Dakota State University

Beadle Scholar

Masters Theses

Fall 12-1-2010

Database Merge

Bob Van Roekel
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

Recommended Citation

Roekel, Bob Van, "Database Merge" (2010). Masters Theses. 185.
https://scholar.dsu.edu/theses/185

This Thesis is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses by an authorized

administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Ftheses%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/185?utm_source=scholar.dsu.edu%2Ftheses%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

DATABASE MERGE

A graduate project submitted to Dakota State University in partial fulfillment of the

requirements for the degree of
Master of Science
in
-~ Information Systems
December, 2010
By
Bob Van Roekel
Project Committee:
Dr. Stephen Krebsbach

Dr. Mark Moran
Dr. Ronghau Shan

i

RO
4

——

PROJECT APPROVAL FORM

We certify that we have read this project and that, in our opinion, it is satisfactory in scope

and quality as a project for the degree of Master of Science in Information Systems.

Student Name: Bob Van Roekel

Master’s Project Title: Database Merge

,)’ . '/ ; ;
Faculty supervisor:_" m Date: /Z/ // /0

Committee member: Dr. Mark Moran Date: 2 >/

Veou: “L"J& >/_C(4 Bate: ! 2./5;/(D

Committee member: Dr. Ron]hua Shan

iii

ABSTRACT

GE Healthcare is a worldwide leader in healthcare solutions. They are involved in
almost every aspect of healthcare from medical devices to software solutions to assist
physicians. One of their software solutions captures data from the medical devices and then
uses that data to formulate procedural reports for the physician. This enables the physician to
spend less time dictating and transcribing their findings and more time to see additional
patients. One problem GE Healthcare is faced with is when hospitals become acquired by
larger hospitals and both hospitals are running GE Healthcare solutions. The hospitals do not
want to have to maintain two separate systems, but rather want them combined into one
central system that can be accessed by all facilities.

The data for these systems are stored in an Oracle database and there are no automated
methods available to move the data from one database to another database. The databases use
system generated identifiers to maintain the relationships between the data entities. This fact
makes it very difficult to merge the data between two databases. The data cannot just be
brought over from the source database into the destination database because the identifiers
may already exist in the destination database. This requires that new identifiers be generated
as the data is being brought over from the source database. This makes the processing of child
tables very complex. The parent identifier of the child record needs to be synchronized with
the new identifier of the parent entity. The complexity of this situation is compounded by the
fact that a single record can point to multiple parent records and all these relationships will
need to be maintained as the data is being brought over.

This project will involve a user-interface (UI) that will allow users to specify the
databases to be merged and give the users the option to specify the data elements to be
included in the merge. There will also be an Oracle package and supporting schema that will
actually perform the task of moving the data from the source database to the destination
database. The system will have to be able to be ran multiple times and only bring over data

that does not already exist in the destination database. The destination database will also need

to be fully functional to other users of the system with no significant performance

degradation.

v

DECLARATION

[hereby certify that this project constitutes my own product, that where the language
of others is set forth, quotation marks so indicate, and that appropriate credit is given where |
have used the language, ideas, expressions or writings of another.

I declare that the project describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

Bob Van Roekel

vi

TABLE OF CONTENTS

PROJECT APPROVAL FORM .. 11
ABSTRACT 111
DECLARATIONiiiereeecnecsssseessssnesssssnsees A%
TABLE OF CONTENTS VI
LIST OF TABLESootiiireecreeencieessssesccssssesssssasessssnnens VIII
LIST OF FIGURES.....ccooctivrrrrrrinneennne IX
INTRODUCTION 1
BACKGROUND.OF THE PROBLEMo..coonsensensiionsssssssssosssssissss s sssssssesssssssssas stasesssssnsonssssssassevonosssesossasabs 1
STATEMENTOF THE PROBLEMccososonssssssisssssssssasisssssisssnsastssss sssssssssiissassssosensasses sssosssrsansaaranorsorsranars 2
OBJECTIVES.OF THE PROJECTccoscosose soessssssitesssssssssss sssssssssassssssssssssspasssssssssissss sesssssvasorsannerasnssassraness 3
SYSTEM DESIGN (RESEARCH METHODOLOGY) 6
OVERVIEW ... cvveveesennvesssvarsossnsssesnsssossssssssssSaesss 5585555545555 5asHaawoamanses ississ s0nasasssssnsasasssnssssssussssoanassnamnranssones 6
ISBICASEIDTAGRAMc.onissssens vavsssnass 338 SaE AT EA S IEs3 0 P SR s e i s s e ey es s svasssuannaressmmenntansssrarmren 9
DATABASEIDESTGN. ... ot esssnsasesniissss st oy e 00 s s s s T Tt er S us S sy 55 L s w s Ssaanannvuvassnsorsaonmasssnssssss 10
IMERGE UTILITY ooveveveeeessesssesssssssssssssanssessssssssssssssassassssasnssssesssssasesnsstssssssssssssnssasssssssssssnassssssssssrnnnssssssss 15
SELECTION COMPONENT: 555 snsssssssisissieosssnsme s dasssubsssovsssisssssasvassvessssveortnassassasss reanensnsonesenitessiSHRISTITSS 18
MAPPING COMPONENT :..vovcteieesssssmsssssssssssosssssssssssssasanssssssnsssssassuassssssssssssssssasssssssssssssessssssssssnnassiosssasse 19
IMERGE COMPONENTcuoevsesseesosssssssossessssssssssssssssssrssassasasasssssssessasssssssssssssossssasssssssssasnssnsasssssssiasssssssses 21
DATABASE COMPONENTvvveetteeeeeeetteeeeessssasssseeseeesssssssssssssssssssssssssessssssssssssssssesseessssssssssesssssasssnasessasses 23
REPORTGEN COMPONENTccveeiriiinreeeeeeinneneeees oo e somvreddsonsonssssnnsassss ST TR IR TS TR SRR ST Es R 25
MERGE UTILITY INSTALLc0vuvecccmecsessssssssssssssssssasssnssssssssosssnsosssrssssasssssssssssssssssssssassssssssssssssossarassmrssnse 26

S CREENIMOCKUPS <o c0s sonsnssassssnsssanassasossaesssssosssonsasssianaisissisesssis m isiiiesas sosssisssssssioninsensosssass iasgassassanorse 27
Selection Component — Select Servers\LOCALIONS................cooviiiiiniiiiiiiiiiiiii 27
Selection Component — Add Servers/LOCALIONS................ccooeiiiiieiininiiiiiiiiii 28
MaPPIing COMPONENL.................ocueiimieieieieiiei e 29
MErge COMPORNCNL ...t 30
STATEMENT OF WORK AND NOTICE OF COMPLETION......ceitiiiiuerieeeeessssirnnseseseseennnnnessesssssnssnesessssssns 30
SEALEMENE OF WOFK ...t bbb 30
INOLICE Of COMPIELION. ... e 31

CASE STUDIES 32

vii

DESERT SPRINGS CASE STUDY. cosusvesssisnssssssssasasnnsssassansosnranssnssnnnonsnsshissssat dins oo sinsistinssofnnssassims Tosnnen e 32
CONCLUSIONS ..o ettreierenreessessesesssssssssssssssssssssssssssssessessssassssssssssessssessssses 35
APPENDIX A: WORK BREAKDOWN.....cciiiiiinininiinrinennesessissessssssssessessssssssessassassasnes 38
APPENDIX B: GANTT CHARTooovriririnrirrerenrenrenseessessesssssssssssssssessens 1
APPENDIX C: ER DIAGRAMccoieirinrinrucsressessnesnessessessessassassssssssssses 1

viii

LIST OF TABLES
Table 1 - DMS Database ObJECtS........cccoverririirreneenienitinissnsseessessestisesnessessesscsnns 15
Table 2 — MaPPING ATEAS.......c.cueiueuiirieriieiesteesies et 21
Table 3 - Merge Selection OPLiONSccoovvvreriiierineninenisteeneecss e, 23
Table 4 - Table LeVel RUIES.......cc.veeiveeiieniieeeeentinieiiiniieceseesasesses s ssseessessssssssesanes 24
Table 5 - Column Level RUIEScocvveeereeceiniiniiiiniinicieenenissiessesssecasssessscsseesanses 25

Table 6 = Work BreakdowWn StrUCIUTE...........cisesssssmesssissssssvvssssssassisessssssssansoesesvnsarssessose 38

X

LIST OF FIGURES
Figure 1 - Process FIOWc.coiiiiiiiiniic s 8
Figure 2 — Use Case DIagramocoeeueirininininiiiiiii 9
Figure 3 — DB Merge Table DeSCriptionscceiimiiiiiriiiiie, 12
Figure 4 - DBMerge Package Specification............cooiiii 13
Figure 5 — DB Merge Package Specification - Continued..........ccooonmiiiiiiinnns 14
Figure 6 — Sequence Diagramcooeeiiiniiiiiniiiiii e 17
Figure 7 — Server Location Screen MOCK-UDcooviiiiiiiiininii 27
Figure 8 — Add Server/Location Screen Mock-Upccovvviiiiiiiiininins 28
Figure 9 — Mapping Screen Mock-Up ..o 29
Figure 10 — Merge Screen Mock-Up ... 30
Figure 11 - Gantt Chart ..ot e 1

Figure 12 — ER Diagramcccoooeeieimieenenininenistsieeccinsssisisisissss s ssssssssssssssssssssens 1

INTRODUCTION

Background of the Problem

GE Healthcare has many different software solutions available for the medical community.
One of their solutions is a product called Data Management System (DMS). DMS is
essentially a data repository that contains data dealing with patients, admissions, and the
medical procedures associated to those patients that occurred in the Catheterization lab (Cath
Lab). The DMS software has various interfaces that feed it data. Some of this data comes
from the Hospital Information Systems (HIS) and includes patient, admission, orders,
scheduling, and inventory data. Other data comes from the medical devices used during the
procedures in the Cath Lab. The DMS software captures all this data, and in-short, produces

the physician report that includes all the detail information that occurred during the procedure.

Once the physician has completed the procedure in the Cath Lab, they use the DMS software
to verify the generated report is accurate and then electronically signs off on the report. The
report then gets routed to the various stakeholders — HIS, referring physician(s), etc. The
report can be routed to a printer, fax, email address or mobile device. The ability to capture
the data from the medical device allows the physician to be more productive as they no longer
have to manually dictate the events of the procedure. This gives the physician time to see
more patients and do more procedures during the course of the day and less time doing
paperwork and dictation.

The DMS software is a great help to the physicians and to the hospital administrative staff.
The problem comes in when one hospital is bought out by another hospital and both facilities
have their own DMS systems. Obviously it would make sense for the newly combined IT
departments to have to manage just one DMS system. Also, the users of the DMS system do
not want to have to login to two different systems and maintain two separate systems. Each
DMS system comes on its own server so there is also duplicated hardware involved and the
cost of maintaining that hardware. GE Healthcare currently does not have a solution for their

customers in this situation so they are forced to maintain the duplicated servers and software.

As more and more customers are being acquired by larger healthcare organizations this is
becoming a bigger problem. GE Healthcare customers are requesting a solution to this
problem and GE Healthcare is committed to resolving this problem for their current and

future customers.

Statement of the problem

GE Healthcare customers that currently have multiple DMS systems need a way to
migrate/merge these duplicate systems into one DMS system. This will simplify their
operations and reduce cost in maintaining multiple systems. The problem of merging multiple
databases together is that it is not a simple or straightforward process. The DMS system uses
an Oracle database to store all of the data associated to the product. The Oracle database is a
file based system and as such you cannot just copy the files from the source database to the
destination database. Copying the files would result in a loss of data on the destination

database as the existing data would be overwritten by the data from the source database file.

A systematic approach would be needed to ensure the integrity of the database is maintained.
Oracle does not offer any solution to merging databases and there are no other Commercial,
off-the-shelf (COTS) software available to assist in this matter. GE Healthcare has decided
they need to develop a system that will allow their customers who have multiple DMS
systems to merge those systems in one DMS system. This product will be a separate product
offering to the customers and will allow GE Healthcare to gain a higher level of customer
satisfaction with the added benefit of increased revenue.

This new product will be called DB Merge and will be a billable product to the customers that
have multiple DMS systems and need them merged into one system. More and more hospitals
are joining associations to reduce their costs and overhead, but by doing this they are
sometimes duplicating their systems. Hospitals that find themselves with multiple DMS
systems need a way to combine these systems into one system and GE Healthcare will give

them that opportunity with the new DB Merge product offering.

Objectives of the project

The objectives of the DB Merge project will be to create a utility that can be used to merge
the contents of one DMS database into another DMS database, ensuring the integrity of the
data is maintained. The project will consist of a set of database tables used to store metadata
as well as stored procedures that will actually merge the data between the source and
destination databases. There will also be a User Interface (UI) that will allow the user to
define the merge. The UI will allow users to specify the databases to be merged and give the
user the option to specify the data elements to be included in the merge. The system will have
to be able to be ran multiple times and only bring over data that does not already exist in the
destination database. The destination database will also need to be fully functional to other
users of the system with no significant performance degradation. Upon completion of the
merge all the data relating to a location in the source server will reside in the destination

server and will be available to use as it existed in the source server.

The UI portion of the merge should include a screen that can be used to create/define the
merge. Here the user will specify the two servers that will be used in the merge as well as the
other basic information about the merge. They will also be able to specify the procedural data

they want brought over in the merge.

There are some basic data identifiers that could exist in both the source and destination
databases. These elements such as Medical Record Number, Account Number, and Employee
1d may be the same in both database but could reference different records. For example, in the
source database you could have medical record nurhber “ABC” that belongs to John Doe. The
destination database could have the same medical record number but have it belong to Bill
Smith. The medical record number is the unique key in the patient table and data will need to
be queried by the unique key to determine if the element already exists. If it is assumed that
ABC is the same record in the source and destination database, and procedure data is brought
over for that patient, the system has just associated procedure data to the wrong patient. So to
eliminate this problem there will need to be a screen in the UI where the user can identify

these potential problems and either fix the issue or signify that it is indeed the same patient.

The final portion of the UI will be where the user initiates and monitors the merge. Because a
merge could take several hours\days based on the amount of data, the user should be able to
specify the various groups of the merge they want to run. These groups should be made up of
Users, Employees, System Management, Patient, Admission and Procedure. This will allow
the user to break the merge down into more manageable sections. Also, if there are errors in
one group, it will more than likely have ramifications on the next group, so it is better to run
one group and fix any problems before moving on to the next group. The Ul will also have to

enforce that the user run the groups in the specified order to ensure data integrity.

The Database Merge project will use database links to merge the data between the source and
destination databases. This requires that the two databases be able to communicate to each
other through the use of Oracle’s network capabilities via the TNSNAMES.ora. The actual
process of moving data between the servers will be initiated by a database job. This job will
be created/started by the UI and will allow the UI to close without hindering the processing of
the data. The database job will run in the background and so there will be no direct ties to the
UL This will allow the user to close the UI on long running portions of the merge and then to
restart the UI to check the progress of the merge. There also needs to be an option to kill the
job if the process appears to be hung or there are known issues. Once the job has been killed
the UI should be notified and should also be able to restart the job and have it continue where

it left off.

The database merge will need to be processed in a hierarchical manner to ensure parent data
exists before child data is processed. There will need to be a series of tables that can group the
data tables together by their functionality, i.e. system management, employee, patient,
admission, and procedural. Within these groupings there will need to be a column that
determines the order in which the individual tables within the group should be processed. This
should ensure the parent tables are processed before the child tables and enforce the integrity

of the data.

The database merge will be governed by a rule table. This table will house the rules needed to

process the data between the two servers. There will be rules defined for various levels of data

processing, including table rules, column rules, before and after processing rules, and rules
that determine how the data is pulled from the source server (SELECT/WHERE). Once
processing begins the rule data should be stored in a PL/SQL table (array). The rules then will
be in memory and will speed up the retrieval of the rules as there will be no need to query the

database when processing the multiple rows of data for the same table.

There will also need to be a table that stores the old primary key and new primary key for
each table\row that could have child rows associated to it. To facilitate the look up of these
ID’s, the ID’s should also be stored in a PL/SQL table (array), this will speed up retrieval of
the new ID’s as the data is all stored in memory and a query will not be needed for the lookup.
So when data is being processed and the column is a primary key, the process will need to get
the new value and then create an entry in the lookup table that contains the old key and the
new key. Then when processing columns that are foreign keys, the process will need to get
the new value from the lookup table based on the old key value. This process will ensure the

integrity of the data as it is being populated in the destination database.

As the merge is being processed, it will need to log the various activities and percentage
complete of each process so the Ul can be apprised of the current status. The UI will use this
data to update the progress bar and inform the user of the current task being performed. Once
the merge is complete, the database should send an email to the user to inform them that the
process is finished and also inform them if any errors occurred during the run. This is
essential for portions (procedure data) that could take many hours\days to complete. This will
allow the user to go about their other activities and-not have to manually monitor the merge.
When the user gets the email notification they can fix any errors and then move on to the next

phase of the merge.

SYSTEM DESIGN (RESEARCH METHODOLOGY)

Overview

The following section lists the process flow for a customer that requires a database merge for
the DMS Application.

Once a customer has either been identified as potentially needing a DB merge or has
requested a DB merge, the following process will need to occur:

1.

A workout with the customer to determine if the merge being requested is supported is
the first step. If the merge type is supported based on the configuration type of the
source and destination servers, the customer will need to be presented with a
Statement of Work.

A Statement of Work will then be drafted and presented to the customer in order to set
the customers’ expectations. The statement of work will identify areas in DMS that
will and will not be merged during the merge. It will explain a merge can only be
performed once and that all decisions made prior to the merge are final once the merge
has been performed, with the exception of updating new patient/admission collisions
encountered during the merge (see below). Once the statement of work has been
accepted, the merge utility can be installed to start the merge process.

Ensuring systems are at the minimum version and are both at the same version is the
first step needed to ensure the merge utility will function as intended and will even
install. If the systems are not at the minimum version they must be upgraded. If the
DMS versions are different, they must be upgraded to meet this requirement. The
destination server must be verified that it is at least at Oracle version 10g, if not, it will
need to up upgraded to the latest DMS supported version of Oracle.

Installing the merge utility is the next step. The merge utility needs to be installed on
the both servers. Once the utility is installed, the merge specialist may proceed with
selecting any options pertaining to the merge.

The Merge Specialist must select merge options in order to determine which data sets
are processed during the merge. Selections include areas such as STS procedural data,
ACC procedural data, Inventory, Cath procedural data, etc. Based on the merge type
and the customer selections, the customer may have to perform additional mappings in
order for the merge to proceed.

The Merge Specialist will kick off the job to convert the long data type columns in the
Source-server to CLOB data type. This process must be completed prior to the Merge
process. Customers that were initial customers at DMS 4.0 and after will not need to
have this process ran as these data types were no longer used after 4.0.

If mappings are needed, the user will be presented with like data sets from both the
Source-server and the Destination-server and they must match like items and
potentially enter data needed to avoid collisions when the data is merged. Examples
are covered in the Mapping Component section below.

10.

11.

12,

13.

14.

LS.

16.

17.

Customer needs to run the Patient Identification (PID) Mismatch report on the source
server to identify and fix PID mismatches that exist in the source server. They also
need to run the Procedure Merge report to identify and fix procedures that exist on the
source server and need to be merged within DMS. Procedures that have PID
mismatches or procedures that need to be merged, will not be brought over until their
issues have been resolved.

Move Source-server processing to Destination-server if the customer was still using
the Source-server as the production server. If the customer has already started using
the Destination-server as the production server this step can be skipped, otherwise the
clients need to be re-directed to the Destination-server and the interfaces need to be
reconfigured on the Destination-server.

An Electronic signoff is required for the merge. This signoff signifies the customer is
satisfied with their selections and mappings.

The Merge Process will be initiated upon completion of the electronic sign-off. The
actual data merged from one DMS database to another DMS database is contained
within this process. An email notification will be sent to the Merge Specialist and the
Customer Champion notifying them that the merge completed. At the end of the
process, if any new collisions were detected that require user intervention/mappings,
the user will have an opportunity to revisit mappings and start the merge again. The
second round of processing only handles patient/admission, any system management
data will only be processed one time for any given server/location combination.

A Merge Report will be generated after the merge is complete. The report will signify
the merge is complete and will detail the work performed during the merge.

If some patients/cases were not merged, additional mappings may be needed, and then
the merge process can be run again (starting from the signoff) for patients and cases
only — System Management data will only process one time only.

If the merge process created a new location on the Destination server, that location
will need to be associated to an Interface server

A Notice of Completion will be presented to the customer to finalize the process.
Acceptance of this document by the customer will signify the merge completion.

An internal review of the database merge will be performed by the owner of the DB
merge process after completing each individual customer’s DB merge to identify best
practices and lessons learned.

Repeat the above steps if an additional location on the Source-server needs to be
processed or any additional servers that need to be merged to the Destination-server.
The mapping and selection process for multiple locations can be done simultaneously
(steps 1-6), but the merge process (steps 7-13) will only process one location at a time.

Initial Statement o}i
Work (Draft of

" Initial Statement of

AN

- N

. N
~,

__~Host environment
meets technical

Workout wh -
p B

Customer / Merge type - ; \ -
i »< Yesp{ expectations and € >Yesr<
(petermme merge . supported? ; ,/)— owners) ~_ Work accepted? /,f < criteria?
D needs) 2) A 3
B = = ~_ (1) RS (2> G
Q) 2P ©
No
Update host to
- n;ircguer b P — ~No- meet technical Yes
(?) (3) criteria
L = | S ~
.
Customer resolves s \ i .
<Al ; M N !
mapping issues with AYes——<’@et:r\Ii:geZ ':jerg:fge\‘ Start job to | M'g;fe"g]"azeelﬁzfns — Install Merge
__assistance from N tility)? W Convert Longs b z Utility
7). meige utility < utility)? - 6 __merge utility \\4_)

g

PID Mismatch and
Procedure Merge
Reports ran

o

No

Ensure Location is
associated to
Interface Server

S

mappings that need to >«
~be resolved at end 9f/

live?

ey of

o

N

Source-server still
Y

>

Preview report

presented

Move processing
to Destination-

Yesy, server (clients and

@ interfaces)

(supplements
Statement of
Work)

Electronic sign off

presented

No

A

erge presen
dditional collision:

Final merge report
presented

process?
@//

Notice Of
Completion
presented

(1a)
O
No
Complete < Create PQR

Figure 1 - Process Flow

-
/ .

Notice Of Completion
accepted?

)

NoO——»

Merge proc

()

Review and
complete
customer needs

Engineering changes
needed?

Update/create

documentation/
communication
mechanisms for

Internal Process
Review

DB process

l¢—Yes

Use Case Diagram

Customer Champion \

Figure 2 — Use Case Diagram

DB Merge

T
FTraﬁsSlaleme
of Work /™

© 5 r?s/s;;r}.;ht?r
% Work N\
A e \\
'l
/ LY

//—\ ~
Cc@ﬁgures DB

~——— . —

e

/Jesolveﬁm
Collisions
Goss

.

e

e P e
~—___ /Resolves PID
Misq\alcﬁ\}’\mcedure Merge issues

. ~ s

{ Iitates Merge, s
N\ .. Process /,)
N\ h N . ,,/'
N Drafts Notice of,
N \._Completion
_//

Py

\\(sfgm

Tﬁans DB Mer
Utiity = \

GE Merge Specialist

10

Database Design

Overview
There are 2 fundamental elements to the DB merge database design:
e Data model

e Stored Procedures
Data Model

The data model provides meta-data about the entire DMS data model in order to dynamically
generate SQL to merge data between 2 DMS systems (Source-server and Destination-server).

The following diagram provides a list and description of the tables in DB merge data model

(see appendix C for the ER Diagram):

11

Stores information on every table and view in the DMS schema for documentation purposes, and for

SYSMAN DD TABLE Ss e . . ;
= S additional functions in which knowledge of valid tables are required.

Table used internally by DB MERGE to define rules for columns so the merge process knows how to
SYSMAN DD_MRG_RULE insert/update the table/column. This table will be copied over to sysman_dd_mrg_rule_pr each time the
Merge process is ran.

Table used internally by DB MERGE to define rules for columns so the merge process knows how to

SYSMAN DD _MRG _RULE PR ;
T insert/update the table/column.

SYSMAN'DD MRG IKUDKEE Tablf: useq n.nem.ally })y DB MERG}E to s}ore new primary key id and their corre‘spondmg old primary
=~~~ = keyid This s primarily used when inserting foreign keys so we can get the new id based on the old id.

SYSMAN_DD_MRG GROUP Lookup table that stores all group names used for DB MERGE.

Lookup table that stores group relationships for DB merges. An example being the REGISTRY group is

SYSMAN DD MRG_GROUP REL .
= ol = needed to import the STS group).

SYSMAN DD MRG TAB GROUP Stores which tables to process when processing a particular group.

SYSMAN DD MRG AUDIT Store audit trail of the merge process.

SYSMAN DD_MRG_LOB TMP Temporary table used by merge process to move lob columns across the DB Link.

12

SYSMAN_DD_MRG SELECTION Used to specify what areas within DMS are to be merged (CATH. ECHO, ACC. STS, etc)

SYSMAN DD _MRG_SELCTION D Used to store default data that is used to populate sysman_dd_mrg_selection

Used to store basic information about the merge — server/location names, status, statement of workand
SYSMAN_DD_MRG_SOW_NOC notice of completion dates, etc. l

SYSMAN_DD_ MRG USER MAPPE Used .to store historical mapping data — holds the person who created the mapping and the specific
n 'mapping that they made

© SYSMAN_DD_MRG COLLISION f éTable used to store collision data that is presented to the user in the Ul prior to the merge process.

SYSMAN_DD_MRG_ MAPPED ITM éUsed by the merge process to store items(Patients, Admissions, Employees) that need to be processed.

, ‘Used by the user to specify what groups of data they want to process in the current execution of the merge |
SYSMAN_DD_MRG PROCESS (USERS, EMPLOYEES, SYS ADMIN, PATIENTS, ADMISSIONS, PROCEDURES, REGISTRIES)

SYSMAN_DD_MRG_PROCESS D %Used to populate sysman_dd_mrg_process table with default values

Figure 3 — DB Merge Table Descriptions

Stored Procedures

The DB merge design consists of one package, mms.DBMerge, which contains all the stored
procedures and functions utilized for the merge process. The package is the heart of the
merge process. The package performs all the data merging and audit logging.

The following diagram lists the main callable stored procedures of the dbmerge package:

ResetDBMergelob

PopulateCollisionData

CreateDBLink

PopulateRptTotals

KillRemovelJob

AuditMerge

Used to create the dbmerge job that will run the merge for the currently selected options

Used to populate the sysman_dd_mrg_collision table with the collision data for the specified merge

Creates the database link that will be used to merge data between source and destination databases

Used to populate the sysman_dd_mrt_rpt_total table with data that is used for the Completion report

Used to kill the database job of the currently running db merge

Used to create the noticeOfCompletion database job that moves audit and lookup values to the archive

. tables

Used to create the ConvertCPLong dagabase job that converts the LONG datatype columns to CLOB
column

Called by the Ul to populate the progress bar and display current activity being performed by the merge

Figure 4 - DBMerge Package Specification

14

The following diagram lists the main stored procedures that get called when the user initiates

a merge in the Ul:

RestDBMergeJob

StartProcess

PreProcessUserSelect

ProcessUserSelect

ProcessGroup

ProcessGroupTable

ProcessRow

CheckColumnForRule

Runs the rule for the specified table\column, looks up new id for PK/FK in the ‘
sysman_dd_mrg_lkup_key, calculates new sequence ids, gets next counter value, etc. \

Called by the Ul to begin merge process. Creates the database job that calls StartProcess for
the specified row in sysman_dd_mrg_sow_noc

Entry point for the merge checks to ensure options are valid, creates log entries, handles pre

and post cleanup logic

Repopulates the sysman_dd_mrg_rule table with rows from sysman_dd_mrg_rule_pr replace
holding variables with actual values specified by user i.e. "MODULE" with ‘CATH'"EP’

Handles the logic of calling processGroup for the current option(s) specified by user i.e.
USERS, EMPLOYEES, SYSTEM MANAGEMENT etc.

(Calls ProcessGroupTable for each sub group of the group being processed based on entries in |

sysman_dd_mrg_group_rel. For instance SYSTEM MANAGEMENT group is made of up
Inventory, Billing, Registry etc.

Calls ProcessTableRows for each table for the current group being processed based on rows in |
sysman_dd_mrt_tab_group

Handles the logic for processing the given table including constructing dynamic SELECT
statement, running table level rules, commit logic, etc.

Retrieves the data from the source server, calls CheckColumnForRule and creates the DML
statement used to populate the row on the destination server

Figure 5 — DB Merge Package Specification - Continued

15

For the current version of the DMS application there are over 7000 database objects that will
need to be taken into consideration when creating the DB Merge application. The following

table shows the breakdown of the Oracle database objects:

Object Type Count
Tables 1681
Indexes 2514
Triggers 1291
Views 472
Sequences 658
Stored Programs (Packages, Procedures 318
Functions)

Table 1 - DMS Database Objects

Merge Utility

Overview

The Merge utility is the UI component users will utilize to perform the merge. The utility will
be a tab deck that houses and controls the execution of the following components:

SelectionComponent
MappingComponent
MergeComponent
DatabaseComponent
ReportGenComponent

Dynamics

The Merge utility will be a C# assembly written in the .Net 2.0 framework.

Specific Functionality

The Merge utility manages the sequential execution of all components/processes by ensuring
the following are met:

16

Ensure merge selections are made before mappings

Ensure mappings are made based on merge selections before sign-off

Ensure user has completed sign-off before merge can start

Allow mapping to be revisited after a merge complete if new mappings are needed
(see MappingComponent and MergeComponent section for more details)

Allow merge processing to be revisited after a merge complete if new mappings are
needed (see MappingComponent and MergeComponent section for more details)
Ensure systems are compatible and meet merge system requirements

The following are additional requirements the utility must meet:

Logging and displaying errors to the user

Allow the merge utility to be resumed at any given point — due to user shutting down
the utility or any type of failure (reboot, loss of power, etc)

The customer must be able to change the Merge password

Save the current users specified server\location upon exit of the utility so when they
reopen the utility that server\location will be defaulted for them

17

Sequence Diagrams

The diagram below is a high level depiction of the Merge utility as the controller.

MergeComp) ReportGenComp ’ Database

Fnergeutilitxw

' Get merge state

| S R

=
Merge state

‘Invoke SelectionComp

Get selection options

---1-

Selection options

Save selections

Get mapping options
1

Mapping options
|

Lundaacaudaud

Invoke SignOffComp |

F..-.-- Los

!
Invoke Repc;rtGenComp

Get report data

|
|
|
|
“
\ IS, (S (A, ARReNse. S iy [y B [0

kDala for preview report

B e St

Invoke MergeComp

Invoke ReportComp

Get report data

Data for final report

Final report

___________+__J-- /T ———— RN, []

e
|
et

]

i

|

|

|

|

|
i o
2|8
5=
P o8 8 =
3y
-
2l s
A

i

|

|

i

i

1

|

Figure 6 — Sequence Diagram

18

Serviceability

The Merge utility will log all exceptions that occur for troubleshooting. The Merge utility
will display any exceptions to the user deemed necessary.

Selection Component

Overview

The selection component allows the users to specify the server and locations used in the
merge, as well as the areas of DMS that will be merged

Dynamics

The selection component will be a C# assembly written in the .Net 2.0 framework.

Specific Functionality

Allow users to specify the Source and Destination Servers

Ensure Destination-server and Source-server can communicate

Check DMS Versions to ensure they are the same before any merge steps

Check Server types to ensure they are a supported merge type before any merge steps
Populates Location dropdowns based on available locations from each server

User must be able to select location to process the merge from Source-server

User must be able to select location on Destination-server to process to or create a new
location

User must be allowed to specify the Statement of Work has been signed

All other areas of the utility must be disabled until the Statement of Work has been
signed and specified in this component for these servers/locations

Users must be able to enter the Customer Champion and DMS Migration Champion
and enter their corresponding email address that will be used by the merge application
to send out status updates

Users must be allowed to save these entries

Users must be able to switch between multiple Server/location/Merge combinations
When user selects a server\location combination that has a statement of work signed,
the system must enable the remaining parts of the utility. If the statement of work has
not been signed and specified the remaining parts of the utility must be disabled.
System will check if the current user has been in the utility previously and if so,
default the server\location they used the last time they were in the utility

Display possible selections in DMS to be merged

19

e Allow users to specify if they want unconfirmed procedures to be auto confirmed by
the merge utility

e Allows users to specify which functional areas in DMS they want merged

e Record user selections to sysman_dd mrg_selection table using current
servers\locations

e Utilize MMS MODULES to aid in determining selection criteria and server types.

e Make selections dynamic - use DB Model to display selection options.

e Must provide on-screen descriptions of the options

Serviceability

The Selection component will throw exceptions in the case of an error to be logged by a
containing component — the Merge Utility.

Mapping Component

Overview

Customers will utilize the MappingComponent after the merge sections are made. Mappings
are necessary in order to rectify potential data collisions that could occur during the merge of
data from one server to another. The component will present like data sets (Patient
Information, Employees, etc) from both the Source-server and the Destination-server. Once
presented with the data needing mapping, users can associate corresponding data between the
two servers. The user may also be required to enter additional data in order to avoid
collisions. These mappings will be utilized during the merge process to allow for collision-
free data merges.

Example 1:

Data in Source-server Data in Destination-server
MRNO/Location Patient Name MRNO/Location Patient Name
123/SVH John Doe “ 123/SVH Jane Doe

In example 1, if the merge would try to import John Doe into the new system, Jane Doe’s
attributes such as DOB, sex, SSN, etc would be updated with John Doe’s attributes. In this

instance we would want the user to perform one of the following actions:

1) Verify the 2 patients are the same
2) In DMS on Source-server — perform merge MRNO if the MRNO is incorrect on the
Source-server.

20

3) In DMS on Destination-server — perform merge MRNO if the MRNO is incorrect
on the Destination-server.

Example 2:

Data in Source-server Data in Destination-server
MRNO/Location Patient Name MRNO/Location Patient Name
123/SVH John Doe 456/SVH John Doe

In example 2, John Doe would be created as a new patient without the mapping to 456/SVH.

In this instance we would want the user to perform one of the following actions:

1) Verify the 2 patients are the same
2) If patients are same and 123 is the MRNO the customer wants to keep, the customer
would utilize DMS to perform MRNO merge of 456 to 123.

Another important function of the MappingComponent is to record the expected processing
state of patients and admissions. The states are simply INSERT or EXISTS (no updates occur
if the record exists). The DatabaseComponent utilizes these states to determine if addition
user mappings are needed after the merge completes — see DatabaseComponent section for

details.

Dynamics

The MappingComponent will be a C# assembly written in the .Net 2.0 framework.

Specific Functionality

e Records mappings to sysman_dd mrg_lkup key table
o Check for collisions and ensure mappings are up to date - give warning if there
are still collisions
Must provide on-screen descriptions of the mapping options
Provide default filtering to narrow selections
Indicate matches that are considered mismatches (PID mismatch, Employee, etc)
Allow user to change filters to find like selections
Log all mappings
o Indicate the mismatches in the log
o Mark patients, admissions and procedures with a state (insert or exists)

21

e Must be able to print currently displayed data, so user can take the report back to DMS
and make the appropriate modifications (Merge MRNO, etc)

The following table lists the different areas needing mapping based on merge type:

Area Merge Type

MRNO Standalone to Express/Same Location
Admission Standalone to Express/Same Location
Employees ALL

Registry cut-over dates (Present user with ALL

warning if cutover dates do not match they
will have to perform sync)

Table 2 — Mapping Areas

Serviceability

The MappingComponent will throw exceptions in the case of an error to be logged by a

containing component — the Merge Ultility.

Merge Component

Overview

The MergeComponent presents users with a summary of the areas to be merged and a
notification that this is the final step before starting the merge process - any selections and
mappings are final, and the merge process is a onetime event — with the exception of updating
new patient/admission collisions encountered during the merge. It is also the area where users
can initiate the actual data merge and to indicate the Notice of Completion has been signed —

the final step in the process.

There can only be one active merge going on in the database at one time. The user can have
several Selections/mappings going on at any given time for different servers/locations, but

there can only be one merge.

Dynamics

The MergeComponent will be a C# assembly written in the .Net 2.0 framework.

22

Specific Functionality

Utilize ReportGenComponent to generate Completion report
Notify user they need to shutdown clients and interfaces — redirect processing to
Destination-server
Display a summary of:
o User selected areas to merge
o Present mismatches (PID, Employees, etc)
o Present which procedures will not process in preview report (Studylnstance
UID collisions — there is no way to rectify)
o Patients that have not been resolved and will not be merged — must resolve at
some point and re-run merge process
Display notification (final step, all selections and mappings are final, sign-off
coincides with Statement of Work, etc)
Must update TNSnames file with Source-server selection
Must create/update Source Server database link
Ensure all work queues are clear before starting merge (work queues are not merged)
Stop all services on Source Server (once queues are clear — ADT, ML, etc)
Creates database job to perform merge - calls mms.DBMerge.ResetDBMergeJob
Displays status of merge process to user — updates on a regular basis (not real time)
o Time estimation
o Table name and number (EX: Demog 5 of 245)
o Row number (EX: 455 of 54073)
Allow users to indicate Notice of Completion was signed. This moves the current set
of mappings/selections/audits, etc to a Legacy status and permits the next merge to
begin
Ensure that another merge job cannot be created if there is already a merge job in the
database
Ensure that a merge job can only be created for the Servers/Locations that have the
status of CURRENT in the sysman_dd_mrg_audit table

The following table lists the available sections that can be specified for the current run of the

merge:

Selection Description

Users Creates users and their corresponding
securities (roles, privileges)

Employees Creates all employee information records

System Management

Creates all system management records
including inventory, billing, list management
gic,

Patients Creates all patient records i.e. demographic,
medications, allergies, etc.
Admission Creates all admission records including

physician, room, bed, etc

23

Procedures Creates all procedural records, including
reports and images

Registry Creates all registry records including ACC,
ICD, and STS

Table 3 - Merge Selection Options

Serviceability

The MergeComponent will throw exceptions in the case of an error to be logged by a

containing component — the Merge Utility.

Database Component

Overview

The DatabaseComponent will be called after the sign-oft is complete. The database
component is designed to process all system management data and then process patients and
admissions. After the patients and admission have been created, it then loops through each
patient that was successfully brought over and brings their related procedural and registry data
over one by one. If the state of a patient/admission changed during the merge process as
indicted by the mapping process, the information will not be processed. A state may change
from “INSERT” to “EXISTS” due to newly imported data as the Destination-server can be
live and requires no down time. After the database completes for a server/location, system
management is considered complete and NO further processing will take place for system
management data. If a patient or admission was unable to process due to a state change,
mapping can be resumed and the merge process can be attempted again until all patients are

processed.

Dynamics

The DatabaseComponent will be a PL/SQL Package written in the Oracle 10g framework.

Specific Functionality

e Indicate status of merge process to Ul — updates on a regular basis (not real time)
o Table name and number (EX: Demog 5 of 245)
o Row number (EX: 455 of 54073)

24

Inform Ul the interfaces can be turned on for the Destination-server even though the
merge has not completed. The Destination-server for standalone merges can be fully
operational during the entire merge process.

Processes patients and all related information (admission and cases) one patient at a
time

System Management data can only be processed once for a Source-server/location
Can be run over and over for patients that have been unable to process due to conflicts
for a Source-server/location

Patient and Admission level data will only be inserted if they do not exist, no updates
of this data will occur in the Destination server.

Patients that have a temporary MPI(TEMP321) assigned will get a new temporary mpi
created when the data is brought over

Admission records that have a temporary account number (TEMP21) will get a new
temporary account number created when the data is brought over

Create a database link that will point to the source DMS database and will be used to
query the data that will be brought over to the destination database. All processing will
occur on the destination database and the database link will only be used to query the
data on the source database.

The merge process needs to be initiated by a database job so the Ul can close and not
kill\halt the process

Provide a procedure that the Ul can call to kill the database job if the job appears to be
hung or is creating numerous €rrors.

Recreate the statistics for the merged tables after they have been merged to ensure
query performance is not affected.

Data will be processed based on any rules that have been defined for the table and or
column. If no rule exists for the current column being processed than that column will
be brought over to the destination database as it is in the source database.

Rule Description

UK Columns that make up the unique key for

WHERE CLAUSE | Use the specified where clause to pull the data from the source database
PRECONDITION | Run the specified code before processing this table

POSTCONDITION | Run the specified code after processing this table

ORDER By Use the specified order by clause to pull the data from the source database
INSERT ONLY Insert rows that do not exist, do not update any existing data

DISABLE

TRIGGERS Disable\enable triggers before\after processing this table

COMMIT ROW

COUNT Commit after specified number of rows have been processed for this table
SAVE NEW PK Save the new primary key(s) for the rows in this table

CHECK ROW Specifies if the code needs to check the row exists - used to speed up
EXISTS processing

Table 4 - Table Level Rules

25

Rule Description

PK Specifies the column as the primary key

FK Specifies the column is a foreign key

Ignore The column should not be processed

Get Max + 1 Get the next available number for this column in the destination database
Null When No

Lkup Set the column to Null if the lookup Key is not found

Proc ID Lkup Get the procedure ID for the procedure being processed
HardCode Value | Field needs to be populated with specified value i.e. process flag
Sequence Use the specified sequence generator to populate this column
IGNORE LOB Do not process this LOB column

Table 5 - Column Level Rules
Serviceability

The DatabaseComponent will throw exceptions in the case of an error to be logged by a

containing component — the Merge Utility.

ReportGen Component

Overview

The ReportGenComponent is utilized to generate the preview report selections and the final

report displayed once the merge completes.

Dynamics

The ReportGenComponent will be a C# assembly written in the .Net 2.0 framework.

Specific Functionality

e Generates both preview (at signoff) and final reports (after merge completes)

e Reports are grouped by merge date/process time — This should be a single time that
coincides with a signoff time — need to be able to link what was merged back to what
was selected.

Reads sysman _dd_mrg_audit table for summary

Displays final summary report of the merge actions

All reports must display the user that made the selections/mappings

Final report must display to the user:

26

o Tables and records succeeded in merge
o Tables and records that failed during merge — failure reason

Serviceability

The ReportGenComponent will throw exceptions in the case of an error to be logged by a

containing component — the Merge Utility.

Merge Utility Install

Overview

The merge utility install will install the merge tool.

Dynamics

The Merge Utility install will be a C# assembly written in the .Net 2.0 framework.

Specific Functionality

e Merge utility can be installed on Destination-server or client
e Update the Oracle network configuration files with Destination-server information
e Install merge database scripts
e Install merge utility
Serviceability

The install will throw exceptions in the case of an error

27

Screen Mockups

Selection Component — Select Servers\Locations

Database Merge.
‘Fila Location Selection

Server/liocation Selection

Available Server\Locations

Source Server Target Server Source Location Target Location A
DMSEXP001 DMSDBFULLO01 LOCATIONA LOCATIONB
DMSDBFUL002 DMSFUL003 LOCATIONC LOCATIOND

[aa][ok [camce]

This dialog box will appear the first time a user accesses this module. It will then store the users selection so the next time they access
this module it will remember the location they were working on to help avoid confusion if there are multiple active Server\locations.
This screen will also be accessible from a menu dropdown if the user needs to change servers\locations.

The Add button will only be enabled for the GE user (museadmin)

Figure 7 — Server Location Screen Mock-up

28
Selection Component — Add Servers/Locations

Database Merge

Add server Llocation

Server Selection

Source Server

Target Server Source Location ~ Target Location
DMSDBFULL001

DMSDBFULL001 SAEXP v SAEXP

v

Statement of Work

[7] Statement of Work Signed
Customer Champion Email Address
Sally Administrator Sally@hospitalname.com

GE Migration Champion

Email Address
Joe GE Joe.ge@ge.com
Modules Registry Data
{7} Cath {7} Echo [7i ACC STS o
[ZiEp TIEKG
[Holter 71 Nuccard Confirm

{1 Stress

{/] Auto Confirm Unconfirmed Procedures

) Lo |

Figure 8 — Add Server/Location Screen Mock-Up

Mapping Component

Database'Merge

29

Mappings Merge

Server/Locations

Source DMSEXP001: SAEXP

Mapping Selection

Management

(%) Patients) Account Numbers
Match By: [|SSN {7]LastName [.}FirstName [| Initial
Matched . X
Source Location/Server Patients
Map Patient MRN MPI SSN Name
%] MRN111 MPI111 111-11-1111 John A Smith
& MRN222 MPI222 22-22-2222 Jayne Doe
&4 MRN333 MPI333 333-33-3333 Joe Miller

Target DMSDBFULLOO1: SAFULL

(") Employees

Target Location/Server Patients

MRN MPI SSN Name
MRN111 TEMP_123 111-11-1111 John Smith ~ ~
MRN222 MPI222 222-22-2222 Jane Doe
MRN333 MPI222 333-22-1111 JOE MILLER

v

{Map Selected | [Check All | [Uncheck All |

Patients in the Source Server that are not mapped will be created in the Destination Server, unless there is a matching MRN in the
Destination Sever. These patients will need to have their MRN merged in the Source Server using the Change MRNO option in System

Figure 9 — Mapping Screen Mock-Up

30

Merge Component

Database Merge.

Mappings Merge

Server/Locations

Source DMSEXPO01: SAEXP Target DMSDBFULLOO1: SAFULL
Selected Mappings
Modules Registries
CATH ACC
EP
Prerequisites
] Convert Long Data Finished 00:02:00
7] users Finished 00:02:00
Merge
Users Finished 00:02:00
Employees Finished 00:02:00
SystemManagement In Progress 00:02:00

Patients
Admissions
Procedures

Processing table Inventory 21 of 1153

Notice of Completion

["] Notice of Completion Signed

The customer will not have access to this tab

Figure 10 — Merge Screen Mock-Up

Statement of Work and Notice of Completion

Statement of Work

A Statement of work will be presented to the customer at the beginning of the merge process
— before the merge utility is installed. The Statement of work will set the customers’
expectations and will outline the merge process. It is not meant to detail the tasks of the
merge, but rather explain the merge process and explain the details will be presented as the
selections are made in the Merge Utility, and that the sign-off/preview report portion of the

merge is the electronic extension to the Statement of Work.

31

All parts of the Statement of Work need to be addressed in individual merges to ensure all

aspects of the merge are documented and agreed-upon.

Notice of Completion

Once the database merge is complete, a Notice of Completion will be presented to the
customer. If the customer is satisfied with the merge then their acceptance will be captured
through the Notice of Completion and the database merge will then be complete. If the
customer is not satisfied, then the customer’s needs will need to be reviewed along with the
Statement of Work, Preview Report and Final Reports to see where the gaps are and how they

can be filled.

All parts of the template need to be addressed in individual merges to ensure all aspects of the

merge are documented and agreed-upon.

32

CASE STUDIES

Desert Springs Case study

Desert Springs Hospital located in Las Vegas, NV was founded in 1971 and currently has 286
beds. The hospital is known by local residences as the “Heart Hospital ™ because of its solid
reputation as the leader in cardiac care. It has also been nationally recognized for its
leadership in diabetes, cardiac, stroke and bariatric surgery programs. The hospital is
accredited by the Joint Commission and is affiliated with the Federation of American
Hospitals and the Association of Western Hospitals as well as the Nevada Hospital
Association (http://www.desertspringshospital.com/About-the-Hospital). Desert Springs has

been a long-time GE Healthcare customer and user of the DMS application.

Desert Springs Hospital was recently acquired by The Valley Health System which currently
is comprised of the Centennial Hills Hospital, Spring Valley Medical Center, Summerlin
Medical Center, and Valley Hospital. These hospitals were also GE Healthcare customers of
the DMS product and each had their own DMS server and database. Since the formation of
The Valley Health System, they have requested that the DB Merge application be run for each
hospital so they can combine the data from the separate databases into one database\server

located in their newly formed data center.

Desert Springs is the smallest of the hospitals in terms of DMS data and was selected to be the
pilot hospital to be merged into the main DMS system using the DB Merge application. It was
decided that each of the hospitals would have its own location in the DMS application which
will allow them to separate the data easier for reporting purposes. Since each hospital would
be merged in their own location, there would be no issues of data collisions in regards to
employees, patients or admissions. This made the merge very easy on the hospital staff since
they would not need to reconcile any of the data collisions. The data for employee, patients
and admissions would come in very cleanly and would not require any intervention on the

hospital staff.

33

The DMS Merge specialist met with the Desert Springs staff and formulated the plan for the
merge. They agreed upon the terms of the merge and the Statement of Work was signed by
both the hospital staff and the merge specialist. The hospital staff wanted all of their CATH
and EP procedural data to be merged over to the new destination server as well as their ACC
Registry data. The merge specialist then installed the DB Merge utility on the new destination
server and ran the DB Merge utility and configured the merge to the customer’s

specifications.

The actual merge was scheduled to begin on the following Monday morning. The merge
specialist began the merge of the Desert Springs hospital data to the new destination server by
merging the System Management data, which included 4500 inventory records. The System
Management portion of the merge finished in around 7 minutes and no errors were
encountered. After the System Management data was successfully merged, the merge
specialist moved on to the Patient data. The Desert Springs DMS Database contained over
16,000 patient records and they were merged over successfully in 10 minutes. Next the merge
specialist began the merge of 39,000 Admission level data records. The admission data was
merged in a little over 15 minutes with no errors. Now that the system management, patient
and admission data was successfully merged to the new destination server, the merge
specialist could move on to the procedure information. The procedure data contained over
3,000 records and was completed in around 15 minutes. The reason the procedure data takes
more time is that there is much more data related to a procedure than there is to a patient.
Also, there are images and reports (PDF files) thatare stored as BLOB’s and BFILE’s in the
database and those LOB objects take time to merge between databases. Once the procedural
data merge completed, the merge specialist kicked off the final portion of the merge, the
Registry data. Desert Springs had a little over 2,500 registry records and they were merged to
the new database in around 6 minutes. The merge specialist then ran the Completion report

and gave it to the hospital administrative staft for their review and approval.

All the data from the Desert Springs DMS database was now located in the new destination

database in the data center. The administration team from Desert Springs logged into the new

34

system and verified the data and found no issues with the merge. All their employees,
patients, admission and procedural data were there as it was in the Desert Springs database as
was specified by the Completion report. They were very happy with the results and pleased
with how quickly the merge was able to finish. While the merge was running there was no
disruption in service on the destination database. The hospital staff was able to go about their
day to day activities using the DMS system and did not notice any issue or performance
problems. The Desert Springs DMS system was taken off-line and they have begun using the
DMS application on the new destination server located in the data center. The Notice of
Completion form was signed by both the hospital administrator and the Merge specialist.
They have since begun planning for merging the remaining hospitals DMS systems and

expect the same satisfactory results.

35

CONCLUSIONS

The DB Merge utility has been successfully ran at several customer sites since it has been
released to production. All of the sites have been smaller in data size so the merge was able to
complete in a day or two. GE Healthcare has hired a Merge Specialist and they work with the
customer and actually perform the merge. The Merge Specialist has worked closely with the
developer on the first few merges to iron out any difficulties encountered. Most of the issues
encountered have had to do with network issues. The main problems encountered were
dealing with connectivity between the two servers. Once the network issues were ironed out,

the application was able move the data between the two servers successfully.

The Merge Specialist has had a couple of suggestions to improve the Ul and at the present
time the suggestions are on hold as they were deemed minor annoyances. Also, since the
customer is not affected by the changes, there is no real benefit to changing the code at this
time. But all in all, the merge specialist is very happy with the application. They like the fact
that they can start the merge and not have to leave the application open to monitor the
progress. They can go about other business and once the merge completes, they get the email
notification and then they can go back to the site and proceed with the next step. They also
like the flexibility that application provides. They can run just the portions of the application
that relate to the customer’s site. Also, they can run one section at a time as it fits into their
schedule. That is why the merges that have been run so far have spanned more than one day.
They are just running portions during the work day, and starting again on the second day. If
they were to run the merge straight through, it would have finished in around 8-10 hours.
Customers are also happy with the results and the fact that they no longer have to support and

maintain multiple systems, and can get at all their data\reports from one server.

Obviously as the underlying structure of the database changes, new entries will need to be
added in the SYSMAN DD MRG RULE table to facilitate the merging of the new

tables\columns. This should be all that is needed to handle merging new data for new schema

36

entries that get added to the DMS system. This will make the application easy to maintain as
there should be no code changes required to handle the new schema, only data changes. This
makes the application very flexible and allows for faster turnaround times with each new

release of the DMS product.

REFERENCES

37

o

O N OO s WN -

18
19
20
21
22
23
24
25
26

Table 6 - Work Breakdown Structure

APPENDIX A: WORK BREAKDOWN

WBS

APPENDICES

Task Name

DBMerge1 DBMerge

DBMerge1.1
DBMerge1.1.1
DBMerge1.1.2
DBMerge1.1.2
DBMerge1.1.4
DBMerge1.1.£
DBMerge1.3
DBMerge1.3.1
DBMerge1.3.2
DBMerge1.3.<
DBMerge1.3.4
DBMerge1.3.£
DBMerge1.3.€
DBMerge1.3.7
DBMerge1.3.¢
DBMerge1.3.¢
DBMerge1.3.1(
DBMerge1.3.1*
DBMerge1.3.1%
DBMerge1.5
DBMerge1.5.1
DBMerge1.5.2
DBMerge1.5.%
DBMerge1.5.4
DBMerge1.5.

Create Database Schema

Create Selection tables and objects
Create Process tables and objects
Create Group tables and objects
Create Rule tables and objects
Create Log tables and objects

Create Stored Program Units

Setup Procedures

P'rocess User Selection procedures
Process Group procedures

Process Group Table procedures
Process Table procedures

Process Data Row procedures
Process data column rule procedures
Information/Error Logging procedures
System Status procedures

Process cleanup procedures

DB Job creation/kill procedures

Data Collision procedures

Create Ul

Logon screen

Merge Selection Screen

Merge Creation Sgreen

Data Collision Screen

DB Merge Management Screen

Duration

36 days?
1 day?
1 day

1 day?

1 day?

1 day?

1 day?
29 days
5 days
2 days
2 days
2 days
3 days
5 days
10 days
3 days
3 days
2 days
2 days
5 days
36 days
3 days
3 days
5 days
10 days
15 days

38

Start

Wed 5/12/10
Wed 5/12/10
Wed 5/12/1C
Wed 5/12/1C
Wed 5/12/1C
Wed 5/12/1C
Wed 5/12/1C
Wed 5/12/10
Wed 5/12/1C
Wed 5/19/1C
Fri 5/21/1C
Tue 5/25/1C
Thu 5/27/1C
Tue 6/1/1C
Tue 6/8/1C
Wed 5/12/1C
Wed 5/12/1C
Wed 5/12/1C
Wed 5/12/1C
Wed 5/12/1C
Wed 5/12/10
Wed 5/12/1C
Mon 5/17/1C
Thu 5/20/1C
Thu 5/27/1C
Thu 6/10/1C

‘Wed 6/30/10 |

Finish

Wed 5/12/10 |
Wed 5/12/1C,
Wed 5/12/1C
Wed 5/12/1C
Wed 5/12/1C
Wed 5/12/1C
Mon 6/21/10
Tue 5/18/1C
Thu 5/20/1C
Mon 5/24/1C
Wed 5/26/1C
Mon 5/31/1C
Mon 6/7/1C
Mon 6/21/1C
Fri 5/14/1C
Fri 5/14/1C
Thu 5/13/1C
Thu 5/13/1C
Tue 5/18/1C
Wed 6/30/10
Fri 5/14/1C
Wed 5/19/1C
Wed 5/26/1C
Wed 6/9/1C
Wed 6/30/1C

Mey) nuen - 11 aun3y

4
¥
€

- N+ 0 © N~ ©

WTS L L!s|d MW s 1li]sld M W[sT1T1ls 4 m{NWN[fs|L | L1|s|d[M W|S 11|

by Inr 0k, ‘zzunp 04, ‘0z unr ok‘gbunr ok gunr] 04, ‘0€ Ae ol.'czAkeN| onorAew ol ‘6hem |

ai

LIVHD LINVD ‘4 XIANHAddV

APPENDIX C: ER DIAGRAM

Temp Tables

SYSMAN OO MRG LOB_ TS

SYSMAN DD _MRG_SOW NG

i;gnm LD _MRG SCW 2&‘ Ig

FRON_SERVER
TO_SERVER
EROM_LOCATION
T0_LOCATION

STATUS

Ay DATE

NOC_DATE
CUSTOMER CHANPION
A

BRI
R

i pORT
1B BRGKE
WENT

SYSMAN DD MRG SELECTION

PK

YSMA G 11 k]

SYSMAN_DD_MRG_SOW_NOC 0
GROUF_NAME

ITENR

SELECTED

BYSMAN_ DO MRG PROCESS

PK

SYSMAN DO MRG PROCERS 1D |

LA

SYSMAN_DD_MRG_SOW_NOC 0
GROUP_NAME

PROCESS _ORDER

GROUPING

PROCESS GROUP

UESS STATUS

iy

Selup Tables

=}

SYSMAN_DC_MRG_SELECTION D

PK

SYSMAN DD MRG SELECTION D 1D

GROUP_NAME
ITEM
DISPLAYED

SYSMAN_ DD MRG PROCESS D1

K

SYSMAN_RD_MRG_PROCESS D D

GROUP NAME
PROCESS ORDER
GROUPING

HIERACHY LEVEL
ADDITIONAL

ALPAENT

N Mapping Tables
Audit Table
SYSMAN_DD_MRC_USR_MAPPED
SYSMAN DD MRGAUDIT SYEMAN DD MRG_COLLIBION
- K| SYSMAN DD MEG USR MAPPED 1
PK_ | SYSMAN DU MRG AUGIT IO | PK_| SYSMAN DD MAG COLLISIONID |
SYSMAN_DD_MRG_SOW_NOC_ID
PROCESS NAME GROUP _NAME COLLISION TYPE
PROCESS DATE COLLISION_TYPE MAPPABLE
PROCESS_FROM_SERVER 1 USERNAME
PROCESS_TO_SERVER KE FROMIC
FROM_LGTATION ANALAE FROMKEY
TO_LOCATION ANAIALZ FROMNAME 1
AUDHT_CODE FROMADE EROMNAME?
AUDIT MESSAGE FROMAEDY
AUDIT_TYPE FROMADOZ
AUDIT_USER FROMADD?
GROUPING TOH
USAGE TOREY
RUN_COUNTER TONAME?
3 TOADE2 TONAMEZ
> J MAPPABLE TGADDY
o I TOADD2
¥ 4 TOADDE
\
~
SYEMAN_ DO MRG_LKUP KEY
Merge Tables
£X__| SYSMAN DD WRG LKUP KEY.I0 |
SYSMAN_DD_TABLE FK1 | SYSMAN DD _TABLE i0
SYSMAN DD MRG TAS GROUP TABLE_NAME
PK | SYSMAN DD YA COLUMN_NAME
PK | SYSMAN DD MRG TAB GROUP I oLD
S CAWNER NEW_KEY
FK1 | SYSMAN_DO_TABLE 1D —p TABLE NAME <4— USER_NAPPED
ACTIVE PROCESS FROM_SERVER
FK2 E ACCESS_REPORTING_TOOL PROCESS TO_SERVER
£R OBJECT TYPE FROM_LOCATION
i oTY TG_LOCATION
. VERSION INTRODUCED
“ ADDITIONAL COMMENT -
CatH SYSMAN_DD_MRG_RULE
SYSMAN_DD_MRG_MAPPED ITH SYSMAN DD MRG GROUP s -
318 PK__ | SYSMAN DO MRG RULE 1D
PK | GROUP NAME FK | SYSMAN DD MRG GROUP D 2
PR_iEnR e FK1 | SYSMAN_DD_TABLE ID
— P = TABLE_NAME
ﬁ??,cs““’m MIGRATION_ TYPE 4 SYSMAN_DD_PARENT TABLE 1D
i PARENT TABLE NAME
Coptess RER COLUMN_NAME
4y . RENT v
MEDICAL RECORDNUMIEER :;[m. CTOLUMN NAME
oATA
: BYSMAN_DO
SYSMAN_DE_MRG_OROUP. REL _MRG_RULE PR
P | SYSMAN_DO.MBG. GROUP_RELID 4—| PK__| SYSMAN DD MRG RULE PR.IO
FK1 | DRIVING GROUP SYSMAN_DD_TABLE 10
RELATED_GROUP - TABLE_NAME - -
FK1 | SYSMAN_DO_PARENT TASLE 1D

PARENT TABLE NAME
COLLMN NAsE
PARENT COLUMN_NAME

&%

Figure 12 — ER Diagram

	Dakota State University
	Beadle Scholar
	Fall 12-1-2010

	Database Merge
	Bob Van Roekel
	Recommended Citation

	tmp.1522684584.pdf.Ohx_4

