Dakota State University

Beadle Scholar

Masters Theses

Spring 5-1-2011

A Data Warehouse for Faculty Pay

John Hardebeck
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

Recommended Citation

Hardebeck, John, "A Data Warehouse for Faculty Pay" (2011). Masters Theses. 194.
https://scholar.dsu.edu/theses/194

This Thesis is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses by an authorized

administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Ftheses%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/194?utm_source=scholar.dsu.edu%2Ftheses%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

A DATA WAREHOUSE

FOR FACULTY PAY

A graduate project submitted to Dakota State University in partial fulfillment of the

requirements for the degree of

Master of Science
in

Information Systems
Spring, 2011

By
John Hardebeck

Project Committee:
Dr. Stepl{en Krebsbach
Dr. Mark Moran
Dr. Ronghua Shan

DAKOTA ST

Cf
PROJECT APPROVAL FORM

We certify that we have read this project and that, in our opinion, it is satisfactory in scope

and quality as a project for the degree of Master of Science in Information Systems.

Student Name: John Hardebeck

Master’s Project Title: A Data Warehouse for Faculty Pay

Faculty supervisor: D%hen ach Date: ’j/ Z/////
./V\L\k mw Date: '3// Lf// / /f

Committee member: Dr. Mark Moran

Jowvhur Shan s”/4/
Committee member: Dt. Ronghtia Shan Date: , /{

il

ACKNOWLEDGMENT

I would like to thank all of my friends and co-workers at Daytona State College for
their support and help as I’ve worked my way through the MSIS program at Dakota State
University. Especially, Lisa Mobley who, as an information technology professional, was a
good listener during times when I was struggling with the course load and getting near the end
of my rope. Eric Urff for giving me access to the MySQL database where his data warehouse
resides so that I could create my own, and who, having traveled this road himself, was able to
offer insights and advice that helped me avoid some pitfalls. And most of all, Daniel Jones,
who never ceases to amaze me with the depth and breadth of his knowledge relating to all
things in the Information Technology field, his help and support have been immeasurable as I
have worked my way through the MSIS program.

Above and beyond all others, I would like to thank my wife, Mary Jo. With the
advantage of hindsight, it occurs to me that I launched into the MSIS program unilaterally,
with little or no discussion involving her. Despite that huge error on my part, she has been
patient and understanding during the entire journey, offering help wherever possible. Without

her love and support, none of this would have even been possible.

iv

ABSTRACT

Administrators at Daytona State College have long sought for a way to document how
much it costs to offer a specific course. When an instructor is either an Adjunct or a fulltime
instructor teaching an Overload — essentially, working overtime — this information is readily
available. This is not the case for fulltime, salaried instructors who are teaching within the
bounds of their salary, what is known as “Inload”. There is no direct link in the database of
Daytona State’s ERP system that connects pay with courses and the fact that the institution’s
payroll accounting is handled by a third-party organization only compounds the problem. The
courses taught by instructors are well documented, it is the payroll records, or lack of them,
that is the core problem. We only have access to amounts paid with very few details about
what the payment was for.

Since salaried staff members at Daytona State, such as myself, are expected to work a
40 hour week, a similar thing is expected of salaried faculty members. However, since most
courses require a considerable amount of time outside of the classroom either preparing
lessons or grading them, the question arises of how to determine when an instructor has
worked the equivalent of a 40 hour week. To resolve this problem “Load” was created. I
don’t how or when it came it to being or even what documentation may exist, it’s just a
known fact I’ve learned about from co-workers over the course of my 11 years at this
institution. To get right to the point, Load determines how much time an instructor must
spend in the classroom to equal a 40 hour week.. For most college credit courses, but not all,
the value is 15, meaning that an instructor must teach 15 credit hours per week to “earn” his
or her salary.

It is Load that makes it possible to resolve the problem of assigning dollar amounts to
specific courses. Since we can determine how much Load an instructor carried for any course
and we know how much his or her salary should be, I have simply divided the annual salary
for a given calendar year by the total Load carried during that same period of time. The
resulting figure, a load “rate”, if you will, can then be applied to specific course to determine

how much of the instructor’s salary was dedicated to it.

Stated salary amounts for fulltime faculty were not used in the “load rate” calculation
since they merely document what an individual should be paid and may not reflect reality. I
chose instead to pull actual payment records from the general ledger since they reflect
amounts that were actually paid out to specific individuals. Attempts to apply this same
method to Adjunct and Overload instructors were unsuccessful due to the extremely complex
methods used to determine dollar amounts. However, it should be noted that reports are
currently in place which provide very satisfactory estimates of Adjunct and Overload
expenses, it is the fulltime (or salaried) instruction that presents a problem.

However, the resources needed to perform the operation described above for fulltime
faculty would be prohibitive on Daytona State’s production database and would interfere with
daily operations. To resolve this problem, a data warehouse was constructed along with the
necessary scripts and SQL statements to extract the needed data, upload it to the data
warehouse, and perform the needed calculations. Reports on the resulting information will be

made available to the college community.

vi

DECLARATION

I hereby certify that this project constitutes my own product, that where the language
of others is set forth, quotation marks so indicate, and that appropriate credit is given where I
have used the language, ideas, expressions or writings of another.

I declare that the project describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

M/ %M%/L

John Hardebeck

vii

TABLE OF CONTENTS

PROJECT APPROVAL FORM I
ACKNOWLEDGMENT I
ABSTRACT v
DECLARATION VI
TABLE OF CONTENTS VII
LIST OF TABLES IX
LIST OF FIGURES X
INTRODUCTION 1
BACKGROUND OF THE PROBLEM w.....vvutuuuitiuuuusssmsmmmmmeememsmmmmsmmmmn. 2
STATEMENT OF THE PROBLEMcoiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeesaeaaaeaeeseseesseeeeeeesseesssssssssissssassnesasasasasasaaaaaes it
OBIECTIVES OF THE PROJECT ...ccvvvsersssrenessosssssssssssrssssnsassnsssssnnsnnssssnssishsssasssssssasiissssssssssssgessssssossanmensonss 8
LITERATURE REVIEW 10
SYSTEM DESIGN (RESEARCH METHODOLOGY) 12
RESEARCH w.csvosiossessssssissseasuvnsisssssnsusssbvasossssdosadursonsssssossassssssrnssannassss sossnessans S15o0ss oaassssavs inasussavoassssunmeny 12
DATA WAREHOUSE DDESIGNccconvnssssnorsesssssosesssorssssssansassshassseissos ssississsssss sssnsssssussisssessusssssssssosssnssss 14
IMPEEMENTATION . cccocsusioriverssresssssionssssnsmnssnnssnsannnsnsssnsionsssis e stnes seuimss ivs doshussmasmes ssaasidesssvassuasssuessonsasnsans 18
CASE STUDY (RESULTS AND DISCUSSION) 20
CONCLUSIONS 27
REFERENCES 30
APPENDIX A: WORK BREAKDOWN STRUCTURE 31
APPENDIX B: GANTT CHART 33
APPENDIX C: TABLE CREATION STATEMENTS 34
ACAD! (CAL TBL: iucsserssssssessssesss s isssssssssseessssonssss ssssssssssesssss ssonssseas ssssussassasscsessonssrssssnssssssastsassassessasseon 34
COURSE. DIME sivsisuesvwnsssuonssassssssessssssss s sness siaysussosussosass sasns suovsssss seoassvssssssesmenasssssususbssosnsosssissssssssssasss 35
FACULTY TBILE svssrswsvsssasssrsssissesssuessssaese eesssssssssssnasssesssnssestsssns ssasss susmsss sbsnoussoss sasossssnontossnsaisnsstsssss 36
LOAD _RATE_TBL: «ccvisisssusseosisssssssissassosssssssssassessersssssssssonsansssonssasnssnssssntossssostssssssssssastssssssssssssassassesases 37
................................... 38

T ()L N U5 S SR HOUON S

viii

NONINSTR. TBLL: ... consersseesasssssssssss ssssesaessns 54805535455 150955 18284488 6850513 0400 1308 ST FAE R 54 U S0 RO OO PSSO S 39
gl) 51 N r e 40
BAY DIM:.c.eovovesoss 558 0685565558 5508 TR0 5084364435 H 45 4H S SRR S on S U 494 R e 2B RS S g sn o e mo b e AR S 41
PAY. FACT: ...veerossesssssssssisssssisnsississsssss sssssesssssssss ssis1eesmssssssnessst 4 48sss sssgensassasssss anakengasansosssosssssssashssanns 42
APPENDIX D: EXTRACTION SCRIPTS 43
DWINSTRPAY.SCR....c.cc0eseesusosersessssresisinsisssssissississsisssississsesissisniuus sass sassmsansusus syssnssysssnsanasussssose adsonpsnah 43
ACADCALTBL.SCR: ACADEMIC CALENDAR INFORMATIONc.couriruimininierinsetesiesessssesesssesssesssesensnens 51
COURSEDIM.SCR: COURSE INFORMATION :uvessssussisussinsnsssssssissssosesisssansovassesssssussasassassssssssussasssnsesnsssnh 53
MEETINGDIM.SCR: INSTRUCTOR MEETING INFORMATIONcocueiiimmmiinrennnieseisseesesetesesenssesenseens 55
PAYDETAIL.SCR: INSTRUCTOR PAY INFORMATION.......coueiriemiiuinueiiesenieneesensessssesessssessessesessessenessensenens 57
FACULTYTBL.SCR: INFORMATION ABOUT THE INSTRUCTORScoruimiiniiriinieienesinieesssiessesnecnees 59
RUNINSTRDW.SCR: RUNS ALL SCRIPTS AND STORED PROCEDURES IN THE CORRECT ORDER................. 61
APPENDIX E: STORED PROCEDURES 63
UPD_MTG OB .ccveevenssisssssissssssisssnssesmsessssasessssonsassasasssssassssssssassasssassassisssssssssossssstassasssssassesssssssassasasens 63
UPD_FAC _LOAD: ..ccucieussessssssssnssssessnenssassesessossassasssasssssessssssssssesssnsasssssassssstsssssssssssssssssssssssssssssassssnssases 65
ADJUST LOAD: .cusincusssisisssssistsssnsneseusasuosorsrasassssssssssasssesssssassseseresenansassossasasasssssessosssssienssnesssssssesssssssnses 66
SET _PAY SESS: ..ccvecereassessssssessssssssnsucsesenesessssessssonsassaasassssssasesssssnsassesnsssssssasssssesssssessssnsssssssssssesssnssases 67
LOAD_ PAY_DIM:cctruiuirieriiniesistssesssissesessesesessssssssassssesssesssestsesesestesssssssssssssstsssssenssssesssssssesssssssasanes 68
CALC_LOAD._RATE ..ttt ettt seass sttt s e bbb 69
LOAD _PAY _FACT: ..cuueuiieueieieucsiitesesitesess et se s s s s st s e s e bbb a e 70

APPENDIX F: EXAMPLE C++ CODE USED TO CALCULATE INSTRUCTOR LOAD
VALUES 72

LOAD CALCULATION.EXGERPT cosseecasesanossossasvssssssnossis fosisssisssssssssssss soeassissassisssss 8598508 s suossiosons sosonnsnns 72

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

iX

LIST OF TABLES
Enrollment numbers for the previous 10 academic years.........ccceceecvevuenuennnnne 1
Number of faculty employed over the past decade.........c.ccocevviviiiiiiiiicnnnnnnn. 2
The FUNd tablecovieviiieciieeceeeee e 5
The SUDTINE L6 s coxreasssarsrssnvanesssmsnsss s mssasssssasis o asaanssass S rgs 6
The ObJet tABLEo oisss i msmmers st Tarsrs s st sRs s s oh 6
The Eeichitm TG s ostsnsctlmmesmuesasmmiesumsbaoossiam - ARy 6
Tables used in the data warehouse.............cceceevcviiiiiiiiiiiiiiiienc s 16
List of stared PIOEEAITES. ...c.coconismanmsssmirivesmmsiisssssssssiasses sy 17
Scripts used to extract data for the WarehOUSE.....cieossssercssernessonsmassssssosssnssases 18

Table 10. Rates used to calculate Adjunct and Overload pay........cccccevvviiiiininnnnnnnen. 23

LIST OF FIGURES

Figure 1. General Ledger table diagram for the ERP system (Jenzabar, Inc., 2005)... 11

Figure 2. Course, Section, Meeting, Instructor relationships..........c.cccoceiniiiinnnnn 12
Figure 3. General Ledger tables..........covvnuiiniiecnicenincnnennsnnscsnscstsssssscsnssescsassancs 14
Figure 4. Data Warehouse Diagram............cccoeeeienieneneneninniincenescnincniiiiiec. 15

Figure 5. Comparison of salaries for 9 month faculty documented in the live data base
with those calculated from the data warehouse.............ccoceviiiviiiiiiiiiiiiiiini e 20

Figure 6. Comparison of salaries for 12 month faculty documented in the live data

base with those calculated from the dath WATShOUSEousssssesscumsmusssmasonssensassnsssrrassensranssonnse 20
Figmre 7. Crystal Report HokInG, |couinmoecssrinspmensssismessmenssssssansssnss s ssisariassion 22
Figure 8. A sample pay calculation SQL statement............cccooevinininnininniinnn 24

Figure 9. Report showing instructor pay from the data warehouse for the Adjunct
(56001) general JeAEr COMB.cwsimmismsussssmsmessssapsnssssrsssssssasorenssacanensssspsissesmorssrsonssssassnmansass 24
Figure 10. Report showing instructor pay from the live database for the Adjunct
(56001) general 1edger COME......coccmmecsmassossississssssassenssssssassssssrussassansassanasmssssssssnsysseasassssenses 25

Figure 11. Excerpt from course-section expense report for the Adjunct (56001) general
(7 [gl | NN SN ol M SR S S BT PRD SO WRE Pt L s 25
Figure 12. Report showing instructor pay from the data warehouse for the Overload
(52101) general ledger code..........ccccoevuevrunnuennnnn. s 26
Figure 13. Report showing instructor pay from the live database for the Overload
(52101) general 1edger COAe.......ccomsuiensmrimnssninsssssesssssisassnsussassnssessesassssasanssnssnsassosssssassesssssssssss 26
Figure 14. Excerpt from course-section expense report for the Overload (52101)
general ledger Codeocuremcemmassissuimmsimisisisronssnsassasussssnissssasessssivsmssasacssssussaspesassesssarsanes 26

Figure 13. An excerpt from a Crystal Report detailing course expenses for a nursing

INTRODUCTION

Daytona State College began life in 1957 as Daytona Beach Junior College and over
the years evolved into community college and then, in 2006, began offering four-year
degrees. While enrollment has increased and decreased at different times of the years, the

overall trend has been upward as you can see in the following table.

Table 1. Enrollment numbers for the previous 10 academic years

Catalog Year Adult Education College Credit Continuing Education Total

CCo1 7778 15615 7382 30775
CC02 7669 17061 6488 31218
CCO03 7662 17039 5490 30191
CC04 7731 17598 4667 29996
CCO05 7466 16971 4358 28795
CCO06 7123 16913 3483 27519
CCo7 8848 18264 4012 31124
CCO08 9808 20059 3444 33311
CC09 9902 21826 3782 35510
CC10 9525 24730 3521 37776

During period from the 2000-2001 academic year through the 2009-2010 period
Continuing Education enrollment has declined 52%. But Adult Education enrollment has
increased 22% and CC has the greatest increase of all, up 58% during that same period of
time. The total overall increase in enrollment from CCO1 to CC10 was 22%.

Of course an increasing number of students has resulted in an increasing number of
faculty. As you can see in the table shown befow, during that same period of time, CCO1
through CC10, fulltime faculty numbers have increased by 44%! And the number of
instructors teaching overload courses has increased by 38%. Although it interesting to note
that during this same period of time, reliance on Adjunct instructors decreased by about 10%.
This would seem to indicate that fulltime faculty are increasing in importance, which makes

the goal of this data warehouse even more useful.

Table 2. Number of faculty employed over the past decade

Catalog 52001 56001 Total 52101

cco1 216 798 1014 192
CCo2 239 747 986 210
CCo3 249 734 983 214
CCo4 242 712 954 205

CC05 250 679 929 215
CCo6 265 654 919 209

cco7 278 654 932 225
CC08 285 724 1009 233
CC09 306 704 1010 250
CC10 312 716 1028 266

Background of the Problem

In the late 1990°s Daytona State College, then known as “Daytona Beach Community
College”, made the decision to purchase an Enterprise Resource Planning system (ERP) to
manage the college’s business. This system would handle everything from purchasing
supplies and paying bills to scheduling courses and registering students, but the Human
Resources package (i.e. payroll information) was not included in the new system. The reason
for this is unknown, perhaps the decision makers felt the ERP wasn’t reliable enough or, since
this was new, unexplored territory, they simply didn’t want to risk employee pay information
to be widely accessible. In any event, that discussion is outside the scope of this project, my
goal is to develop a system that will compensate for the lack of detailed pay data available for
administrative reporting.

With the decision to not purchase the ERP Human Resources module, all information
relating to employees, both staff and faculty, is. maintained on a third-party system that is
inaccessible to all but a very few employees. As a result of this third-party system, it is quite
impossible for the college’s administration to perform any type of reporting that relates pay to
specific courses taught by faculty members. Unfortunately (and not surprisingly) these types
of reports are something the administration would very much like to have, but the structure of
the information combined with its sheer volume — just one of the base accounting tables
accessed for this data warehouse by itself contains over 32 million records - makes any

meaningful reporting impossible. If a useful report could even be constructed, the time it

would take to run and the system resources required would make it very difficult, if not
impossible, to use.

The desire then, is for reports that allow Daytona State’s administrative decision
makers to relate faculty employee expense to specific college courses. For most college staff,
whether upper level administrators or rank and file employees (such as those on the front lines
interfacing with students or behind the scenes in, say, Information Technology, like myself),
this is a simple matter, annual reports suffice since a straight forward, easily defined service is
provided “X” number of days per year. With faculty, however, the matter is not that simple
as I will explain later.

The economic downturn of recent years that has affected not just Florida, but the
entire country and indeed, the world, has only increased Daytona State’s need for a way to
document and analyze labor expenses as they relate to faculty. Since the salary paid to faculty
members for teaching is the single largest cost element of most, if not all, courses, the need
for this information is considerable, even more so during times of economic stress and
reduced budgets.

Speaking in very broad, general terms, there are two sets of data within the Daytona
State College database that must be brought together to achieve the goal of this project, the
records relating to how many courses were offered, including their instructors, and those
defining how much each individual was paid. Sadly, as mentioned earlier, within the current
record structure, nothing exists that connects courses taught directly with salary received. 1
have devised a method for doing this within the data warehouse, but first I must lay ground
work with a discussion of our two separate data sets. We will begin with the courses taught

by instructors. .

Instructor course load

There are two basic types of faculty at Daytona State College, full-time and adjunct.
Full-time instructors are salaried employees who work either a 9-month or 12-month schedule
while adjunct faculty are contract workers obligated to teach specific courses for an agreed
upon rate. Additionally, it is possible for full-time faculty to teach courses beyond those

covered by their salary, essential.ly putting in “overtime” (hereafter known as “Overload”).

Of course, any salaried faculty member is expected to work a 40 hour week like other
employees, but can hardly be expected to spend 40 hours in the classroom. For every hour
spent in the classroom an instructor will spend a considerable amount of time outside of class
preparing lessons, grading homework, etc. Since the classes taught by an instructor provide
the only clearly defined documentation, by way of the course schedule, as to when he or she is
on the job the question then becomes...how many hours must an instructor teach to equal a 40
hour week?

The answer to the above question, at least in the state of Florida, is “Load”. Load is
method for determining how many hours an instructor must teach to equal a regular 40 hour
week. Both instructors and the courses they teach are assigned a load value known as the
Faculty Load Type (“FLT”), or simply “load type”. The load value itself is deduced by
determining how much time an instructor must spend outside the classroom for each hour
spent face to face in the classroom with students. For example, if a course had a load type of
15, then for each 15 hours of classroom instruction, 25 hours should be spent in preparation
and grading. This would mean that if an instructor with a faculty load type of 15 teaches a
course which has a load value of 15, then the instructor must be in the classroom teaching for
15 hours each week to earn his or her salary. While the example where both instructor and
course have an FLT of 15 was used above, and it is probably the most common situation, it is
possible for both courses and instructors to have load values other than 15. As mentioned
earlier, the load value is based on the perceived amount of outside work required by a specific
course. Frequently, an instructor with one load type will teach a course with a different load
type, in these instances special calculations must be employed to accurately calculate the
instructor’s load. : .

Instructor load figures prominently in this project since it is the method by which we
determine how much an instructor is working and what is required to earn his or her salary or
even if the individual is working an Overload. And as you will see, after a discussion of the
accounting records where faculty salaries are stored in Daytona State’s database, it also

provides the method by which instructor salaries can be matched with individual courses.

Accounting Records

This project is primarily concerned with salaried faculty but will include Adjuncts and
Overloads even though a system is currently in place that provides very good estimates of
adjunct and overload pay. The reason for this is consistency, I want all of the pay information
provided by the data warehouse to be calculated using the same method so that we’ll be
comparing apples to apples (instead of something else) when analyzing it. Although it should
be noted, the existing reports used to estimate adjunct and overload pay will prove useful as a
validation tool since their information is calculated independent of the accounting tables.

To begin unraveling some of the mystery surrounding faculty salaries and classes
taught, a discussion of our accounting system would be in order, specifically, how the various
types of instructors are coded in the ERP system.

First, the accounting records within the ERP system use fairly standard coding that
follows National Association of College and University Business Officers (NACUBO)
guidelines (Jenzabar, Inc., 2007). Account numbers are a composite of 4 different values, the
Fund, Subfund, Object, and Function numbers, in that order. The values that make an account
number are discussed below.

Funds are defined in Jenzabar’s documentation as “A collection of assets, liabilities,
and equity related to a specific subset of the activities of a nonbusiness organization.”
(Jenzabar, Inc., 2005). The Fund defines a very broad category such as Unrestricted funds,
Restricted funds, Scholarship’s, etc. A complete listing of currently active Funds is shown

below along with descriptions.

Table 3. The Fund table

Fund Description
10 Current Fund Unrestricted
20 Current Fund Restricted
30 Auxiliary Fund
40 Loans, Endowments, Annuity
50 Scholarship Fund
60 Agency Fund
70 Unexpended Plant Fund
80 Retirement on Debt Fund
90 Investment in Plant Fund

A Subfund is “a component of the account number that relates to a particular
project” (Jenzabar, Inc., 2005). As they relate to this project, Subfund numbers help define

courses, some examples are visible in the table shown below.

Table 4. The Subfund table

Subfund Course Number Description
111131500 ENCI1101 College Composition
111131500 ENC1102 Literature and Comp.
111310101 MAT0024 Mathematics I1
111161700 MACI1105 College Algebra

The Object code is defined as “A segment of the general ledger account number,
designating a classification or expenditure type” (Jenzabar, Inc., 2005). The Object, or
“General Ledger” code is crucial to the success of this project since it defines the different
categories of instructors this project intends to study. A complete list of the codes we will be

using and related descriptions is shown below.

Table 5. The Object table

Object Description

52001 Instruct-Fulltime

52101 Instruct-Overload

52102 Inst Overload-Non Fac
52103 Inst-O/L Couns/Lib/Coach
56001 Ops Adjunct Instructor

The Function is “The portion of an account number that pertains to the purpose of a
charge (e.g., the department number)” (Jenzabar, Inc., 2005) and, to be quite honest, is of no
concern whatsoever so far as this project is concerned. But, for completeness sake, a list of

Function codes is shown below and it will be included in subsequent discussions.

Table 6. The Function table

Function Description
85000 Management & Gen Exp
81000 Student Assistance Exp
82000 College Prog Exp
83000 Community Service Exp
84000 Fund Raising Expense

As was mentioned earlier, the Object code defines the various categories of
instructors. Collectively the Fund, Subfund, Object, and Function codes define the courses
which are taught by instructors. All four of these codes come together in the accounting
tables when entries are created to actually pay the instructors for services rendered. The
accounting records can tell us that an instructor was paid “X” amount for teaching a certain
class, but the dates associated with these entries are pay dates (which occur twice each month)
and have no connection with the dates the course (or courses) was/were taught. The question
before us is how to take these evenly spaced pay amounts and apply them to courses whose
dates rarely, if ever, correspond with them and to divide the money up in the correct

proportions.

Statement of the problem

Reports existed within the college’s ERP system that detailed courses being taught by
each instructor, but these reports couldn’t provide any information regarding instructor pay, to
supply that information a set of Crystal Reports were developed that could calculate pay
amounts. These reports were used all year round to produce “contracts” for Overload and
Adjunct faculty detailing pay for each course taught. The reports were reasonably effective,
but required a great deal of manual intervention to produce useful information. The total
amount to be paid to these instructors would be calculated and then broken down over the
number of pay dates that would occur during the period. But specific pay dates weren’t stored
within the system and had to be hardcoded on each contract! When you factor in the various
summer sub-sessions, the fact that college credit courses are paid differently (and sometimes
on different dates) than adult education courses-, and that in addition to Adjuncts, some 9-
month faculty are teaching during a period that fall outside of their contracts, it was necessary
to maintain 20 to 40 (or more) of these “contracts”. And even then, with all of these contracts
it would still be necessary, on occasion, to literally go into the database (through the ERP
system) and manually manipulate the data so an accurate contract could be printed and then
restore the data to its original state afterwards. In those days, the late 1990’s into the early
2000’s, there was literally one person at this institution (out of approximately 800 employees)

who understood the faculty pay system well enough to make these changes. While this

system worked, the amount of manual intervention required made it very clumsy, a “cludge”,
if you will.

Due to the not so user friendly interface provided by the college’s ERP system a home
grown application was developed in Borland C++ Builder called Kaleidoscope. Since
Kaleidoscope had proven quite successful and literally supplanted the ERP system in some
areas, it was decided to replace yet another part the ERP system, for scheduling courses, with
a new system in Kaleidoscope called “Catalog Maintenance”. The research and development
that went into Catalog Maintenance over a period of several years led to a much greater
understanding of how faculty pay is calculated, the addition of several new tables to our ERP
database to store additional information, and in the end, a very satisfactory system for
scheduling courses and assigning instructors. Additionally, the new database tables provided
more detailed information that in turn allowed for the creation of a new, much easier to
operate reporting application (also within Kaleidoscope).

In parallel with the development of the new Kaleidoscope Catalog Maintenance
application, a new, easier to maintain reporting tool was created that provided accurate reports
of faculty pay. The reporting application has been very successful, but despite ease of use and
more detailed, accurate data, the information provided is still just an estimate of adjunct and
overload pay, no method exists to connect the salaries of full-time faculty with specific

courses.

Objectives of the project

A reasonable system is in place for estimating Adjunct and Overload expenses, it is
Inload (or salaried) instruction that we are interested in since no method currently exists to
link faculty salaries with specific courses. However, Adjuncts and Overloads will be included
in this process since they are important for data analysis. And if they are to be included it is
critical that the same method be used for extracting and calculating their values, to do
otherwise would invalidate all of the data and render comparisons meaningless.

To achieve the above mentioned goal, current methods used for estimating Adjunct
and Overload pay will be ignored, all dollar amounts will be pulled from the same database
tables for all categories of instruction. It will be impossible to calculate amounts that are

precise, but very reasonable, useful estimates should be possible. Toward that end, the goal is

to extract both course and pay information, find a way to consistently relate the two, and to
breakdown and apply an individual’s annual salary to courses taught. Once that has been

achieved, a series of reports will be created for use by the college’s management.

10

LITERATURE REVIEW

Since the problem this data warehouse is attempting to resolve - or at least, mitigate to
some degree — is specific to Daytona State College, the only documentation available is that
supplied by Jenzabar, Inc., the creators of our ERP system. Additionally, my knowledge
regarding the creating of meeting records and assigning instructors is extensive, having
worked with the subject for 10+ years I dare say there are only a handful of individuals within
this organization who know as much, or more, than I. However, the accounting side of the
house is a very different story, it is an area where my knowledge is limited to the “estimates”
mentioned earlier which, when all is said and done, have little or no impact on what and
instructor receives in his or her paycheck.

Figure 1 is a diagram of the general ledger tables employed by our accounting system,
these tables had to be navigated to locate the bits of data crucial to this project. I was hopeful
at first when I read...”the system obtains the detail pay amounts for the period from the
Subsidiary Transaction record (subtr rec)” (Jenzabar, Inc., 2005). An inspection of the
subtr rec revealed that while it contained much information regarding expenses, none of the
general ledger codes relating to faculty (or any other employees) were present. Evidently,
since Daytona State’s payroll accounting is done by an outside organization, absolutely no
payroll information can be found in the usual places. The search continued.

I eventually located records relating to financial disbursements. The accounting may
be done offsite, but when the actual checks are printed, entries had to be made in the general
ledger to document the payments. By linking the voucher (vch_rec), general ledger entry
(gle rec), and general ledger transaction (gltr_re;:) tables, I was able to acquire the necessary
data. The trick now became, how to relate this information to the courses taught by faculty

members, that discussion will be saved for the chapter on system design.

vch_rec subs_table
verification (e > vch_rec subs_table |« »» verification
tables 5 tables
4 4
_l{ref, jrnl_no) | |-
4 |
v A
gle_rec suba_rec
verification |+ > gle_rec suba_rec (e »—» verification
tables tables
T (jml_ref, jml_no T
GILAmount)y | gle_no) _| ({subs, subs_no)
Also in index] :f
(fscl_yr, cigry) ‘_I
At least two
gl_amt_rec per gle_rec s T”bs sube_rec
= * l »—» sube_rec -« »» verification
%: » glir_rec (subs) tabies
Also in index
(fscl_yr) i {subs, subs_no.
—1_ sube_no)
gla_rec GJ/L Account) |
GI/L Account Elements)\
(fund, func, obj, subfund)
3 loc (optional)
subloc {optional)
subobj (optionat)
Yy class {optional) subtr_rec
h 4 subclass (optional)
t ional
sﬁm::u)onan (subs, subs_no, (subs, subs_no,
gla_rec subfunc (optional) tot_prd, tot_code) tot_prd, tot_code)
verification ——T T——
hasbals_|) _1 hastots
tables v «—— optional —» ¥
A y

subb_table |« —-»# subb_rec subt_rec e }» subt_table

bal_code tot_code

Figure 1. General Ledger table diagram for the ERP system (Jenzabar, Inc., 2005)

12

SYSTEM DESIGN (RESEARCH METHODOLOGY)

Research

The first step in this project was an analysis of the DSC database to define which tables are
needed for this project. A considerable amount of my time is spent resolving issues related to the
scheduling of course meetings and instructor load so I am already quite familiar with those tables and
several we have added over the years. A diagram of the course, meeting, and instructor tables is

shown below.

crs_rec mig_rec
:5.:::: crs no sec_rec secmtg rec PK mtg no
’ cat PK,FKL,I1 |yr
PK,FK1 |sec no PK,FK1 |crs no PK C15.80 PK,FK1,11 | sess
PK,FK1 |sess PK,FK1 |sec no PK sec no 2w
PK,FK1 |yr 4 H{ PK.FK1 [cat [y H-{ PK cat H H beg_time
PK,FK1 |sess PK,FK1,FK1 | sess eng—lime
prog PKFKL |yr PK,FK1 ye beg_date
dept < end_date
fund prog days
subfund tot_hrs
func =
e S e db_instr2_rec
noninstr_rec
& PKA2 |id K : H PK,12 (instr2 no
PK | noninstr no PK |yt 1t instr_no
abbr_name O 12 tot_hrs
yr H---C obj —-.-H- insr_no == 12 hegﬂ time
sess fit 111 g
i . 12 end_time
obj dept id beg_date
tot_hrs ctret_mos obj enAdwdate
ctret_amt tot_hrs day;

Figure 2. Course, Section, Meeting, Instructor relationships

For the most part the tables shown in figure 2 are relatively simple to understand, crs_rec
holds the course masters for each catalog year, sec_rec contains the course sections for each session

and year, mtg_rec details specific course meetings, instr _rec lists the instructor(s) for each meeting,

13

and fac_rec has information specific to individual instructors. But the tables secmtg_rec, noninstr_rec,
and db_instr2_rec may require some explanation.

The table secmtg_rec serves as nothing more than a link between sections and meetings, it’s
nothing more than that.

But the noninstr_rec is a more interesting table, it documents the work load of instructors who
are not teaching. A very common example of this would be an individual who is conducting research
in lieu of actually teaching a course, he or she is on job and being paid by the college, but their duties
lie outside the classroom. Sometimes and instructor will have full release, meaning they aren’t
teaching any courses at all, but usually their schedule will be a mix of teaching and research (for
example). So that an instructor’s salary is properly divided among the Load hours worked during the
year, the Release Load must be included in the Load totals, failure to do so would skew the resulting
Load Rate calculations.

The table db_instr2_rec' was added by Daytona State to capture information in greater detail
than the ERP system allowed and has a strict one-to-one relationship with the instr_rec table. Entries
to this table are made by Daytona State’s Catalog Maintenance application which has supplanted the
ERP system for scheduling courses and instructors. Additionally, all course masters, section, meeting,
and instructor records are also created through Catalog Maintenance for the college credit and adult
education programs. However, the fact that db_instr2_rec records only go back to 2007 and that our
Continuing Education programs still use the ERP means that Load values are stored in two different
tables. For CE courses and those CC and AE courses scheduled before 2007, faculty Load will always
be in mtg rec.tot_hrs, but for CC and AE courses scheduled after 2007, the correct value is in
db_instr2_rec.tot_hrs. To resolve this problem, load values from both mtg rec.tot hrs and
db_instr2_rec.tot_hrs are included in the data extraction. The stored procedure “update_fac_load” was
then created to copy values from meeting_dim.alt_load, the mtg_rec value, to meeting_dim.fac_load
whenever fac_load is 0 and alt_load has a value greater than zero.

As mentioned earlier, the layout and structure of tables related to courses and instructors is
well known to me, but those in the financial arena are a different matter entirely, with that being the
case, I immediately turned to the ERP documentation for help. A search of the financial
documentation revealed that pay amounts could be found in subtr_rec, known as the Subsidiary

Transaction record (Jenzabar, Inc., 2005). However, since Daytona State doesn’t use the

ERP’s human resources package, these records were blank where faculty related general

! The table name includes “db_” to distinguish it from tables original to the ERP system. Also, it

should be noted that there are other db_*2_rec tables, but they have no bearing on this project.

14

ledger codes are concerned. A few questions to those more familiar with the accounting area
revealed the answer, while the accounting may be done offsite, when checks are printed,
entries have to be made in the general ledger to document the payments. By linking these

tables (shown below) I was able to acquire the necessary data.

vch_rec gu.rsc
le rec

PK,FK1 | gltr no e z: g:\i{ni:
PK,FK1 |ent no PK,FK1 [gitr no PK m
PK.,FK1 |jrnl no PK,FK1 |ent no —
PK,FK1 |jrnl ref PK.,FK1 |jrnl no .
PK,FK1 |gle no P+—H{pK irnl_ref P H Jf:‘r:amf
PK vch ref PK gle no e

irnl_date doc_id ;br’w

fscl_yr ca_amt aint

amt_type giat

Figure 3. General Ledger tables

I now have all the necessary bits of information, the problem — which will be dealt
with in the data warehouse — is how to reliably connect faculty instructional records with

faculty pay.

Data Warehouse Design

Three categories of data are being brought into the data warehouse; course, instructor,
and pay. To accommodate this data the following tables were created in the data warehouse;
course_dim, meeting dim, and pay detail. A table (acad _cal tbl) was also created to hold
academic calendar information, it supplies beginning and ending dates for each session and
year combination. Figure 4 shows all of the tables in the data warehouse and how they are

related. A complete list of tables along with a short description can be found in table 7.

course_dim

PK,FK1

crskey

meetingkey

yr
sess

crs

sec
enr_num
fund)
subfund
func
prog
dept

Y

faculty_tbl

PK,I1 [fac_no
PK,12 yr

PK,12 sess

PK,FK1 |meetingkey

12 id
fullname
obj

fit

dept
ctret_mos
ctret_amt

Figure 4. Data Warehouse Diagram

pay_detail
PK paydetailkey
pay dim PK,FK1 | paykey
PK | paykey irni_no
11 id
11 id 11 yr
11l 1
11 yr " N1 sess
11 sEss fund
i1 obj subfund
tot_amt 11 obj
FK1 | meetingkey func
g fsct_yr
amt
: irni_date
pay_fact
PK,U1 | meetingkey A
acad _cal_tbl
Ul crskey
paykey PK yr
tot load PK sess
Ul load_rate PK,FK1 | paydetailkey
tot_amt PK,FK1 | paykey
cal_no
beg date
end_date
meeting_dim
PK,FK1 | meetingkey
load_rate_tbl
12 id
11 crskey PK id
12 yr PK yr
12 5e85 PK sess
12 obj T E— 4 abj
fac_load PK,FK1 |meetingkey
fte
flt load_sum
heg_date amt_sum
end_date load_rate
alt_load
load_rate
instr_no

16

There is considerable overlap between the course and instructor information, but I
elected to put course and section information in one table (course_dim) and meeting/instructor
in another (meeting dim). One reason being, an account number within our system requires
four parts; fund, subfund, object, and function. The course master supplies the fund, subfund,
and function portions of the faculty pay account number and the instructor records supply the
object, but I felt it was too early in the process to bring the values together. More importantly,
non-instructor (or release time) values have no corresponding section records and having both
instructor and non-instructor values in one table would complicate things considerably.
Therefore, course and section information is separated into the course dim table and

meeting/instructor/non-instructor information is placed in the meeting_dim table.

Table 7. Tables used in the data warehouse

Table Name Description

acad cal tbl Beginning and ending dates for every year and session.
course_dim Course information

faculty tbl Information specific to each instructor

load rate table Dollar amounts per load hour for each instructor and G/L code
meeting_dim Instructors and meetings for each course section.

pay_detail Pay records for each instructor
pay dim Aggregated pay records.
pay fact Dollar pay amounts for each course, section, meeting, and instructor.

The pay detail table holds all relevant pay records for a given year, but lacks a
semester value to facilitate matching of pay data with instructor meeting records, to resolve
this problem a stored procedure “set pay sess” was created. Initially all pay_detail records
are created with an arbitrary semester of Summert (“SU”), when the set_pay_sess procedure is
run it determines if the journal date indicates whether a specific record was created before
Summer started, meaning it occurred in the Spring, or after the Fall term started, giving it a
session of “FA”. Once this process is complete, the stored procedure “load_pay dim” is run
to sum the pay records for each instructor by year, object, and session and then move the
resulting data into pay dim.

The purpose of this project is to give administrators the ability to run reports that
supply the cost of offering a specific course. To accomplish that we need to determine how

much the instructor or instructors were paid. My research showed that the best way to

load rate tbl.

17

accomplish this was to take the total amount paid to an individual and then divide it by the
amount of Load carried during the same period of time. This process is performed by the

stored procedure “calc_load rate” which then puts the resulting information into the table

Once the course dim, meeting dim, pay dim, and load rate_tbl tables have been

the data warehouse.

populated we have all of the necessary data and are ready to move it into the pay_fact table.
This is accomplished by the stored procedure “load_pay dim” which coordinates records

from all four tables in pay fact records. Once this is accomplished, reports can be run against

A list of the stored procedures in the order they should be run (along with a short

description) is shown in table 8.

Table 8. List of stored procedures

Name

Parameters

Description

upd_mtg_obj
upd_fac load
adjust_load

set pay sess_sp

set_pay sess fa

load pay dim
calc_load_rate
load pay fact

Calendar year
Calendar year
Calendar year

Beginning date
for year
Ending date for
year Calendar
year

Beginning date
for year
Ending date for
year Calendar
year

Calendar year
Calendar year
Calendar year

Populate blank fac_obj fields.

Populate missing fac_load values.
Recalculates load when the course and
instructor FLT values are different.
Assign sessions to pay records for Spring.

Assign sessions to pay records for Fall.

Aggregate pay data from pay_detail
Assign a dollar value to each load hour.
Move data to the fact table and assign a
dollar value to each record.

One other table not discussed above is the faculty tbl which was created to hold data

faculty pay.

regarding faculty members that might prove useful in analysis, but has little or no bearing on

Uploading information to the course dim, meeting_dim, pay dim, acad_cal_tbl, and

faculty tbl tables is accomplished using scripts created especially for this purpose. These

18

scripts run the appropriate SQL statement against the ERP database, save the resulting data to
a text file, and then upload the file to the appropriate data warehouse table. A full list of the
scripts with a brief description is shown in table 9, the contents of each script can be viewed

in appendix D.

Table 9. Scripts used to extract data for the warehouse

Script Name Parameters Description

dwinstrpay.scr Calendar Year Calculates adjunct and overload pay
on the production database, data is
then included by meetingdim.scr.

acadcaltbl.scr Calendar Year Defines beginning and ending dates
for each session.

coursedim.scr Calendar Year Provides details of each course and
section combination.

facultytbl.scr Calendar Year Supplies general information about

each faculty member.
meetingdim.scr Calendar Year Details of course meetings, and the
instructor assigned.

paydetail.scr Calendar Year =~ Amounts paid
runinstrdw.scr Beginning Date, A master script that launches all
Ending Date, others.

Calendar Year

All records relating to sections, meetings, and instructor assignments have a year and
session, but corresponding values do not exist in the general ledger, I therefore decided to find
a parameter for the scripts that could cross this boundary. The calendar year serves that
purpose since all section records have a year component and general ledger records have entry
dates. For example, a query of section records for 2010 and general ledger records that fall
between 01/01/2010 and 12/31/2010 will capture-all instructor records and corresponding pay
records for that year. As an added bonus, the two week break at Christmas when almost no
activity occurs, acts as a buffer to prevent overlap from one year to the next. Therefore, all
scripts except the one for the academic calendar (which is quite small) only require the

desired year as a parameter.

Implementation

The data warehouse itself is located in a MySQL database for two reasons. First, as stated

earlier, one goal of the project is to allow complex reporting to be undertaken without affecting

19

performance on the production database, something which is currently impossible. And secondly, a
data warehouse currently exists containing a great deal of information relating to courses and student
enrollment. Tt is my hope that placing faculty information within the same database will enhance the
usefulness of the data collected.

Since the choice of using a MySQL database was essentially made for me and I am unfamiliar
that system (at the present time), some study was required before I could create either tables within the
database or scripts to populated those tables. Once this had been accomplished, work proceeded on
creating the required SQL statements, scripts, tables and related stored procedures discussed in the
section labeled “Data Warehouse Design”.

One note regarding the importing of data: as has been stated, we will be extracting data from
Daytona State’s ERP database, which is an Informix system, and bring it into a MySQL database, a
completely different animal. Since information can’t be moved directly from one system to the other,
it was necessary to export data from Informix into a neutral medium (i.e. a text file) and import the
resulting file(s) into the MySQL tables.

With the data warehouse created and information safely stored within it, my attention now
turned to reporting. We have several reporting tools available at DSC, such as Crystal Reports (which
I have used for a number of years) and IBM’s Cognos (which I am just beginning to learn). My
original intention was to create reports in Cognos, but that is not proving to be expedient at the present

time, so the initial set of reports will be created using Crystal Reports.

20

CASE STUDY (RESULTS AND DISCUSSION)

A fundamental principle of this project was to glean salary information from actual
payment records in the general ledger. The following reports from the data warchouse (where
identifying information has been replaced with record numbers) validate that this basic goal

was achieved.

Record Contract Estimated
Number Salary Salary
40 51,000.00 52,500.09

94 62,100.00 64,876.46

14 51,800.00 53,350.04

134 56,100.00 57,650.04

188 80,900.00 109,820.37

209 51,000.00 52,110.45

231 62,800.00 82,566.65

275 72,200.00 92,563.32

Figure 5. Comparison of salaries for 9 month faculty documented in the live data base
with those calculated from the data warehouse

Contract Record Contract Estimated
Months Number Salary Salary
12

7,140 107,200.00 82,950.02

7,190 91,600.00 93,500.17

7,215 116,000.00 118,149.96

7,255 89,500.00 91,400.17

7,305 81,900.00 81,350.00

7,330 85,100.00 86,949.96

7,380 66,700.00 62,149.84

7,430 110,300.00 112,400.09

Figure 6. Comparison of salaries for 12 month faculty documented in the live data
base with those calculated from the data warehouse

21

Most of the amounts from the data warehouse are very close to those in the live
database. Several instances where the amounts differed greatly were investigated and it was
found that the Load carried by the instructor was correspondingly low, this would indicate the
individual could have taken an extended leave, been ill, or was otherwise prevented from
carrying a full load and subsequently earing his or her full salary. Cases where the difference
is relatively slight could (possibly) be explained by a change in salary. The logic for that
being...if an individual’s salary were to change, there would be an immediate change in
amounts appearing in the general ledger, but the stated salary would no longer be accurate.

Results provided by the initial Crystal Report were interesting for several reasons.
First, it was only then that I realized there’s really no way to verify the results for fulltime
instructors, those teaching under the 52001 general ledger code. ~We have ample
documentation via the course schedules that they taught during a specific period of time. We
also know the instructors carried a certain amount of “load” which is documented in the
course meeting records. And finally, the general ledger documents that faculty were paid
specific amounts of money under specific general codes.

Whatever a specific individual’s records might give as his or hers salary, or the official
pay rates say they should be paid for teaching as an adjunct, the general ledger says the
individual was given a specific amount of money under a specific general ledger code during
a specific period of time. The basic logic I used was to total the amount paid during a
calendar year, the amount of load carried during that same period of time, and then divide the
totals together and come up with a dollar amount per load hour. The resulting load rate could
then be used to calculate the cost for specific courses by multiplying an instructor’s load

amount for the course by the load rate.

22

pay_fact meeting_dim faculty_tbl
course_dim D meetingkey D meetingkey B fac_no
D crskey [crskey B id Did
»yr [paykey D crskey fullname
B sess tot_load B yr Dyr
»cs load_rate B sess D cess
B :ec tot_amt B obj chj
enr_num fac_load fit
fund fte dept
subfund fit ctrct_mos
func beg_date ctrct_amt
preg end_date
dept alt_lcad
load_rate
instr_no

Figure 7. Crystal Report linking

Since the basic logic is very simple, the method described above should work very
well for instructors teaching under the 52001 general ledger and provide very reasonable,
useful estimates. This is especially true when you consider that — at the very least, since
moving to the current ERP system — the ability to produce estimates of any kind has never
existed, at all.

However, results for the Adjunct and Overload general ledger codes were dismal. In
some cases, costs matched very closely those produced by currently used reporting tools, but
in other case they were wildly off. The puzzling aspect of this was the general ledger records
themselves, payments could be found that tracked very closely with amounts predicted for
some course, but in others additional payments were present. At this point in time, I have no
idea what those payments could be — perhaps a bonus of some type? — but they are clearly
defined in the general ledger as either Adjunct 0; Overload amounts. In any event, I believe
the extremely complex pay structure for these courses is the root of the trouble and make it
quite impossible to successfully apply the method used for fulltime instructors. Table 10,

shown below, will give you some of idea of the complexities involved.

23

Table 10. Rates used to calculate Adjunct and Overload pay

Rate Type Subtype Description Rate
AE Adult Ed hourly $27.00
AE 52102 Non-instructor $27.00
AE ARC Adults with disabilities $24.00
AE AWPR Adults with disabilities $24.00
AE CONC Adults with disabilities $24.00
AE (0] AE Overload rate $32.00
AE WORC Adults with disabilities $24.00
CC College Credit $40.00
CC CO Co-Op Courses $40.00
CC D Direct Instruction $40.00
CcC JT On Job Training $40.00
CC ON Online $38.00
CcC PL Private Lessons $40.00
CC TBAS College Credit $45.00
e TBED College Credit $45.00
CcC TBET College Credit $45.00

The rates contained in table 10 are applied to “contract hours” that have been assigned
to each instructor meeting record and as you can see there is a multitude of possibilities. The
easy part is the different rates depending on whether the course is either College Credit or
Adult Education. But it is the “Subtype” category that makes things more interesting because
the individual subtypes don’t apply to courses in a consistent way. For example, the 52102
subtype for AE is simply a general ledger code, but the ARC subtype refers to a subprogram
code. Likewise for College Credit courses, where the values “CO”, “ON” “JT”, etc. are
instructional methods, “TBAS”, TBED” and “TB.ET” are specific tuition codes.

Contract hours were mentioned earlier. Normally contract hours are created when
instructors are assigned to a specific meeting, but this not always true. For example, Online
courses have a variable rate, their contract hours calculated by multiplying the course’s load
value by the number of enrolled students. A similar principle applies to several other
instructional methods. Figure 8 contains an excerpt from a reporting application that deals

with these complexities.

24

UPDATE db_facload_rec

SET cntr_hrs = reg_num * (7.5*hrs),
crspay = reg_num * (7.5%hrs) * crsrate
WHERE prog = 'CC'

AND im = 'PL'

AND crs_no <> 'MUN1362°

AND cntr_hrs > 0

Figure 8. A sample pay calculation SQL statement

Not surprisingly similar complications come into play for calculating load values
where rates determined by the ERP (or our home grown Catalog Maintenance) application
aren’t deemed to be accurate. I will not go into a discussion on this subject, but have included
a sample of code from one of our Builder C++ applications to give you some idea.

Because of the delicate manipulations that go into calculating Adjunct and Overload
pay as well as load values, the method used for Inload courses could not be applied. Iinstead
reproduced the long, seemingly convoluted series of calculations, an example of which can be
seen in Figure 8, in a series of SQL statements, the resulting (and successful) script
“DWINSTRPAY.SCR”) can be viewed in Appendix F. Excerpts from various reports
demonstrating this success can be seen on the following pages. It should be noted that any
identifying numbers have been removed and replaced with record numbers that are useless for

linking this information to any individual.

course-section fac load obj tot amt
CJKD020-A1 0.53 56001 319.99
CJK0020-A2 0.53 56001 319.99
CJKD020-A2 “D.53 556001 319.99
CJK0D40-AU 0.27 56001 160.02
CJK0D040-AU 053 56001 319.99
CJK0040-AU 0.53 56001 319.99
CJK0040-AU 213 56001 1,280.01
CJKD040-SP 213 56001 1,280.01
CJKD040-SP 1.07 56001 640.03

Total for G/L code: 4,960.01
Total for Instructor: 4,960.01

Figure 9. Report showing instructor pay from the data warehouse for the Adjunct
(56001) general ledger code

25

Payment Schedule

Cost Center Course 10/15/2010 10/29/2010 11/30/12010
10-111270201 CJKD020-A1 $320.00
10-111270201 CJK0020-A2 $640.00
10-111270201 CJIKD040-AU $2.030.00
10-111270201 CJK0D0490-SP $1,920.00
Totals: $260.00 $2,080.00 $1,920.00

Payment Schedule Total: 84,950 00

Figure 10. Report showing instructor pay from the live database for the Adjunct
(56001) general ledger code

Course/Section G/L Load Load Rate Totals
Faculty ID
CJKD020-A1

4 52001 3.20 1,184.76 3791.25

7 56001 2.67 642.88 1,714.23

9 55001 1.60 815.84 1,305.27

12 56001 1.50 233444 3,501.52

13 56001 0.53 600.01 319.99

18 56001 3.20 681.63 2181.07

19 56001 0.53 685.07 365.35

Total for this section: 13,178.67

Figure 11. Excerpt from course-section expense report for the Adjunct (56001) general
ledger code

You can see in Figures 9 and 11 that for course CJK0020, section Al the amount
$319.99 appears and that Figure 10 has a slightly different amount of $320 (due to rounding).
All of these values apply to the same person thereby testifying to the consistency and
accuracy of the process. Similar results can be seen in Figures 13 through 14 below regarding

NUR1423L, section 82.

26

course-section fac load 0bj tot amt
MUR1423-01 200 52001 191253
NUR1423-03 200 52001 1.971253
MUR1423-80 2.00 52001 191253
MUR1423L-12 443 52001 423262
NUR1423L-32 157 52001 1,504.97
MUR1423L-81 157 52001 1,504.97
NUR1423L-82 3.93 52001 3,759.27
NUR1423L-82 0.92 52001 880.62
MUR1423L-83 157 52001 1,504.97

Total for G/L code: 19,125.01
NUR1423L-82 065 52101 391.80

Total for G/L code: 391.80

Total for Instructor: 19,516.81

Figure 12. Report showing instructor pay from the data warehouse for the Overload
(52101) general ledger code

GIL Code 52101 - FT Faculty Overload

Course Sec Ret Prog Dept Cost Center Rate Load Pay Hrs Pay
NUR1423L 82 2343 cc NUR 10-111230102 $40.00 0853 9795 $391.80

Dt: 08/30/2010~12/17/2010 Tm: 02:00 pm~03:20 pm Days® —W-
Camp: 0007 Bldg: 0001 Rm: 128A

Subtotals 0.65 $391.80
Total Lead and Released Time 0.00

———"-="" |
Grand Totals 20.64 $391.80

Figure 13. Report showing instructor pay from the live database for the Overload
(52101) general ledger code

Course/Section GI/L Load Load Rate Totals
Faculty ID -
NUR1423L-82
2 52001 485 956.26 4,639.89
3 52001 0.50 1,051.88 520.68
4 52101 0.65 600.00 391.80
Total for this section: 5,552.37
Total for the course: 5,552.37

$5,552.37

Figure 14. Excerpt from course-section expense report for the Overload (52101)
general ledger code

27

CONCLUSIONS

This project was able to achieve its objective of supplying cost information for courses
offered by Daytona State College. Because there is no direct link between amounts paid to
instructors and the courses they teach, it was necessary to estimate the values, but they are
very reasonable estimates that will work nicely for planning and estimating purposes.

So far as deliverables are concerned, it was my original intention to create reports
using the Cognos tool that Daytona State is currently implementing, but that isn’t possible at
this point in time. I have instead elected to use Crystal Reports for the initial set of reports
since it is a very powerful reporting that is well established at this college and can be used and
understood by a wide number of people. It has one other advantage, we have a home-grown
application at Daytona State called “Kaleidoscope™ that has the ability to display Crystal
Reports. Until such time as reports can be created using Cognos, Crystal Reports provides a
very effective means of distributing information gleaned from the new data warehouse. An
example of a very simple report is shown in figure 13 (with redacted employee ID numbers,

of course).

28

2010 FA
Course Section Redacted GIL Load Load Rate Totals
NUR1423L 11
2 56001 5.00 642.65 3,855.93
Total for this section: 3,855.93
NUR1423L 12
3 52001 443 956.26 423262
4 52001 1.57 1.051.88 1,655.44
Total for this sectien: 5,888.06
NUR1423L 13
5 52001 157 1.051.88 1,655.44
6 56001 443 642.65 2,844 52
Total for this section: 4,499.96
NUR1423L 31
8 56001 6.00 642.65 3,855.92
Total for this section: 3,855.92
NUR1423L 32
9 52001 157 956.26 1,504.97
10 56001 443 586.44 259572
Total for this section: 4,100.69
NUR1423L 33
11 52001 1.50 1,051.88 1,577.81
12 56001 450 560.00 2,520.00
Total for this section: 4,097.81
NUR1423L 56
13 52001 0.86 1,051.88 901.88
14 56001 514 642.65 3,304.91
Total for this section: 4,206.79
NUR1423L 57
16 52001 6.00 1.051.88 6,311.25
Total for this section: 6,311.25
NUR1423L 58
18 52001 6.00 1,051.88 g3M2s 0
Total for this section: 6,311.25
NUR1423L 81
19 52001 1.57 956.26 1,504.97
20 56001 443 586.44 259572 L=
Total for this section: 4,100.69
NUR1423L 82
22 52001 485 956.26 4,639.89
23 52001 0.50 1,051.88 520.68
24 52101 0.65 600.00 391.80
Total for this section: 5,552.37
NUR1423L 83 i
25 52001 157 956.26 1,504.97
26 56001 443 586.44 259572 000
Total for this section: 4,100.69
Total for the course: 56,881.41

$56,881.41

Figure 13. An excerpt from a Crystal Report detailing course expenses for a nursing lab

One thing I learned from this project is that extracting data from our production
database and arranging within the data warehouse in a useful form was trickier than I first
thought. The data warehouse itself went through several iterations before settling into the

form presented in this paper. I also learned a few syntax things related to the scripts that had

29

to be created and noticed that SQL doesn’t always behave the same way on a MySQL
database as it does on the Informix database I use every day.

Once this data warehouse proves itself, in the future I hope to add more detail
regarding courses and fulltime instructors. And, perhaps to someday devise a method for
reliably calculating Adjunct and Overload expenses. Also, I am now wondering if it would be
possible to expand the dataset beyond instructors to include other expenses associated with
courses, supplies used in a chemistry or biology class would be good examples of this.

Sadly, compiling data for the Adjunct and Overload instructors using the method
applied to fulltime faculty failed, but data was successfully transferred using existing
calculations so that information for three classes of faculty will be available.

In closing, let me just say that while the data structure within the ERP system makes it
impossible to be 100% accurate in matching faculty salaries with courses taught, my data
warehouse provides very reasonable estimates. The simple fact that any estimates are
available at all is a huge step forward since no data of any kind was available before the data
warehouse was constructed. And finally, this system should provide very useful information
to help guide administrative decision making and its importance will only grow as the years

go by and more data is added to the system.

30

REFERENCES

Jenzabar, Inc. (2005). General Ledge Reference, Technical Manual. Cambridge, MA, USA.
Jenzabar, Inc. (2005). Human Resources User Guide. Cambridge, MA, USA.

Jenzabar, Inc. (2005, December 22). Master Glossary. Cambridge, MA, USA.

Jenzabar, Inc. (2007, June 26). General Ledger User Guide. Cambridge, MA, USA.

1.1
1.2
1.3
1.4

2.1
2.2
22.1
222
2.3
2.3.1
2.3.2
2.3.3
24
2.3

3.1
3.2
3.2.1
3.2.2
3:2.3
3.24
3.3
3.3.1

APPENDICES

31

APPENDIX A: WORK BREAKDOWN STRUCTURE

Analyze production database

Study CARS/Jenzabar documentation
Document table structure

Meet with individual department heads
Analysis complete

Create method to extract data

Identify needed datafields

Create SQL's to extract required data
Design SQL statements

Test the statements in a controlled environment
Develop export files

Format data from existing SQL's

Perform a test run of the modified statements
Check output files for accuracy

Schedule run times for data extraction
Data extraction method complete

Create data warehouse

Study MySQL documentation

Create schemas for data warehouse tables
Design table schemas

Implement table schemas

Correct schema errors

Schemas complete

Develop upload SQL statements

Create SQL's to upload text files

332
333
334
3:3.5
3.4

4.1
4.2
4.3
4.4

3.1
3.2
53
54
3.5

Run statements in controlled environment with test data
Analyze results

"Correct errors, if any are found"
Upload SQL's complete

Data warehouse complete

Create Reports

Select reporting tool

Design reports

Create reports

Reports complete

Release data warehouse

Create needed documentation
Distribute reports

Meet with interested administrators
Demonstrate datawarehouse
Debrief database administrator

Project complete

32

33

GANTT CHART

APPENDIX B

W Tntlan Hgls 1

ISRHEEH

1 SulyGiSiaate doinettier
17 Gegmisbeshcre
13 Vetwhe sdvconisesatresd Mad

1§ Aoss cogien

2 - 2-Creme maited t extract sbte By MoaltUH Fni2ben
I mihresdluitie fa mdiet Vel
21 - Coeate SUs ot ragured St Sdwye Teel 2 MoefalEY 7
zl Tesgn $G. saensis s TelZt W
222 Tagi e staeeds 7 4 2omoled anvtomer s RSB v

U - Demigenperities Sidws TeeQUEYW o8 €
i Fomal daia o oy S 1oy el Teldr
P Serenplest an ol pedfed Toeneny Ly R MR L
e Chetk ulpes e e matiacy lhp RRNART RRRY
i Mdehmnelves hegmataom PRV 26 CH U S
& homdmmmdam taw BT RINY G
3 = 3-Cegte dais varedcuse iyt e (207H

1 SulyBAl Grumesit ihs RAREY F

32 - Creste schemas for datp vitredcuse lables Sdiys Mo @Y

2 Ceagriabe sounng taw iming 3

inglerer tabie schaves gy WeddElY A

a {FEienIns Sty WA 3
o s congish s Tyl

33 - Deiopupics 30C statements Lidwe
i Qe Vivmipteiain

S gmisreniy 1 2oled anviome i 4
Kggenas foy W2 e

34 o fuyye o 13y ANORT N

13 it Sy oorpien Jws Wi

34 i aveves comies T AMUERT ROV A

4 - 4. Coagte Seports Bidye TR The QNI 1]

i Sddegemmi Itses TeRE MulGer

2 s Iws TeRAL wmiESr ¥

4 Do law ReBEY MlMEr 2

4 Bmer aw iR 7 T

§ ~ 5. Release dals waradouse 5w QUM ¥ et

L Ceswasdssonnsian iy BN ¥
52 Dsrbanpd §Xuys T ¥
B Veswh e edstibo

8 Deonermdiseenes I54es RO OAY
£ Detre comdess soTaRTID oy AR
t Fumtomae Ghyw RSl e

34

APPENDIX C: TABLE CREATION STATEMENTS

acad_cal _tbl:

CREATE

TABLE johntest.acad cal tbl

(
cal no INT AUTO_INCREMENT,
yr INT,
sess CHAR(4),
beg date DATE,
end date DATE,
PRIMARY KEY (yr, sess),
CONSTRAINT ix1 UNIQUE (cal _no),
CONSTRAINT ix2 UNIQUE (yr, sess)

)
ENGINE=MyISAM DEFAULT CHARSET=latinl

course_dim:

CREATE
TABLE johntest.course_dim

(

)

crskey INT,

yr SMALLINT,

sess CHAR(4),

crs_no CHAR(12),

sec_ no CHAR(2),

enr_ num INT,

fund CHAR(2),

subfund CHAR(9),

func CHAR(4),

prog CHAR(4),

dept CHAR(4),

PRIMARY KEY (crskey),
CONSTRAINT ix1 UNIQUE (yr, sess, crs, sec),
CONSTRAINT ix2 UNIQUE (crskey)

ENGINE=MyISAM DEFAULT CHARSET=latinl

33

faculty_tbl:

CREATE
TABLE johntest.faculty tbl

(

)

fac no INT AUTO INCREMENT,

id INT,

fullname CHAR(32),

yr SMALLINT,

sess CHAR(4),

obj CHAR(S),

fit CHAR(2),

dept CHAR(4),

ctrct mos SMALLINT,

ctrct_amt FLOAT,

PRIMARY KEY (id, yr, sess),
CONSTRAINT ix1 UNIQUE (fac_no),
CONSTRAINT ix2 UNIQUE (id, yr, sess)

ENGINE=MyISAM DEFAULT CHARSET=latinl

36

load_rate_tbl:

CREATE

TABLE johntest.load rate tbl

(
id INT,
yr SMALLINT,
sess CHAR(4),
obj CHAR(S),
load sum FLOAT,
amt_sum FLOAT,
load rate FLOAT,
CONSTRAINT ix1 UNIQUE (id, yr, sess, obj),
PRIMARY KEY (id, yr, sess, obj)

)
ENGINE=MyISAM DEFAULT CHARSET=latinl

37

meeting_dim:

CREATE
TABLE johntest.meeting_dim

(

)

meetingkey INT NOT NULL AUTO_INCREMENT,

id INT,

crskey INT,

yr INT,

sess CHAR(4),

obj CHAR(S),

fac load FLOAT,

fte FLOAT,

fit CHAR(2),

beg date DATE,

end date DATE,

alt_load FLOAT,

load rate FLOAT,

instr_no INT,

crspay FLOAT,

im CHAR(2),

crs_no CHAR(12),

sec_no CHAR(2)

PRIMARY KEY (meetingkey),
CONSTRAINT ix1 UNIQUE (meetingkey),
INDEX ix2 (yr, sess, Crs_no, sec_no),
INDEX ix3 (id, yr, sess, obj)

ENGINE=MyISAM DEFAULT CHARSET=latinl

38

noninstr_tbl:

CREATE
TABLE johntest.noninstr_tbl

(

)

noninstr_ no INT NOT NULL,

yr INT,

sess CHAR(4),

id INT,

accrl_meth CHAR(1),

fte FLOAT,

fac load FLOAT,

fac_dept CHAR(4),

obj CHAR(S),

fac_flt CHAR(2),

PRIMARY KEY (noninstr_no),
CONSTRAINT ix1 UNIQUE (yr, sess, id, obj),
CONSTRAINT ix2 UNIQUE (noninstr_no)

ENGINE=MyISAM DEFAULT CHARSET=latinl

39

pay_detail:

CREATE
TABLE johntest.pay detail

(

)

paydetailkey INT NOT NULL AUTO INCREMENT,
jmml no INT,

id INT,

yr SMALLINT,

sess CHAR(4),

fund CHAR(2),

subfund CHAR(9),

obj CHAR(S),

func CHAR(4),

fscl yr CHAR(4),

amt FLOAT,

jml_date DATE,

PRIMARY KEY (paydetailkey),
CONSTRAINT ix1 UNIQUE (paydetailkey),
INDEX ix2 (id, yr, sess, obj)

ENGINE=MyISAM DEFAULT CHARSET=latinl

40

pay_dim:

CREATE

TABLE johntest.pay dim

(
paykey INT NOT NULL AUTO_INCREMENT,
id INT,
yr INT,
sess CHAR(4),
obj CHAR(S),
tot amt FLOAT,
PRIMARY KEY (paykey),
CONSTRAINT ix1 UNIQUE (paykey),
INDEX ix2 (id, yr, sess, obj)

)

ENGINE=MyISAM DEFAULT CHARSET=latinl

41

pay_fact:

CREATE

TABLE johntest.pay fact

(
instr_no INT,
crskey INT,
paykey INT,
tot load FLOAT,
load rate FLOAT,
tot amt FLOAT,
PRIMARY KEY (instr_no),
CONSTRAINT ix1 UNIQUE (instr_no, crskey, paykey)

)
ENGINE=MyISAM DEFAULT CHARSET=latinl

42

APPENDIX D: EXTRACTION SCRIPTS

dwinstrpay.scr

#!/bin/csh -f | more

#!/bin/sh

HHHHHH A
This script populates dwinstrpay rec H#

Hit H

1t then loads the information into the mysql system
HHHHHHHH A

set in_yr=$1

set datfil=/work/hardebj/dwdata/dwinstrpay.dat

echo "Extracting course, instructor data into " $datfil
isql cars << END_SQL > & dwinstrpay.err

SET ISOLATION TO DIRTY READ;

DELETE FROM dwinstrpay rec
WHERE dwinstrpay rec.yr = $in_yr;

INSERT INTO dwinstrpay rec
(instr_no,
id,

seckey,
mtg_no,
facdept,
ctrct_mos,
db_ctret,
crsrate,
crspay,
facflt,
ctrct_amt,
facobyj,
fullname,
crsobyj,
crsflt,

fte,

pct,
cntr_hrs,
accrl_meth,

43

instr_days,
instr_beg_time,
instr_end_time,
instr_beg_date,
instr_end_date,
tothrs2,
adjload,
release load,
release fte,
campus,

bldg,

room,

im,
calc tot hrs,
tot_hrs,

yr,

sess,

subsess,

stat,

reg _num,
enr_num,
max_reg,

hrs,
mtg beg date,
mtg_end date,
sec_locator,
subprog,
sec_beg date,
sec_end date,
sec_grp no,
sec_guaranteed,
prog,

crs_dept,
crsctgry,

tuit _code,
Crs_no,

sec_no,

cat,

fund,

subfund,
function,
crsltitle,
crs2title)
SELECT
instr_rec.instr_no,
fac rec.id,

dwseckey.seckey,
mtg_rec.mtg no,
fac_rec.dept,

fac rec.ctrct_mos,

fac rec.db_ctrct,

0.0 crsrate,

0.0 crspay,

fac rec.flt,
fac_rec.ctrct_amt,

fac rec.obj,
id_rec.fullname,
instr_rec.obj,
instr_rec.flt,
instr_rec.fte,
instr_rec.pct,
instr_rec.cntr_hrs,
instr_rec.accrl_meth,
db _instr2 rec.days,
db _instr2 rec.beg time,
db_instr2 rec.end_time,
db_instr2 rec.beg_ date,
db_instr2 rec.end_date,
db_instr2 rec.tot_hrs,
mtg_rec.tot_hrs,
noninstr_rec.load,
noninstr_rec.fte,
mtg_rec.campus,
mtg_rec.bldg,
mtg_rec.room,
mtg_rec.im,

mtg rec.calc_tot hrs,
mtg_rec.tot_hrs,
S€c_rec.yr,
S€C_rec.sess,
sec_rec.subsess,
sec_rec.stat,
sec_rec.reg_num,
sec_rec.enr_num,
sec_rec.max_reg,
sec_rec.hrs,
sec_rec.beg_date,
sec_rec.end date,
sec_rec.sec_locator,
sec_rec.subprog,

mtg rec.beg date,
mtg rec.end date,

45

db_sec2 rec.sec_grp no,
db sec2 rec.sec_guaranteed,
Crs_rec.prog,
crs_rec.dept,
crs_rec.crsctgry,
crs_rec.tuit_code,
Crs_rec.crs_no,
Sec_rec.sec_no,
crs_rec.cat,
crs_rec.fund,
crs_rec.subfund,
crs_rec.function,
crs_rec.titlel ||'' || crs_rec.title2 || "' || crs_rec.title3,
db_crs2 rec.title
FROM
id_rec,
fac rec,
instr_rec,
mtg rec,
secmtg_rec,
sec_rec,
Crs_rec,
dwseckey,
OUTER db_crs2 rec,
OUTER db_sec2 rec,
OUTER db _instr2 rec,
OUTER noninstr_rec
WHERE
crs_rec.crs_no=db_crs2_rec.crs_no
AND crs_rec.cat=db_crs2_rec.cat
AND crs_rec.crs_no = sec_rec.crs_no
AND crs_rec.cat = sec_rec.cat
AND sec_rec.yr = $in_yr
AND sec_rec.cat=db_sec2_rec.cat
AND sec_rec.yr=db_sec2_rec.yr
AND sec_rec.sess=db_sec2_rec.sess
AND sec_rec.crs_no=db_sec2 rec.crs_no
AND sec _rec.sec_no=db_sec2_rec.sec_no
AND sec_rec.yr = noninstr_rec.yr
AND sec_rec.sess = noninstr_rec.sess
AND sec _rec.crs_no = secmtg_rec.crs_no
AND sec rec.cat = secmtg_rec.cat
AND sec_rec.yr = secmtg_rec.yr
AND sec_rec.sess = secmtg_rec.sess
AND sec_rec.sec_no = secmtg_rec.sec_no
AND dwseckey.crs no = secmtg_rec.crs_no

AND dwseckey.cat = secmtg_rec.cat

AND dwseckey.yr = secmtg_rec.yr

AND dwseckey.sess = secmtg_rec.sess

AND dwseckey.sec_no = secmtg_rec.sec_no
AND secmtg _rec.mtg_no = mtg rec.mtg no
AND mtg rec.mtg no = instr_rec.mtg_no

AND instr_rec.instr no = db_instr2_rec.instr_no
AND instr_rec.id = noninstr_rec.id

AND instr rec.id = fac_rec.id

AND fac rec.id =1id_rec.id;

UPDATE dwinstrpay rec
SET
tothrs2 = ((reg_num * hrs) / 15),
tot_hrs = ((reg_num * hrs) / 15)
WHERE
(im='CO'OR im ="D")
AND crsctgry IN ('PSV', 'AP’)
AND yr = $in_yr;

UPDATE dwinstrpay rec

SET tothrs2 = ((reg_num * hrs) / 24),
tot_hrs = ((reg_num * hrs) / 24)
WHERE (im ='CO' OR im ='D")
AND crsctgry IN ('PSAV', 'APPR")
AND yr = $in_yr;

UPDATE dwinstrpay rec

SET tothrs2 = (reg_num / 5),

tot_hrs = (reg_num/ 5)

WHERE im = "'JT'

AND crs_dept NOT IN ('APP','/DAS')
AND yr = $in_yr;

UPDATE dwinstrpay rec

SET tothrs2 = ((enr_num * hrs) / 15),
tot_hrs = ((enr_num * hrs) / 15)
WHERE im ='ON'

AND crs_dept ="'APP'

AND crsctgry IN ('PSV', 'AP")

AND yr = $in_yr;

UPDATE dwinstrpay rec

SET adjLoad = ((tothrs2/CAST(crsflt as int))*CAST(facflt as int))
WHERE tot_hrs > 0

AND (crsflt <> 'PR' and facflt <> 'PR")

47

48

AND yr = $in_yr;

UPDATE dwinstrpay _rec

SET adjLoad = ((tot_hrs/CAST(crsflt as int))*CAST(facflt as int))
WHERE tot_hrs >0

AND (crsflt <> 'PR' and facflt <> 'PR")

AND yr = §$in_yr;

UPDATE dwinstrpay_rec
SET dwinstrpay_rec.crsrate = (select crs_rate
from db_crsrate_table
where db_crsrate table.rate type = dwinstrpay_rec.prog
and (db_crsrate table.sub_type is null or db_crsrate_table.sub_type =")
and db_crsrate table.inactive date is null)
WHERE dwinstrpay_rec.prog ='CC'
AND dwinstrpay rec.yr = $in_yr
AND dwinstrpay rec.crsobj !='52001";

UPDATE dwinstrpay rec

SET dwinstrpay _rec.crsrate = (select crs_rate
from db_crsrate_table
where db_crsrate table.rate_type = dwinstrpay_rec.prog
and db_crsrate _table.sub_type = dwinstrpay_rec.im
and db_crsrate table.rate type = dwinstrpay_rec.prog
and db_crsrate table.inactive date is null)

WHERE dwinstrpay rec.prog = "'CC'

AND dwinstrpay rec.crsobj !="'52001"

AND dwinstrpay rec.yr = $in_yr

AND dwinstrpay rec.im ='ON';

UPDATE dwinstrpay rec
SET dwinstrpay rec.crsrate = (select crs_rate
from db_crsrate_table .
where db_crsrate _table.rate type = dwinstrpay_rec.prog
and db_crsrate table.sub_type = dwinstrpay rec.tuit_code
and db_crsrate table.inactive date is null
and db_crsrate table.rate_type = dwinstrpay_rec.prog)
WHERE dwinstrpay rec.prog ="'CC'
AND dwinstrpay rec.crsobj !='52001"
AND dwinstrpay rec.yr = $in_yr
AND (dwinstrpay rec.tuit code = "TBET'
OR dwinstrpay rec.tuit code ="TBED'
OR dwinstrpay rec.tuit code = 'TBAS');

UPDATE dwinstrpay rec
SET dwinstrpay rec.crsrate = (select crs_rate

from db_crsrate_table
where db_crsrate_table.rate_type = dwinstrpay rec.prog
and (db_crsrate_table.sub_type is null or db_crsrate_table.sub_type =")
and db_crsrate_table.inactive date is null)
WHERE dwinstrpay rec.prog ='AE'
AND dwinstrpay rec.crsobj !="'52001"
AND dwinstrpay rec.yr = $in_yr;

UPDATE dwinstrpay rec

SET dwinstrpay rec.crsrate = (select crs_rate
from db_crsrate table
where db_crsrate_table.rate_type = dwinstrpay rec.prog
and db_crsrate_table.sub type = dwinstrpay rec.accrl meth
and db_crsrate_table.inactive date is null)

WHERE dwinstrpay rec.prog ='CC'

AND dwinstrpay_rec.yr = $in_yr

AND dwinstrpay rec.crsobj ='52101";

UPDATE dwinstrpay rec

SET dwinstrpay_rec.crsrate = (select crs_rate
from db_crsrate table
where db_crsrate_table.rate_type = dwinstrpay rec.prog
and db_crsrate_table.sub_type = dwinstrpay _rec.crsobj
and db_crsrate_table.inactive date is null)

WHERE dwinstrpay rec.prog ="'CC'

AND dwinstrpay_rec.yr = $in_yr

AND dwinstrpay rec.crsobj ='52102";

UPDATE dwinstrpay rec
SET dwinstrpay_rec.crsrate = (select crs_rate
from db_crsrate table
where db_crsrate_table.sub_type = dwinstrpay_rec.subprog
and db_crsrate_table.rate_type = dwinstrpay_rec.prog
and db_crsrate_table.inactive date is null)
WHERE dwinstrpay rec.prog ='CC'
AND (dwinstrpay_rec.subprog = 'ARC'
OR dwinstrpay_rec.subprog = "WORC'
OR dwinstrpay_rec.subprog = 'AWPR'
OR dwinstrpay_rec.subprog = 'CONC")
AND dwinstrpay rec.crsobj !="'52001"
AND dwinstrpay rec.yr = $in_yr;

UPDATE dwinstrpay rec
SET crspay = cntr_hrs * crsrate
WHERE dwinstrpay_rec.yr = $in_yr;

49

UPDATE dwinstrpay rec

SET cntr_hrs = enr_num * hrs,

crspay = (enr_num * tot_hrs * crsrate * (pct/100))
WHERE prog ="'CC'

AND im ="'ON'

AND yr = §in_yr;

UPDATE dwinstrpay_rec

SET cntr_hrs = reg_num * (7.5 * hrs),
crspay = (reg_num * (7.5 * hrs) * crsrate)
WHERE prog ='CC'

AND im ="PL'

AND yr = §in_yr

AND crs_no <> 'MUNI1362",

UPDATE dwinstrpay_rec

SET cntr_hrs = (reg_num / 5) * 15,
crspay = ((reg_num / 5) * 15 * crsrate)
WHERE prog ="'CC'

AND im ="JT'

AND yr = §in_yr

AND crs_dept <> 'APP';

UPDATE dwinstrpay rec

SET cntr_hrs = (reg_num * hrs),
crspay = (reg_num * hrs * crsrate)
WHERE prog ="'CC'

AND (im ='CO' OR im ="D')
AND yr = $in_yr;

END SQL

Hit Hit
End of the extraction sql and execution

#

A

50

51

acadcaltbl.scr: academic calendar information

#!/bin/csh -f | more

#!/bin/sh
R
This script is used to populate the academic calendar table##

Hit it

1t then loads the information into the mysql system i
R

setin_yr=$1
set datfil=/work/hardebj/dwdata/acadcaltbl.dat

echo "unloading academic calendar information" $datfil
echo "for year " $in_yr

isql cars << END_SQL > & acadcaltbl.err
SET ISOLATION TO DIRTY READ;

unload to '$datfil'

select

0,

yr,

sess,

to_char(min(beg_date), '%y-%m-%d') as beg_date,
to_char(max(end_date), '%y-%m-%d') as end_date
from acad_cal rec

where

yr = $in_yr

group by yr, sess;

END SQL

echo "data file created"

#it i

End of the extraction sql and execution B
A
HHHHHHHHHHHHHH
Now we load the extracted information into mysql ~

i i

/mysgl/mysql/bin/mysql johntest << ADD_MYSQL

32

delete from acad cal_tbl
where yr = $in_yr;

load data LOCAL infile '$datfil'
REPLACE into table acad cal_tbl fields terminated by '|';

ADD MYSQL

echo "done"
End of MYSQL data load #Hit

Bttt <
—___—4

coursedim.scr: Course information

#1/bin/csh -f | more

#!/bin/sh
R
This script is used to populate course_dim H#

it Hit

It then loads the information into the mysql syste
R

setin_yr=9$1
set datfil=/work/hardebj/dwdata/coursedim.dat

echo "unloading course information to " $datfil
echo "for year " $in_yr

isql cars << END_SQL > & coursedim.err
SET ISOLATION TO DIRTY READ;

unload to '$datfil'
select
dwseckey.seckey,
SecC_rec.yr,
SeC_rec.sess,
sec_rec.crs_no,
sec_rec.sec_no,
sec_rec.enr_num,
crs_rec.fund,
crs_rec.subfund,
crs_rec.function,
Crs_rec.prog,
crs_rec.dept

from

dwseckey,

crs_rec,

sec_rec

where

dwseckey.yr = $in_yr

and dwseckey.yr = sec_rec.yr

and dwseckey.sess = sec_rec.sess

and dwseckey.crs_no = sec_rec.crs_no
and dwseckey.sec_no = sec_rec.sec_no

54

and crs_rec.cat = sec_rec.cat
and crs_rec.crs_no = sec_rec.crs_no;

END SQL

echo "data file created"

siit Hit

End of the extraction sql and execution Hit

R
A
Now we load the extracted information into mysql ~

it HHt

/mysgl/mysql/bin/mysql johntest << ADD_MYSQL

delete from course_dim
where course dim.yr = $in_yr;

load data LOCAL infile '$datfil’
REPLACE into table course dim fields terminated by '|';

ADD MYSQL

echo "done"
End of MYSQL data load #HH#

ﬁ

55

meetingdim.scr: Instructor meeting information

#1/bin/csh -f | more

#1/bin/sh
A
This script populates meeting_dim

it

It then loads the information into the mysql system
A

set in_yr=$1
set datfil=/work/hardebj/dwdata/meetingdim.dat

echo "unloading instructor load information to " $datfil
echo "for year " $in_yr

isql cars << END_SQL > & meetingdim.err
SET ISOLATION TO DIRTY READ;

unload to '$datfil'

select

Os

instr_rec.id,
dwseckey.seckey,
instr_rec.yr,
instr_rec.sess,
instr_rec.obj,
db_instr2_rec.tot_hrs,
instr_rec.fte,
instr_rec.flt,
to_char(sec_rec:beg_date, '%y-%m-%d') as beg_date,
to_char(sec_rec.end_date, '%y-%m-%d') as end_date,
mtg_rec.tot_hrs,

0.0,

instr_rec.instr_no,
dwinstrpay rec.crspay,
mtg_rec.im

from

dwseckey,

sec_rec,

secmtg_rec,

mtg_rec,

instr_rec,

56

outer db_instr2_rec,

outer dwinstrpay_rec

where

dwseckey.yr = $in_yr

and dwseckey.yr = secmtg_rec.yr

and dwseckey.sess = secmtg_rec.sess

and dwseckey.crs_no = secmtg_rec.crs_no

and dwseckey.sec_no = secmtg_rec.sec_no
and sec_rec.yr = secmtg_rec.yr

and sec_rec.sess = secmtg_rec.sess

and sec_rec.crs_no = secmtg_rec.crs_no

and sec_rec.sec_no = secmtg_rec.sec_no

and secmtg_rec.mtg no = mtg_rec.mtg_no
and mtg_rec.mtg no = instr_rec.mtg no

and instr_rec.instr_no = db_instr2_rec.instr_no
and instr_rec.instr_no = dwinstrpay_rec.instr_no;

END SQL

echo "data file created"

it Hit

End of the extraction sql and execution #Hi

A
R
Now we load the extracted information into mysql ~

Hit i

/mysql/mysql/bin/mysql johntest << ADD_MYSQL

delete from meeting_dim
where meeting_dim.yr = $in_yr;

load data LOCAL infile '$datfil'
REPLACE into table meeting_dim fields terminated by '[';

ADD MYSQL

echo "done"
End of MYSQL data load HH

e —

paydetail.scr: instructor pay information

#!/bin/csh -f | more
#!/bin/sh

llllllHllllllllllllllllHHHlllllllllllllll[““llllllllHllllllllllllIlllllllllllllllHllHllllllllllllllllllllllLLLl_Ll
ym— 717 1111 THIT 11T 111 T - 1T
TrrrlluHHHHIIHIIHHHHHHHHHHHHHHH”HHHHltllHHHI!HHHH”HHH”llIHIHHHHHHHHHHHN

This script is used to extract instructor pay and load it into pay_detail

H
Tt then loads the information into the mysql system

TRTRINIRTR IR TN IR TRV llllllll“llllHHll“Hllll“llllllllll“IIHIIHIlllH“lll[llllllllllllllllllll“llllllHllLLLL
oI - 17 111 o - 111t 117 117 111 I
TTrllIuIlllIlHHIlHHIlHHllIlHHHHHHHHHHHHHHHHH”HHH”HHHnHHH”uHuHuuuHHIHIHHH

setin_yr=$1
set datfil=/work/hardebj/dwdata/paydetail.dat

echo "unloading instructor pay information to " $datfil
echo "for year " $in_yr

isql cars << END_SQL > & paydetail.err
SET ISOLATION TO DIRTY READ;

unload to '$datfil’

select

01

vch_rec.jml_no,

gle rec.doc_id,
to_char(vch_rec.jrl_date, '%Y") as yr,
ISUI’

gltr_rec.fund,

gltr_rec.subfund, .
gltr_rec.obj,

gltr_rec.func,

vch_rec.fscl_yr,

gltr_rec.amt,

to_char(vch_rec.jrnl_date, "%y-%m-%d') as jrl_date
from

vch_rec,

gle rec,

gltr rec

where

veh_rec.jrl_date >='01/01/" || $in_yr
and vch_rec.jml_date <="12/31/"|| $in_yr
and veh_rec.vch_ref = gle_rec.jml ref

e

58

and vch rec.jrnl_no = gle rec.jrnl_no

and gle rec.jrnl_ref= gltr_rec.jrnl_ref

and gle rec.jrnl_no = gltr_rec.jrnl_no

and gle rec.gle no = gltr_rec.ent_no

and gle rec.ca_amt <0

and vch_rec.amt type ='ACT'

and gltr rec.stat = 'P'

and (gltr_rec.obj ='52001" or
gltr_rec.obj ='52101" or
gltr_rec.obj ='52102' or
gltr_rec.obj ='52103' or
gltr_rec.obj ='56001");

END _SQL

echo "data file created"

it i

End of the extraction sql and execution bt

HHHHHHHH A
R
Now we load the extracted information into mysql

i fi

/mysql/mysql/bin/mysql johntest << ADD_MYSQL

delete from pay detail
where pay detail.yr = $in_yr;

load data LOCAL infile '$datfil’
REPLACE into table pay_detail fields terminated by '[';

ADD _MYSQL

echo "done"
End of MYSQL data load Hi

—
ﬁ

59

facultytbLscr: information about the instructors

#!/bin/csh -f | more

#!/bin/sh

S A
This script extracts data and loads it into faculty tbl

#it

It then loads the information into the mysql system
S

set in_yr=$1
set datfil=/work/hardebj/dwdata/facultytbl.dat

echo "unloading instructor load information to " $datfil
echo "for year " $in_yr

isql cars << END_SQL > & facultytbl.err
SET ISOLATION TO DIRTY READ;

unload to '$datfil'

select distinct

0,

fac rec.id,

id rec.fullname,

instr_rec.yr,

instr_rec.sess,

fac _rec.obj,

fac_rec.flt,

fac rec.dept,

fac rec.ctrct_mos,

fac rec.ctrct_amt

from

dwseckey,

secmtg_rec,

mtg_rec,

instr_rec,

fac rec,

id_rec
where

dwseckey.yr = $in_yr

and dwseckey.yr = secmtg_rec.yr
and dwseckey.sess = secmtg_rec.sess
and dwseckey.crs_no = secmtg_rec.crs_no

60

and dwseckey.sec_no = secmtg_rec.sec_no
and secmtg_rec.mtg_no = mtg_rec.mtg_no
and mtg_rec.mtg no = instr_rec.mtg_no
and instr_rec.id = fac_rec.id

and fac rec.id =id_rec.id;

END SQL

echo "data file created"

Hi st

End of the extraction sql and execution Hit

A
A

Now we load the extracted information into mysql ~
i Ht

/mysql/mysql/bin/mysql johntest << ADD_MYSQL

delete from faculty_tbl
where faculty tbl.yr = $in_yr;

load data LOCAL infile '$datfil'
REPLACE into table faculty tbl fields terminated by '|';

ADD MYSQL

echo "done"
End of MYSQL data load Hit

— e S
———————_—____—_—__—_———_—_

runinstrdw.scr: Runs all scripts and stored procedures in the correct order

#!/bin/csh -f | more

#!/bin/sh

HHHHHHH A
This script is used to all of the instructor Hi
pay info scripts it
s sit

A
set in_yr=$1

set in_beg_date=$in_yr"-01-01"
setin_end date=$in_yr"-12-31"

echo " Running instructor data warehouse scripts."
echo "for year " $in_yr

Jacadcaltbl.scr $in_yr;
Jcoursedim.scr $in_yr;
/meetingdim.scr $in_yr;
/noninstr.scr $in_yr;

/paydetail.scr $in_yr;

/facultytbl.scr $in_yr;

Hit it
End of the extraction scripts #H
T
Now run the mysql stored procedures H
it fit

/mysql/mysql/bin/mysql johntest << ADD_MYSQL
call upd mtg obj($in_yr);

call upd_fac load($in_yr);

call set_pay sess($in_beg_date, $in_end_date, $in_yr);

call load pay dim($in_yr);

61

call calc load rate($in_yr);
call load pay fact($in_yr);
ADD MYSQL

echo "Done"

End of MYSQL stored procedures #HH
HHHHHHHHHHHH

62

63

APPENDIX E: STORED PROCEDURES

upd_mtg_obj:

UPDATE meeting_dim

SET obj = (select obj from pay_detail
where pay_detail.yr = meeting_dim.yr
and pay_detail.sess = meeting_dim.sess
and pay_detail.id = meeting_dim.id
and pay_detail jrnl_date >= meeting_dim.beg_date
and pay detail jrnl_date <= meeting_dim.end_date
and pay_detail.obj ='52001")

WHERE meeting_dim.yr = in_yr

AND meeting_dim.obj =";

UPDATE meeting_dim

SET obj = (select obj from pay_detail
where pay_detail.yr = meeting_dim.yr
and pay_detail.sess = meeting_dim.sess
and pay_detail.id = meeting_dim.id
and pay detail.jrnl_date >= meeting_dim.beg_date
and pay_detail jrnl_date <= meeting_dim.end_date
and pay detail.obj ='52101")

WHERE meeting_dim.yr = in_yr

AND meeting_dim.obj ="

UPDATE meeting_dim
SET obj = (select obj from pay_detail
where pay_detail.yr = meeting_dim.yr

and pay_detail.sess = meeting_dim.sess

and pay_detail.id = meeting_dim.id
and pay detail.jrnl_date >= meeting_dim.beg_date
and pay detail jrnl_date <= meeting_dim.end_date
and pay_detail.obj ='56001")

WHERE meeting dim.yr =in_yr

AND meeting_dim.obj =";

64

upd_fac_load:

CREATE PROCEDURE ‘johntest’. update fac load'(IN in_yr smallint)
BEGIN

UPDATE meeting_dim

SET fac_load = alt_load

WHERE fac _load = 0.0

AND alt load > 0.0

AND yr =in_yr;
END

65

adjust_load:

CREATE PROCEDURE ‘johntest. adjust_load'(IN in_yr smallint)
BEGIN
UPDATE meeting_dim
SET meeting_dim.fac load =
((meeting_dim.fac_load / cast(meeting_dim.flt as UNSIGNED))
* (select cast(faculty tbl.flt as UNSIGNED)
from faculty tbl
where faculty tbl.yr = meeting_dim.yr
and faculty tbl.sess = meeting_dim.sess
and faculty tbl.id = meeting_dim.id
and faculty tbl.flt <> 'PR’
and faculty tbl.flt <>"
and faculty tbl.flt > 0))
WHERE meeting_dim.fac_load > 0
AND meeting_dim.flt <> PR’
AND meeting_dim.flt <>"
AND meeting_dim.yr = in_yr;
END

67

set_pay_sess:

CREATE PROCEDURE “johntest'."set pay sess (IN beg_yr date, IN end_yr date, IN
in_yr smallint)
BEGIN
UPDATE pay_detail
SET pay_detail.sess = 'SP
WHERE pay detail.yr =in_yr
AND pay detail.jrnl_date >=beg_yr
AND pay_detail.jrnl_date < (select acad_cal_tbl.beg_date
from acad _cal tbl
where acad_cal tbl.sess ='SU'

and acad_cal tbl.yr =in_yr);

UPDATE pay_detail

SET pay_detail.sess = 'FA'

WHERE pay detail.yr =in_yr

AND pay detail.jrnl_date <= end_yr

AND pay detail.jrnl_date >= (select acad_cal_tbl.beg_date
from acad cal tbl
where acad_cal_tbl.sess = 'FA'
and acad cal tbl.yr=in_yr);

END

load_pay_ dim:

CREATE PROCEDURE “johntest"."load_pay_dim'(IN in_yr smallint)
BEGIN

DELETE FROM pay_dim

WHERE yr =in_yr;

INSERT INTO pay dim
SELECT 0, id, yr, sess, obj, sum(amt)
FROM pay_detail
WHERE yr =in_yr
GROUP BY id, yr, sess, obj;
END

68

69

calc_load_rate:

CREATE PROCEDURE ‘johntest."calc load rate'(IN load yr smallint)
BEGIN
DECLARE in_yr int;

DELETE FROM load _rate tbl WHERE yr = load yr;

INSERT INTO load rate tbl

SELECT meeting_dim.id, meeting_dim.yr, meeting_dim.sess, meeting_dim.obyj,
SUM(fac_load), 0.0, 0.0

FROM meeting_dim

WHERE meeting_dim.yr = load_yr

GROUP BY meeting_dim.id, yr, sess, meeting_dim.obj;

UPDATE load rate tbl
SET load rate tbl.amt sum = (select sum(tot amt)
from pay dim
where pay dim.yr =load yr
and pay dim.id = load rate tbl.id
and pay dim.yr =load rate tbl.yr
and pay dim.sess = load rate tbl.sess .
and pay dim.obj = load rate_tbl.obj
group by id, yr, sess, obj)
WHERE load rate tbl.yr =load yr;

UPDATE load rate tbl
SET load rate = amt sum/load sum
WHERE amt sum > 0
AND load sum > 0;
END

load_pay fact:

CREATE PROCEDURE ‘johntest".'load _pay_fact’(IN in_yr int)
BEGIN
DELETE FROM pay fact;

INSERT INTO pay _fact

SELECT
meeting_dim.meetingkey,
course_dim.crskey,
pay_dim.paykey,
meeting_dim.fac load,
load_rate_tbl.load rate,
meeting_dim.crspay

FROM
course_dim,
meeting_dim,
pay dim,
load_rate tbl

WHERE
course_dim.yr =in_yr
AND course_dim.crskey = meeting_dim.crskey
AND meeting_dim.id = load_rate tbl.id)
AND meeting_dim.yr = load_rate tbl.yr
AND meeting_dim.sess = load_rate_tbl.sess
AND meeting_dim.obj = load_rate tbl.obj
AND meeting_dim.id = pay dim.id
AND meeting_dim.yr = pay_dim.yr
AND meeting_dim.sess = pay dim.sess

AND meeting_dim.obj = pay_dim.obj;

UPDATE pay fact

70

SET tot_amt = tot_load * load rate
WHERE tot _load >= 0
AND load _rate >= 0;

END

71

72

APPENDIX F: EXAMPLE C++ CODE USED TO CALCULATE
INSTRUCTOR LOAD VALUES

Load calculation excerpt

//Calculate load for "Advanced and Professional" and "PostSecondary
//Vocational" Co-Op & DIS courses.

qryUpdt->Close();

qryUpdt->SQL->Clear();

qryUpdt->SQL->Add("UPDATE db_facload rec");
qryUpdt->SQL->Add("SET tothrs2 = ((reg_num * hrs) / 15),");
qryUpdt->SQL->Add("tot_hrs = ((reg_num * hrs) / 15)");
qryUpdt->SQL->Add("WHERE (im = 'CO' OR im ='D")");
qryUpdt->SQL->Add("AND crsctgry IN ('PSV', 'AP")");
qryUpdt->SQL->Add("AND app name = ""+app_name+""');
qryUpdt->SQL->Add("AND user_login = ""+winuser+"");
qryUpdt->ExecSQL();

//Calculate load for "Apprenticeship" and "PostSecondary
//Adult Vocational" Co-Op & DIS courses.
qryUpdt->Close();

qryUpdt->SQL->Clear();

qryUpdt->SQL->Add("UPDATE db_facload rec");
qryUpdt->SQL->Add("SET tothrs2 = ((reg_num * hrs) / 24),");
qryUpdt->SQL->Add("tot_hrs = ((reg_num * hrs) / 24)");
qryUpdt->SQL->Add("WHERE (im = 'CO' OR im ='D")");
qryUpdt->SQL->Add("AND crsctgry IN ('PSAV', 'APPR")");
qryUpdt->SQL->Add("AND app name = ""+app_name+"");
qryUpdt->SQL->Add("AND user login = ""+winuser+"");
qryUpdt->ExecSQL();

//Calculate load for On the Job Training.

qryUpdt->Close();

qryUpdt->SQL->Clear();

qryUpdt->SQL->Add("UPDATE db_facload rec");
qryUpdt->SQL->Add("SET tothrs2 = (reg_num / 5),");
qryUpdt->SQL->Add("tot_hrs = (reg_num / 5)");
qryUpdt->SQL->Add("WHERE im ="JT");
qryUpdt->SQL->Add("AND crsdept NOT IN ('APP','/DAS")");

73

qryUpdt->SQL->Add("AND app_name = "+app name+"");
qryUpdt->SQL->Add("AND user_login = ""+winuser+"");
qryUpdt->ExecSQL();

//Calculate load for Online.
qryUpdt->Close();

qryUpdt->SQL->Clear();

qryUpdt->SQL->Add("UPDATE db_facload_rec"):
qryUpdt->SQL->Add("SET tothrs2 = ((enr _num * hrs) / 15),");
qryUpdt->SQL->Add("tot_hrs = ((enr_num * hrs) / 15)");
qryUpdt->SQL->Add("WHERE im = 'ON"™);
qryUpdt->SQL->Add("AND crsdept = 'APP");
qryUpdt->SQL->Add("AND crsetgry IN ('PSV', 'AP")");
qryUpdt->SQL->Add("AND app_name = "+app_name+"");
qryUpdt->SQL->Add("AND user login = "+winuser+"");
qryUpdt->ExecSQL();

//Calculate the "adjusted" load.

//Use fields and tables created for KCM. Specifically,
//the tot_hrs field on db_instr2_rec.
1'f(use_new_catmaint_tables)
{
qryUpdt->Close();
qryUpdt->SQL->Clear();
qryUpdt->SQL->Add("UPDATE db_facload rec");
qryUpdt->SQL->Add("SET adjLoad = ((tothrs2/CAST(flt as int))*CAST(facflt as int))");
qryUpdt->SQL->Add("WHERE tot_hrs > 0");
qryUpdt->SQL->Add("AND (flt <> 'PR’ and facflt <> 'PR")™);
qryUpdt->SQL->Add("AND app_name = ""+app_name+"");
qryUpdt->SQL->Add("AND user_login = ""+winuser+"");
qryUpdt->ExecSQL();
}
else //Use the "traditional" CARS fields (mtg_rec.tot_hrs) for calculating faculty load.
{
qryUpdt->Close();
qryUpdt->SQL->Clear();
qryUpdt->SQL->Add("UPDATE db_facload rec");
qryUpdt->SQL->Add("SET adjLoad = ((tot_hrs/CAST(flt as int))*CAST(facflt as int))");
qryUpdt->SQL->Add("WHERE tot_hrs > 0");
qryUpdt->SQL->Add("AND (flt <>'PR' and facflt <> 'PR")™);
qryUpdt->SQL->Add("AND app_name = ""+app name+"");
qryUpdt->SQL->Add("AND user login = "+winuser+"");
qryUpdt->ExecSQL();

	Dakota State University
	Beadle Scholar
	Spring 5-1-2011

	A Data Warehouse for Faculty Pay
	John Hardebeck
	Recommended Citation

	tmp.1522687772.pdf.6jN7e

