsequent occurrence of a given event type. The value stored at the 

intersection specified by an ordinal and an event type corresponds to the ordinal of the first 

subsequent occurrence of that event type.   contains the constraint that is satisfied at a given 

event offset (represented as an ordinal), relative to the its immediate antecedent event. 

On line 4 of the Next function pseudo-code in Algorithm 2, for each antecedent event 

occurrence, the constraint               , that is satisfied for each potential subsequent event is 

retrieved. Given the half-open interval topology used to describe the different constraints, 

each subsequent event can satisfy one constraint. In line 4 the subsequent ordinals are 

retrieved from   and then grouped according to their matching constraints in line 5. The 

creation of   and   are not described here, but are straightforward. Their purpose is to pre-

compute comparisons and look-ups that are frequently repeated during candidate generation. 

Simply put, the index serves to reduce the number of calculations required during candidate 

generation at the cost of increasing memory usage up front. 
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CHAPTER 5 

DEMONSTRATION AND EVALUATION 

In this section, we demonstrate the results obtained using the pattern discovery system 

to mine a data set of real life criminal histories. We then evaluate the pattern discovery system 

according to the four design objectives described in chapter 3: 

Over-fitting: 

Are the patterns generalizable to other similar data sets? 

Meaningfulness: 

Are patterns found even when there are no patterns in the data? 

Predictiveness: 

Can patterns discovered in the past be useful predictors of future behavior? 

Parsimony: 

Can we produce output with minimal redundancy? 

5.1 Demonstration: Pattern discovery using representative data 

The pattern discovery system was used to discover patterns in two related data sets. 

Data set   consisted of complete criminal histories from a non-random sample of offenders 

who entered the California Youth Authority’s Deuel Vocational Institute in 1964 and 1965. 

The event database contains 54,175 arrest records and associated dispositions, parole, and 

discharge events for 3,652 individuals from the time of first arrest through 1983. Dates were 

discretized to the nearest 15
th

 day of the month (Wenk, 2006). 

For this analysis, the individual histories in the data set were randomly assigned to 

either the training set or the testing set. Note that due to the discretization of the data, the 

relationship between an arrest and a conviction for that same arrest is not represented. All 

dispositions (including convictions) were recoded to the arrest charge date. Any patterns 

showing both arrests and convictions have nothing to do with conviction rates. 
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Table 4: Arrests after parole (data set A) 

 

Table 4 contains the patterns with a minimum support threshold of 500, plus their 

neighboring stubs. Stubs are those patterns that would otherwise be excluded due to low 

support, but which are siblings of a frequent pattern. For instance, if the subsequent event 

occurs frequently in the follow-up period of (0,3], we also tabulate the number of occurrences 

in the adjacent follow-up periods, and calculate a total. Table 4 shows only patterns with an 

antecedent ending with parole and a subsequent event of Arrest. To reduce redundancy, 

antecedents with an Arrested antecedent event were also excluded from the table. Patterns 

with a RR value that is significantly different from 1 are presented in bold. We see that the 

recidivism is generally high in this group. These rates do not represent the general population. 

There are three relevant considerations to keep in mind when interpreting these patterns. First, 

the data set contains only male offenders who were young offenders in 1963/1964. In other 

words, late onset offenders and females were not included. Second, since the mining process 

specifically selected frequently occurring patterns, it is not surprising that these patterns 

would reveal sub-groups with high recidivism rates. Third, since there are 54,175 arrest 

records for 3,652 individuals, each individual had on average 14.83 arrests, all but one of 

which was their final arrest, so a high recidivism rate is not surprising in this data set. 

We note several relationships between criminal history and recidivism. Of all the 

follow-up periods, even though the (0,3] time interval is the smallest, it also tends to be the 

time period with the highest support counts. Over all, there is only a small amount of variation 

between the groups represented by each pattern. RR values for shorter follow-up periods are 

closer to 1, with larger Z-scores, and RR values for longer follow-up periods are farther from 

1, with smaller Z-scores. The patterns provide more generalizable information about the short 
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follow-up periods. Past repeat offending over (0,3] increases risk of repeating the same when 

released on parole after (12,24]. Generally, those who are released on parole sooner also re-

offend sooner than others. The single strongest relationship is shown in the last two patterns. 

Time since previous parole release has a large and significant impact on recidivism. 

Individuals released on parole (12,24] after their previous parole release are almost 1.48 times 

as likely to re-offend within 3 months when compared to all others released on parole, and are 

significantly less likely to wait to re-offend until the subsequent follow-up periods when 

compared to all other parolees. Using the same data set, mined at a lower minimum support 

threshold, we observed other patterns relating to specific arrest charges, dismissals, and 

convictions. 

Table 5: New offense after parole contact (data set B) 

 

We also applied the same process to the probation data set   originally collected for 

an evaluation of intensive probation in Milwaukee. Hazard pattern mining was performed on 

chronological records of violations and probation contacts of 1781 probationers. There were a 

total of 47,169 contacts, under a minimum (5396), medium (7977), and maximum (33738) 

intensive parole supervision (58 contacts did not include information on supervision level). 

Contacts included face to face, phone call, and mail with either the probationer or a collateral. 

We focused on face to face and phone contact with the probationer, and on their relationship 

with subsequent new offenses. There were 23,276 contacts with 1,744 probationers that 

satisfied these criteria: Under maximum supervision, there were 10,839 face to face (mxf) 

contacts and 4,739 phone (mxph) contacts. Under medium supervision, there were 3,068 face 
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to face (mdf) contacts and 1,170 phone (mdph) contacts. Under minimum supervision, there 

were 1,370 face to face (mnf) contacts and 549 phone (mnph) contacts. There were also 434 

rules violations and 144 new offenses. The remaining contacts were coded as other, blank, or 

missing. Since contacts were very frequent and coded by number of days since a fixed point, 

we selected correspondingly granular constraints of (0,7], (7,30], (30,180], and (180,720] 

days between events. With the exception of 5 outliers, all of these contacts took place within a 

span of 780 days. Overall, there were about 13 contacts per probationer, but only 1 new 

offense per 12 probationers. With the relatively rare occurrence of new offenses, this data set 

provides a strong contrast with the criminal career data from California (data set A). 

Based on the patterns shown in Table 5, we note several relationships between 

antecedent patterns and subsequent events. Parolees who were in contact with their parole 

supervisor at intervals of 8-30 days were not at increased risk of violation within 7 days. 

However, parolees with supervisor contacts of 7 or less days apart were significantly more 

likely to commit a violation within 7 days. A plausible explanation for this relationship, given 

that all antecedents involved maximum supervision, is that very high risk parolees are simply 

contacted more frequently by their parole supervisor. 

5.2 Evaluation 

Over-fitting 

In the case of a very complex pattern discovery system, it may be possible to over-fit 

the characteristics of the training set. The discovered patterns may describe the training data 

perfectly, but they may not be generalizable to other similar data. To test against this, we 

performed a k-fold cross-validation with ten folds. Each fold consisted of a 90% training split 

and a 10% testing split. We selected patterns based on a RR Z score outside      . For each 

fold, we considered contradictions to be those cases where the training split and the testing 

split each reported a significant Z score of opposite sign. We recorded consistency where a 

significant Z score in the testing split corresponded to a Z score of the same sign in the 

training split. Ten-fold cross validation was performed on a randomly selected sub-sample of 

500 individuals without replacement. For each fold, pattern mining was performed with a 

minimum support threshold of 100 (note that support is determined by number of pattern 

occurrences, not number of individuals). We tabulated the above indicators for each of the ten 
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folds, and repeated the process for the same 500 individuals with all events shuffled. The 

results are shown in the first half of Table 6. 

Table 6: Cross validation (data set A) 

 

Table 7: Cross validation (data set B) 

 

Intuitively, the sign of significant patterns in each training split should predict the sign 

of the Z-score in the test split. However, since each training split was much larger than each 

corresponding test split, it was more appropriate to compare, for each pattern, the sign of the 

significant Z-scores for patterns in the test split with the sign of the corresponding patterns in 

the training split. 
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For the non-shuffled data, we found that almost all of the patterns shown to have a 

significant increase in the testing split also had an increase in the training split (Z      ). 

This demonstrates that, given a representative sample, we can select a small number of 

significant patterns based on a test of significance, and can reliably claim that the direction of 

difference in the population RR for a particular pattern. 

 

Meaningfulness 

Our next concern was whether the discovered patterns were meaningful. In other 

words, would we find similar patterns even if the order of the events were randomly shuffled? 

More generally, how will we know whether the discovered patterns are simply an artifact of 

the mining process? 

We mined for patterns in a randomly shuffled transformation of data set A, and 

discovered a small number of patterns with significant RR, as shown in the second part of 

Table 6. We again observed good consistency between test and train splits. In addition, the 

patterns in the randomly shuffled data were almost as consistent as the patterns in the original 

data. Since the shuffled train and test splits came from the same sample, some hazard patterns 

would have been formed as a result of the frequency distribution of the event types in the 

sample.  

We also mined for patterns in a randomly shuffled transformation of data set B, and 

discovered a larger number of patterns than we had discovered in the ordered data. This was 

an unexpected result but it does not support a conclusion of meaningless output, since the 

results are clearly very different from the results obtained using ordered data. One explanation 

for the increase in patterns in shuffled data is that some events that were strongly concentrated 

in one portion of the ordered data set became dispersed enough to participate in more pattern 

combinations. 

Two additional considerations are the selection of support threshold and the selection 

of hazard constraints. We may be able to estimate a suitable minimum support threshold 

based on the characteristics of the data, possibly relying on a different support threshold for 

each event type. Further, the hazard constraints for each event type might be similarly 

tailored. These options will be explored in future work. For the purpose of the presenting 
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problem, patterns can be considered meaningful if the number and content of patterns found 

in a shuffled transformation of the data set are substantially different than in the original data. 

Table 8: Arrests after parole (data set A shuffled) 

 

Table 9: New offense after parole contact (data set B shuffled) 

 

In addition to evaluating the directionality of the RR across validation folds, we also 

compared the pattern content for meaningfulness. We repeated the pattern mining and pattern 

selection process used in Table 4, using the same data, but shuffled. For data set A, rather than 

six significant patterns discovered, there were only two significant patterns discovered in the 

shuffled data set (see Table 8) allowing us to conclude that the patterns shown in Table 4 are 

indeed meaningful. We followed the same procedure for data set B and found a reduction in 

significant patterns from 22 in the ordered data (Table 5) to 17 in the shuffled data (Table 9). 

We also noted that the antecedent patterns in the shuffled data included several patterns with 

hazard constraints of (30,180] and only one pattern with a hazard constraints of (0,7], whereas 

in the ordered data, there were no patterns with a hazard constraint of (30,180] and several 
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patterns with a hazard constraint of (0,7]. This provides further evidence to support the 

conclusion that the discovered patterns are meaningful. 

 

Predictiveness 

Table 10: Two year arrest, based on releases 2-4 years earlier (data set A) 

 

 

To evaluate the predictiveness of the discovered patterns, we first compared the 

proportion of patterns that lead to arrest in one time period with the proportion of pattern 

occurrences that lead to arrest in a subsequent time period. A number of challenges limited 

the design of such a test. First, to use past patterns to predict future recidivism within two 

years, it is necessary to apply a two year lag to the training data. For instance, recidivism data 

from those released January 1964 or earlier can be used to estimate two year recidivism for 

those released after January 1966 but not for those released sooner. Since the data set consists 

of a cohort group born approximately the same year, any age-related covariates complicate 

generalization from an earlier time period to a later time period.  

We evaluated the entire time period for the antecedent pattern Paroled       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗Paroled 

to predict re-arrest within a two year time span. If there is no significant difference between 

the arrest risk over a preceding time period and a subsequent time period, the hazard pattern 

might be a useful predictor of future risk. We then compared the proportion with the 

proportion of re-arrests within two years going forward (testing period). To reduce variance, 
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and to summarize the results, these were grouped according to year, as shown in Table 10. 

Some arrests before 63/64 correspond to juvenile offenses. This corresponds to the most 

difficult time period for predicting arrest risk for these individuals. We anticipate that 

prediction accuracy would further improve with a data set comprised of individuals with 

varying ages. 

We noted that past risk of arrest is significantly different than future risk of arrest in 

13 of 20 years. We repeated the test using a variety of different training, testing and follow-up 

periods. In each case, the results were similar. For this particular hazard pattern, we observed 

that past risk of arrest is not a reliable indicator of future risk of arrest. This analysis was not 

repeated with data set B because only two years were covered.  

Although there is only a moderate correspondence of recidivism risk between 

antecedent patterns in two different time periods, some of the discrepancy may simply be 

because the data set consists of a cohort group, exacerbating the effect of age-related 

covariates. Additionally, hazard patterns may be more effective when combined with other 

risk assessment indicators, such as prior drug and alcohol abuse. 

 

Parsimony 

Based on the above pattern tables, we see that the use of the RR Z-score dramatically 

reduces the number of patterns of interest, highlighting a small proportion of significant 

patterns for the analyst to consider. This pattern selection approach favors short patterns over 

longer patterns. This is because each longer pattern is only checked for significance relative to 

a shorter baseline pattern. There are likely many more patterns that might be significant 

relative to a baseline of random chance, but these would likely overwhelm a human analyst. 

In Table 4 we summarized all patterns related to recidivism after parole release with a 

minimum support threshold of 500, and logically arranged them together with indicators of 

effect direction and significance in bold. We note that there are 24 patterns that have a 

significant impact on risk of re-arrest. 
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5.2 Conclusion 

Contributions 

In this paper we demonstrated that hazard patterns can be used to identify individuals 

with increased parole violation risk. Although we did not find a direct link between past arrest 

risk and future arrest risk, we did find a significant relationship between past RR and future 

RR between a group exhibiting a hazard pattern and a group that exhibited a hazard pattern 

with the first antecedent removed. 

We also tested the generalizability of the discovered hazard patterns through ten-fold 

cross validation. We further also demonstrated a simple test for meaningfulness of hazard 

patterns. If a similar amount of patterns is discovered when the order of the underlying data is 

shuffled, then the discovered patterns are meaningless. The need for a meaningfulness test is 

particularly relevant, given that meaningless patterns can pass a cross-validation test. 

Limitations 

A common theme in the investigation of criminal careers is the counterfactual history. 

Since we cannot randomly assign individuals to parole release, we must rely on other means 

of determining what would have happened to a particular individual if they had not been 

released on parole. We do not address this question in this work. 

Another closely related limitation arises due to interaction with the decision maker. If 

a decision maker relies on the indicated risk level to determine parole release eligibility, then 

the accuracy of the system will be negatively impacted. For instance, the system may show a 

high risk to re-offend for some cases. If the decision maker does not grant role release based 

on this recommendation, the risk to re-offend has been altered. 

Future Work 

With the introduction of hazard patterns comes a wide range of opportunities for 

further work. Application domains with time-to-event data are the most likely to benefit. 

Examples include health care histories, business process analytics, equipment failure events, 

and insurance claim histories. More immediately, we plan to develop a decision support tool 

to facilitate discovery or patterns in event histories, and a graphical data exploration tool to 

facilitate interactive navigation of the discovered patterns. We also believe that heuristic can 

be applied to automate the selection of a support threshold that yields the most meaningful 

patterns. Further, the selection of hazard constraints is a compromise between theoretical 
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properties of inter-arrival time distribution and familiar calendar based time frames. More 

investigation is needed to identify suitable collections of constraint mechanisms for other data 

sets. 
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