Dakota State University

Beadle Scholar

Masters Theses

Spring 4-1-2012

Major Revision to Document Imaging System to
Improve Efficiency and Reporting Capabilities

Marek Juracek
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

Recommended Citation

Juracek, Marek, "Major Revision to Document Imaging System to Improve Efficiency and Reporting Capabilities” (2012). Masters
Theses. 202.
https://scholar.dsu.edu/theses/202

This Thesis is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses by an authorized

administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Ftheses%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/202?utm_source=scholar.dsu.edu%2Ftheses%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

MAJOR REVISION TO DOCUMENT IMAGING
SYSTEM TO IMPROVE EFFICIENCY AND
REPORTING CAPABILITIES

A graduate project submitted to Dakota State University in partial fulfillment of the

requirements for the degree of

Master of Science

in

Information Systems

April, 2012

By

Marek Juracek

Project Committee:

Dr. Ronghua Shan

Dr. Stephen Krebsbach
Professor Chris Olson

DAKOTA

Cf
PROJECT APPROVAL FORM

We certify that we have read this project and that, in our opinion, it is satisfactory in scope

and quality as a project for the degree of Master of Science in Information Systems.

Student Name: Marek Juracek

Master’s Project Title: Major Revision to Document Imaging System to Improve

Efficiency and Reporting Capabilities

Faculty supervisor: M’ﬂ 5 M Date: .A //
v
Committee member;%LDate: ,5‘ Z; ¢ Z

Committee member: C}’YV-) mm Date:J'_/ / / | 2

i

il

ACKNOWLEDGMENT

I would like to thank my friends and co-workers at Daytona State College for the

technical support they have provided to me throughout the development of this project.

Most of all, I would like to thank my amazing family, my daughter Tatiana, my son
Sebastian, and my loving wife Carolina for their incredible support which has helped me to
overcome all the obstacles I have encountered during my studies. My achievements would not

be possible without their love.

v

ABSTRACT

Daytona State College’s Document Imaging system has served well for nearly 10
years. Since 2002 the college has processed more than 2.4 million scans, handling about 50
million pages, storing about 1TB of data. However, recently the users of the system started
experiencing significant slowdowns during the operation of the system due to its growth.
Another design drawback to the current Document Imaging system is that it only operates in
the append mode, meaning document entities that already exist in the imaging system will get
appended to the end of the existing entity. This makes the system to grow much more quickly
than necessary, making our backup, especially our full-backup operations, very resource and
time consuming. Additionally, the current append-only design does not and cannot provide
functionality for maintaining different retention policies.

This project is about redesigning the Document Imaging database structure and system
functionality to speed up its operations while also taking into account the future growth of the
system, as well as modifying the original design from append-only to no-append approach.

Since the beginning of the project managers of this system had limited reporting
capabilities. All the reporting needs have been performed against the live transactional
database that is also serving for all the Document Imaging operations. To speed up some of
the operations, the log table has been cleaned up periodically to remove non-critical records,

which resulted in losing some of the reporting capabilities.

This project will also handle the reporting needs by creating a simple data warehouse
that will permanently store all the needed log entries as well as additional supporting data to

give the managers the needed reporting flexibility.

vi

DECLARATION

I hereby certify that this project constitutes my own product, that where the language
of others is set forth, quotation marks so indicate, and that appropriate credit is given where I
have used the language, ideas, expressions or writings of another.

I declare that the project describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

M&WX

Marek Juracek

vii

TABLE OF CONTENTS
PROJECT APPROVAL FORM 11
ACKNOWLEDGMENT 111
ABSTRACT v
DECLARATION VI
TABLE OF CONTENTS A1
LIST OF TABLES IX
LIST OF FIGURES X
INTRODUCTION 1
BACKGROUND OF THE PROBLEMcuttiiiiuiiiieiueiieiiseseesssseessssssesessssessssssssessssssssssssssssssssssessssssesssssssessnns 1
STATEMENT OF THE PROBLEMcuuviiiiiiiiiiiittteeeeeeeeeissssssseeeeessssssssseseessssssssssssssessessssssssssssssessssssssseesssnes 2
OBJECTIVES OF THE PROJECTveeeeeitueeeerireeeeeeisseeeessssseeessseesssssssesssssssssssssessssssssssssssesssssssssssssssssssssssnnns 3
DELIVERABLES OF THE PROJECT ...u0uvveeeeeieeersssseeeeeeeesssssssssseseessssssssssssesssssssssssssessessssssssssssessesssssssessssesnes 3
LITERATURE REVIEW 4
HISTORY OF THE DOCUMENT IMAGING DATABASE DESIGNuueeieiuueeeeeurreeeiaseeeesssseeeesssssesssasesssssesssnes 4
DOCUMENT IMAGING OPERATIONSccccciiuteeeesureeessseeeessssesesssssessssssesssssssssssssssesssssssssesssssssssssssssssesssnnes 6
TRANSACTIONAL DATABASE STRUCTURE OF THE CURRENT SYSTEM.......cuuviiiiiueeeeecuneeeereeeeessneeeesseeeenns 8
SYSTEM DESIGN 13
PLANNING PHASEovviiiiiutieeieitueeeeeeueeeeesssseeeesssseeessssessssssesessssssessssseessssssesssssseessssssesssssssssssssessssssessnns 13
DESIGN PHASE ...cceoteviieeeeeeeeeeeeeeeeesteeeesssseeessssesessssesesssssssesssssesesssseessssssssssssssesssssssesssssssssssssesssnsesenns 15
MOVING TO NO-APPEND SCANNING MODE..........cccceirureeeesrreeeesssreeesssssesessssseeesssssssssssssesssssssesssssssssssesenss 15
NEW FUNCTIONALITY TO MANAGE DOCUMENT RETENTION POLICIES.........ccceeiueeeeerrreeeerneeeessnneessneeens 18
REDESIGN OF THE DATABASE STRUCTUREcveieeiiurieeernreeesareeeesssseeesssssseesssssesessssssessssssesssssesssssssssnns 18
ANALYSISIOF THEMATJOR SIQLs.... 55 5550 sss5v5irenessstossoissssoncininesssiassssassintostossastssinssss ivasaodns ssberensvapissasdasios 21
TRANSACTIONAL DATABASE RESTRUCTURING .. 5sus0teisrssssississnssssssessiosssssssssssssssisnssssssssissrassavosssamssosss 28
DATA WAREHOUSEIDESIGN i 500550 ssssiscansnaisssessinssssinitarssssissassissosssisvisssivsossssssomssessiasssssssnsvossssssnsssmossness 40
CASE STUDY (RESULTS AND DISCUSSION) 47
CONCLUSIONS 49
REFERENCES 51

viii

APPENDIX A: WORK BREAKDOWN STRUCTURE (WBS) 53
APPENDIX B: GANTT CHART 55
APPENDIX C: SYSTEM TECHNICAL DOCUMENTATION 56

SQLS USED FOR TRANSACTIONAL DATABASE RESTRUCTURINGccocuerrumirnnersineisnesnneesieeesseesnessanenns 56

SQL CREATION STATEMENTS FOR THE DOCUMENT IMAGING REPOSITORY DATABASE (MYSQL):..... 58
SCRIPTS USED TO EXTRACT THE DATA FROM THE DOCUMENT IMAGING TRANSACTION DATABASE INTO

ix

LIST OF TABLES
Table 1. Current Document Imaging core tables ... mssssssisssssnsssvssssssssorsvonssatashost 9
Table 2. The dbimg_filelock rec table attributesccoceevveeveeneecervieniieneeceeeeeereene, 9
Table 3. The dbimg_id rec table attributes...........ccceevuererriereenieneeieseeseecee e, 9
Table 4. The dbimg_mstr_rec table attributescceeeeerercieiiiieneneciceeieeeeen 10
Table 5. The dbimg profile rectable aHrIbUEs ... c..cvmusvisrsmmmisiomsriessssonl 10
Table 6. The dbimg security yec table attributescummsssmansimmssmmsesssssmmisnsismetns 11
Table 7. The dbimg_stat rec table attributescccevuereeeveeneriieriercceceesee e 11
Table 8. The dbimg_usrsec_rec table attributes..........cccceceeercierierienieneneniiieecseceenen 11
Table 9. The dbimgdoctype table table athributescc..civesmsirmisassisssssnsssssnsssisasnsing 2
Table 10. Examples records for document entity in the append-only mode................ 16
Table 11. dbimg_mstr_rec.veified allowed values for append-only mode.................. 17
Table 12. dbimg_mstr_rec.veified allowed values for no-append mode..................... 17
Table 13. SOL performsiiee TESUIES «....csmmmssssvnmsmssssnrssissmms s et 36
Table 14. SQL deSCIIPLiONS.......coueeuerieirieieriierteteiet et e ssesseesaessessesaessessessassens 36

Table 15. Dimensions needed for the data WarehOUSE...........eueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenns 41

LIST OF FIGURES
Figure 1. Current Document Imaging table SChIec.cosuesssssessemsissessennsnsidaiarsrio ity 8
Figure 2. Waterfall development model............ccooeeiiviniiiiinniniieniiicieceeeeeeeea e 13
Figure 3. The initial SQL (SQL A) used in the database redesignccccceuveunenne... 20
Figure 4. Document Imaging application — Search Screen...........cceeveeveeevenveeneennenne. 21
Figure 5. Indexes for tables used i SQL X ccessasssomsmsmssssseadedonssiisssisrnasasssanesnaensvonst 22
Figure 6. The performed statistics Updatescceceeirereniniinniniiiieniecicee s 22
Figure 7. Statistics for SQL A.....cuooiiiiiieiieieieeeee et sae s e 23
Figure 8: SET EXPLAIN outpiit for SOQL A cre..icmnsimaimmmmiisesiismmmsssorismatisms it 27
Figure 9. SQL A2 - after the move 10 doc_type id COIUMN.oemrsssssdisinisessansrsssanasas 30
Figure 10. The performed statistics updates before analysis of SQL A2..................... 30
Figure 11. Excerpt of SET EXPLAIN output for SQL A2....c.oovieriirieiiieneenieeene 31
Figute 12. Excerpt-of SQL. A3 ModifiCRION. . cicawsesmmisissmmansss s 32
Figute-13. Indexes of dbimg miste? dee/BBle.. Li....cnwsmme it iimeais i rassssomndomess 33
Figure 14. Excerpt of SET EXPLAIN output for SQL A2il.....cccoceviriiviineneninennns 34
Figure 15. Indexes of dbimg_mstr2_rec table..........ccoeevievieriiiiniiencierieereeeeeeeeenn 35
Figure 16. Graphical representation of the estimated cost resultsccocceevveerueennenn. 37
Figure 17. Graphical representation of the average execution time results................. 37
Figure 18. SQL A4 —using id_rec Onlyccccoceeiririnininineeieteieeeriese e 39
Eigore 19. SQL. A5 ~using dbimg _id T8¢ OlY «:.cwwimasssmivsmsmmmsimosssssios sssusansssnishs 40
Figure 20. Data Warehonse DIBEIHaIN. ..o cmmmnsasnisomammsssismicnsmssasssasssssssimmeassssinss 41
Figure 21. Cognos Report — Overall document imaging usageccoceevvevruerreernennes 43

Figure 22. Cognos Report — Usage by operator, document type, and month of 2012. 44

Figure 23. Cognos Report — Graphical representation of total activities by operator
Ve Thie TSt 'V QA S cammummimsmiamsmmimnmmsssans s s s e A oo SRR s Ve e Ao 45

Figure 24. Cognos Report — Detail usage by operator, operation, over the last 20 days

CHAPTER 1

INTRODUCTION

Background of the Problem

Daytona State College has been using its' in-house developed Document Imaging
system to meet its imaging needs since 2002. The system was initially developed to be used
exclusively by the newly formed Document Imaging department and its 15 full time
employees. These employees received in-depth training which allowed them to utilize the
Document Imaging system to its full potential, while avoiding the system’s pitfalls. This
department used to be solely responsible for providing imaging services to the rest of the
departments within the college. In 2009 Daytona State College changed its document imaging
strategy and decided to de-centralize the imaging tasks and responsibilities. Today, each
department has the opportunity to operate the Document Imaging system and therefore
process their own documents at their own pace. There are almost 400 users registered and
authorized to use the Document Imaging system today. This decentralization provides many
advantages, but also accounts for many issues.

The Document Imaging system consists of several applications. A scanning part,
written in C++ as a client/server application, a document retrieval part written in C# as a web
application hosted in the college's web portal, and several other maintenance applications
used for managing users, maintaining the integrity of the data, and other essential tasks. The
back end of the applications is Informix database. This transactional database is also a core
data source for the college’s ERP system, as well as over 300 other custom-developed

applications. The database contains over 800 tables with over 60 million records of data. The

actual images are stored on a file server as TIFF files. The Document Imaging system uses 8
dedicated DB tables and 5 main support tables.

As mentioned previously, in the beginning, the Document Imaging system was
designed to operate in the append-only mode, meaning document entities that already exist in
the imaging system get appended to the end of the existing file. This makes the system to
grow much more quickly than necessary, making our daily backups, and especially our full-
backup operations, very time consuming, and requiring a very large storage area.
Additionally, the current append-only design does not and cannot provide functionality for

maintaining different retention policies. -

Statement of the problem

The Document Imaging system has served the college efficiently. However, with the
large amount of data have been processed since 2002, the system’s operations have started to
slow down. These slow-downs are quite significant as they affect the operator's performance
and cause higher database server resource usage and higher network usage. Since 2002 the
college has processed more than 2.4 million scans, handling about 50 million pages, storing
about 1TB of data.

Backup and storage operations can be very costly in terms of hardware and personnel
resources. Efficient management and usage of various retention policies, as opposed to
permanent-only retention, can greatly reduce the storage and backup requirements, ultimately
leading to reduction of cost of the imaging operations.

Another problem with the current Document Imaging system is that all the reporting

needs are currently executed against the transactional database. This adds an unnecessary

overhead to the main database. In addition, to speed up the Document Imaging system older
database records have been periodically deleted in the past. This means that the college has

lost the ability to accurately report past operator’s performances and provide trend analysis.

Objectives of the project

This project will resolve both issues. Restructuring of the Document Imaging related
tables (indexing, keys, stored procedures, and several key SQL cost analysis) and the file
operation, and the storage strategy will increase the efficiency of the system. A new data
warehouse will provide an accurate data repository that will address the current reporting
needs as well as give the necessary foundation for any future reporting requests. In addition,
this project will also handle a few Cognos reports that will allow the users to report on the
performance and system utilization. These Cognos reports will be based on the new data

warehouse.

Deliverables of the project

1. New/Revised database tables (including keys, indexes, explanation of changes)

2. New design strategy on handling file storage (creating new files every time instead of
appending to existing files)

3. New/Revised SQL statements (including SQL cost analysis on critical SQLs)

4. Suggestions to the existing C++ and/or C# systems to enhance efficiency

5. Efficiency comparison data

6. A new data warehouse to allow for accurate reporting

7. Cognos reports to show various aspects of operators’ performances and trend analysis

CHAPTER 2

LITERATURE REVIEW

History of the document imaging database design

Daytona State College has been using Jenzabar CX Enterprise Resource Planning
(ERP) system since 1998. This ERP system stores majority of personal information for both,
students and employees, in id_rec and profile rec tables as shown in figure 1. The college’s
Document Imaging system has originally been intended mainly for scanning and storing
student records, and since all the student information is already being stored in the id rec and
profile rec tables, there has not been any need to store the same information in the related
document imaging tables. Instead, the Document Imaging system only stores the student ID
within its’ database structure. Soon after student records, human resources records have also
been requested to get scanned and permanently stored in the document imaging system. Since
employees’ information is also stored in the ERP’s id rec and profile rec, the document
imaging system can utilize the same database structure as for students without any
modifications.

A few years into this project, the document imaging team was challenged with
scanning non-personal documents, such as tracking of scholarships, accounting’s checks and
vendor information, and other report type documents. In order to accommodate these requests,
additional database tables were needed to handle the various indexing needs. It was desirable

for the document imaging to easily adopt and store other non-personal records. With these

requirements in mind, additional tables, dbimg_id rec and dbimg_profile rec, were added to
the database structure. Also, the dbimgdoctype_table was expanded with the varl through
var5 columns to allow for indexing flexibility and to easily accommodate any future non-
personal imaging requests.

Each department could utilize one or more document imaging types (document type).
The specifications of all document types are stored in the dbimgdoctype table as shown in
table 9.

Each department can also select one or more staff members for scanning documents as
well as retrieval of the documents. Initially, these 2 groups of users were implemented and
managed separately in the system. All the users that have retrieval-only permissions are stored
in the dbimg_usrsec_rec (table 8). The database table dbimg_security rec (table 6) contains
information for all users that have the ability to utilize the imaging application to scan,
approve, deny, and other operations. The dbimg_security rec has also been used for storing
ﬁser credentials as the scanning application requires access validation. However, since 2009,
the scanning application has become a part of the college’s application portal which utilizes
different set of credentials, and thus the dbimg_security rec has become unnecessary at this
time. The only reason to keep this table as part of the document imaging system is in case
the scanning application needs to become standalone again if, for example, the college’s ERP
changes.

The dbimg_filelock rec (table 2) has been added to the imaging system after the initial
release date to address one of the data integrity issues. This table serves as a locking
mechanism that prevents multiple imaging operators to act on the same document and

document type to prevent file corruption and loss of data.

The dbimg_stat rec (table 7) stores information of operators’ document preparation
activities to provide the managers with the ability to track and report on various aspects of
imaging operations.

One of the most important tables that create the core of document imaging is the
dbimg_mstr_rec (table 4). This table links the document descriptor, document type, document
physical storage, and other operator’s information together and allows the end users to

retrieve the documents.

Document imaging operations

In order to understand and analyze how to improve the efficiency of the imaging
system it is necessary to be familiar with the operations of the system.

Once the desired document type and users are setup in the respective database tables,
operators can begin preparing and scanning documents. Currently the imaging system works
in two modes, a quick mode and a batch mode. In the quick mode, every scanned document
must be either accepted or rejected immediately after the scan. In the batch mode, preparation
(barcoding), scanning, and acceptance of documents is performed in a batch mode usually in a
team of 3 users. All the operations are currently being recorded for retrieval and statistical
purposes. The scanning and accepting operations are being recorded in the dbimg_mstr_rec
database table. The preparation operation is being recorded in the dbimg_stat rec table. While
retrieval information is critical in order to get to the physical file, the rejected records are non-
critical. When an additional document is scanned under the same document descriptor (i.e.
student), and document type, then the document is appended to the original document. This

functionality simplifies the storage and handling of the records, but significantly adds to the

network traffic during both, scanning and retrieval operations. This means, that a student after
2 years of studies at the college can end up with a 100 page document for each document
type, such as student record or financial aid. This is currently a huge issue because it
significantly slows down the scanning operations. For example, in order to accept and scan an
application for scholarship that has 2 pages, a file of 100 pages, roughly 3MB of storage,
needs to be first transferred to the local PC, the new file gets appended, and then the new file

is transferred back to the centralized storage area.

Transactional database structure of the current system

The following section shows the details about the current Document Imaging database

structure.
B R R A S i T (% — BTN
~ profile_rec : id_rec ~ dbimg_mstr_rec P Pt T
FK1 |id PK |id FK3 uid doc_type_id
sthnic_code 14 |prsp_no FK4 o i 1 | doc_type
sex 13,12 | fullname = = description
mrtl 13 nameé_sndx save mode
1 |binh_date addriinet [FO-===--O4 FKLFKGIT | doc_key PO———H | erity in cars
age r"' addr_line2 usr. vrfy_id update_allowed
birthplace_city city scan daie vari
birthplace_st st vify_date var2
birthplace_ctry 16 |zip SR Dl —H— var3
res_st clry ::; doc_p:e vard
res_cty aa p_doc_rey vars
citz title 25 bl $ storagedb_mode
visa_code suffix H 1
prof_visa_date HO H-15 |ss_no 1 !
prof_visa_no phone \ !
res_ctry phone_ext ! 1
vet prev_name_id i $
handicap_code mail $!
denom_code sol : 1
12 church_id pub | :
occ correct_addr H i
news1_id decsd 9 1 FK1,11
news2_id 11 |add_date L - FK2 |doc_type_id
prof_last_upd_date ofc_add_by - dbimg_id_rec :
lang upd_date . o 1 vari
nat_lang valid uid ! var2
prof_res_code purge_date ’ var3
prof_res_date cass_cert_date U1 |id] vard
prof_vet_chap uid_add_by 8s_no] vars
grp_no uid_upd_by first_name i add_|
password last_name i add_datetime
, code birth_date ! FK1 usr_scnnr_id
decsd_date doc_name i
photo add by 1
lep add_datetime]
i
1
1
:
* 1
x
1
 dbimg_usrsec._rec ‘dbimg_filelock_rec dbimg_security_ rec dbimg_stat_rec
FK1 [id uid uid
application -
FK2 |doc_type_id HO—— usrid BOrmmm—mm U1 |login_id FK1,11 |usr_id
doc_id pe . password HO-=---- oSy perform_date
status_flag doc_type fullname work_ctgr
add_date locked status_flag doc_type_id
add_by updated_on modify_limit doc_id
= user_level doc_key_type

Figure 1. Current Document Imaging table structure

Table 1. Current Document Imaging core tables

Number of
Table Name Description Rows
dbimg_filelock_rec Contains information about locked files 0
dbimg_id_rec Contains personal/document information 80,318
dbimg_mstr_rec Contains information about scanned documents 2,506,540
dbimg_profile_rec Contains additional personal/document information 48,316
dbimg_security_rec Contains list of all users for scanning 125
dbimg_stat_rec Contains prep/scan/verify statistics 520,265
dbimg_usrsec_rec Contains list of all users for retrieving only 1,108
dbimgdoctype_table Contains list of all document types 63
Table 2. The dbimg_filelock_rec table attributes
Data
Attribute Name | Type Attribute Length | Comments
doc_id char 25 | Unique document key
doc_type char 20 | Group associated to the document
Uid serial 4 | Unique serial id
Locked char 1 | Correct values: y-yes, n-no
station_id char 25 | PC Netbios name
updated_on char 15 | format: yyyymmddhhmmss
usr_id char 20 | File locked by this user
Table 3. The dbimg_id_rec table attributes -
Data
Attribute Name | Type Attribute Length | Comments
Id char 10 | Unique key - 'D'+uid
SS_no char 11 | Social Security Number
first_name char 15 | First Name
last_name char 20 | Last Name
birth_date date 4 | Birth date
Uid serial 4 | Unique serial id
doc_name char 100 | Document Name
add_datetime char 14 | Date time stamp:YYYYMMDDHHMMSS
add_by char 20 | Record added by user\Login ID

Table 4. The dbimg_mstr_rec table attributes

10

Data
Attribute Name | Type Attribute Length | Comments
doc_key char 25 | Unique key for finding document
doc_type char 20 | Group associated to the document
doc_path char 100 | Path of the document
Verified char 1 | Signifies verification of scan
Uid serial 4 | Unique serial id
usr_scnnr_id char 20 | Scanner's unique network id
previous_path char 100 | Previous path before appending
usr_vrfy_id char 20 | Verifier's unique network id
scan_date date 4 | Date stamp of document scan
vrfy_date date 4 | Date stamp of document verification
temp_doc_key | char 25 | Copy of the Unique key

Table 5. The dbimg_profile rec table attributes

Data

Attribute Name | Type Attribute Length Comments

Id char 10 | Unique key - 'D'+uid

doc_type_id char 3 | Document type id from dbimgdoctype_table
Represents field as defined in
dbimgdoctype_table for an individual doc

varl char 50 | type

var2 char 50 | see desc of varl

var3 char 50 | see desc of varl

var4 char 50 | see desc of varl

Uid serial 4 | Unique serial id

var5 char 50 | see desc of varl

add_datetime char 14 | Date time stamp:YYYYMMDDHHMMSS

add_by char 20 | Record added by user\Login ID

Table 6. The dbimg_security rec table attributes

11

Data
Attribute Name | Type Attribute Length | Comments
password char 20 | password
login_id char 20 | Unique id
fullname char 32 | Users full name
user_level integer 4 | User's permissions level
status_flag char 1 | status of the login id
modify_limit integer 4 | days for modification

Table 7. The dbimg_stat_rec table attributes

Data
Attribute Name | Type Attribute Length Comments
Uid serial 4 | Unique identification number
doc_id char 10 | ID of the document/student/employee/etc...
User id as defined in
usr_id char 20 | dbimg_security_rec.login_id table
perform_date date 4 | Date of performance
Work category: p - prepped s - scanned v -
work_ctgr char 1 | verified q - quality assurance
doc_key_type char 15 | Document key + Document type id
doc_type_id integer 4 | Id of document type

Table 8. The dbimg_usrsec_rec table attributes

Data
Attribute Name | Type Attribute Length | Comments
application char 20 | Application name
Id char 10 | ERP’s Cars id
doc_type char 20 | doc_type
can_scan char Access to Doculmg scanning application
status_flag char status of the login id
add_date date Record added on date
add_by char 14 | Record added by user add_by

12

Table 9. The dbimgdoctype _table table attributes

Data Attribute
Attribute Name | Type Length Comments
doc_type char 20 | Unique group id
description char 100 | Description of the document type
save_mode char 1 | A-append, N-create new file
Enforce validation of the doc type against cars id_rec,
verify_in_cars char 1 | y-yes must be
doc_type_id serial 4 | Unique doc type id
varl char 100 | Field num.1 used for search
Storage+Database Mode: 1-SAN+CARS DB, 2-local+no
storagedb_mode | integer 4 | DB
var2 char 16 | Field num.2 used for search
var3 char 16 | Field num.3 used for search
var4 char 16 | Field num.4 used for search
var5 char 16 | Field num.5 used for search
If set to y(yes), doculmg personnel can update
update_allowed | char 1 | personal info in dbimg_id_rec

I3

CHAPTER 3

SYSTEM DESIGN

Planning phase

Due to the nature of the problem, a waterfall development model will be used. This
approach makes a perfect fit for this project since the project requirements have already been
well defined and are completely static. The waterfall. approach is based on the idea of
executing well defined phases in only one sequence. The output of each phase serves as the

input for the next phase. The following figure depicts the model adapted to our needs.

(Requirements Specifications

[Analysis

[Design

[Implementation

[Testing

L Deployment J

Figure 2. Waterfall development model

14

As previously stated, the back-end of the Document Imaging system is an Informix 11
database. Since the Document Imaging system is dependent on other database tables from the
college’s ERP system (id_rec, profile_rec, etc.) that reside on the same database, all the table-
related revisions will be implemented in the same Informix database as well. After the
creation of the new tables, or re-design of the current tables, those SQLs that are affected by
the changes will be identified and modified, or re-created as needed. Furthermore, the SQLs
that are affected the most will be identified and evaluated on the estimated cost for both,
before and after the modifications, versions. All the results will be thoroughly documented.
Since these SQLs are one of the main components of the Document Imaging system, the goal
is to clearly demonstrate the gains in performance after the system redesign.

Since Daytona State College’s current data warehouse is housed on MySQL database
engine, the design of the new data warehouse database will also be based on MySQL database
engine. One of the scripting languages that are currently available under our HP UNIX
environment will be utilized during the implementation of this data warehouse. Also, the goal
is to utilize the same tools that are currently being utilized already simply because of the
current common knowledge base; anybody else on the IT team will later on be readily
available to expand the warehouse as needed without any steep learning curve.

The college is currently migrating all of its reporting needs to Cognos 10 reporting
tool. Cognos 10 offers many benefits to our IT department as well as to our end users. Some
of the main advantages that this tool offers are centralized permission management and report
management. Cognos will be used to create the reports and take advantage of our existing

permission and report structures. Additionally, the Cognos’ framework manager will be used

15

for adding the additional warehouse tables to the existing package. Since Cognos 10 is a web-
based product, it will also make the ’;esting and deployment of the reports very simple.

The Appendix A contains the work breakdown structure of the project. The Appendix
B shows the actual project plan with timelines, durations, and dependencies. Several
milestones of the process have been identified throughout the project to easier track progress
and make sure the project will be completed on time. The milestones include Initiating
Completed, Planning Completed, Redesign Completed, Database Warehouse Completed,

Executing Completed, and of course, Project Completed.

Design Phase

Moving to no-append scanning mode

In the first step of this phase the imaging system will be redesigned to handle all
subsequent scans as separate document entities as opposed to the constant appending of any
subsequent scans.

Currently, after a scanned document has been accepted, the imaging system searches
for an existing document with the same document entity and document type in the database,
and if found, the system will download the existing TIFF file, append the newly scanned and
accepted document, and then upload the final file back to the file server. Table 10
demonstrates the outcomes of the current process and the related database entries. For the
document key 272635 and document type SR_OldRecords, the imaging system appended 27

times to the original physical file.

16

Table 10. Examples records for document entity in the append-only mode

uid doc_key doc_type verified | scan_date | vrfy_date
2471755 | 272635 | SR_OldRecords 6/13/2011 | 6/13/2011
2258113 | 272635 | SR_OIldRecords 9/15/2010 | 9/15/2010
2221443 | 272635 | SR_OIdRecords 8/3/2010 8/3/2010
2012733 | 272635 | SR_OldRecords 10/5/2009 | 10/5/2009
2005773 | 272635 | SR_OldRecords 9/23/2009 | 9/23/2009
1989528 | 272635 | SR_OldRecords 9/1/2009 9/1/2009
1989520 | 272635 | SR_OIdRecords 9/1/2009 9/1/2009
1960445 | 272635 | SR_OldRecords 7/31/2009 | 7/31/2009
1960439 | 272635 | SR_OIdRecords 7/31/2009 | 7/31/2009
1958430 | 272635 | SR_OIdRecords 7/29/2009 | 7/29/2009
1958426 | 272635 | SR_OldRecords 7/29/2009 | 7/29/2009
1958423 | 272635 | SR_OIdRecords 7/29/2009 | 7/29/2009
1920034 | 272635 | SR_OldRecords 6/4/2009 6/5/2009
1920020 | 272635 | SR_OIdRecords 6/4/2009 6/5/2009
1734133 | 272635 | SR_OldRecords 6/27/2008 | 8/20/2008
1735730 | 272635 | SR_OldRecords 6/30/2008 | 8/20/2008
1161267 | 272635 | SR_OIdRecords 10/10/2006 | 10/10/2006
968708 | 272635 | SR_OIdRecords 1/23/2006 | 1/24/2006
420181 | 272635 | SR_OIldRecords 4/12/2004 | 4/12/2004
420182 | 272635 | SR_OldRecords 4/12/2004 | 4/12/2004
408488 | 272635 | SR_OldRecords 3/29/2004 4/1/2004
392041 | 272635 | SR_OIdRecords 3/12/2004 | 3/16/2004
387747 | 272635 | SR_OldRecords 3/9/2004 3/9/2004
323174 | 272635 | SR_OIdRecords 11/6/2003 | 11/6/2003
322929 | 272635 | SR_OIldRecords 11/6/2003 | 11/6/2003
198324 | 272635 | SR_OIdRecords 6/25/2003 | 6/25/2003
1808 | 272635 | SR_OIdRecords 8/21/2002 | 8/21/2002
1223 | 272635 | SR_OIdRecords 8/20/2002 | 8/21/2002

|00 |0O(0O|0O|0(0O|0O |00 |0O|0O|(0O|0O|0O|O|0|O|O|O|O|Oo|O|O|O|<

In order to make the transition from the append-only mode to the no-append mode, an
adjustment to the options for the dbimg mstr rec.verified field will be needed. Table 11
shows the current valid values for the append-only mode. Table 12 shows the adjusted values

that are needed for the no-append mode.

17

Table 11. dbimg_mstr_rec.veified allowed values for append-only mode

verified | description
D Duplicate

N Not verified
R Rejected

Y Verified

Table 12. dbimg_mstr_rec.veified allowed values for no-append mode

verified | description
N Not verified
R Rejected

Y Verified

Moving from the append-only to no-append mode presents a new challenge.
Currently, when users try to retrieve a document, for example, documents for the document
key 272635 and document type SR_OldRecords, they are presented with one entry in the
search result, which means only one file to download and browse. However, in the no-append
mode, the users would be presented with 28 entries. The solution to this problem will actually
make the retrieving process more efficient. A new field doc_description will be added to the
dbimg_mstr_rec (table 4) which will allow the operators of the imaging system to further
specify what document they are scanning, such as Application for Admissions, Application
for Financial Aid 1213, etc. What this solution means to the end users and to the imaging
system is that the users will be able to choose the specific content they need, thus eliminating
the need for searching in one large file for the specific content, and eliminating the need for
downloading all the extra files, saving time and network bandwidth. On the other hand, if the
operators deem that the extra document description is not needed, then the retrieval system
could concatenate all the files without the detail document description (or those with the

identical document description) together on the server side, still presenting the end users with

18

one single file per document description. In the future, this functionality could be further
improved with the implementation of the OCR (Optical Character Recognition) capabilities

that the current Document Imaging system lacks of.

New functionality to manage document retention policies

As discussed during the previous project phases, moving from the append-only mode
to the no-append mode will allow the college to implement the much desired functionality for
managing document retention policies.

The necessary database modifications will be very simple. A new field retention prd
will be added to the dbimgdoctype table that will record the number of days each specific
document type should retain its documents. In order to enforce the various retention policies,
a new application will have to be written which will compare the age of each document to the
related document type’s retention period. If the age of the document is greater than the
retention period than the specific document will be physically deleted from the file storage
and the document’s database information updated accordingly. A new status will be needed

for the verified field in the dbimg_mstr_rec.

Redesign of the database structure

In the next step of the project the SQL statement (SQL A) shown in figure 3 will be
analyzed. This is one of the queries that significantly contribute to the delays in processing

documents and operating Document Imaging system. This SQL has been chosen because it is

19

used, in slight variations, in many areas of Document Imaging system, such as in scanning,

quality control, and retrieval application.

SELECT
dm.uid AS uid,
iid AS id,
i.ss_ no AS ss_no,
1.fullname AS fullname,
" AS did,
" AS last_name,
" AS first name,
dm.doc_type AS doc_type,
dm.verified AS verified,
dm.usr_scnnr_id AS usr_scnnr_id,
dm.scan_date AS scan_date,
dm.usr_vrfy id AS usr_vrfy id,
dm.vrfy _date AS vrfy_ date,
" AS doc_name,
dm.doc_path
FROM
id_rec i,
dbimg_mstr_rec dm,
dbimgdoctype_table dd
WHERE
dm.doc_type = dd.doc_type AND
dm.doc_type IN (
SELECT
a.doc_type
FROM
dbimgdoctype table a, dbimg_usrsec_rec b
WHERE
a.doc_type LIKE replace((b.doc_type || '%"),"'",") AND
b.id ='470822' AND
b.can_scan ='Y") AND
dm.scan_date >='01-01-2012' AND
dm.scan_date <=today AND
dm.verified ='N' AND
i.id = dm.doc_key
UNION
SELECT
dm.uid AS uid,
0 AS id,
di.ss_no AS ss_no,

20

" AS fullname,
di.id AS did,
di.last name AS last name,
di.first name AS first name,
dm.doc_type AS doc_type,
dm.verified AS verified,
dm.usr_scnnr_id AS usr_scnnr_id,
dm.scan_date AS scan_date,
dm.usr_vrfy id AS usr_vrfy id,
dm.vrfy_date AS vrfy date,
di.doc_name AS doc_name,
dm.doc_path
FROM
dbimg_id rec di,
dbimg_mstr_rec dm,
dbimgdoctype table dd
WHERE :
dm.doc_type = dd.doc_type AND
dm.doc_type IN (
SELECT
a.doc_type
FROM
dbimgdoctype_table a, dbimg_usrsec_rec b
WHERE
a.doc_type LIKE replace((b.doc_type || '%"),"",") AND
b.id ='470822' AND
b.can_scan ='Y") AND
dm.scan_date >='01-01-2012' AND
dm.scan_date <=today AND
dm.verified ='N' AND
di.id = dm.doc_key
ORDER BY id DESC;

Figure 3. The initial SQL (SQL A) used in the database redesign

The SQL A is taken from the Search Screen (figure 4) of the imaging application.
These parameters are chosen in such way so that they mimic what the everyday users do most
frequently. Specifically, this SQL is used by the verification process, where the operators

search for scanned documents that need to be approved or rejected. In this SQL example the

21

operator’s id 470822 was used, and the search was conducted for all documents that have not

been verified since the beginning of 2012.

Figure 4. Document Imaging application — Search Screen

Analysis of the major SQL

In order to receive accurate analysis results, it is needed to update the query-related
tables statistics first. Besides updating global table statistics (LOW mode), it is also needed to
update statistics (HIGH mode) for the indexed columns used in the join or where clause of the
query. Figure 5 shows the indexes for all the related tables. Figure 6 shows the specific

statistics updates performed in preparation for the analysis.

table dbimg_mstr_rec
index
unique imgmstr_prim on (uid,doc_key,doc_type,doc_path)
imgmstr_key2 on (doc_path)
imgmstr_key on (doc_key)
imgmstr_type on (doc_type)
imgmstr_vd_uid on (vrfy_date, uid)

table dbimgdoctype_table

22

index
unique imgdoctype prim on (doc_type id, doc_type)
imgdoctype dt on (doc_type)

table dbimg_id rec
index
unique imgid_prim on (id)
unique imgidupers on (ss_no, first name, last name, birth_date, doc_name)

table id_rec
index
id_keyl on (name_sndx, fullname)
id_ss no on (ss_no)
id_zip on (zip)
id_fullname on (fullname)
id_lastname on (lastname)
id_firstname on (firstname)
id_middlename on (middlename)
id_prsp_no on (prsp_no)
id_add_date on (add_date)
id_fullname_search for id_rec on (namesearch(fullname))
id_lastname_search for id_rec on (namesearch(lastname))
id_firstname search for id_rec on (namesearch(firstname))
id_middlename_search for id_rec on (namesearch(middlename))

table dbimg_usrsec_rec
index
unique imgusrsec_prim on (id, application, doc_type)

Figure 5. Indexes for tables used in SQL A

UPDATE STATISTICS HIGH FOR TABLE dbimg_mstr_rec (doc_type, doc_key, verified,
scan_date);

UPDATE STATISTICS HIGH FOR TABLE dbimgdoctype_table (doc_type);

UPDATE STATISTICS HIGH FOR TABLE dbimg_id_rec (id);

UPDATE STATISTICS HIGH FOR TABLE dbimg_usrsec_rec (id, doc_type, can_scan);
UPDATE STATISTICS HIGH FOR TABLE id_rec (id);

Figure 6. The performed statistics updates

23

For the following query analysis DbVisualizer 7.0.8 application was used for SQL
executions and timing, and Informix’s SET EXPLAIN utility tool for collecting query plans
used for tuning and optimizing of SQLs and database structures. The version of Informix
Database Server at the time of the analysis was 11.50.FC6, running on HP-UX B.11.31 (HP-
UX 11i v3).

All the test executions below were performed under the same conditions in order to
provide as accurate results as possible.

As figure 7 shows, execution of SQL A took approximatelly 4 minutes, and returned

10 records. Figure 8 shows the results of the SET EXPLAIN utility.

- Physical database connection acquired for: test - cars - blue
/5701:10:09 [SELECT - 10 row(s), 237.042 secs] Result set fetched
- 1 statement(s) executed, 10 row(s) affected, execffetch time: 237.042/0.032 sec [1 successful, 0 warnings, 0 errors]

Figure 7. Statistics for SQL A

{SQL A}

SELECT
dm.uid AS uid,
i.id AS id,
i.ss no AS ss_no,
i.fullname AS fullname,
" AS did,
" AS last_name,
" AS first name,
dm.doc_type AS doc_type,
dm.verified AS verified,

dm.usr_scnnr_id AS usr_scnnr_id,
dm.scan_date AS scan_date,
dm.usr_vrfy id AS usr_vrfy id,
dm.vrfy date AS vrfy date,
" AS doc_name,
dm.doc_path
FROM
id rec i,
dbimg_mstr_rec dm,
dbimgdoctype table dd
WHERE
dm.doc_type = dd.doc_type AND
dm.doc_type IN (
SELECT
a.doc_type
FROM
dbimgdoctype_table a, dbimg_usrsec_rec b
WHERE
a.doc_type LIKE replace((b.doc_type || '%"),"",") AND
b.id ='470822' AND
b.can_scan ='Y") AND
dm.scan_date >='01-01-2012' AND
dm.scan_date <=today AND
dm.verified =N' AND
i.id = dm.doc_key
UNION
SELECT
dm.uid AS uid,
0 AS id,
di.ss_no AS ss_no,
" AS fullname,
di.id AS did,
di.last name AS last_name,
di.first name AS first_name,
dm.doc _type AS doc_type,
dm.verified AS verified,
dm.usr_scnnr_id AS usr_scnnr_id,
dm.scan_date AS scan_date,
dm.usr_vrfy id AS usr_vrfy id,
dm.vrfy date AS vrfy_date,
di.doc_name AS doc_name,
dm.doc_path
FROM
dbimg_id rec di,
dbimg_mstr_rec dm,
dbimgdoctype table dd

24

25

WHERE
dm.doc_type = dd.doc_type AND
dm.doc_type IN (
SELECT
a.doc_type
FROM
dbimgdoctype table a, dbimg_usrsec_rec b
WHERE
a.doc_type LIKE replace((b.doc_type || '%"),"",") AND
b.id ='470822' AND
b.can_scan ='"Y'") AND
dm.scan_date >='01-01-2012' AND
dm.scan_date <=today AND
dm.verified ='N' AND
di.id = dm.doc_key
ORDER BY id DESC

Estimated Cost: 178387
Estimated # of Rows Returned: 2
Temporary Files Required For: Order By

1) juracem.dm: INDEX PATH

Filters: ((juracem.dm.verified = 'N' AND juracem.dm.scan_date >= 01/01/2012) AND
juracem.dm.scan_date <= TODAY)

(1) Index Name: informix.imgmstr_type
Index Keys: doc_type (Serial, fragments: ALL)
Lower Index Filter: juracem.dm.doc_type = ANY <subquery>

2) juracem.dd: INDEX PATH

(1) Index Name: informix.imgdoctype dt
Index Keys: doc_type (Key-Only) (Serial, fragments: ALL)
Lower Index Filter: juracem.dm.doc_type = juracem.dd.doc_type
NESTED LOOP JOIN

3) juracem.i: INDEX PATH

(1) Index Name: informix. 1956 6496
Index Keys: id (Serial, fragments: ALL)
Lower Index Filter: juracem.i.id = juracem.dm.doc_key
NESTED LOOP JOIN

26

Estimated Cost: 11
Estimated # of Rows Returned: 5

1) juracem.b: INDEX PATH
Filters: juracem.b.can_scan ="Y"

(1) Index Name: informix.imgusrsec_prim
Index Keys: id application doc_type (Serial, fragments: ALL)
Lower Index Filter: juracem.b.id = '470822'

2) juracem.a: INDEX PATH
Filters: juracem.a.doc_type LIKE REPLACE ((juracem.b.doc_type || '%'),"'",")

(1) Index Name: informix.imgdoctype_dt
Index Keys: doc_type (Key-Only) (Serial, fragments: ALL)
NESTED LOOP JOIN

Union Query:

1) juracem.dm: INDEX PATH

Filters: ((juracem.dm.verified = 'N' AND juracem.dm.scan_date >= 01/01/2012) AND
juracem.dm.scan_date <= TODAY)

(1) Index Name: informix.imgmstr_type
Index Keys: doc_type (Serial, fragments: ALL)
Lower Index Filter: juracem.dm.doc_type = ANY <subquery>

2) juracem.di: INDEX PATH

(1) Index Name: informix.imgid_prim
Index Keys: id (Serial, fragments: ALL)
Lower Index Filter: juracem.di.id = juracem.dm.doc_key
NESTED LOOP JOIN

3) juracem.dd: INDEX PATH

(1) Index Name: informix.imgdoctype_dt
Index Keys: doc_type (Key-Only) (Serial, fragments: ALL)
Lower Index Filter: juracem.dm.doc_type = juracem.dd.doc_type
NESTED LOOP JOIN

27

Estimated Cost: 11
Estimated # of Rows Returned: 5

1) juracem.b: INDEX PATH
Filters: juracem.b.can_scan ="Y"
(1) Index Name: informix.imgusrsec_prim
Index Keys: id application doc_type (Serial, fragments: ALL)
Lower Index Filter: juracem.b.id = '470822'
2) juracem.a: INDEX PATH
Filters: juracem.a.doc_type LIKE REPLACE ((juracem.b.doc_type || '%'),"'",")
(1) Index Name: informix.imgdoctype dt

Index Keys: doc_type (Key-Only) (Serial, fragments: ALL)
NESTED LOOP JOIN

Figure 8. SET EXPLAIN output for SQL A

It becomes immediatelly apparent how inefficient the processing in this specific area
is since every time an operator needs to search it takes aprroximately 4 minutes to get back
results. The results of the SQL A query will serve a vital role in the system redesign.

From the SQL A results it is clear that the system needed 178,387 operations
(estimated cost provided by the SQL Explain utility) to retrieve the matching records. From
the practical point of view it took about 4 minutes. In the following steps an attempt will be
made to modify the database structure as well as the SQL A query to get a better performance.
The estimated cost will be monitored as well as the average time of each subseqgent
modification. Additionally, an attempt will be made to minimize both of the outcomes until an

acceptable performance is achieved.

28

Transactional database restructuring

The first evident fact about the SQL A related tables is that they are not normilized.
However, taking into consideration the extent the normalization would have on all data
processing throughtout all the applications and reports, and not even knowing whether the
normalization would have a possitive effect on queries (on the opposite, it’s very likely that
the normalization would worsen the performance), the focus will be geared more towards the
database operations and indexing.

To make the research more efficient, the dbimg_mstr_rec table will be duplicated into
dbimg_mstr2_rec (see Appendix C for the data import SQL) with the exception of doc_type
column. In the new dbimg_mstr2 rec table, the doc_type column will be substituted with
doc_type_id column (join to doc_type_id of dbimgdoctype_table), moving from char(20) to
integer data type, from 20 bytes to only 4 bytes. The related indexes of dbimg_mstr2_rec table
will also need to be modified. The column change should have a huge impact on the new
index as we are decreasing the index record size by 16 bytes, which means more index
records per block (block size is 2048 bytes), which in turn means less blocks to access and
less 1/O operations to retriveve all the records. The figure 9 reflects the table changes and

adjustments to the original query SQL A. The resulting query is named SQL AZ2.

SELECT
dm.uid AS uid,
1.id AS id,
1.ss_no AS ss_no,

i.fullname AS fullname,
" AS did,

" AS last_name,
" AS first_name,
dd.doc_type AS doc_type,
dm.verified AS verified,
dm.usr_scnnr_id AS usr_scnnr_id,
dm.scan_date AS scan_date,
dm.usr_vrfy id AS usr_vrfy id,
dm.vrfy date AS vrfy_date,
" AS doc_name,
dm.doc_path
FROM
id_reci,
dbimg_mstr2_rec dm,
dbimgdoctype_table dd
WHERE
dm.doc_type id =dd.doc_type id AND
dd.doc_type IN (
SELECT
a.doc_type
FROM
dbimgdoctype table a, dbimg_usrsec_rec b
WHERE
a.doc_type LIKE replace((b.doc_type || '%"),'',") AND
b.id ='470822' AND
b.can_scan ="Y') AND
dm.scan_date >='01-01-2012' AND
dm.scan_date <=today AND
dm.verified ='N' AND
i.id = dm.doc_key
UNION
SELECT
dm.uid AS uid,
0 ASid,
di.ss_no AS ss_no,
" AS fullname,
di.id AS did,
di.last name AS last_name,
di.first name AS first_name,
dd.doc_type AS doc_type,
dm.verified AS verified,
dm.usr_scnnr_id AS usr_scnnr_id,
dm.scan_date AS scan_date,
dm.usr_vrfy id AS usr_vrfy_id,
dm.vrfy date AS vrfy date,
di.doc_name AS doc_name,
dm.doc_path

29

30

FROM
dbimg_id rec di,
dbimg_mstr2 rec dm,
dbimgdoctype_table dd
WHERE
dm.doc_type id =dd.doc_type id AND
dd.doc_type IN (
SELECT
a.doc_type
FROM
dbimgdoctype table a, dbimg_usrsec_rec b
WHERE
a.doc_type LIKE replace((b.doc_type || '%"),"",") AND
b.id ='470822' AND
b.can_scan ="Y'") AND
dm.scan_date >='01-01-2012' AND
dm.scan_date <=today AND
dm.verified ='N' AND
di.id = dm.doc_key
ORDER BY id DESC;

Figure 9. SQL A2 - after the move to doc_type_id column

Before running and collecting the analysis data we have to update statistics for the
new dbimg mstr2 rec table, as well as for the new column being used from
dbimgdoctype table. Figure 10 shows the specific statistics updates performed in preparation

for the analysis of SQL A2.

UPDATE STATISTICS HIGH FOR TABLE dbimg_mstr2_rec (doc_type id, doc_key,
verified, scan_date);
UPDATE STATISTICS HIGH FOR TABLE dbimgdoctype_table (doc_type, doc_type_id);

Figure 10. The performed statistics updates before analysis of SQL A2

Table 13 shows the results of the SQL 2 exceution. All the subsequent results will be

recorded in this table as well so that the results can be easily compared.

31

By comparing the SQL A and SQL 2 results it is immediatelly apparent that the first
set of modifications was successful. As shown in figure 11, the database optimizer used the
new index imgmstr_type 2, reducing the total esimated cost down to 95,030 operations, and
reducing the query execution time from 4 minutes down to an average of 1 minute. While this

is a huge improvement, the performance goal has not been achieved yet.

Estimated Cost: 95030
Estimated # of Rows Returned: 13680
Temporary Files Required For: Order By

1) juracem.dd: INDEX PATH

(1) Index Name: informix.imgdoctype dt
Index Keys: doc_type (Serial, fragments: ALL)
Lower Index Filter: juracem.dd.doc_type = ANY <subquery>

2) juracem.dm: INDEX PATH

Filters: ((juracem.dm.verified = 'N' AND juracem.dm.scan_date >= 01/01/2012) AND
juracem.dm.scan_date <= TODAY)

(1) Index Name: informix.imgmstr_type 2
Index Keys: doc_type id (Serial, fragments: ALL)
Lower Index Filter: juracem.dm.doc_type id = juracem.dd.doc_type_id
NESTED LOOP JOIN

3) juracem.i: INDEX PATH

(1) Index Name: informix. 1956_6496
Index Keys: id (Serial, fragments: ALL)
Lower Index Filter: juracem.i.id = juracem.dm.doc_key
NESTED LOOP JOIN

Figure 11. Excerpt of SET EXPLAIN output for SQL A2

32

In the next step, an attempt will be made to modify the join columns of the main query
and the 2 sub-queries. Currently, as shown in fugure 9, the SQL A2 joins the sub-queries on
doc_type column. Using join of doc_type id should theoretically produce better results. The

figure 12 shows the changes, from now on refered to as SQL A3.

dbimgdoctype_table dd
WHERE
dm.doc_type id =dd.doc_type id AND
dd.doc_type id IN (
SELECT -
a.doc_type_id
FROM
dbimgdoctype table a, dbimg_usrsec_rec b
WHERE
a.doc_type LIKE replace((b.doc_type || '%"),"",") AND
b.id ='470822' AND
b.can_scan ="Y") AND
dm.scan_date >='01-01-2012' AND

Figure 12. Excerpt of SQL A3 modification

The table 13 shows mixed results from the comparison of SQL A2 and SQL A3. The
estimated cost has been brought down to 95,028, but the execution has increased in time by
almost 4 seconds. A further research would have to be conducted to find out what exactly
happens during the execution of SQL A3, however, this is outside of the scope of this project.
Since the main goal is to improve system’s performance from the operator’s point of view, the

SQL A2 will be used for all subsequent modifications.

33

On the next step, the focus will be on indexes of the related tables. First, it is apparent
that the filter operation “dm.verified ='N' ” must be very memory and time consuming as
there is not any related index in dbimg_mstr2_rec table. Figure 13 shows the newly added

index.

table dbimg_mstr2_rec
index
unique imgmstr_prim on (uid,doc_key,doc_type,doc_path)
imgmstr_key2 on (doc_path)
imgmstr_key on (doc_key)
imgmstr_type on (doc_type)
imgmstr_vd uid on (vrfy_date, uid)
imgmstr_vrfy on (verified)

Figure 13. Indexes of dbimg_mstr2_rec table

The results of SQL A2 (shown as SQL A2il in table 13) are great. The database
optimizer indeed used the new index as shown in figure 13. The total estimated cost has been
lowered from 95,030 to only 17,999 operations, and most significantly, the query execution
time has been lowered from 1 minute to under 1 second. This result, from operator’s point

view, is surely satisfactory, which means perfomance goals have been met.

Estimated Cost: 17999
Estimated # of Rows Returned: 13680
Temporary Files Required For: Order By

1) juracem.dm: INDEX PATH

Filters: (juracem.dm.scan_date >=01/01/2012 AND juracem.dm.scan_date <= TODAY

34

(1) Index Name: informix.imgmstr_vrfy
Index Keys: verified (Serial, fragments: ALL)
Lower Index Filter: juracem.dm.verified = 'N'

2) juracem.dd: INDEX PATH

(1) Index Name: informix.imgdoctype prim
Index Keys: doc_type id doc_type (Key-Only) (Serial, fragments: ALL)
Lower Index Filter: (juracem.dm.doc_type_id = juracem.dd.doc_type_id AND
juracem.dd.doc_type = ANY <subquery>)
NESTED LOOP JOIN

3) juracem.i: INDEX PATH

(1) Index Name: informix. 1956_6496
Index Keys: id (Serial, fragments: ALL)
Lower Index Filter: juracem.i.id = juracem.dm.doc_key
NESTED LOOP JOIN

Figure 14. Excerpt of SET EXPLAIN output for SQL A2il

Even though the goal of the database structure and SQL redesign has been met, an
attempt to even further reduce the estimated cost of the query and thus reduce the overall
usage of the server resources will be made. Since the filter in the SQL A2 also references the
column scan_date from dbimg_mstr2_rec, another index will be added to dbimg_mstr2_rec

for column scan_date as shown in figure 15.

table dbimg_mstr2_rec
index
unique imgmstr_prim on (uid,doc_key,doc_type,doc_path)
imgmstr_key2 on (doc_path)
imgmstr_key on (doc_key)
imgmstr_type on (doc_type)
imgmstr_vd uid on (vrfy_date, uid)
imgmstr_vrfy on (verified)
imgmstr_scndt on (scan_date)

35

Figure 15. Indexes of dbimg_mstr2_rec table

As expected, the results of SQL A2 with the new index imgmstr_scndt provide even
better estimated cost as shown in table 13 under SQL A2i2. Figures 16 and 17 graphically

depict the performance improvements.

36

Table 13. SQL performance results

sQL sQL saL sQL sQL | saQL
SQL Performance
Estimated Cost
Execution Time 1
(s) ; 237.042 | 60.317 | 63.991 0.115 0.119 | 0.088 | 0.087
Execution Time 2
(s) 233.467 | 60.204 | 64.388 0.120 0.129 | 0.119 | 0.094
Execution Time 3
(s) 235.525 | 60.401 | 63.268 0.133 0.123 | 0.094 | 0.086
Execution Time 4
(s) 231.297 | 60.022 | 63.737 0.123 0.113 | 0.082 | 0.105
Execution Time 5
(s) 225.743 | 60.786 | 64.445 0.118 0.115 | 0.092 | 0.089
Execution Time 6
(s) 235.967 | 59.588 | 63.902 0.115 0.119 | 0.097 | 0.082
Average Ex. Time anlEaia BE ey s GRR e
(s) v 1233.174 | 60.220 | 63.955 |

Table 14. SQL descriptions

sQL Description

SQLA Original SQL and db tables

Modified dbimg_mstr_rec schema - use doc_type_id instead of doc_type; modified the
SQL A2 index imgmstr_type to use the new column

SQL A3 Modified the subquery join to use doc_type_id instead of doc_type

SQL A2i1 | The SQL A2 results after the added imgmstr_vrfy index

SQL A2i2 | The SQL A2 results after the added imgmstr_scndt index

SQL A4 Modified SQL A2 to use id_rec only

SQL A5 Modified SQL A2 to use dbimg_id_rec only

37

Estimated Cost (operations)

200,000
180,000

160,000 \\
140,000 \
120,000

100,000 \\ Estimated Cost
80,000 \ (operations)

60,000
40,000 \
20,000 \
0 T ‘ . !
SQLA SQLA2 SQLA2i1 SQLA2i2

Figure 16. Graphical representation of the estimated cost results

Average Ex. Time (seconds)

250.0

bl B
oo\
N
\

0.0 T T . 1
SQLA SQLA2 SQL A2i1

Average Ex. Time
(seconds)

Figure 17. Graphical representation of the average execution time results

Again, the performance goal has been reached. The new design will significantly

reduce the operator’s wait time, from 4 minutes to under 1 second, and it is saving a

38

significant amount of server resources with the estimated cost droping from 178,387 down to
17,930.

While the main focus has been on addressing the server side modifications for
achieving the performance goal, the scanning application could also be modified, in this case
the search screen, and provide additional screen parameters that would narrow down the
search. For example, if the operator specifies which entity table to use, id_rec versus
dbimg_id rec, than it could avoid using the SQL union clause and instead execute only one of
the parts of the union. This would mainly further reduce the estimated cost of operations, as
shown in table 13 in SQL A4 and SQL A5, to as low as 1,179 if dbimg_id_rec was selected.

Figures 18 and 19 show the split of the final SQL A2 query.

{SQL A4}
SELECT
dm.uid AS uid,
i.id AS id,
i.ss_ no AS ss_no,
i.fullname AS fullname,
" AS did,
" AS last_name,
" AS first name,
dd.doc_type AS doc_type,
dm.verified AS verified,
dm.usr_scnnr_id AS usr_scnnr_id,
dm.scan_date AS scan_date,
dm.usr_vrfy id AS usr_vrfy id,
dm.vrfy date AS vrfy_date,
" AS doc_name,
dm.doc_path
FROM
id_rec i,
dbimg_mstr2_rec dm,
dbimgdoctype table dd
WHERE
dm.doc_type id = dd.doc_type id AND
dd.doc_type IN (

SELECT
a.doc_type
FROM
dbimgdoctype_table a, dbimg_usrsec_rec b
WHERE
a.doc_type LIKE replace((b.doc_type || '%"),"'"',") AND
b.id ='470822' AND
b.can_scan ='Y") AND
dm.scan_date >='01-01-2012' AND
dm.scan_date <=today AND
dm.verified ='N' AND
i.id = dm.doc_key
ORDER BY id DESC;

Figure 18. SQL A4 — using id_rec only

{SQL A5}

SELECT
dm.uid AS uid,
0 AS id,
di.ss_no AS ss_no,
" AS fullname,
di.id AS did,
di.last name AS last name,
di.first name AS first name,
dd.doc_type AS doc_type,
dm.verified AS verified,
dm.usr_scnnr_id AS usr_scnnr_id,
dm.scan_date AS scan_date,
dm.usr_vrfy id AS usr_vrfy_id,
dm.vrfy date AS vrfy_date,
di.doc_name AS doc_name,
dm.doc_path

FROM
dbimg_id rec di,
dbimg_mstr2 rec dm,
dbimgdoctype_table dd

WHERE
dm.doc_type id = dd.doc_type id AND
dd.doc_type IN (

SELECT
a.doc_type
FROM
dbimgdoctype table a, dbimg_usrsec_rec b

40

WHERE
a.doc_type LIKE replace((b.doc_type || '%"),"",") AND
b.id ='470822' AND
b.can_scan ="Y") AND
dm.scan_date >='01-01-2012' AND
dm.scan_date <=today AND
dm.verified ='N' AND
di.id = dm.doc_key
ORDER BY id DESC;

Figure 19. SQL AS — using dbimg_id_rec only

Data warehouse design

As stated in the project requirements section, the main purpose of this data warehouse
will be to permanently record and store system activities per individual operator. The next
section will first analyze all the data requirements for extraction and storage, and then design
the actual database structure of the new date warehouse.

It is already known that the management needs to be able to track each operator’s
activity, so a dimension for operators is needed. They need to be able to track the activities on
daily basis, thus a dimension for time will be needed as well. Next, there is a need to track the
type of operation, thus an operation dimension will be used. The management will also need
to be able to have a granular access to the various document types, thus a document type
dimension will be needed. Lastly, a document dimension to give the management capabilities
to track action on any particular document entity will also be necessary. Table 15 summarizes

the dimension needs, as well the specific column requirements.

Table 15. Dimensions needed for the data warehouse

41

Dimension
type Dimension name Description/Reason Fields needed Field type
To. t?e able tq track. time_key date
Time St tiendon activities on daily basis, -
= as well as by fiscal year | fiscal_year smallint
and fiscal month fiscal_month char(10)
operation_ke char(1
Operation operation_dimension et .to [ERCLE |81 — . 1)
operation type operation_name char(20)
‘ operator_id char(20
Operator operator_dimension Tobg sl pert oy, OB = 20
operator name operator_name char(50)
Document . " To be able to report by | document_type_key | smallint
doc_type_dimension o
Type specific document type | document_type char(20)
s . ' To b(:': z.at.)le to report all | document_key char(12)
Entity document_dimension activities by specific d ‘i har(25
document entity SR char(25)

time_dimension

PK |time_ key

fiscal_year
fiscal_month

‘oper_detail_fact

operation_dimension

PK |operation_key

operation_name

PK,FK3
PK,FK1
Od PK,FK4
PK,FK2
PK,FK5

operator_id

operation_key
document_type key
document_key

operator_dimension

PK |operator_id

operator_name

doc_type_dimension

time_key DO

PK

document type key

document_type

document_dimension

PK |document key

document_id

Figure 20. Data Warehouse Diagram

42

It’s apparent from figure 20 that the suggested database structure for the data
warehouse is designed to save storage resources, but at the same time the simple design will
still ensure efficient processing and instant reporting capabilities.

Appendix C shows all the queries used for creating the new tables within the new
“docimg” database stored in the MYSQL database engine. Every major column in all tables
has been indexed. This may slow down that nightly imports, but will speed up all subsequent
reporting requests.

Appendix C also shows all the scripts used for the initial extraction of the data from
the transactional database and import into the new- data warehouse database. The
extract/import was straight forward for all the dimension tables. The data gathering process
for the fact table required more analysis though since the information is being imported from
2 different tables. Both tables, dbimg_mstr rec and dbimg_stat rec, have their own unique
serial key. In order to distinguish in the data warehouse where the document entry came from,
all the document keys from the dbimg_stat rec will be prefixed with ‘S’. Another decision
that had to be made was to choose how to import documents that were processed and verified
by the same operator. To provide extra reporting flexibility, 2 separate fact records for each of
these activities will be used. One will be based on the scan_date and verified status of N, and
the other will be based on the vrfy date and verified status of either D, Y, or R. A user
documentation and training will be needed to ensure that the reports based on this fact table
get translated correctly.

The next section will describe all the reports that were created to address the reporting

needs as outlined in the objectives of this project. In addition, in order to further free the

43

system resources of the transactional database server, the existing reports that were based on
the transactional database were migrated into the data warehouse.

All of the reports that involve operator names are purposely modified to not to display

the actual operator name.

| % E Suggested Sites v g_} Web Slice Gallery -
|QIBMCognusV'ewet ' A ; [- ! X v B -) @b v Pagev Safetyv Tools~ @~ =

| 5 Favorites

} IBM Cognos Viewer
|

| i i@~
Overall Document Imaging Usage by Document Type and Fiscal Year

document_key »0203 iow loas | 0506 ‘0607 | o708 ,osos | o910 E1011 L2

SA VOUCHER 2 2
9) '::o——cm;l_al’shp‘ s 698 1,257 384 5,106 3nz 1,921 1,384 1,826 15.688
' EE'EE i O m 2 4136 4915
PR TR 31,967 63,913 68,982 28,231 21,572 54276 18,437 14,274 18,703 9,492 3274848 .:
i 3 82 1 - m
2 a1 3 108
19 12 1 plE 32
SR __Ath_Eig_TTenms 4 : 4 :
| SR_Ath_Eig_W_Bbal 12 72 6f 7%
SR 2 Ath_Elig W_Golf 3 59 5 13
SR Xﬂl Eig:w ;ﬂ}m‘lv 9 128 b 135 |
SR A!h Elg_W Swm 18 - 1 23
SR CONED 90,358 30,553 200,476 39,767 3,312 7,224 3,887 375,577
SR ELI e 7 4471 450 457 432 997 2 1 6,867
SR GradaRl;I; ki 3 8131 151 274 1" [f 4 kX 8,710 X
SR MICROX i 1,763 §9,378 328 29 58 S 21 61,582 :‘
SR_{ OldReeords o 156,379 115,521 40,225 34,304 49960 252,774 102,018 109,644 103,446 79,805 1,044,076 i
STU_I DiS A .- i 1 1 j
TEST DOCS a5 17 257 139 458 |
S 188,353 270,740 314,570 255,712 197,730 792,349 286,305 277,710 303,937 230,634 3,118,040 i
?
= Top 2 Pageup ¥ Page down = Bottom
'Done € Local intranet | Protected Mode: Off ‘g v H100% v

T T v e R A PRI 5

Figure 21. Cognos Report — Overall document imaging usage

B
e

£ hitp://ersicognosll v n i
| 4% [%] Suggested Sites v] Web Slice Gallery v
ﬁi o~ v [mm v Pagev Safety~v

. Favorites

| | 4 1BM Cognos Viewer

Marek Juracek | About

P b B-IE]

Document Imaging - Usage by Operator, Document
Type, and Month of 2012

sanuary | February | Marcn | Api [EETT

document_key
| SR_AE 3s 28 2 2 112

| SR_OldRecords 137 65 51 94 387
Jop AR 25 55 5 85
43
2
1
416
65
212
105
321
1
| 205
|SRMCROX 2 2
| SR_OMRecords 493 82 89 189_' 853
R 82 9% 29 2 239
539 225 275 196 | 1235
g i 1 81 82
81 84 2 19 166
AT 183 131 20 6/ 320
2749 1485 1263 1181 6658
S 37 33 kX] 1 104
sn_omecom.-.' 148 33 54 235
i SR_AE” i 3 3
SR_OldRecords 1225 1039 2264
T SR_AE g gk 122 216 142 100 580
‘sRcoNED 3 390 3
CSRMICROX 7 1 8
j sn_ouRQéocis i 928 173 580 520 3241
7 i SR;AE i 513 351 291 187 1342
{ Sﬁ;EDNEb‘ i 753 294 1047
SR_onRecoraS 5845 3137 2475 1597 13054
22 SR_AE 6 4 10
SR_OIdRecords 33s 1641 1357 ¢ 3333
o SR_OidRecords g 9
1
‘ ; T4t Vm_é\;l.ocal intranet | Protected Mode: Off Y3 v RK100% _
&

44

Figure 22. Cognos Report — Usage by operator, document type, and month of 2012

http://ers/cognosl0/cgi-bin/cognosisapi.dif

| <> Favorites | < [Suggested Sites v @] Web Slice Gallery v
W R OB €]

| AT |
IQIBMCogm:rs\lie'wer ’ l %3 v~ B v 1 o= v Pagev Safety~ Tools~v i@~ 0

IBM Cognos Viewer Marek Juracek | About
> iy vi@~1]

|

|

j Document Imaging - Graphical Representation of Total Activities by Operator
1 over the last 9 days
|

|

400 Operator Name
=
)
L 3
3m - — b= ‘._‘7- = w
/ = 3
-
v 300 . ot e — e N— —e e ,../' :
: . 1
L
250
€
3
8
§ 200
]
=
g |
180
100 |
®
7
2012-04-11 2012-04-12 20120413 2012-04-16 2012-04-17 l
Activity date
1
: z
Done €& Local intranet | Protected Mode: Off f3 v R100% ~ |
. PR e B = e r = - e

Figure 23. Cognos Report — Graphical representation of total activities by operator over the

last 9 days

46

U F | 2 (33 Suggested Sites v &) Web Slice Gallery ~
| &8 1BM Cognos Viewer 7, R v [g v Pagev Safetyv Toolsv @+
os Viewer
(IR - R
Document Imaging - Detail Usage by Operator, Operation, over the last 20 days
document_key 01204 | 201206 | 201204 | 201206 201206 | 201204 | 201204 | 01208 201204 | 201204 201206 | 201204 [0
|02 |03 | 04 05 08 09 10 11 12 13 18 17
1 9 8 15
2 25
% " 7
20 13 3 g 1 6 " 8 3 4 78
12 7 g 1 3 10 14 7 8 12 s 7. 104
2 3 3 2 8 1 8 4 2 1 2 32]
1 3 2 7 1 e
! 10 8 3 1 13 s s 2 3 2] 1 57
| 1 2 1 4
{
| Verified 35 6 as 3u 28 a4 51 67 53 88 108 st 123
| Verified - 54 58 3 14 67 54 24 u 10 1 3 3 403
jOupecen
i 1 3 1 1 2 2 1 1 2 s 19
! o2
} 1 1 20 2 3 27
53 85 3 81 11 125 5 s 7 a4
2 12 17 % 7 19 3 1 139
1 1
3 3 5 E 1 8 8 2 7 17 55
82 12 15 166 a7 103 201 165 87 272 %2 1522
26 65 40 82 35 £4 75 12 33 81 32 497
2 2 4
1
= Top # Pageup ¥ Page down = Bottom
Done

Figure 24. Cognos Report — Detail usage by operator, operation, over the last 20 days

47

CHAPTER 4

CASE STUDY (RESULTS AND DISCUSSION)

One of the main goals of this project was to improve the efficiency of the document
imaging system, which would lead to a higher imaging processing, and ultimately to a more
cost effective operations. As demonstrated, some of the system queries could take about 4
minutes to execute. By redesigning the current imaging system the execution time was
brought down to less than 1 second. The next section will estimate the average time savings
per day, month, and year. The estimation will be based on the data processed from the period
of 2008 to 2011.

In 2008, out of 362,131 processed documents, there were 144,184 documents that
were scanned and verified by different operators. This means, that the documents were most
likely processed in a batch mode, where one operator’s daily task was to only scan, and other
operator’s daily task was to verify only. Under the assumption that the operator that verified
documents had to wait an average of 1 minute for a document to be found and loaded, the
total wait time just for this operation that year would be 144,184 minutes, which is 2,403
hours. With 10 operators verifying during 246 days during the year of 2008, the daily average
time spent on the documents to be found and loaded was about 1 hour (20 hours a month).

Going down from 4 minutes of wait time to less than 1 second truly presents huge

operation savings, and is meeting the performance goals set in this project.

48

In 2011, the number of end users that used the document imaging for retrieval
purposes nearly doubled to about 400 total users. Using a rough estimate of 10 document
retrievals per day per end user (the usage is much higher for departments such as Financial
Aid, but much lower for users that only occasionally access archives, etc.), using 230 working
day calendar, and assuming each search and retrieval takes about 20 seconds, we total to
about 511 wasted hours per year. Again, there are huge time savings by driving the system to
retrieve the documents within a second.

Not only time and operation cost will be saved by improving the efficiency of the
system, but also an increment in student satisfaction will be seen by providing faster services
to our students.

The new data warehouse more than enough satisfies all the current reporting needs.
The managers will no longer lose track of all their operation statistics, allowing them to
further analyze the operations and perfect their document imaging plans to fit immediate or
future needs.

In addition to the needed reports, operation managers of other departments (such as
Facilities department) can utilize the available data to estimate, for example, when will the
buildings and rooms that are currently used for storing various document archives be available

again for further usage (office space, classrooms, etc.).

49

CHAPTER 5

CONCLUSIONS

The main objectives of this project were to improve the efficiency of the Document
Imaging system and to provide the additional reporting capabilities. The project achieved both
of the objectives. As discussed in the case study section, the college will be able to save many
hours every month due to the improved efficiency of the imaging system. Also, the new
document imaging data warehouse and the related Cognos reports fully fulfill the reporting
needs as well as prepare the reporting environment for any future reporting needs.

Due to the time limitation of the project, only the most critical areas of the system that
contribute to low efficiency have been addressed. This project, the research and the
implementation, will serve as a guide for any subsequent modifications and thus will simplify
the future system development.

This project proves what a big role software maintenance plays in Information
Technology. Due to the limited IT resources, the IT staff cannot evaluate every application
that was written internally on regular basis. Instead, there is a need to rely on continuous
feedback from the end users to help assess the application and maintenance performance
needs. The college has recognized the need for improvement in this area and started working
on setting up an environment that would allow IT to automatically handle such
communication. It has been successfully implemented and deployed through the Microsoft’s
System Center Configuration Manager and System Center Operations Manager throughout

the college (with the exception of the MAC environment), and are looking at setting up the

50

application performance monitoring for the desktop systems (servers are already monitored)
in the near future.

The new reporting environment provides an excellent way of keeping up to date with
the daily usage of the Document Imaging system, as well as provides many ways to analyze
the overall growth of the system. The reporting will no longer affect, and be affected (in case
of deleted records) by the transactional database used for the system operations.

In conclusion, this project has allowed, and will continue to allow shaping the systems
operation environment within the college. It has made possible to identify other system
deficiencies, thus setting up a stepping stone for future system modifications and report

management.

2l

REFERENCES

Elmasri, R., Navathe, S. (2007). Fundamentals of database systems. 5th ed. Boston: Pearson

Education.

Giovinazzo, W. (2000). Object-oriented data warehouse design: Building a star schema. New

Jersey: Prentice Hall.

IBM Corporation. (2010). IBM cognos framework manager: Version 10.1.0. Retrieved on
March 1%, 2012, from

http://public.dhe.ibm.com/software/data/cognos/documentation/docs/en/10.1.0/ug_fm.

pdf

IBM Corporation. (2010). IBM cognos report studio: Version 10.1.0. Retrieved on March 1%,

2012, from

http://public.dhe.ibm.com/software/data/cognos/documentation/docs/en/10.1.0/ug_cr

rptstd.pdf

IBM Corporation. (2010). IBM Informix version 11.50: IBM Informix dynamic server
performance guide. Retrieved on March 1*, 2012, from

http://publibfp.dhe.ibm.com/epubs/pdf/c2736180.pdf

Wilson, Ch. (2011). MySQL 5.5 Reference manual. Retrieved on March 1%, 2012, from

http://dev.mysgl.com/doc/refman/5.5/en/index.html

52

33

APPENDICES

APPENDIX A: WORK BREAKDOWN STRUCTURE (WBS)

1 Initiating

1.1 Problem definition

1.2 Initiating completed

2 Planning

2.1 Develop scope statement
22 Review current system

2.3 Create WBS

24 Select Tools

24.1 Select data warehouse database
242 Select reporting tools

2.3 Create schedule

2.5.1 Refine timeline

252 Gantt Chart

2.5.3 Planning completed

3 Executing

3.1 Redesign Document Imaging
3.1.1 Redesign Tables Structure
3.12 Redesign SQLs

3.1.3 Measure execution times
3.14 Document Results

3.1.5 Document new design
3.1.6 Redesign Completed

3.2 Design warehouse database
3.2.1 Identify data to extract

322 Design warehouse tables

3.2.3
324
323
3.2.5.1
3.2.52
3.2.5.3
3254
3.2.6
33

34

4.1
42
43
44

Release data warehouse
Database warehouse completed
Create reports
Setup Cognos framework
Design Cognos Reports
Test reports
Deploy reports
Document the data warehouse
Training
Executing completed
Closing
Lessons Learned
Prepare Final Report
Prepare Project Presentation

Project completed

54

55

: GANTT CHART

APPENDIX B

D [was Tu» Name w Duration _ Start _ Finish er |October | November | December | February [March [April M
9/18 | 10/9 | 10/30 | 11/20 [122 T o2 T 374 [3ps [anns |

11 Initiating 2 daysion 10/10/117ue 10/11/11

2 11 Problem definition 2 dayslon pc\uQ:En 10/11/11

3 12 Initiating completed 0daysfue 10/11/11Tue 10/11/11 10/11

4 R Planning 40 daysfed 10/12/11 Tue 12/6/11

5 R1 Develop scope statement 10 days/ed 10/12/11Tue 10/25/11

6 2.2 Review current system Sdaysled 10/26/11 Tue 11/1/11

7 3 Create WBS SdaysWed 11/2/11 Tue 11/8/11)

8 24 Select Tools S daysWed 11/9/11fue 11/15/11

9 .41 Select data warehouse d atabase 3daysWed 11/9/11 Fri11/11/11

10 .42 Select reporting tools 2 dayslon 11/14/11Tue 11/15/11

11 5 Create schedule 15 daysfed 11/16/11 Tue 12/6/11

12 PS5 Refine timeline Sdays/ed 11/16/11Tue 11/22/11

13 252 Gantt Chart 10days/ed 11/23/11 Tue 12/6/11 {

14 253 Planning completed Odays Tue 12/6/11 Tue 12/6/11 & 12/6

15 Executing 65 dayswed 12/7/11 Tue3/6/12 W ————

6 [3.1 Redesign Document Imaging 35 daysiWed 12/7/11 Tue 1/24/12) "

17 3.1.1 Redesign Tables Structure 25 daysWed 12/7/11 Tue 1/10/12 !

18 3.1.2 Redesign SQLs SdaysWed 1/11/12 Tue 1/17/12

9 313 Measure execution times 1 dayWed 1/18/12Wed 1/18/12 _,

20 314 Document Results 2days Thu1/19/12 Fri1/20/12 |

21 315 Document new design 2daysMon 1/23/12 Tue 1/24/12

2 B.1.6 Redesign Completed Odays Tue 1/24/12 Tue 1/24/12 1/24

23 3.2 Design warehouse database 29 daysWed 1/25/12 Mon 3/5/12 T

24 321 Indetify data to extract 2 daysWed 1/25/12 Thu 1/26/12 d

25 13.2.2 Design warehouse tables 10days Fri1/27/12 Thu 2/9/12 P

26 [3.2.3 Release data warehouse 1day Fri2/10/12 Fri2/10/12 vP

27T 324 Database warehouse completed Odays Fri2/10/12 Fri2/10/12 2/10

28 32,5 Create reports 13 daysvion 2/13/12Wed 2/29/12

2% 3,251 Setup Cognos framework SdaysMon 2/13/12 Fri2/17/12

30 3252 Desing Cognos Reports SdaysMon 2/20/12 Fri 2/24/12

31 3253 Test reports 2daysMon 2/27/12 Tue 2/28/12

32 3254 Deploy reports 1 dayWed 2/29/12Wed 2/29/12

33 326 Document the data warehouse 3days Thu3/1/12 Mon 3/5/12 | WF

31 33 Training 1day Tue3/6/12 Tue 3/6/12 g

35 3.4 Executing completed Odays Tue3/6/12 Tue 3/6/12 3/6

% Closing 21 days Wed 3/7/12 Wed 4/4/12, T

7 K1 Lessons Learned 1 day Wed 3/7/12 Wed3/7/12

8 4.2 Prepare Final Report 10days Thu3/8/12Wed 3/21/12

39 413 Prepare Project Presentation 10days Thu3/22/12 Wed4/4/12

0 44 Project completed Odays Wed 4/4/12 Wed4/4/12 a/4

56

APPENDIX C: SYSTEM TECHNICAL
DOCUMENTATION

SQLs used for transactional database restructuring

SQL to alter the dbimg_mstr_rec for no-append mode — add doc_description column:
ALTER

TABLE dbimg_mstr_rec

ADD doc_decsription char(25) default " "

BEFORE doc_path;

SQL to alter the dbimgdoctype_table for no-append mode — add retention_prd column
for the newly added retention management functionality:

ALTER

TABLE dbimgdoctype_table

ADD retention_prd smallint default 0;

SQL to populate dbimg_mstr2_rec:
SELECT

a.doc_key,

b.doc_type id,

a.doc_path,

a.verified,

a.usr_scnnr_id,

a.usr_vrfy id,
a.scan_date,
a.vrfy date,
a.previous_path,
a.temp_doc_key
FROM
dbimg_mstr_rec a,
dbimgdoctype_table b
WHERE
a.doc_type = b.doc_type
INTO TEMP temp_a WITH NO LOG;

INSERT INTO dbimg_mstr2_rec
(doc_key,
doc_type_id,
doc_path,
verified,
usr_scnnr_id,
usr_vrfy_id,
scan_date,
vrfy_date,
previous_path,
temp_doc_key)

SELECT * FROM temp_a;

57

58

SQL creation statements for the Document Imaging repository database (MYSQL):

CREATE
TABLE docimg.oper_detail_fact
(
operator_id CHAR(20) NOT NULL,
time_key DATE NOT NULL,
operation_key CHAR(1) NOT NULL,
document_type _key SMALLINT NOT NULL,
document_key CHAR(12) NOT NULL,
PRIMARY KEY (operator_id, time_key, operation_key, document_type_key,
document_key),
INDEX ix1 UNIQUE (operator _id),
INDEX ix2 UNIQUE (time_key),
INDEX ix3 UNIQUE (operation_key),
INDEX ix4 UNIQUE (document_type key),
INDEX ix5 UNIQUE (document_key)\

)
ENGINE=MyISAM DEFAULT CHARSET=latinl

CREATE
TABLE docimg.operation_dimension
(
operation_key CHAR(1) NOT NULL,
operation_name CHAR(20) NOT NULL,
PRIMARY KEY (operation_key)

ENGINE=MyISAM DEFAULT CHARSET=latinl

CREATE

TABLE docimg.time_dimension

(
time key DATE NOT NULL,
fiscal year SMALLINT NOT NULL,
fiscal month CHAR(10) NOT NULL,
PRIMARY KEY (time_key),
INDEX ix1 (fiscal_year, fiscal_month)

)
ENGINE=MyISAM DEFAULT CHARSET=latinl

CREATE
TABLE docimg.doc_type dimension
(
document_type key SMALLINT NOT NULL,
document_type CHAR(20) NOT NULL,
PRIMARY KEY (document type key),
CONSTRAINT ix1 UNIQUE (document_type)

)
ENGINE=MyISAM DEFAULT CHARSET=latin]

CREATE

TABLE docimg.document_dimension

39

document_key CHAR(12) NOT NULL,
document_id CHAR(25) NOT NULL,
PRIMARY KEY (document_key),
INDEX ix1 (document_id)

)
ENGINE=MyISAM DEFAULT CHARSET=latinl

CREATE
TABLE docimg.operator_dimension
(
operator_id CHAR(20) NOT NULL,
operator name CHAR(50) NOT NULL,
PRIMARY KEY (operator_id),
INDEX ix1 (operator _name)

)
ENGINE=MyISAM DEFAULT CHARSET=latinl

60

61

Scripts used to extract the data from the Document Imaging transaction database into

the data warehouse database:

#!/bin/sh
T
This script is used to extract document master table #H#

from cars/informix database and import the data into #Hit

docimg/MYSQL database i

#Ht -- #t

/dw_docimg_doc fiaid

i #H

S

datfil=/work/juracem/dw_docimg/doc_table.dat
mysqltbl=document_dimension

echo "Extracting Document Master into " $datfil
##HH# Now extract the information
echo "

SET ISOLATION TO DIRTY READ;
unload to $datfil

select

trim(to_char(uid)),

doc_key

from dbimg_mstr_rec

union

select

'S'|| uid,

doc_id

from dbimg_stat_rec

b

" | isql cars
End of the extraction sql and execution

B
Now we load the extracted information into mysql
R

echo "

load data LOCAL infile '$datfil'
REPLACE into table $mysqltbl fields terminated by '[';
" | /mysql/mysql/bin/mysql docimg

Hiu###HH# End of MYSQL data load #HH#H#######
i

62

#1/bin/sh

HHHHH AR
This script is used to extract document type table i

from cars/informix database and import the data into i

docimg/MYSQL database #H#

H#Ht -- #it

./dw_docimg_doctype i

#i i

S

datfil=/work/juracem/dw_docimg/doctype_table.dat
mysqltbl=doc_type dimension

echo "Extracting Document Type into " $datfil
###HH# Now extract the information

echo "

SET ISOLATION TO DIRTY READ; -
unload to $datfil

select

doc_type id

,doc_type

from dbimgdoctype_table

b

" | isql cars

End of the extraction sql and execution

HHHHHHHHHHHH A
Now we load the extracted information into mysql
HHHHHHHH AR

echo "

load data LOCAL infile '$datfil'
REPLACE into table $mysqltbl fields terminated by '|';
" | /mysql/mysql/bin/mysql docimg

#HHHHHHH End of MYSQL data load — ##HHHHHHH###
BRI A
#!/bin/csh -f | more

63

64

#!/bin/sh

HH A A A
This script is used to extract fact info #it

from cars/informix database and import the data into i

docimg/MYSQL database Ht

#Hi -- Hi

/dw_docimg_fact £

“i i

HHHHHHHH

set datfil=/work/juracem/dw_docimg/fact_table.dat
set mysqltbl=oper_detail_fact

goto loaddata

echo "Extracting fact info" $datfil
####H Now extract the information

isql cars << END_SQL > & ztmp.err

SET ISOLATION TO DIRTY READ;

unload to $datfil

select a.usr_scnnr_id, to_char(a.scan_date, '%Y-%m-%d"), a.verified, b.doc_type _id,
to_char(a.uid)

from
‘dbimg_mstr_rec a, dbimgdoctype_table b
where
a.verified in ('N') and
a.doc_type =b.doc_type
union

select a.usr_scnnr_id, to_char(a.scan_date, '%Y-%m-%d"), a.verified, b.doc_type_id,
to_char(a.uid)
from
dbimg_mstr_rec a, dbimgdoctype_table b
where
a.verified in (R, 'Y", 'D") and
a.doc_type = b.doc_type
union
select a.usr_id, to_char(a.perform_date, '%Y-%m-%d'), a.work_ctgr, a.doc_type_id, 'S' || a.uid
from
dbimg_stat_rec a
where
a.work_ctgr in ('Q', 'P")

b

END SQL

label here

loaddata:

End of the extraction sql and execution
echo "loading data"

B
Now we load the extracted information into mysql
B A

/mysql/mysql/bin/mysql docimg << ADD_MYSQL

load data LOCAL infile '$datfil'
REPLACE into table $mysqltbl fields terminated by '[';

ADD _MYSQL
#i#i### End of MYSQL data load #####HHHHHH
B

65

66

#!/bin/sh
A
This script is used to extract operation table i

from cars/informix database and import the data into #H

docimg/MYSQL database Hit

#Ht -- #

./dw_docimg_operation it

#it #

B

datfil=/work/juracem/dw_docimg/operation_table.dat
mysqltbl=operation_dimension

echo "Extracting Operation Info into " $datfil
###HH# Now extract the information
echo "
SET ISOLATION TO DIRTY READ;
unload to $datfil
select

grouping

Lixt
from db_lookup_table
where

code = 'DOCIMG_VERIFIED'

2

" |isql cars

End of the extraction sql and execution

HHHHHHHHHHH
Now we load the extracted information into mysql
HHHHHHHHHHHHH

echo "

load data LOCAL infile '$datfil’
REPLACE into table $mysqltbl fields terminated by '|';
" | /mysql/mysql/bin/mysql docimg

#i#H#H#H#H## End of MYSQL data load #HHHHHHHHH
HHHHHHHH A

67

#1/bin/sh

HHH A AT
This script is used to extract operator table Hi

from cars/informix database and import the data into i

docimg/MYSQL database Hi

#Hi -- i

./dw_docimg_operator

H#it i

B

datfil=/work/juracem/dw_docimg/operator.dat
mysqltbl=operator_dimension

echo "Extracting Operator into " $datfil
##H##H# Now extract the information
echo "

SET ISOLATION TO DIRTY READ;
unload to $datfil '

select

login _id

Jfullname

from dbimg_security_rec

.
b

" | isql cars

##H End of the extraction sql and execution ####

]
Now we load the extracted information into mysql
e e

echo "

load data LOCAL infile '$datfil'
REPLACE into table $mysqltbl fields terminated by '|';
" | /mysql/mysql/bin/mysql docimg

i End of MYSQL data load #####H#HHHHH
HHHHHHHH A A

68

#!/bin/sh

HHHHHHH
This script is used to extract time info it

from cars/informix database and import the data into H#Hi

docimg/MYSQL database #Hi

#t -- i

./dw_docimg_time e

H#it i

A

datfil=/work/juracem/dw_docimg/time_table.dat
mysqltbl=time_dimension

echo "Extracting Time info into " $datfil
#H##H# Now extract the information
echo "
SET ISOLATION TO DIRTY READ;
unload to $datfil
select distinct(to_char(scan_date, '%Y-%m-%d")) as tday,
case when month(scan_date)>6 then (to_char(scan_date, '%0y") ||
substring(to_char(year(scan_date) + 1) from 3 for 2))
else (substring(to_char(year(scan_date) - 1) from 3 for 2) || to_char(scan_date, '%y')) end as
fiscal_year,
to_char(scan_date, '%B") as fiscal_month
from dbimg_mstr_rec
union
select distinct(to_char(vrfy_date, '%Y-%m-%d")) as tday,
case when month(vrfy date)>6 then (to_char(vrfy_date, '%y") ||
substring(to_char(year(vrfy_date) + 1) from 3 for 2))
else (substring(to_char(year(vrfy_date) - 1) from 3 for 2) || to_char(vrfy_date, '%0y")) end as
fiscal year,
to_char(vrfy_date, '%B") as fiscal_month
from dbimg_mstr_rec
union
select distinct(to_char(perform_date, '%Y-%m-%d")) as tday,
case when month(perform_date)>6 then (to_char(perform_date,'%y") ||
substring(to_char(year(perform_date) + 1) from 3 for 2))
else (substring(to_char(year(perform_date) - 1) from 3 for 2) || to_char(perform_date, '%y"))
end as fiscal year,
to_char(perform_date, '%B') as fiscal_month
from dbimg_stat_rec

2

" | isql cars

End of the extraction sql and execution

B A
Now we load the extracted information into mysql
R

echo "

load data LOCAL infile '$datfil'
REPLACE into table $mysqltbl fields terminated by '|';
" | /mysql/mysql/bin/mysql docimg

#Hi###### End of MYSQL data load #HHHHHHHHH
B

69

	Dakota State University
	Beadle Scholar
	Spring 4-1-2012

	Major Revision to Document Imaging System to Improve Efficiency and Reporting Capabilities
	Marek Juracek
	Recommended Citation

	tmp.1522695128.pdf.o4KuX

