Dakota State University

Beadle Scholar

Masters Theses

Spring 5-1-2011

Java Implementation of an Othce Communicator

Swathy Kodati
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

Recommended Citation

Kodati, Swathy, "Java Implementation of an Office Communicator" (2011). Masters Theses. 199.
https://scholar.dsu.edu/theses/199

This Thesis is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses by an authorized

administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Ftheses%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/199?utm_source=scholar.dsu.edu%2Ftheses%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

JAVA IMPLEMENTATION OF AN OFFICE
COMMUNICATOR

A graduate project submitted to Dakota State University in partial fulfillment of the

requirements for the degree of

Master of Science

in

Information Systems

May, 2011

‘By

Swathy Kodati

Project Committee:

Stephen Krebsbach

Ronghua Shan

Surendra Sarnikar

il

D)&TA

-

PROJECT APPROVAL FORM

We certify that we have read this project and that, in our opinion, it is satisfactory in scope

and quality as a project for the degree of Master of Science in Information Systems.

Student Name: Swathy Kodati

Master’s Project Title: Java Implementation of an Office Communicator

7
Faculty supervisor: Stephen Krebsbach Date: ’7 i
Committee member: R'c;hghila Shan Date:

- \‘ { (‘ e
/ ‘l\::\bk pr L (._ \ J

Committee member: Surendra Sarnikar Date: ¢t [27110

il

ACKNOWLEDGMENT

[take this opportunity to express my sincere gratitude and thanks to everyone assisted
me in completing this project on time. First of all I would like extend my special thanks to my
project supervisor Dr. Stephen Krebsbach for his kind attention and support during the
entire phase of project development. I am blessed to have a family that supported and helped
me in achieving my goals as a student. I also extend my sincere thanks to fellow students,
friends and several professionals that I have met during this course of project work.

I have learned so many things about Java Programming in a real world scenario and
was able to solve several programming and technical issues that came along the way to the
completion of the project. This wouldn’t have been possible without the help of my family,

husband and all others whose names are not mentioned here.

v

ABSTRACT

This project aims to design, develop and implement an Office Communicator in Java.
Multiple clients will be able to interact with each other in a shared environment over a
multithreaded peer to peer communication system. Broadcast message option will be provided
to the clients along with an option to edit and view the information shared simultaneously.
The information can be text, audio, image.

Client/Server architecture over TCP/IP network is used as the underlying architecture
for the entire project. Clients connected to the server will be able to perform some or all of the
below features depending on their status:

» Broadcast of multimedia messages.

» Creation/administration of Public/Private channel.
» Group/Private instant messages.

» Offline messages.

» Drawing board.

» Record and relay of voice messages.

DECLARATION

I hereby certify that this project constitutes my own product, that where the language
of others is set forth, quotation marks so indicate, and that appropriate credit is given where I
have used the language, ideas, expressions or writings of another.

I declare that the project describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

Swathy Kodati

TABLE OF CONTENTS

PROJECT APPROVAL FORM

vi

II

ACKNOWLEDGMENT

11

ABSTRACT

IV

DECLARATION

TABLE OF CONTENTS

VI

LIST OF FIGURES.......ccccesecssesscsscsnssassosssssrassnssassassassasssssssssssssssesssasssssesses

INTRODUCTION

. VII

LITERATURE REVIEW

CONCLUSIONS

15

REFERENCES

16

APPENDIX A: SCREEN SHOTS

17

APPENDIX B: PROGRAM CODE

26

vii

LIST OF FIGURES
Figure 1. Office Communicator Diagramm.ouseeaseuscsossncsnssassassorsasssssesssssvnsrsssessnsssssnss 6
Figure 2. Authentication data flow diagram.ccenesesnersscsarseensonsasnconsasssosssossosssossasses 7

Figure 3. Use €ase diagram.ccvvceveeerisesessesnsacsssnssisnssssassesssnsassasassassassasssansassssassases 8

INTRODUCTION

Audiovisual coding systems and network protocols such as TCP, UDP and RTP form
the basis for the Multimedia communication over IP. Communication can be one way, from a
sender to one or more receivers, or two-way or an interaction between two or more parties i.e.
Broadcast, Multicast or Unicast. Streaming, video or audio conferencing are some examples
of multimedia communication.

Ever since computers came in to use attempts were made to take the existing
communication media to next level. In the last two decades we have seen significant advances
in this direction as a result of web revolution, availability of greater speed network access to
users and the adoption of popular protocols such HTTP and HTML as standards. These
impacted heavily in making the streaming media practical and affordable to ordinary users.
Huge investments are ongoing in this industry to compete with the traditional communication
industry of telecom and television with the corresponding web equivalents such as Voice over
IP (VoIP) and IP Television (IPTV).

Coming to the communication in the Business industry, we have gone past the times
where in the entire official work has been transformed from paper to electronic form. Emails
have become the official communication media. Organizations equip the employees with all
communication resources that help them to do their day to day office work. Office

Communicator has become more of a necessity now a day’s rather than just a tool.

Background of Project:

The drastic increase in the need for interactive communication has made
people and businesses increasingly (another word) dependent on well networked computer
systems to support distributed applications. The level of interaction for these distributed
applications is not just limited to local area networks (LAN) but must also cater/be viable to

access external networks which is a link to anything on/in the World Wide Web.

To make the most of the services offered and thereby improve the efficiency on
these applications, information regarding the services, resources, users and other vital aspects

needs to be collected, analyzed and organized in a consistent manner.

Since these distributed applications offer unlimited access to sharing data,
security is of at most importance especially when dealing with sensitive information. In order
to prevent unauthorized access or modification of information the application has to be

designed to have various levels of authentication.

In the existing legacy system, the User or the community member uses these
following methods to transfer information from one community to the other. Interoffice mail
service where the mails are personally delivered by a messenger or the Intercom service

provided for conference calls and at times the Electronic mail (E-mail).

Below are the disadvantages for the existing legacy system:

*Tedious message broadcasting system.

*Communication is not instant.

*Message transfer is done through insecure communication media.
*Communication delays.

*Maintaining the identities of all the members is not efficient.

To overcome the above demerits of the existing system a new application which
enables the ease of use, cost effective administration and above all to provide a reliable and
secure way of communication is very essential. Therefore Office Communicator over IP
networks is developed to effectively utilize resources, process data and diagnose faults at a

low-cost while still maintaining the accuracy and performance levels.

OBJECTIVES

The goal is to design an integrated system to allow users to participate in an instant
message communications with other community members either in groups or as peers. A
system shall support public and private channels of communication and uses its own internal
permission system to more securely determine who can enter, create or delete
channels/rooms. An attempt is being made to develop a communication system with graphical
user interface that support’s Office Communicator, and data sharing in a real time
environment i.e., the data broadcasted can be edited online and viewed simultaneously. The
data transmitted can be text, voice, picture or a drawing image, etc.

Many companies around the globe offer communication facilities via chatting, etc., by
adding a wide range of services to those systems. Some of these chatting applications also
support different media of communications with well designed user interface.

But unfortunately, their chat software is proprietary and tend to be expensive to
maintain and will require a separate community data model. Hence the challenge is to design
a communication system for an existing network as per the organizations requirements with

an ease of maintenance by the local programmers.

Purpose of Project:

The main purpose of the project is to deliver messages between server and multiple
clients on user to user basis or within private/public channel. It aims to satisfy the task of
transmitting a single message to all users through a single server by a single click. The entire
architecture is maintained by the server, to which one of the clients shall send a message and

the server routes or passes the message to the other required clients in the network.

An attempt is being made to develop a communication system with graphical user
interface that support’s Office Communicator over TCP/IP network. It shall allow data
sharing in a real time environment i.e., the data communicated can be edited online and

viewed simultaneously. It shall provide fast, secure, reliable and cost effective communication

medium between multiple clients and server. The data transmitted can be text, voice, picture

or a drawing image, etc.

Many organizations all over the world offer different modes of communication
facilities like chat, mails... etc., with well designed user interface, which is proprietary and
expensive to maintain. Now the challenge is to design a communication system for an existing
network as per the organizations requirements with an ease of maintenance by the local

programmers.

LITERATURE REVIEW

Current businesses are increasingly relying on networked computer systems to support
their business model. In a distributed network model different applications and users will need
to interact with computers on one or more local area network (LAN) typically addressed as
Intranet in the modern day corporate. A messaging system is inevitable to have in large

corporate to effectively communicate with various users within the organization.

Why Office Communicator?

When there are several messaging services available on the market, the need to have
an office communicator is very minimal and of course that was arguably the first thought that

would be in everyone’s mind.

Office Communicator is specifically designed to small and large business that actively
uses messaging systems to complete their daily activities. There are numerous IMs (Internet
Messaging Systems) applications available but Office Communicator comes as a package by
filling the gaps that are in current day IMs. The following key features make Office

Communicator as special messaging system.

L No database or DBMS system used (Improves Performance).

2. Highly customizable and scalable.

3. Developed based on Open Source platform (Java) which is very popular in
current day networking and internet applications.

4. Platform Independent implementation as Java is platform independent.

3 Drawing board feature is an innovative feature that can be used by exchanging
messages and drawings.

6. Data sharing in a real time environment. Data broadcasted can be viewed and
edited simultaneously

T Multiple media transmission support; like voice, text, images, etc.

8. P2P (Peer-to-Peer) messaging service that improves performance and security.

0. Multiple media transmission support for voice, text, images, etc

10. Rich and user friendly interface.

SYSTEM DESIGN

Office communicator design is based on Object Modeling and Object Oriented
techniques using Java as the primary language. A dedicated chat server will be available and
TCP listener is used to establish a client connection. A high level architectural diagram is

presented below.

Chat serverlistens for : Starts
Chat Server |, Chat Client
r Chat server starts connection
’ 4
listener Checks for 1dle connections _‘ _
Starts listener
, Talks to the hstener _
Connection | Listener

Typer

”1

Signals for chat server for idle
Ticker connection Sent data by

4

Chat Client Starts Tickerl

Figure 1. Office Communicator Diagram ~

The project can be classified into the following modules:
e Server Module

e C(Client Module

Server Module

In the client server architecture, the server acts as a main module, the job of the server

is to wait for the clients request and respond accordingly with a specific service. The

administrator initiates the server and monitors the connections to the clients. The server

module validates the clients with their username & password against the login database and

authenticates them (see figure 2). When the client is not authenticated the connection is

refused and an error message is sent back to the client. The server module acts as an interface

for the communication between different clients as well as send broadcast messages to

multiple clients like, Disconnecting Users, Server Shutdown, etc. Many clients can connect to

the server and it is the single point of contact to all the clients. The administrator of the server

module is in control for all the communications happening between the clients. The sub

modules which are part of the server are

e User Management Module
e Connection Management
e Transmission Management

e [Log Management

Login

»

Client

"~ Login
Failed

Client
Login
Process

User Name &

Password Login
¥ verifying Connection

Invalid
© Client

Figure 2. Authentication data flow diagram.

enter client details

7
Client
‘user name
password

= R server

A I
Setup server configuration

connect

Figure 3. Use case diagram.

Client Module

The job of client module is to transmit message to other clients by establishing
connection through the server module. The user enters the username and password thorough
the client module to authenticate against the server. The module enables the user to
communicate through different channels or create new channels (chat rooms) for group of
users to share common messages through that channel. Once the client gets connected he can
start communicating with other users from server module, the user can transmit the data in
many ways like text, voice, picture etc. or he can initiate an encrypted private channel with a
specific client.

This module provides a common place to edit the data for all the clients that form the

broadcast domain.

Sub modules involved in the client are:
e Client Interface Module
e C(Client Chat Room Management
e Message Transmission Module

e Log Session Management

Work Flow Description

First up, the Chat Server is started. Administrator can choose to login or shutdown the
server. Once the administrator signs in, he can have additional options to disconnect just the
users or the entire group of users from the system, including the administrator user.

Once the administrator signs in, another window pops up that shows who all users are
signed in. On the main window the administrator has an option of "User Management" using
which he can add new users or delete existing users.

For the client user to login, once the client chat program is started, he/she can connect
to the server by entering the login credentials in the prompt that comes after the user clicks
"connect" button on the file tab of the client GUI Once the user is authenticated against the
credentials that are already stored in the server various features are available for the user.

A field of "currently sending to" on the right hand side shows the list of available
online users present and gives an option for the client to decide who all shall receive the
messages from the client. Similar field is present on the Server chat window as well.

Client user has an option to enter in to existing chat rooms or create new chat rooms,
both public and private that shall require a password authentication. Once the chat room is
created the user has an option to invite different users among the ones that are available to
join the chat room.

In the messaging feature, the available online users present are shown and the user can
decide whom to send a specific messages. If the destination user is offline, user name can be
typed and an offline message can be sent. Same messaging feature window can be used by the

end user to read the offline messages.

10

Drawing canvas is one unique feature that is available to all users. The drawing canvas

can be shared between a group of users or by all users who are online. Users have an option to

draw things by hand or use specific shapes or even just type. Both private drawings and public

drawings can happen in the same canvas that is shared by all. There is also an option for the

users participating in the conference to clear the canvas and start from scratch.

From the Audio tab available, the users can create new voice messages and send them

to various users. Also they can receive and listen to new messages as well.

Hardware Requirements

Hardware
Processor
Processor Speed
RAM

Hard Disk

Floppy Drive

Software Requirements

Language

Operating System for Server

Operating System for client

Server

Intel Pentium IV
3.0 GHz

512 MB and above
40 GB and above

1.44 MB

Client

Intel P-IIT and above
2.6 GHz

128 MB and above
10 GB and above

1.44 MB

Java 1.5 and
above
Windows
XP/NT/2000/
03/08 servers
Any windows

oS

11

Basic Work Flow:

1J] “chatServerjava 23
protected chatChatRocom findChatRoom({String roomiName)

hia wil rariivr the shat rosm piect with the corresponding

chatChatRoom tempRoom = null;
tRoom returnRoom = null;

chatCha
242 if (mainRoom.name.equals (roomName))
243 {
244 recturnRoom = mainRoom;
245 }

46 else
{

for (int count = §; cocunt < chatRooms.size(); count ++)
{
tempRoom = (chatChatRoom)
chatRooms.elementdt {count);
System.out.printlin("temp :"+vempRoom);
if (tempRoom.name,equals(roomName))
{
recurnRoom = tempRoom:
break;
288 }
}

return (returnRoom):
s

The initial flow is well known login module. Since we are all much familiar with the
login module, let us skip that part and concentrate only on the chat mode. Firstly, we assume
that we have all the code written and executed to make the design function. After logging in,
we will be joining in any of the chat rooms available or create new chat room. There will be a
main room and some temporary rooms available. These temporary rooms will be assigned a
temporary session. In that particular session, the room acts as a main room. If a new room is

created then the new room will be forced to be in a new session and the earlier session will be

12

the main one. These temporary sessions expire or timeout after the room is closed. The above

piece of code returns the room.

2686 public boolean isUserAllowed (chatChatRoom room,

267 chatClientSocket client, String password)

262 {

269 // Retvurn true if a user is allowed to enter a chat room. False
270 // otherwise.

2 System.out.println({"room.priv”"+room.priv)

// Private xoom?
if (room.priv)
{
boolean invited = false;

B oW R

i // Make sure that this user was either invited, or supplied

278 // the correct password. Check the password first
279

280 ; & o (!zoom.password.equals(password)ﬂ

281 {

282 // No correct password supplied. Check the list
283 // of invitees

284

285 for (int count2 = 0;

2886 count2 < room.invitedUsers.size():; count2 ++)
287 {

288 Integer Id = (Integer) room.invitedUsers

288 .elementlAt (count2);

290 System.out.println("ID"+Id);

291 System.out.println("Id.intValue () "+Id.intValue()):
292 System.out.println("client.user.id"+client.user.id);
293 if (Id.intValue() == client.user.id)

294 {

2985 invited = true;

286 break;

287 } .

298 }

299

300 if (!inviced)

13
.J] *chatServerjava .-

if (!invited)
{
try {
client.sendServerMessage (
304 "Not invited to/incorrect password " +
"for the private room " +

€ room.name) ;

08 catch (ICException e) {
08 disconnect (client, false);
return (false);

return (false):’
}

-

/ Make surxe the user has not been banned from the room
for (int countl = 0; countl < room.bannedUserNames.size(); countl ++)
{
if (room.bannedUserNames.elementAt (countl)
.equals(client.usex.name))

client.sendBanUser (client.user.id, room.name);
}
catch (IOExcepticon e) {

disconnect (client, false);

return (false);

3

b4
return (false):;
}

The above two screen shots comprise of the piece of code whether the user is eligible
to enter into a particular room or not after selecting a room. There will be different scenarios,
where a user is not allowed to enter into a room. Few of them are like an administrator’s room
where regular users are not allowed. Some banned users will not be allowed to enter into any
room or a particular room based on the privilege until the ban is lifted. Some old users or ex-
employees will no longer have a privilege. So their ID’s will be removed. These ID’s should
also be removed from the data base server. If not removed, the code will allow them to utilize

the chat privilege.

14

public synchronized void disconnect (chatClientSocket who,
boolean notify)

{
int count;
chatChatRoom chatRoom;

if (notify)

{
try {
i // Try to let the user know they're being disconnected
? who.sendDisconnect (who.usexr.id, "You are being " +
ﬁ "disconnected. Goodbye.");
é }
catch (IOException e) {}
}
356 // Shut down the client socket
357 who.shutdown () ;
// Remove the user from their chat room.
i 360 try {
| 361 who.leaveChatRoom() ;
362 }
363 catch (IOException €) {}
364
365 // Remove the user from ocur list of connections
synchronized (connections)
{

connections.removeElement (who) ;
% 3 connections.trimloSize ()’
i 370 currentConnections = connections.size();

371 }

372

373 serverOutput ("User " + who.user.name + " disconnected at "
374 + dateFormatter.format (new Date()) + "\n");

It is also important that the user is to be notified when disconnected from the chat
server. There could be many reasons few of which are a connection lost, banned scenarios,
sessions timed outs etc. In such cases, the user’s session is terminated and should be removed

from the list in that particular room and also should be notified.

15

CONCLUSIONS

[am satisfied with the way the project has come out. It was a challenge initially when
I decided to pursue an office communicator project using Java. After much analysis and
detailed study of several messenger products available, I decided to continue with the office
communicator. After carefully planning on the deliverables and defining scope it was wise
decision to continue this project without a database management system as with the
application of RDBMS it will overwhelming for the scope of this project.

Office Communicator project helped me identify the gaps in the current messenger
applications and improved my pro-active thought process that will help the product
sustainability in the current expanding technology trends. End of the day I was happy to get
this product delivered as planned.

My technical knowledge in Object Oriented programming has improved to a great
extent and I learnt a lot about Java and Socket programming that helps in network
communication. I was also able to understand and use a vast variety of Java libraries that I can
use to achieve anything from simple to complex in the application programming world. With
the Java implementation I was able to understand the importance of platform independence.
Since Java is open source, it helped me to find out solution for numerous issues that I came
across during the course of the project.

This project is scalable and there is a lot of scope for improvement with the
introduction of database RDBMS in to this, you will be able to keep history of the messages,
track and audit the messages for Super Admin of the system by introducing several roles for
the Office Communicator. We can also expand this project to allow real time video messaging

or video conferencing system.

16

REFERENCES

Schildt, H. JAVA: The Complete Reference J2SE 5th Edition. United States: Mc Graw Hill
Osborne.

http://www.buyya.com/java/Chapterl 3.pdf

http://www.ibiblio.org/java/slides/sd2003west/sockets/Java Socket Programming.html

http://www.oracle.com/technetwork/java/socket-140484.html

http://www.tutorialspoint.com/java/java networking.htm

http://www.cyberconf.org/~cynbe/java/classes/applets.html

http://download.oracle.com/javase/tutorial/networking/sockets/index.html

http://www.tutorialspoint.com/java/java variable types.htm

http://download.oracle.com/javase/tutorial/deployment/applet/index.html

APPENDICES

APPENDIX A: Screen Shots

Server Main Screen

Administrator client

Disconnect userl

Disconnect all

Shut down

| Connections - current 0 peak 0 total: 0

|| [Server activity log:
Reading message file
| Waiting for connections

17

User Management Screen

{4 chat Chat v201 Server

R

lotE@) 38
Listening on port 12468 ™ Log chat(s)
Administrator client

{ | User name:

Password: |

41 | swathy
| idsu
| test

Delete

Finished

18

19

Client Connection Window Screen

r@i PN vwl\.. - ‘ ; s T

File Edit Actions View Audio Help
Text lines to send: Username:

Current activity:

Conference text

Currently sending to:

Your user name : |swathy
Your password : "]
Server name : localhost

Network port: 12468]
{if you don't know, please don't change) I Pagu user(s)

send to everyone

Jser information

Chat rooms.

Additional info (optional) : Messaging
| f Drawing controls:

e O Text
: |black [+
Itnickness: 1 4

[d

| ClearCanvas |

Client Login Screen

20

Textlines to send:

User name:

| Conference text:

| lwelcome to the world of chatYou are the first user online.

swathy
Current activity.

Currently sending to:

[V send to everyone

Usar information

Page user(s}

Chat rooms...

l Clear Canvas l I

Drawing controis: |
@ Freehand O Line
© Rectangle O Oval |i
O Text |

Iblack

ithickness: 1

|

21

Administrator-Client Conversation

2 4] Network Broadcasting v201 - online atlocathost L\ B 38
- S - . o s - 1
File Edit Actions View Audio Help File Edit Actions View Audio Help
Textlines to send: User name: Textlines to send: User name:
| 2] Agministrator [2] swathy
Ll F— p— »| | Current activity: 144 i 1 i »| | Current activity:
| Conference fext Conference text]
fwelcome o the world of chalThere is 1 other ug CUTENtly sendingto: welcome to the world of chatYou are the first user onj Curenty sending to:
swathy Administrator
swathy> Hi <<New user "Administrator” connected»>
Administrator> Hello iswathy=> Hi
W send to everyone Administrator> Hello ¥ sand to everyone
Jser information User information
Page uset(s) Page user(s)
Chat rooms... Chat rooms...
< il | I Messaging... 4| i I i Messsging...
Drawing canvas: Drawing controls: Drawing canvas: Drawing controls:
@ Freehand O Line ® Freehand O Line
(0 Rectangle O Oval) Rectangle O Oval
O Ter O Text

.
|
i
|
i
LB
.

Clear Canvas

Audio Recorder Screen

22

Drawing canvas:

(4] Network Broadcasting v2.01 - online at locathost =@ &
File Edit Actions View Audio Help
Text lines to send: User name:
L; Administrator
SR e SR EE R e L — ¥} Current activity.
Conference text typing: Administrator
icome to the world of chatThere is 1 other user online f:’::"“’ sending to:
wathy> Hi
Administrator> Helio

[Captﬂmh

O NFC O AFF ® AU O SND (O WAVE

[V send to everyone

User information

Page user(s)

Messaging. .

Drawing controls:

@ Freehand O Line
O Rectangle O Oval
O Text

|black

|
[mlclmss: 1 lvj
I

o

23

Selecting File to Send
() Network Broadcasting v2.1 - anline at localhost l=/3] 8]
File Edit Actions View Aucic Help
Textlnes to send: Username:
! Administretcr
= Cumenechivly
Confercnce toxt: typ ng: Administator
Crurenly sending tor

Administralo
<<qwatiy is d

Drawing ca

welcurt e o the world of CialThere is 1 olhier user valine

o

pd tc everysne

Look In: l Usars l'} @

&f INtGrManoY

] appoata -
(] Defaurt "%
(] swau | lessaging..

ing controls

Filz Name:
Files of Typo: AllFiics

File Received by Client
{4 Network Brosdeabin VBB it et

24

File Edit Actions View Audio Help

| Textlines to send:

Conference text
ﬁlcome to the world of chatThere is 1 other user online

rivate from Administrator*> dsu-script-blue gif fila received from Administrator IPAdress 192.168.04

Username:
swathy
Current activity.

]

Currently sendingto:

|

Administrator

¥ send to everyone

User information

Drawing controls:

® Fraehand O Line
) Redangle O Oval
O Tedt

lblack

lthiamess: 1

25

Server Shutdown Window

[Log chat(s)

Administrator User management

Administrator client
Disconnect user

i »]

Reading

Waiting for € IR

| INew user swathy logging on at Apr 05, 2011 07:05 PM from 127.0
i | |»

[l

26

APPENDIX B: Program Code

ChatServer.java

import java.net.*;

import java.util.*;

import java.text.*;

import java.io.*;

class chatServerShutdown extends Thread

{
// This gets called when the VM is shutting down. If the server has
// already terminated properly (for example, from the administrator
// pushing the 'shut down' button), then there's nothing to do. But,
// if the administrator sends a KILL signal, or presses CTRL-C or
// something like that, then this thread will shut down the server
// properly
private chatServer server;

public chatServerShutdown(chatServer s)

{
server = s;
}
public void run()
{
if (server.stop)
// The server has already shut down by itself (i.e. not
// from an external signal)
return;
server.externalShutdown = true;
server.shutdown();
}

}

public class chatServer

27

extends Thread

Calendar cal = Calendar.getInstance();
protected String name = ((cal.get(Calendar. DATE)) +" "+

(cal.get(Calendar. MONTH))
+" "+(cal.get(Calendar.YEAR))+" "+(cal.get(Calendar HOUR))+"_"+(cal.get(Calendar.MIN
UTE))+" "+(cal.get(Calendar.SECOND))).toString();

protected static String userPasswordFileName = "User.passwords";

protected String serverLogName = new String(name + ".log") ;

protected static String messageFileName = "Messages.saved";

protected static String welcomeMessageName = "WELCOME.TXT";

protected static String portnumberParam = "-portnumber";

protected static String usepasswordsParam = "-usepasswords";

protected static String newusersParam = "-newusers";

protected static String nographicsParam = "-nographics";

protected static String chatlogsParam = "-chatlogs";

protected static int DEFAULTPORT = 12468;

protected URL myURL;

protected int port;

protected chatServerWindow myWindow;

protected boolean graphics;

protected boolean requirePasswords;

protected boolean passwordEncryption;,

protected boolean allowNewUsers;

protected boolean logChats;

private Integer userldCounter = new Integer(1);

protected ServerSocket myServerSocket;

protected Socket mySocket;

protected ThreadGroup myThreadGroup;

public Vector connections;

public Vector messages;
public chatChatRoom mainRoom;
public Vector chatRooms;
private FileOutputStream log;
protected chatPasswordEncryptor passwordEncryptor;
protected chatClientSocket administratorClient;
protected int currentConnections = 0;
protected int peakConnections = 0;
protected int totalConnections = 0;
protected boolean stop = false;
protected boolean externalShutdown = false;
protected SimpleDateFormat dateFormatter =
new SimpleDateFormat("MMM dd, yyyy hh:mm a");
public chatServer(int askport, boolean passwords, boolean newusers,

boolean isgraphics, boolean islog)

super("chat Chat server");
port = askport;
requirePasswords = passwords;
allowNewUsers = newusers;
graphics = isgraphics;
logChats = islog;
// Start up the log file
try {
System.out.println(serverLogName);
File logFile = new File(serverLogName);
log = new FileOutputStream(logFile);
}
catch (IOException e) {
// Oops, no log file

System.out.println(e);

28

29

serverOutput("Unable to open " + serverLogName + " file\n");
}
// if user wants graphics, set up simple window
if (graphics)
{
myWindow =
new chatServerWindow(this, "chat Chat v"
+ chat. VERSION + " Server");
myWindow.setSize(400, 400);
myWindow.setVisible(true);

}
else
{
System.out.println("\nchat server status");
System.out.println("Listening on port " + port);
System.out.println("Connections:");
}
try {
myServerSocket = new ServerSocket(port);

}
catch (IOException €) {

serverOutput("Couldn't create server socket\n");
System.exit(1);

}

connections = new Vector();

messages = new Vector();

chatRooms = new Vector();

myThreadGroup = new ThreadGroup("Clients");

// Set up the object for encrypting passwords

passwordEncryptor = new chatPasswordEncryptor();

if (requirePasswords)

// Try to make sure the password file exists

try {

new FileOutputStream(userPasswordFileName, true).close();

}

catch (IOException f) {}
// Create the initial 'main' chat room
mainRoom = new chatChatRoom("Main", "Administrator", false, null);
try {

mainRoom.setLogging(logChats);
}
catch (IOException €) {

serverOutput("Unable to start chat log for room " +

mainRoom.name + "\n");

}
serverOutput("Reading message file\n");
readMessages();
serverOutput("Waiting for connections\n");
// To catch shutdown events, such as CTRL-C. Note that this Java
// feature was only introduced as of 1.3, so if you are getting
// compilation errors, you should check your Javac version or comment
// out this bit.
double javaVersion = 0.0;
try {

javaVersion = new Double(System.getProperty("java.version")

.substring(0, 3)).doubleValue();

}
catch (NumberFormatException €) {}
if (javaVersion >= 1.3)

Runtime.getRuntime()

.addShutdownHook(new chatServerShutdown(this));

start();

30

b

public int checkPassword(String fileName, String userName,
String password)

throws Exception

// Return true if the supplied user name/password combo match
DatalnputStream passwordStream = null;
// Try to find the user name/password combo in the password file
try {

passwordStream =

new DatalnputStream(new FileInputStream(fileName));
// Read entry by entry.
while(true)

{

String tempUserName = "";

— nn.

String tempPassword :
try {
tempUserName = passwordStream.readUTF();
tempPassword = passwordStream.readUTF();
}
catch (EOFException e) {
// Reached the end of the file, no match
//throw new Exception("User does not exist");
return(chatCommand.ERROR _NOUSER);
}
// Do the user name and password match?
if (tempUserName.equals(userName))
{
if (tempPassword.equals(password))
return (chatCommand.LOGIN_SUCESS);

else

31

32

// ' The user name exists, but the password

// doesn't match

return (chatCommand. ERROR_WRONGPASSWORD);

J
catch (IOException e) {

serverOutput("Error reading password file: " + e.toString() +

H\n");
return (chatCommand. ERROR_NOUSER);
}
}
protected chatChatRoom findChatRoom(String roomName)
{

// This will return the chat room object with the corresponding
// name

chatChatRoom tempRoom = null;

chatChatRoom returnRoom = null;

// 1s it the main chat room?

if (mainRoom.name.equals(roomName))

{

returnRoom = mainRoom;

}

else

{

for (int count = 0; count < chatRooms.size(); count ++)
{
tempRoom = (chatChatRoom)
chatRooms.elementAt(count);
System.out.println("temp :"+tempRoom);

if (tempRoom.name.equals(roomName))

33

returnRoom = tempRoom,;

break;

}

return (returnRoom);
}
public boolean isUserAllowed(chatChatRoom room,

chatClientSocket client, String password)

// Return true if a user is allowed to enter a chat room. False
// otherwise.
System.out.println("room.priv"+room.priv);
// Private room?
if (room.priv)
{
boolean invited = false;
// Make sure that this user was either invited, or supplied
// the correct password. Check the password first
if (!room.password.equals(password))
{
// No correct passweord supplied. Check the list
// of invitees
for (int count2 = 0;
count2 < room.invitedUsers.size(); count2 ++)
{
Integer Id = (Integer) room.invitedUsers
.elementAt(count2);
System.out.println("ID"+Id);
System.out.println("Id.intValue()"+Id.intValue());

System.out.printIn("client.user.id"+client.user.id);
if (Id.intValue() == client.user.id)
{
invited = true;

break;

}
if (linvited)
{
try {

client.sendServerMessage(
"Not invited to/incorrect password " +
"for the private room " +
room.name);
}
catch (IOException e) {
disconnect(client, false);
return (false);

}

return (false);

}

// Make sure the user has not been banned from the room
for (int count] = 0; countl < room.bannedUserNames.size(); countl ++)
{
if (room.bannedUserNames.elementAt(countl)
.equals(client.user.name))
{
// This user has been banned from this room. Send

// them a message and quit

34

try {

client.sendBanUser(client.user.id, room.name);
}
catch (IOException e) {

disconnect(client, false);

return (false);

}

return (false);

}

// The user is allowed
return (true);
}
public synchronized void disconnect(chatClientSocket who,

boolean notify)

int count;

chatChatRoom chatRoom;

if (notity)

{
try {
// Try to let the user know they're being disconnected
who.sendDisconnect(who.user.id, "You are being " +
"disconnected. Goodbye.");

}
catch (IOException e) {}

}

// Shut down the client socket

who.shutdown();

// Remove the user from their chat room.

35

36

try {
who.leaveChatRoom();

}
catch (IOException e) {}
// Remove the user from our list of connections

synchronized (connections)

connections.removeElement(who);
connections.trimToSize();
currentConnections = connections.size();

serverOutput("User " + who.user.name + " disconnected at "
+ dateFormatter.format(new Date()) + "\n");
serverOutput("There are " + currentConnections +
" users connected\n");
// Tell all the other clients to ditch this user

for (count = 0; count < currentConnections; count ++)

{
chatClientSocket other = (chatClientSocket)
connections.elementAt(count);
try {
other.sendDisconnect(who.user.id, "");
}
catch (IOException e) {}
}
try {
sleep(250);

}
catch (InterruptedException I) {}

if (graphics)

37

synchronized (myWindow.userList) {
// Remove the user name from the list widget. We do this
// 1oop to make sure it hasn't already been removed,
// since disconnect() can get called multiple times for
// one disconnection.
for (count = 0; count < myWindow.userList.getItemCount();
count ++)
{
if (myWindow.userList.getItem(

count).equals(who.user.name))

myWindow.userList.remove(who.user.name);

break;

}
myWindow.updateStats();

if (currentConnections <= 1)
myWindow.disconnectAll.setEnabled(false);

if (currentConnections <= 0)
myWindow.disconnect.setEnabled(false);

}

return;

}

public synchronized void disconnectAll(boolean notify)

{

int count;

// Loop backwards through all of the current connections

for(count = (currentConnections - 1); count >= 0; count --)

}

{
chatClientSocket temp =
(chatClientSocket) connections.elementAt(count);
if (temp == null)
continue;
disconnect(temp, notify);
}
return;

public void run()

{
while (!stop)
{
try {
mySocket = myServerSocket.accept();
}

catch (IOException e) {
serverOutput("Socket error\n");

try {
myServerSocket.close();

}
catch (IOException f) {

serverOutput("Couldn't close socket\n");

}

System.exit(1);

}
if (mySocket == null)

{

serverOutput("Server tried to start up NULL "
+ "socket\n");

try {

38

39

myServerSocket.close();

}

catch (IOException g) {
serverOutput("Couldn't close socket\n");

}

System.exit(1);

H
chatClientSocket cs =

new chatClientSocket(this, mySocket, myThreadGroup);

}
}
protected int getUserld()
{
// Returns a number to be used as a user Id
int tmp;
synchronized (userldCounter)
{
tmp = userldCounter.intValue();
userldCounter = new Integer(tmp + 1);
}
return (tmp);
}

protected void createNewUser(String userName, String encryptedPassword)

throws Exception

{
// Create a new user acount.
new chatUserTool().createUser(userName, encryptedPassword);
}
protected void serverOutput(String message)
{

if (graphics)

40

myWindow.logWindow.append(message);
else
System.out.print(message);
// Write it to the log file
if (log != null)
{
try {
byte[] messagebytes = message.getBytes();
log.write(messagebytes);
}
catch (IOException F) {
if (graphics)
myWindow.logWindow
.append("Unable to write to log file\n");
else

System.out.print("Unable to write to log file\n");

}
}
return;
}
protected void readMessages()
{
String tempFor ="";

LLALIN

String tempFrom = "";
String tempMessage = "";
DatalnputStream messageStream = null;
try {

messageStream =

new DatalnputStream(new FileInputStream(messageFileName));

// Read entry by entry.

41

while(true)

{

try {
tempFor = messageStream.readUTF();

tempFrom = messageStream.readUTF();
tempMessage = messageStream.readUTF();
}
catch (EOFException e) {
// Reached the end of the file
break;
}
messages.addElement(new chatMessage(tempFor, tempFrom,
tempMessage));

}

messageStream.close();
}
catch (IOException E) {}
return;

}

protected void saveMessages()

{

DataOutputStream messageStream = null;

try {
messageStream =

new DataOutputStream(new FileOutputStream(messageFileName));

for (int count = 0; count < messages.size(); count ++)

{

chatMessage tempMessage =

(chatMessage) messages.elementAt(count);

messageStream.writeUTF(tempMessage.messageFor);

messageStream.writeUTF(tempMessage.messageFrom);
messageStream.writeUTF(tempMessage.text);

}

messageStream.close();

}
catch (IOException E) {

serverOutput("Error writing the messages file\n");

}

return;
}
protected void shutdown()
{

serverOutput("Server shutting down...\n");
if (currentConnections > 0)
{
serverOutput("Disconnecting users\n");
// ' Loop through all of the users, sending them the message
// that the server is shutting down

for (int count = 0; count < currentConnections; count ++)

{
chatClientSocket who = (chatClientSocket)
connections.elementAt(count);
try {
who.sendDisconnect(who.user.id,
"The server is shutting down. " +
"Goodbye.");
}
catch (IOException e) {}
H
// Make sure

disconnectAll(true);

42

j

else

serverOutput("No users connected\n");
// Print some stats
serverOutput("Peak connections this session: "

+ peakConnections + "\n");
serverOutput("Total connections this session: "
+ totalConnections + "\n");

serverOutput("Saving user messages\n");
saveMessages();
serverOutput("Closing log file\n");
try {

log.close();
}
catch (IOException F) {

serverOutput("Unable to close server log file\n");
}
if (graphics)

myWindow.dispose();
stop = true;
// If we aren't using the GUI window, we should provide some
// visual feedback that the server has terminated.
if (!graphics)

{

System.out.println("");
System.out.println("chat server shutdown complete");

}
// This function can be called by the chatServerShutdown thread
// when the server gets killed by an external signal. If so, it
// sets the externalShutdown flag, and we shouldn't call the

// System.exit() function

43

if (externalShutdown)

System.exit(0);

}
private static void usage()
{
System.out.println("\nchat Chat server usage:");
System.out.println("java chatServer [" +
portnumberParam + " number] [" +
usepasswordsParam + "] [" +
newusersParam + "] [" +
nographicsParam + "] [" +
chatlogsParam + "]");
return;
}

public static void main(String[] args)
{
int usePort = DEFAULTPORT;
boolean reqPass = false;
boolean allowNew = false;
boolean useGraphics = true;
boolean logChats = false;
chatServer server;
// Parse the arguments
for (int count = 0; count < args.length; count ++)

{

if (args[count].equals(portnumberParam))

{
if (++count < args.length)
{

try {
usePort = Integer.parselnt(args[count]);

}.
catch (Exception E) {
System.out.println("\nchatServer: "
+ "illegal port number "
+ args[count]);
System.out.println("Type 'java "
+ "chatServer -help' "
+ "for usage information");

System.exit(1);

}

else if (args[count].equals(usepasswordsParam))
reqPass = true;

else if (args[count].equals(newusersParam))
allowNew = true;

else if (args[count].equals(nographicsParam))
useGraphics = false;

else if (args[count].equals(chatlogsParam))
logChats = true;

else if (args[count].equals("-help"))

{
usage();
System.exit(1);
}
else
{

System.out.println("\nchatServer: unknown "
+ "argument " + args[count]);
System.out.println("Type 'java chatServer -help

+ "for usage information");

45

System.exit(1);

}

// Start the server

server = new chatServer(usePort, reqPass, allowNew, useGraphics,

logChats);
// Get a URL to describe the invocation directory
try {
server.myURL = new URL("file", "localhost", "./");
}

catch (Exception E) {
System.out.printIn(E);
System.exit(1);

}
return;
}
}
Chat.java

import java.awt.*;

import java.net.*;

import java.io.*;

//public class chat extends Object implements Runnable
public class chat implements Runnable

{
public static final String VERSION = "2.01";

public static String usernameParam = "-username";
public static String passwordParam = "-password";
public static String servernameParam = "-servername";

46

47

public static String portnumberParam = "-portnumber";
public static String chatroomParam = "-chatroom";
public static String widthParam = "-xsize";

public static String heightParam = "-ysize";

public static String nopasswordsParam = "-nopasswords";

public static String locksettingsParam = "-locksettings";
public static String autoconnectParam = "-autoconnect";
public static String hidecanvasParam = "-hidecanvas";
private chatWindow window;

private URL myURL = null;

private String name = "";

",

private String password = "";
private String host ="";
private String port ="";
private String room = "";
private int windowWidth = 0;
private int windowHeight = 0;
private boolean requirePasswords = true;
private boolean lockSettings = false;
private boolean autoConnect = false;
private boolean showCanvas = true;
private void usage()
{
System.out.println("\nBroadcast usage:");
System.out.println("java Broadcast [" +
usernameParam + " name] [" +
passwordParam + " password] [" +
servernameParam + " host] [" +
portnumberParam + " port] [" +

chatroomParam + " room] [" +

widthParam + " number] [" +

heightParam + " number] [" +
nopasswordsParam + "] [" +
locksettingsParam + "] [" +
autoconnectParam + "] [" +

hidecanvasParam + "]");

return;
}
private boolean parseArgs(String[] args)
{

// Loop through any command line arguments

for (int count = 0; count < args.length; count ++)

{

if (args[count].equals(usernameParam))

{
if (++count < args.length)
name = args[count];
}
else if (args[count].equals(passwordParam))
{
if (++count < args.length)
password = args[count];
}
else if (args[count].equals(servernameParam))
{
if (++count < args.length)
host = args[count];
}
else if (args[count].equals(portnumberParam))
{

if (++count < args.length)

port = args[count];

48

}

else if (args[count].equals(chatroomParam))

{

if (++count < args.length)

room = args[count];

}
else if (args[count].equals(widthParam))
{
if (++count < args.length)
windowWidth = Integer.parselnt(args[count]);
}
else if (args[count].equals(heightParam))
{
if (++count < args.length)
windowHeight = Integer.parselnt(args[count]);
}

else if (args[count].equals(nopasswordsParam))

requirePasswords = false;

else if (args[count].equals(locksettingsParam))
lockSettings = true;

else if (args[count].equals(autoconnectParam))
autoConnect = true;

else if (args[count].equals(hidecanvasParam))
showCanvas = false;

else if (args[count].equals("-help"))
{

usage();

return (false);

else

49

{
System.out.println("\ncast: unknown argument "
+ args[count]);
System.out.println("Type 'java cast -help' for "
+ "usage information");
return (false);
}
}
return (true);
}
public static void main(String[] args)
{
chat firstinstance = new chat(args);
firstinstance.run();
return;
J
public chat(String[] args)
{

// Get a URL to describe the invocation directory
try {
myURL = new URL("file", "localhost", "./");
System.out.println(" The URL IS ::" +myURL);
}
catch (Exception E) {
System.out.println(E);
System.exit(1);
}
// Parse our args. Only continue if successful
if (!parseArgs(args))
System.exit(1);

// If "username" is blank, that's OK. However, if the server and/or

50

51

// port are blank, we'll supply some default ones here
if ((host == null) || host.equals(""))
host = "localhost";
if ((port == null) || port.equals(""))
port = "12468";
// Open the window
window = new chatWindow(name, password, host, port, showCanvas,
myURL);
// Set the window width and height, if applicable
Dimension tmpSize = window.getSize();
if (windowWidth > 0)
tmpSize.width = windowWidth;
if (windowHeight > 0)
tmpSize.height = windowHeight;
window.setSize(tmpSize);
// Make the pretty icon
window.setIcon();
// Should the window prompt users for passwords automatically?

window.requirePassword = requirePasswords;

// Should the user name, server name, and port name be locked
// against user changes?
window.lockSettings = lockSettings;
// Show the window
window.show();
/I Are we supposed to attempt an automatic connection?
if (autoConnect)
window.connect();
// 1s the user supposed to be placed in an initial chat room?
if (Iroom.equals(""))

if (window.theClient != null)

try {

window.theClient.sendEnterRoom(room, false, "");

}
catch (IOException e) {

window.theClient.lostConnection();

return;
}
// Done
return;
}
public void run()
{
// Nothing to do here.
return;
}
}
chatUser.java

public class chatUser
{
// This object keeps all the relevant information about a user for either
// the server or the client
protected int id;
protected String name;
protected String password;
protected String additional;
private String chatroomName; // Used by the client
private chatChatRoom chatroom; / Used by the server

chatUser(chatServer server)

52

// This constructor will be used by the server, since it automatically
// assigns a new user Id

System.out.println("This is to assign ID in chatUser");

id = server.getUserld();

System.out.println("This is to assign ID in chatUser"+id);

name = "newuser" + id;

nmn,

password ="";
additional = "";
chatroomName ="";
chatroom = null;

}

chatUser(int i, String nm, String pw, String add)

{
// This constructor will be used by the client, with information
// supplied by the server
System.out.println("This is to assign ID in chatUser i"+1);
System.out.println("This is to assign ID in chatUser nm"+nm);
System.out.println("This is to assign ID in chatUser pw"+pw);
System.out.println("This is to assign ID in chatUser add"+add);
id=1;
name = nm;
password = pw;
additional = add;
chatroomName ="";
chatroom = null;

}

public void setChatRoom(chatChatRoom newRoom)

{

// Used by the server to set the user's chat room

chatroom = newRoom;

System.out.println("In setChatRoom " +chatroom);

}

public void setChatRoomName(String newRoomName)

{
// Used by the client to set the user's chat room name
System.out.println("room name :" +newRoomName);

chatroomName = newRoomName;

}
public String getChatRoomName()
{
if (chatroom != null)
{
System.out.println("THe chatroom ::" +chatroom.name);
return (chatroom.name);
}
else
{
System.out.println("THe else part"+chatroomName);
return (chatroomName);
}
}
public chatChatRoom getChatRoom()
{

System.out.println("THe getchatroom :" +chatroom);

return (chatroom);

54

chatCommand.java

/*
Here is the list of commands, with brief summary information
NAME ARGS
setproto version
noop
ping
connect name
userinfo user_id name password encrypted additional
servermess message
disconnect user id message
roomlist #rooms [name creator private invited #users username...] ...
invite from_id roomname invite id
enterroom from_id roomname private password encrypted
bootuser from_id roomname boot id
banuser from id roomname ban_id
allowuser from_id roomname allow_id

activity from_id type #for [for id...]

chattext from_id private colour data #for [for id...]

line from_id colour x0 y0 x1 y1 thick #for [for_id...]

rect from_id colour x0 y0 width height thick fill #for [for_id...]
oval from_id colour x0 y0 width height thick fill #for [for_id...]

drawtext from_id colour x y type attr size text #for [for_id...]
drawpicture from id x y length data #for [for id...]

clearcanv from id #for [for id...]

pageuser from_id #for [for id...]

instantmess from id for id message

leavemess from id for name message

readmess from id

25

storedmess number [sender name message]...
error from_id errorcode #for [for id...]

%

public class chatCommand

{
// The list of command type ids
public static final short SETPROTO =1;
public static final short NOOP =2;
public static final short PING =3;
public static final short CONNECT = 4;
public static final short USERINFO =5;
public static final short SERVERMESS = 6;
public static final short DISCONNECT = 7,
public static final short ROOMLIST =8§;
public static final short INVITE =09;
public static final short ENTERROOM = 10;
public static final short BOOTUSER =11;
public static final short BANUSER =12;
public static final short ALLOWUSER = 13;
public static final short ACTIVITY = 14;
public static final short CHATTEXT = 15;

public static final short LINE =16;
public static final short RECT =17,
public static final short OVAL =18;

public static final short DRAWTEXT =19;
public static final short DRAWPICTURE = 20;
public static final short CLEARCANV =21;
public static final short PAGEUSER = 22;
public static final short INSTANTMESS = 23;

public static final short LEAVEMESS = 24;
public static final short READMESS = 25;
public static final short STOREDMESS = 26;
public static final short ERROR =27,

/I Activity subtypes
public static final short ACTIVITY_TYPING = 1I;
public static final short ACTIVITY DRAWING = 2;

// Error subtypes
public static final short ERROR_NOPAGE = 1;
public static final short ERROR_NOSOUND = 2;

//Checking Login Error Type

public static final int ERROR_NOUSER = 1;
public static final int ERROR_WRONGPASSWORD = 2;
public static final int LOGIN SUCESS = 3;

chatMessage.java

public class chatMessage
{
public String messageFor;
public String messageFrom,;
public String text;
public chatMessage(String whoFor, String whoFrom, String info)

{

messageFor = whoFor;

messageFrom = whoFrom;

text = info;

chatRoomlInfo.java

import java.util.*;
public class chatRoomInfo
{
String name;
String creatorName;
boolean priv;
boolean invited;
boolean roomOwner;
Vector userNames;

chatRoomInfo()
{

nmn,

name ="";
creatorName = "";
priv = false;

invited = false;
roomOwner = false;

userNames = new Vector();

58

chatCreateRoom.java

import javax.swing.*;
import java.awt.*;

import java.awt.event.*;
import java.io.*;

public class chatCreateRoom

extends JDialog

59

implements ActionListener, ItemListener, KeyListener, WindowListener

protected chatWindow parentWindow;
protected JLabel roomNameLabel;
protected JTextField roomName;
protected Checkbox priv;
protected JLabel passwordLabel;
protected JPasswordField password,;

from textfield
protected JLabel passwordWarningLabell;
protected JLabel passwordWarningLabel2;
protected JButton ok;

protected JButton cancel,

protected GridBagLayout myLayout;
protected GridBagConstraints myConstraints;
chatCreateRoom(JFrame parent)
{
super(parent, "Create a chat room", true);
parentWindow = (chatWindow) parent;
// Make all of the widgets
myLayout = new GridBagLayout();

myConstraints = new GridBagConstraints();

//changed here

60

Container con=getContentPane();

con.setLayout(myLayout);

myConstraints.insets.top = 0; myConstraints.insets.bottom = 0;
myConstraints.insets.right = 5; myConstraints.insets.left = 5;
myConstraints.anchor = myConstraints. WEST;

myConstraints.weightx = 1.0; myConstraints.weighty = 1.0;

roomNameLabel = new JLabel("Room name:");
roomNameLabel.setFont(parentWindow.smallFont);
myConstraints.gridx = 0; myConstraints.gridy = 0;
myConstraints.gridheight = 1; myConstraints.gridwidth = 2;
myConstraints.fill = myConstraints. NONE;
myLayout.setConstraints(roomNameLabel, myConstraints);

con.add(roomNameLabel);

roomName = new JTextField(30);
roomName.setFont(parentWindow.smallFont);
roomName.addKeyListener(this);
roomName.setEditable(true);

roomName.setEnabled(true);

myConstraints.gridx = 0; myConstraints.gridy = 1;
myConstraints.gridheight = 1; myConstraints.gridwidth = 2;
myConstraints.fill = myConstraints. BOTH;
myLayout.setConstraints(roomName, myConstraints);

con.add(roomName);

priv = new Checkbox("room is private", false);
priv.setFont(parentWindow.smallFont);
priv.setEnabled(true);

priv.addItemListener(this);

myConstraints.gridx = 0; myConstraints.gridy = 2;

myConstraints.gridheight = 1; myConstraints.gridwidth = 2;
myConstraints.fill = myConstraints. NONE;
myConstraints.insets.top = 5; myConstraints.insets.bottom = 0;
myLayout.setConstraints(priv, myConstraints);

con.add(priv);

passwordLabel = new JLabel("Password:");
passwordLabel.setFont(parentWindow.smallFont);
passwordLabel.setEnabled(priv.getState());
myConstraints.gridx = 0; myConstraints.gridy = 3;
myConstraints.gridheight = 1; myConstraints.gridwidth = 2;
myConstraints.fill = myConstraints. NONE;
myConstraints.insets.top = 0; myConstraints.insets.bottom = 0;
myLayout.setConstraints(passwordLabel, myConstraints);

con.add(passwordLabel);

password = new JPasswordField();
password.setFont(parentWindow.smallFont);
password.addKeyListener(this);

password.setEditable(true);
password.setEnabled(priv.getState());
password.setEchoChar(new String("*").charAt(0));
myConstraints.gridx = 0; myConstraints.gridy = 4;
myConstraints.gridheight = 1; myConstraints.gridwidth = 2;
myConstraints.fill = myConstraints. BOTH;
myLayout.setConstraints(password, myConstraints);

con.add(password);

passwordWarningLabell =
new JLabel("Warning: Your Java client cannot encrypt your");

passwordWarningLabell

61

setVisible(!parentWindow.passwordEncryptor.canEncrypt);
passwordWarningLabel 1.setFont(chatWindow.XsmallFont);
passwordWarningLabell.setEnabled(priv.getState()),
myConstraints.gridx = 0; myConstraints.gridy = 5,
myConstraints.gridheight = 1; myConstraints.gridwidth = 2;
myConstraints.fill = myConstraints. NONE;
myLayout.setConstraints(password WarningLabel 1, myConstraints);

con.add(passwordWarningLabell);

passwordWarningLabel2 =

new JLabel("passwords. They will be sent as plain text.");
passwordWarningLabel2

.setVisible(!parentWindow.passwordEncryptor.canEncrypt);
passwordWarningLabel2.setFont(chatWindow.XsmallFont);
passwordWarningLabel2.setEnabled(priv.getState());
myConstraints.gridx = 0; myConstraints.gridy = 6;
myConstraints.gridheight = 1; myConstraints.gridwidth = 2;
myLayout.setConstraints(passwordWarningLabel2, myConstraints);

con.add(passwordWarningLabel2);

myConstraints.insets.top = 5; myConstraints.insets.bottom = 5;

ok = new JButton("Ok");
ok.setFont(parentWindow.smallFont);
ok.addActionListener(this);

ok.addKeyListener(this);

ok.setEnabled(false);

myConstraints.gridx = 0; myConstraints.gridy = 7,
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints. NONE;

myConstraints.anchor = myConstraints. EAST;

62

myConstraints.insets.right = 0; myConstraints.insets.left = 5;
myLayout.setConstraints(ok, myConstraints);

con.add(ok);

cancel = new JButton("Cancel");
cancel.setFont(parentWindow.smallFont);
cancel.addActionListener(this);
cancel.addKeyListener(this);

cancel.setEnabled(true);

myConstraints.gridx = 1; myConstraints.gridy = 7;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints. NONE;
myConstraints.anchor = myConstraints. WEST;
myConstraints.insets.right = 5; myConstraints.insets.left = 0;
myLayout.setConstraints(cancel, myConstraints);

con.add(cancel);

// register to receive the various events
addKeyListener(this);
addWindowListener(this);

// show the window and get going
setSize(200, 200);
pack();
setLocation((((((parentWindow.getBounds()).width)
- ((getSize()).width)) / 2)
+ ((parentWindow.getLocation()).x)),
(((((parentWindow.getBounds()).height)
- ((getSize()).height)) / 2)
+ ((parentWindow.getLocation()).y)));

63

64

setVisible(true);

roomName.requestFocus();

protected void goCreate()

{

if ('roomName.getText().equals(""))

{

String pword ;
if (priv.getState())
pword = parentWindow.passwordEncryptor

.encryptPassword(password.getText());

parentWindow.canvas.clear();

try {
parentWindow.theClient

.sendEnterRoom(roomName.getText(), priv.getState(),
pword);
}
catch (IOException e) {
parentWindow.theClient.lostConnection();
return;
}
parentWindow.currentRoom.name = roomName.getText();
parentWindow.roomOwner(true);

return;

}

public void actionPerformed(ActionEvent E)

{

if (E.getSource() == ok)

{
goCreate();
dispose();
return;
}
if (E.getSource() == cancel)
{
dispose();
return,;
}

}
public void itemStateChanged(ItemEvent E)

{
if (E.getSource() == priv)

{
boolean state = priv.getState();
passwordLabel.setEnabled(state);
password.setEnabled(state);
passwordWarningLabell.setEnabled(state);
passwordWarningLabel2.setEnabled(state);
return;
}
}
public void keyPressed(KeyEvent E)
{
}
public void keyReleased(KeyEvent E)
{

if (E.getKeyCode() == E.VK_ENTER)
{

65

if (E.getSource() == cancel)
{
dispose();

return;

else

goCreate();
dispose();

return;

}

else if (E.getSource() == roomName)
{
if (roomName.getText().equals(""))
ok.setEnabled(false);
else
ok.setEnabled(true);

return;

}

public void keyTyped(KeyEvent E)

{

}

public void windowActivated(WindowEvent E)
{

}

public void windowClosed(WindowEvent E)

{

}

public void windowClosing(WindowEvent E)

66

dispose();
return;
}
public void windowDeactivated(WindowEvent E)
{
}
public void windowDeiconified(WindowEvent E)
{
}
public void windowIconified(WindowEvent E)
{
}
public void windowOpened(WindowEvent E)
{
}

ChatMessagingDialog:

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;

import javax.swing.*;

public class chatMessagingDialog
extends JDialog

implements ActionListener, ItemListener, KeyListener, WindowListener

67

protected chatWindow parentWindow;

protected JButton readMessages;
protected JLabel instantForLabel;
protected java.awt.List allUsersList;
protected JLabel saveForLabel;
protected JTextField saveFor;
protected JLabel messageTextLabel;
protected JTextArea messageText;
protected JButton ok;

protected JButton cancel;

protected JPanel p1;

protected JPanel p2;

protected GridBagLayout myLayout;

protected GridBagConstraints myConstraints;

public chatMessagingDialog(chatWindow parent)
{

super(parent, "Messaging", false);

parentWindow = parent;
myLayout = new GridBagLayout();

myConstraints = new GridBagConstraints();

Container con=getContentPane();

con.setLayout(myLayout);

myConstraints.insets = new Insets(0, 5, 0, 5);

pl = new JPanel();

68

69

pl.setLayout(myLayout);

readMessages = new JButton("Read saved messages");
readMessages.addActionListener(this);
readMessages.addKeyListener(this);

myConstraints.gridx = 0; myConstraints.gridy = 0;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints.BOTH;
myConstraints.anchor = myConstraints. WEST;
myConstraints.insets.top = 5; myConstraints.insets.bottom = 0;
myLayout.setConstraints(readMessages, myConstraints);

pl.add(readMessages);

instantForLabel = new JLabel("Send instant message to:");
myConstraints.gridx = 0; myConstraints.gridy = 1;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints. NONE;
myConstraints.anchor = myConstraints. WEST;
myConstraints.insets.top = 0; myConstraints.insets.bottom = 0;
myLayout.setConstraints(instantForLabel, myConstraints);

pl.add(instantForLabel);

allUsersList = new java.awt.List(5);
allUsersList.setFont(parentWindow.smallFont);
allUsersList.addItemListener(this);
allUsersList.addKeyListener(this);
allUsersList.setMultipleMode(false);

myConstraints.gridx = 0; myConstraints.gridy = 2;
myConstraints.weightx = 1.0; myConstraints.weighty = 1.0;
myConstraints.fill = myConstraints. BOTH;

myConstraints.anchor = myConstraints. WEST;

myLayout.setConstraints(allUsersList, myConstraints);

pl.add(allUsersList);

saveForLabel = new JLabel("- OR - Save message for user name:");
myConstraints.gridx = 0; myConstraints.gridy = 3;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints. NONE;

myConstraints.anchor = myConstraints. WEST;
myLayout.setConstraints(saveForLabel, myConstraints);

pl.add(saveForLabel);

saveFor = new JTextField(20);
saveFor.addKeyListener(this);

myConstraints.gridx = 0; myConstraints.gridy = 4;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints. BOTH;
myConstraints.anchor = myConstraints. WEST;
myLayout.setConstraints(saveFor, myConstraints);

pl.add(saveFor);

messageTextLabel = new JLabel("Message to send:");
myConstraints.gridx = 0; myConstraints.gridy = 5;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints. NONE;
myConstraints.anchor = myConstraints. WEST;
myLayout.setConstraints(messageTextLabel, myConstraints);

pl.add(messageTextLabel);

messageText =
new JTextArea("", 2, 20);//,
TextArea.SCROLLBARS VERTICAL ONLY);

71

messageText.addKeyListener(this);

myConstraints.gridx = 0; myConstraints.gridy = 6;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints. BOTH;
myConstraints.anchor = myConstraints. WEST;
myLayout.setConstraints(messageText, myConstraints);

pl.add(messageText);

myConstraints.gridx = 0; myConstraints.gridy = 0;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints.BOTH;
myConstraints.anchor = myConstraints. CENTER;
myConstraints.insets.top = 0; myConstraints.insets.bottom = 0;
myConstraints.insets.left = 0; myConstraints.insets.right = 0;
myLayout.setConstraints(p1l, myConstraints);

con.add(pl);

p2 = new JPanel();
p2.setLayout(myLayout);

ok = new JButton("Ok");

ok.addActionListener(this);

ok.addKeyListener(this); r

myConstraints.gridx = 0; myConstraints.gridy = 0;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints. NONE;
myConstraints.anchor = myConstraints. EAST;
myConstraints.insets.top = 5; myConstraints.insets.bottom = 5;
myConstraints.insets.left = 5; myConstraints.insets.right = 0;
myLayout.setConstraints(ok, myConstraints);

p2.add(ok);

72

cancel = new JButton("Cancel"),
cancel.addActionListener(this);

cancel.addKeyListener(this);

myConstraints.gridx = 1; myConstraints.gridy = 0;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints. NONE;
myConstraints.anchor = myConstraints. WEST;
myConstraints.insets.top = 5; myConstraints.insets.bottom = 5;
myConstraints.insets.left = 0; myConstraints.insets.right = 5;
myLayout.setConstraints(cancel, myConstraints);

p2.add(cancel);

myConstraints.gridx = 0; myConstraints.gridy = 1;
myConstraints.gridheight = 1; myConstraints.gridwidth = 1;
myConstraints.fill = myConstraints. BOTH;
myConstraints.anchor = myConstraints. CENTER;
myConstraints.insets.top = 0; myConstraints.insets.bottom = 0;
myConstraints.insets.left = 0; myConstraints.insets.right = 0;
myLayout.setConstraints(p2, myConstraints);

con.add(p2);

setSize(600,400);
pack();
setResizable(false);
setLocation((((((parentWindow.getBounds()).width) -
((getSize()).width)) / 2)
+ ((parentWindow.getLocation()).x)),
(((((parentWindow.getBounds()).height) -

((getSize()).height)) / 2)
+ ((parentWindow.getLocation()).y)));

73

addKeyListener(this);
addWindowListener(this);
setVisible(true);
updateLists();

allUsersList.requestFocus();

public void updateLists()

{

// Update our lists. This is called when something changes, such

// as a user logs on/off

if (allUsersList.getltemCount() > 0)

allUsersList.removeAll();

Vector usersVector = parentWindow.theClient.userList;

// Add all of the connected users to the 'all users' list

for (int count = 0; count < usersVector.size(); count ++)

{
chatUser user = (chatUser) usersVector.elementAt(count);
allUsersList.add(user.name);
}
return;

private void sendMessage()

{

String instantUser = allUsersList.getSelectedItem();

74

String saveUser = saveFor.getText();

if ((instantUser == null) && saveUser.equals(""))

{
new chatInfoDialog(parentWindow, "Need recipient”, true,
"You must specify a recipient for "
+ "the message!");
return;
}

if (parentWindow.connected != true)
{
new chatInfoDialog(parentWindow, "Not connected", true,
"Must be connected first!");

return;

// If the user has typed a name, leave the message on the server
// for that user
if (!saveUser.equals(""))
try {
// Send the message to the server
parentWindow.theClient.sendLeaveMess(saveUser,
messageText.getText());
}
catch (IOException e) {
parentWindow.theClient.lostConnection();

return;

else

// Send an instant message. First we need to find the user

// id that matches the name that's selected

Vector usersVector = parentWindow.theClient.userList;

for (int count = 0; count < usersVector.size(); count ++)

{
chatUser user =
(chatUser) usersVector.elementAt(count);
if (user.name.equals(instantUser))
{
try {
parentWindow.theClient
.sendInstantMess(user.id,
messageText.getText());
}
catch (IOException e) {
parentWindow.theClient.lostConnection();
return;
}
break;
} k
}
}
return;

public void actionPerformed(ActionEvent E)

13

if (E.getSource() == readMessages)

{

try {
parentWindow.theClient.sendReadMess();

}

catch (IOException e) {
parentWindow.theClient.lostConnection();

}

dispose();

return;

else if (E.getSource() == ok)

{
sendMessage();
dispose();
return;

}

else if (E.getSource() == cancel)

{
dispose();

return;

public void itemStateChanged(ItemEvent E)

{
if (E.getSource() == allUsersList)

{

76

77

// If a user name has been selected, empty out the saveFor

// field

if (allUsersList.getSelectedItem() != null)
saveFor.setText("");

return,

public void keyPressed(KeyEvent E)

{
}

public void keyReleased(KeyEvent E)

{

if (E.getKeyCode() == E.VK_ENTER)

{

if (E.getSource() == readMessages)

{

try {
parentWindow.theClient.sendReadMess();

}

catch (IOException e) {
parentWindow.theClient.lostConnection();

H

dispose();

return;

else if ((E.getSource() == ok) ||
(E.getSource() == saveFor) ||
(E.getSource() == messageText))

78

{
sendMessage();
dispose();
return;

}

else if (E.getSource() == cancel)

{
dispose();

return;

else if (E.getSource() == saveFor)

{
// The user is typing a name, so make sure no names are
// selected in the allUsersList
int items = allUsersList.getRows();
for (int count = 0; count < items; count ++)
allUsersList.deselect(count);
}

public void keyTyped(KeyEvent E)

{
}

public void windowActivated(WindowEvent E)

{
b

public void windowClosed(WindowEvent E)

{
}

public void windowClosing(WindowEvent E)

{
dispose();

return;

public void windowDeactivated(WindowEvent E)

{
}

public void windowDeiconified(WindowEvent E)

{
b

public void windowIconified(WindowEvent E)

{
}

public void windowOpened(WindowEvent E)

{
}

79

	Dakota State University
	Beadle Scholar
	Spring 5-1-2011

	Java Implementation of an Office Communicator
	Swathy Kodati
	Recommended Citation

	tmp.1522694563.pdf.3lVKR

