Dakota State University

Beadle Scholar

Masters Theses

Spring 4-1-2005
Customer & Transaction Database with Custom
Interfaces

Ross Denholm
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

Recommended Citation

Denholm, Ross, "Customer & Transaction Database with Custom Interfaces” (2005). Masters Theses. 68.
https://scholar.dsu.edu/theses/68

This Thesis is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses by an authorized

administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Ftheses%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/68?utm_source=scholar.dsu.edu%2Ftheses%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

Customer & Transaction Database with Custom Interfaces

A Project Report submitted to the

Graduate Faculty

By

Ross Denholm

In partial fulfillment of the requirements for the degree of
Master of Science in Information Systems
Dakota State University

April 2005

UNIVERSITY

MSIS
PROJECT APPROVAL FORM

Student Name: /'ZC’ 24 ﬁﬁﬂ /\ @//\/1

Expected Graduation Date: 7 ~/ 0%
Master’s Project Title: CM?'{/C;"""ZP} [ransgctivn ﬂfﬁ"/ base L‘/’Hl/ll CC' Frem Iﬂhpﬁ(fﬁ

Date Project Plan Approved: /: o / / O Lf

Date Project Coordinator Notified and Grade Submitted: } - ‘{' -0 9

Approvals/Signatures:/ %/\/
7z - .)
Student: / % Date: g“ LIL - 0 b,

Faculty supervisor: Date: 5,/ j/// oS
Committee member: Date: r/ CA/ vs

Committee member: M—— %\’\ Date: 2/(F / agsS

Revised 1/28/03

Abstract

This document outlines the creation of a customer and transaction information
system. The database includes both customer and transactional information, primarily to
facilitate access to customer data and provide summary contract information. This
database interacts with two different front-ends to simplify its usage and to provide
additional functionality. One front end is created in Visual Basic.NET and allows a user
to add, view, or edit any transaction or customer information. This front end allows a
user to query the database for any desired information. The other front end is an
ASP.NET web interface which provides similar functionality in an internet-based

application.

il

Table of Contents

MSIS Project Approval FOrm............cccccooiiiiiiiiiiiiiiiiicceceetee e i
ABSEEREE it s s s s e S R b v L ii
Table of COMLENLSooooiiiiiiiicee e as v
LARE.OF FITOIEE ..o srgmmnmmmmssummm s oo shss s sssias st ssd o v
L BRATOMUCTRON ... 5 00 nosctsuss ivivh ni0ia4cns st RRR A H AR5 A5 B HR ST A RS AS BE TR AR R AR 1
II. Organizational Information.................c..ccooiiiiiiiiiiiiiii e Z
W, Problens TAentiiCation ..o s ottt nsismesibsaistisseiobmamo s nesseiaseisnsesl 4
IV . SYSERI ROGIEBE. ..coiv00nu0cnmssssmsnsdumimsmssnsomssessismmss SN s s S u s e avesasss sa¥s s s maR sSSPt 6
V. The Development Process...........ccoccoiiiiiiiiiiiiiiiiieiiicecieeccie e siane s sanaes 7
VI. Objectives and Deliverables..............c..cccooiiiiiiiiiiiiiiieiiiccecceeecee e 8
VIL. Datahage DIEREBILovonsnessonvinsnsnssnsnssmussmussossstssaasesssnssssssssssasssss ssvasseasnssusas s sssminsvs 9
VIL: VBNET Implemiemtathion ... cuoiisuocominsescocsssvosssssssiosnsassvsasassssarosssss covsvaves onsssasa 11
IX. ASP.NET Implementationccccooiiiiiiiiiiiiiiiiiieccieccieeeieee e cine e 26
X. Results and Conclusion.................oooiiiiiiiiiiiiiiiiceccee et sae e 38
XL REIOCYCINCEE coicivmsansrusionsssssssssssansss s sovsvsns seiss i sms s o s o s o SR o Re TSR E S 40
APPENDIX A — VB.INET CoOdecoooiiiiiieiieeeeteteteeee et A-1
APPENDIX B — ASP.NET Codecocoiiiiiiiiiiiiieececcieceeee e B-1
APPENDIX C — Project Planning Documentation.................ccccooviiiiiiiniiiniiecnnnns C-1

v

List of Figures

Figure 7.1: Relational SCREMAccucueuvuecuiiiiiiiiiiiiccicieieisse i 9
Figre 8 1: The View Customers FOPI covwveiecmnsansapssiomsesssnssspsssmssssrdie 13
Figure 8.2: The Add/Update CustOmer FOFM. .« osessinsessssssssesessosmussosmssssssnsssssissosses 15
Figure 8.3: The View Transactions FOFM................cceeeeercuencncveseisiieiessisseesssssessnenas 17
Figure 8.4: The Add/Update Transactions FOFMceeeevceeeecuecensiinsiennesnesinnnnes 19
Figure 8.5: The Advanced Search Form, Customers TaDcussosossusssessesovsonussvosnossnss 20
Figure 8.6: The Advanced Search Form, Transactions Tabcccccccuvvvuevcueennne. 22
Figure 8.7: The Advanced Search Form, Contract Summary Tab..................ccccueeuue... 24
Figure 9.1: View Customers and View Transactions Panelscccccvevueruuenn.. 28
Figure 9.2: Add/Update Customer ASP.NET FOVMcncvsevisssossssironsissssssaississsssnssasss 30
Figure 9.3: Add/Update Transaction ASP.INET FOFM............ccuueeereeceesenceeereneennenn. 32
Figure 9.4: Customer Search Paneloooeeveeeuemseeisinieeieeiiesieesieeeieeseeens 33
Figure 9.5: Transavtion Seaveh PABEL....ccwosswwsossssmsssansmsssssrissoisssvssvssnsiss 34
Higtire 9.60 COMFGEL SUMIATY PARCL.~ - coviinivaimisss ingons swiatsn s souss i mm s A TSRS RIS ST 36

I. Introduction

Lightspeed Technologies is a small computer repair business in Madison, SD. In
addition to typical PC repair, the shop sells computer and networking hardware and
provides network support services. This full-service nature has led to the establishment
of several service contracts, but there is currently no method in place to perform any kind
of analysis on the contracts. In addition, the growing customer base has brought the need
for some kind of customer information database to the forefront.

There is effectively no existing electronic system aside from a small amount of
information haphazardly gathered through e-mail communication: a small address book
consisting of contact information for a few customers. Since the company is owned and
operated by a single person, there has not been time to implement any kind of database.
Most information is currently recorded on paper records only. Very little customer-
specific information is recorded independently, only appearing on the transactional
receipts that are manually created for each transaction.

The purpose of this project is not to replace the current paper system because it
would be impractical to do so due to the on-site nature of most of the business’s
transactions. Rather, this project is to serve as a supplementary information layer on top
of the existing records. Due to this supplementary nature, much of the database design is
derived from the current paper records, minimizing the redesign of any existing business

Processes.

II. Organizational Information
Organization Objectives:

The objective of Lightspeed Technologies is to provide high-quality, inexpensive
computer repair and support services for both businesses and individuals.
Organizational Structure:

Lightspeed Technologies is a small company owned and operated by a single
individual. Accounting services are provided by an outside firm, as are legal services,
but almost all business activities are handled by the business owner.

While the structure is currently limited to a single individual, it is quite likely that
an employee will be added in the near future, making intra-organizational communication
an issue.

Description of Operations:

Computer Repair — Lightspeed’s primary function is full-service computer

repair for individuals and businesses. There is a strong emphasis on quality

customer service in order to encourage customer loyalty in a competitive local
market. Repair services include both hardware and software repair.

Networking Support — A natural extension of computer repair, Lightspeed also

provides networking support services for both individuals and businesses. The

supported networks vary from small, two computer peer-to-peer networks to 30

computer client-server business networks spanning two cities. The installation

and maintenance of networking hardware is the primary function, although server

configuration and maintenance is also performed.

Customer Service — Customer service is an important competitive advantage for
Lightspeed Technologies. All services are performed with the express intention
of keeping the customer happy. For example, in the event that a problem is not
completely corrected during the first service call, the problem will be corrected
with another visit free of charge. Also, in the rare cases that Lightspeed is unable
to repair a computer, the customer is not charged. These and other customer
service initiatives create high customer loyalty and differentiate Lightspeed from
other local competitors.

Business Rules:

The business rules for Lightspeed Technologies are not very extensive. Computer
service is a largely unregulated industry and very few business rules have been created by
the owner. Most of the business rules that do exist are largely beyond the scope of the
project, mostly involving legal obligations requiring the report of some computer crimes.
The relevant business rules mostly revolve around the way business processes are
executed and aren’t generally codified as rules. The most important business rule in the
development of the database is the one-to-many relationship between customers and
transactions; each customer can have multiple transactions. The only other major
business rule with an impact on the project is the fact that partial payments are not

accepted, although occasionally deposits are requested and allowed.

I11. Problem Identification
Interview:

The first step in the planning of this project was an informal interview with the
owner of Lightspeed Technologies. This interview provided the initial motivation for
this project as well as most of the basic specifications. The interview initially showed
only a strong desire for a database system to store customer information. There was
specific mention of a need to look up customers by phone number in certain situations, so
the database and interfaces should be able to support this search.

As the interview progressed, the owner also expressed a desire to track the
transactions involved with Lightspeed’s contractual customers as well as a desire to
obtain summary information about those transactions. In addition, the owner expressed
unfamiliarity with the operation of database software despite owning a copy of Microsoft
Access. The owner’s current knowledge of Access includes data entry, record deletion,
and basic navigation skills but no knowledge of queries, reports, or any other more
advanced features.

This lack of familiarity with database usage suggested the use of a front-end to
provide relative ease-of-use for the database system. The initial desire was for a Visual
Basic application with a relatively standard Windows interface. The project expanded to
also include an ASP.NET web application which could allow for data access from remote
locations in the future, although because of the limited computer resources within the
organization this web application will not be in use at project completion.

The basic structure of the database was also discovered during the interview

process, derived from the existing paper records. Since the information system being

developed will not function as a replacement for the current paper system, it was logical
to derive the database design from the paper documentation in order to facilitate data

entry while avoiding the re-engineering of existing business processes.

IV. System Request
The owner requested that the database and front-ends for that database be
developed in order to provide searchable customer and transaction information to support
business operations.
The specific requirements are as follows:
e The system should provide customer information.
e The system should provide transaction information.
e The system should provide an interface to allow easy querying of the database.
e The system should provide summary information about transactions to aid in the

analysis of contracts.

V. The Development Process

The design of the Lightspeed database was almost completely derived from
existing paper documents, so very little design effort was required. The only fields in the
database which are not derived from the paper documents are the primary and foreign
keys for the two tables.

The choice of the DBMS was more difficult, but the ultimate choice was Access.
Limited computer and monetary resources at Lightspeed made it impractical to
implement many DBMS options, including Oracle and SQL Server. MySQL was
considered as a low-cost alternative to Oracle or SQL Server, but the owner of
Lightspeed was uncomfortable with the idea of running the MySQL server process on the
one available computer. In the end, Access proved to be the best choice for this project.

The front-ends generally followed a prototyping methodology. Partially
functional ‘betas’ were created and tested before proceeding with development. This
methodology was particularly effective because of the developer’s unfamiliarity with the
programming tools used. The prototypes helped the learning process by providing quick
feedback on the effectiveness of the development.

Prototyping also made the testing process easier, allowing for incremental
increases in program usability and stability. Also, since testing was performed on
individual functional modules as development progressed, prototyping reduced the need
for a large-scale test at the end of the implementation process.

Further maintenance, support, and development of this system will be handled by
the project developer and the owner of Lightspeed as the need arises. Possible future

development includes the deployment of the ASP.NET interface.

VI. Objectives and Deliverables

The goal of this project was to provide a database that stored customer and
transaction information which could easily be queried. Lightspeed needed a relatively
easy-to-use system, although since the owner is the only user the interface could be
specifically tailored to his preferences. In order to provide this ease-of-use, front-ends
would be created in VB.NET and ASP.NET. Both front-ends needed to provide the
ability to add, edit, and view database entries. Further, both front-ends needed to provide
the ability to search for records in the database as well as specific summary information
used to analyze contracts.

The deliverables include: the VB.NET executable, the ASP.NET scripts, and a
sample database for demonstration purposes. Much of the VB.NET code is in Appendix
A, although code generated by Visual Studio has been omitted to avoid excessive length.
All ASP.NET code is included in Appendix B.

There were no significant changes to the original project plan. Aside from normal
deviations in schedule and relatively minor alterations to the original VB.NET design,

nothing from the planning stages was changed.

VII. Database Design

[CustID_] FirstName | LastName | Address [City | State | ZIP | Phone | Email | Notes |
[TransID | CustiD | Date | HardwareValue [SoftwareValue [LaborValue |
[TaxValue [DownPayment | Notes [PaidinFull]

Figure 7.1: Relational Schema

The database was primarily designed based on the paper records already in use at
Lightspeed. This was done to facilitate data entry into the database as well as to avoid re-
engineering business processes. Additionally, this design helped simplify the usage of
the system for the end-user because it resembles the pre-existing system.

The customer table includes the fields Customer ID, First Name, Last Name,
Address, City, State, ZIP, Phone Number, E-mail Address, and Notes. The majority of
these fields are straightforward in terms of content and are simple string data types, but a
few call for special attention.

Customer ID was one of the few fields created exclusively for use in the database
without a counterpart in the existing paper documentation. It consists of a relatively
simple auto-numbered integer value which uniquely identifies each customer.

The Notes field consists of freeform alphanumeric information about a customer.
This field was requested by the owner of Lightspeed specifically and existed in the
original paper forms. Notes is a string field with a length of 255 characters, allowing the
owner to create quite lengthy notes about a customer should the need arise. The creation
of a Notes table was considered as an alternative to this field, but the owner indicated it
was not necessary to maintain multiple notes for each customer, rendering this additional

database complexity useless.

The transaction table consists of the fields Transaction ID, Customer ID, Date,
Hardware Value, Software Value, Labor Value, Tax Value, Down Payment, Paid In Full,
and Notes. The Date field stores the date of the transaction in date/time format. The
‘Value’ fields and the Down Payment field are all numeric fields containing decimal data
representing dollar values.

Transaction ID, like Customer ID in the customer table, is a relatively simple
integer auto-number used to uniquely identify each transaction. The Customer ID in the
transaction table functions as a foreign key, relating a transaction to a record in the
Customer Database. Both of the ID fields did not have any precedent in the paper
documents already in use at Lightspeed, but are necessary for an RDBMS system.

Paid In Full is a relatively simple boolean field representing the payment status of
a transaction. Lightspeed does not accept partial payments, so a boolean field is
sufficient to track the payment status. It is worth noting, however, that the Down
Payment field could serve as a way to track partial payments should Lightspeed later
decide to change their policy regarding partial payments.

The Notes field is very similar to the Notes field in the customer table, although in
this case the Notes are connected to individual transactions instead of individual
customers. In all other aspects the transaction Notes field is identical to the Notes field in
the customer table, including design motivation.

Once the database design was finalized, the database was populated with existing
Lightspeed customers and some existing transactions. However, due to the owner’s
desire for both customer privacy and data security, none of the data from that database

will be presented in this documentation.

10

VIII. VB.NET Implementation

Microsoft VB.NET is a very good choice for rapid development of Windows-
based office applications. VB.NET includes many database objects which can be used to
add, edit, or view records in almost any kind of database. In addition, Visual Studio 2003
includes many tools to facilitate the development of database applications. All forms in
this project used a combination of an OLEDB Connection, an OLEDB Data Adapter, and
a Dataset (Holzner, 2003).

The OLEDB Connection provides the connection to the database. In this case, the
database was made in Access, so the OLEDB Connection object uses Microsoft Jet. The
OLEDB Connection object only provides a ‘path’ which allows a form to access the
database, but another object is needed to actually perform that access.

The OLEDB Data Adapter is the intermediary that allows a form to retrieve data
from a connected database. The OLEDB Data Adapter is what stores any SQL
statements that a form needs to execute while the OLEDB Data Adapter’s methods
actually execute the SQL statements. The OLEDB Data Adapter is also responsible for
adding or editing records within the database, although this function also relies on
another intermediary.

The Dataset is the data that the form works with directly. The Dataset is filled by
the OLEDB Data Adapter, after which the Dataset is used to access the data in the
database. Any alterations to data are also performed in the Dataset, but the OLEDB Data
Adapter is responsible for committing those changes to the database.

These three objects are responsible for most of the work in all database-connected

forms. The connection objects in all forms are identical, but there are severe differences

11

in the data stored in the Datasets as well as the queries used in the OLEDB Data
Adapters. Different forms require different data, and the SQL statements in the OLEDB
Data Adapter reflect these differing desires, as do the Datasets.

Another common element to all of the VB.NET forms as well as the ASP.NET
forms is the lack of a delete button or function of any kind. The owner of Lightspeed,
late in the planning process, expressed a desire to not have delete functionality in the
interfaces. This desire was driven by a fear of accidental record deletion as well as
concerns about possible misuse by any future employee. Currently, the only way to
delete a record is by manually editing the database in Access, something the owner is
comfortable with. It would be relatively easy to add an authenticated deletion page to
both interfaces while still maintaining security if the owner desires the addition at a later
time.

Data Validation is supported by a single module which contains several basic
validation functions. Most of the validation is handled by regular expressions, although
some is provided by built-in VB.NET functions. Individual forms also contain validation
code which calls the correct validation functions and handles the output of error
messages.

The aforementioned implementation details provide a limited overview of the
project, but there are enough specific implementation details available to justify the

following form-by-form analysis of the project, starting with the View Customers form.

12

’ '»gr';Lightspeed - ¥iew Customer Records

Figure 8.1: The View Customers Form

The View Customers form is dominated by the large DataGrid control. The
DataGrid control is used to display the information stored in the Dataset. The Dataset is,
by default, populated with all of the customer records in the database. However, the
content of the dataset can easily be altered as necessary.

The easiest way to filter the records that are show in the DataGrid is by using the
“Search by Name” button on the bottom of the form. This button adds a WHERE clause
to the SQL Statement, using the text entered in the adjacent textbox as a comparison
value to find records with a similar First Name or Last Name. This allows the user to
quickly filter the results to more easily find the desired customer record. Also, the
“Advanced Search” button can allow the user to filter the results shown in the DataGrid,

but that will be examined in more detail later.

13

The “Add Record” and “Edit Record” buttons function very similarly to each
other, redirecting the user to the Add/Update Customer form. The “Edit Record” button
also retrieves the currently selected Customer ID from the DataGrid and uses that to
populate the Add/Update Customer form with the initial data.

The “Add Transaction” button functions similarly to “Edit Record”, redirecting
the user to the Add/Update Transaction form. “Add Transaction” also retrieves the
currently selected Customer ID, which is then used by the Add/Update Transaction form
to create the new transaction record.

“View Transactions” redirects the user to the View Transactions form and also
retrieves the currently selected Customer ID and uses that to filter the transactions that
are shown.

This form is also designed to show custom queries generated by the Advanced
Search form. This is accomplished by changing the query stored in the OLEDB Data
Adapter to retrieve the appropriate records when the user is directed to the View

Customers form by the Advanced Search form.

14

™ add /Update Customer Record

e

i
AR
PR |

?M_,., -

}

Figure 8.2: The Add/Update Customer Form

This form contains textboxes for all fields in the Customers table with the
exception of Customer ID, which is not user-editable in any way and will be auto-
generated when a new record is created. The form is fairly straightforward, but there are
some aspects that require explanation.

The development of this form was aided by the Data Form Wizard. The Data
Form Wizard creates a basic form with bound controls to display or input all desired
fields from a table. In order to bind these controls to the data, the wizard creates an
OLEDB Connection, an OLEDB Data Adapter, and a Dataset. In addition, the wizard
creates several functions designed to update the database with any changes that are made
to the Dataset, including the addition of new records, deletion of old records, and
modifications to existing records.

Unfortunately, while the Data Form Wizard provides a great base of code to work

from, the code it creates was not directly compatible with the design of this project. As a

15

result, the code was significantly modified to support the flow of the design. One major
change was loading the appropriate data on page load when necessary instead of waiting
for the user to click a button.

Another major change to the functionality of the Data Form Wizard was the
elimination of several command buttons. Normally the Data Form Wizard assumes that a
user will be able to navigate the database freely within the form, whereas the project
design called for navigation in a separate form. The most obvious result of this conflict
was the removal of the navigation controls from the basic form.

Another consequence of the lack of navigation resulted in the removal of several
buttons entirely, including a “Cancel changes to this record” and “Add” button. “Cancel
changes to this record” was removed entirely because there is no need to cancel changes
to an individual record because there will only be a single record being added or edited at
any time, making this and “Cancel all changes™ identical in functionality. The “Add”
button was unnecessary because the user chooses to add a record before they see this
form, rendering it useless at best and redundant at worst. Instead, if a user was directed
to the form by an “Add Record” button, the page load event detects that and executes the
code that was associated with the “Add” button automatically.

As shown in Figure 8.2 above, the final form only has the buttons “OK” and
“Cancel”. The “OK” button submits the changes or additions on the form, updates the
database with the changes, and returns to the View Customers form. The “Cancel”
button is identical to the “Cancel All” button generated by the Data Form Wizard except

that it also returns the user to the View Customers form.

16

4 April, 2005
Sun Mon Tue Wed Thu Fii

M| ightspeed - Yiew Transactions

)

27 28 29
5
12
13
26

30
B
13
20
27
4

K}
74
14
21
28
5

1
8

Sat ¢
2 B
9

15 16 |
22 23
29 30
B 7

4 April, 2005 >
Sun Mon Tue Wed Thu Fri

Sat

27 28 29
5
12
13
26
3

30
6
13
20
27
4

21
7
14
21
28
5

1
8

2
9

15 16 |
22 23
29 30
6 7

<> Today: 471772005] Today: 4/17/2005

Figure 8.3: The View Transactions Form
The View Transactions form is very similar to the View Customers form in many
ways. In fact, the View Transactions form began as a copy of the View Customers form,
so much of the code is nearly identical. This form is similarly dominated by a large
DataGrid, although it is obviously loaded with data from the transactions table instead of
the customers table.
The “Edit Record” button functions similarly to the “Edit Record” button in the

View Customer form. When it is clicked, it redirects the user to the Add/Update

17

Transaction form, sending the form the Transaction ID of the currently selected item in
the DataGrid. This Transaction ID is used to populate the Add/Update Transaction form.

The “Search by Date” button is similar in functionality to the “Search by Name”
button in the View Transactions form, but the implementation is quite different. Most
noticeable is the inclusion of two Calendar controls to facilitate selecting a date for ﬁse as
a search term. These Calendar controls were used because textboxes are problematic for
Date inputs due to the relatively strict nature of the date/time data format. The use of the
Calendar controls alleviated worries about input data type errors, making the search much
more reliable from the user’s perspective. When “Search by Date” is selected, the
OLEDB Data Adapter is updated with a new SQL statement, the Dataset is refilled, and
the DataGrid reflects those changes.

The View Transactions form was also designed to provide output for the
Advanced Search form, accomplished by altering the query used in the OLEDB Data
Adapter. The development of the Advanced Search form will be covered in more detail

later in this document.

18

E | Add /Update Transaction

Aprl, 2005

Sun Mon Tue Wed Thu Fn
27 28 29 30 0N 1
3 4 5 6 7 8
10 11 12 13 14 15
17 18 19 @ 21 22

24 25 26 27 28 29
1 2 3 4 b &b
< 2 Today: 472072005

Figure 8.4: The Add/Update Transactions Form

Just as the View Transactions form was similar to View Customers, the
Add/Update Transactions form is very similar to the Add/Update Customers form.
Again, this form was created using the Data Form Wizard in Visual Studio 2003. Many
of the manipulations to this form in order to make it flow correctly are identical to the
changes made in the View Customers form. Since these changes are so similar, they will
not be outlined individually here.

Most of this form is relatively self-explanatory. It consists mostly of textboxes
used to display or input information in the database. The boolean field Paid In Full is
displayed as a checkbox, the most efficient way to illustrate a boolean data type in a
graphical form.

The only major design change is the inclusion of a Calendar control for use with
the Date field. Much like the View Transactions form, this was utilized to decrease the

likelihood of input difficulties. If a new record is being added, the Calendar control

19

displays the current date; if a record is being edited, the Calendar control displays the

date stored for that record in the database.

™ advanced Search

i
i
i
I

Figure 8.5: The Advanced Search Form, Customers Tab
This form is a fairly straightforward data-entry page, sharing many elements with
the aforementioned Add/Remove Customers Form. The purposes of the textboxes should
be reasonably obvious given the labels being used — they are used to provide search terms
for their respective fields.
The checkboxes beside each textbox/label pair determine whether any data

entered in the textbox is actually used for the query and validated. If the box is

20

unchecked, the query generating code and validation will ignore any text in the related
textbox. Some checkboxes perform other special functions: for instance, checking the
“FirstName” and “LastName” checkboxes will uncheck the “First & Last Name”
checkbox to avoid conflicts, while checking “First & Last Name” will uncheck both
“FirstName” and “LastName” for the same reason.

The query-generating code is fairly simple but lengthy, consisting primarily of
several conditional statements to check the status of the checkboxes as well as the
validity of data. The query string is initialized to an appropriate base query: in this case
SELECT * FROM CUSTOMERS. If a given checkbox is checked and the data in its
associated textbox is valid, the query generator appends appropriate SQL to the end of
the initial string in order to achieve the desired result. The end result is a properly-
formed SQL Statement which can then be used in an OLEDB Data Adapter to load the
desired records.

The “Execute Search” button is responsible for executing the correct query
generation code, passing on the search query, and redirecting the user to the appropriate
display form. The correct code path is selected by an IF statement which uses the

currently selected tab as a test condition.

21

April, 2005 il e Apnl, 2005 r

Sun Mon Tue'Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat
27 28 29 30 3. 1 2 27 28 ¥ W AN 1 2
3 4 5 6 7 8 8 3 4 5 6 7 8 19
10 11 12 13 14 15 16 0 11 12 13 14 15 16
17 18 19 @B 21 22 23 17 18 19@&h 21 22 23
24 25 26 27 28 29 30 24 25 26 27 28 23 30
1 2 3 4 § B 7 T2 3 AWHE R T

= Today: 472072005 ZToday: 4/20/2005

Figure 8.6: The Advanced Search Form, Transactions Tab

Much of this form resembles the Add/Update Transaction form. Most of the
textboxes and checkboxes are obvious in terms of content and the query builder functions
very similarly to the Customers tab of the Advanced Search form.

There are several design features unique to this tab which are worthy of note,
most obviously the comboboxes (or drop-down list boxes) used to aid query generation.
The comboboxes present between the checkboxes and textboxes for the monetary values
(HardwareValue, SoftwareValue, LaborValue, TaxValue, and DownPayment) allow thé

user to select the operator used for comparison by the query engine. The combobox

22

allows the user to choose equal, greater than, less than, greater than or equal to, and less
than or equal to operators as desired. This obviously adds some complexity to the query
generator, but it does not have an overly large effect.

Another combobox of note is underneath the “Date” checkbox. This combobox
allows the user to choose either “Equal” or “Between” as a date-search operator. If
“Between” is selected, an additional calendar control (visible in the above screenshot) is
made visible to the user to allow the selection of a range of dates. Similar to the
aforementioned comboboxes, this also added some complexity to the query generator.

The only other unique design feature involves the PaidInFull checkbox. In order
to make the search terms more clear to the user, when the data value checkbox is checked
it will display “Paid” and when it is unchecked it will display “Unpaid”. This was an

easy-to-implement feature suggested during testing to improve usability.

23

I ® Advanced Search

£
£

Sun Mon Tue'Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat
27 28 29 30 21 1 2 2T 28 29 30 30 2
Fiwldr - IR F R 9 3 4 5 6 7 8 9
10 11 12 13 14 15 16 10 11 12 13 14 15 16
17 18 19 @&@kh 21 22 23 17 18 19 &b 21 2 23
24 25 26 27 28 29 30 24 25 26 27 28 29 30
o 2 3 5 0T e 2 531 s 5Bl

< Today: 472072005 < Today: 472072005

|
|
April, 2005 ' - April, 2005
i
{
|
{

Figure 8.7: The Advanced Search Form, Contract Summarle ab

The Contract Summary tab is quite different from the other search tabs. Aside
from the relative simplicity of the interface, the output for the searches performed on this
tab is handled by the labels in the “Results” panel at the bottom of the tab. This search is
designed to allow a user to specify a period of time and get summary information about
that period. The user may optionally specify a CustID to retrieve summary information
for only one client, presumably a contractual client.

This tab has a very simplistic version of the query generator used on the other two

tabs, choosing between two general queries based on the status of the CustID checkbox.

24

When execute search is clicked, an OLEDB Connection is established, an OLEDB
Command is created, and an OLEDB Data Reader is created. The OLEDB Connection is
used by the OLEDB Command to execute the generated query and feed the results to the
OLEDB Data Reader. The Data Reader is then used to fill the labels in the “Results”

area.

25

IX. ASP.NET Implementation

The ASP.NET web interface was originally planned to use much of the same code
as the VB.NET interface. Unfortunately, differences in the implementation of the
DataGrid in the two formats, as well as some other minor differences, prevented the reuse
of much of the VB.NET code. Even though the programming language is essentially the
same, these small differences require some significant alterations to the code.

Unfortunately, development of the ASP.NET interface began much later than
originally planned. This late start, combined with the differences between VB.NET and
ASP.NET, caused the elimination of some features. However, the features that were
removed were the search features on the View Customers and View Transactions panels,
which were mentioned as potential removals in the original project plan.

Also, the compressed timeframe somewhat eliminated the planned prototyping
methodology. While the development still roughly followed a prototype methodology,
there was not as much testing of each prototype as originally planned. Instead, the testing
period was very brief and a new prototype was created as soon as basic functionality was
verified.

Development of the ASP.NET code was performed in Web Matrix, a free
development tool distributed specifically for creating ASP.NET pages. Web Matrix did
not have the wizards that make the implementation of the OLEDB Connection, OLEDB
Data Adapter, and Dataset trio so easy in VB.NET.

Instead, the ASP.NET code utilized a combination of the OLEDB Connection and

OLEDB Command objects to display and update the database. The OLEDB Connection

26

object is identical in purpose to the OLEDB Connection object in VB.NET, providing
only the connection with no methods to manipulate the data in any way. (Walther, 2004)

The OLEDB Command object performed data retrieval, insertion, and updating
via SQL command strings. These commands ranged from very simple SELECT
statements to reasonably complex INSERT and UPDATE statements involving the usage
of parameters. In most cases, the SELECT statements were used to fill the DataGrids in
the View Customers and View Transactions panels. (Walther, 2004)

Data validation code remained largely unchanged from the VB.NET
implementation, although in ASP.NET it is present as a code-behind file instead of as a
module. The query-generating code remained largely unchanged as well, although the
actually execution of the query is significantly different.

The ASP.NET interface consists of only 3 active pages and 1 code-behind source
file. View Customers, View Transactions, and Advanced Search were all condensed into
a single page, eliminating many potential problems involving communication between
those pages as well as several security concerns about including large amounts of
information in the page URL. This did not seem to have a significant adverse effect on
the performance of the interface, although Web Matrix had difficulties rendering all of

the elements.

27

'l CustID FirstName LastName Phone

Select Databound Databound Databound Databound
Select Databound Databound Databound Databound
Select Databound Databound Databound Databound
Select Databound Databound Databound Databound
Select Databound Databound Databound Databound
Select Databound Databound Databound Databound
Select Databound Databound Databound Databound
Select Databound Databound Databound Databound
Select Databound Databound Databound Databound
Select Databound Databound Databound Databound
Datab ounD atabound D ataund Databound

TransID Date PaidInFull TotalValue DownPayment
Select Databound Databound Databound Databound Databound
Select Databound Databound Databound Databound Databound
Select Databound Databound Databound Databound Databound
Select Databound Databound Databound Databound Databound
Select Databound Databound Databound Databound Databound
Select Databound Databound Databound Databound Databound
Select Databound Databound Databound Databound Databound
Select Databound Databound Databound Databound Databound
Select Databound Databound Databound Databound Databound
Select Databound Databound Databound Databound Databound
Select Databound Databound Databound Databound Databound

Figure 9.1: View Customers and View Transactions Panels

Unlike the VB.NET implementation, the ASP.NET implementation unifies View

Customers and View Transactions into a single page. These two separate functions are

28

instead handled by forms within the two pages. This facilitates communication between
the two views, allowing them to more easily influence each other.

The major difference between the View Customers ASP.NET panel and the
VB.NET form is the lack of the search button in the ASP.NET code. Otherwise, the two
interfaces are quite similar to each other. The buttons function nearly identically,
although enough differences exist that it is worth discussing them.

The “Edit Record” and “Add Record” buttons pass information similarly to the
VB.NET equivalents. However, instead of calling a separate form, these buttons redirect
the user to the Add/Update Customer ASP page, passing information to that page using
query strings appended to the URL of the page. The “Search Button” serves only to open
the Search Panel.

The “Add Transaction” button functions similarly to both the aforementioned
“Edit Record” and “Add Record” buttons as well as the “Add Transaction” button in the
VB.NET implementation. The ASP implementation of the “Add Transaction” button
redirects the user to the Add/Update Transaction ASP page. Information is passed to that
page using query strings appended to the page’s URL.

The “View Transactions” button doesn’t call a separate page; instead it makes a
panel within the same page visible while making the “View Customers” page invisible.

It also triggers a function to update the DataGrid in the relevant panel. The button click
also triggers the storage of some information to invisible label controls used to share
information between the panels.

The View Transactions panel includes an “Edit Transaction” button which

functions similarly to the “Edit Record” button in the VB.NET interface. When the

29

button is clicked, it redirects the user to the Add/Update Transaction page, passing the
selected Transaction ID and Customer ID by appending variables to the URL.

One major difference in the usage of the ASP.NET interface over the VB.NET
interface is an effect of the differing implementation of the DataGrid in ASP.NET. Since
the DataGrid does not allow selecting individual items by default, an extra column was
added which allows ASP.NET to mimic this functionality with a button click. This
column of buttons is quite important to the functionality of the ASP.NET interface, and
was very important to maintaining any kind of commonality between the ASP.NET and

VB.NET implementations.

?irst Name:rf* =

R ddress]
ity
e |
Bhonel]

Bovat] |

ETotes:

o

LR

NN

Figure 9.2: Add/Update Customer ASP.NET Form
The Add/Update Customer ASP.NET implementation is completely different then

the Add/Update Customer VB.NET implementation. The code was completely rewritten

30

due to the absence of a Data Form Wizard in ASP.NET. Functionally, however, the
ASP.NET and VB.NET forms are identical.

The textboxes serve as both input and output for the form, loaded by an OLEDB
Command object containing a simple SELECT statement when used for editing. When
the form is used to add a record, the textboxes initially have no data. When data is
entered into the form, the code generates an INSERT command by assigning values to

parameters created in another OLEDB Command object.

31

%ate:{r

P

|

Sun Mon Tue Wed Thu Fn Sat
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
1 2] P=-B i (S 67
TIardwareValue:T

%o&ware“u’alue:I]r

T,aborValue:T |
q’axValue:T

%ownPayment:T

B aidInFull|

iﬁotes:

0 [chkPaidInFull]

Figure 9.3: Add/Update Transaction ASP.NET Form

The Add/Update Transaction ASP.NET form is very similar in implementation to

the Add/Update Customer ASP.NET form and very similar in functionality to the

Add/Update Transaction VB.NET form. The implementation details are so similar to the

Add/Update Customer ASP.NET form that any further explanation of this form is largely

redundant.

32

One detail worth discussing is the Calendar control. Implementation of the
Calendar control was significantly different then in VB.NET, resulting in the inclusion of
a textbox for early testing purposes. That textbox is still in the code for the page,
although it will never be visible to the user, and is used as an intermediary between the
database code and the Calendar control. Similarly, the checkbox for PaidInFull has an

intermediary textbox.

[Customers

Eﬂt:-lc ustSearchErrors]

q] [chkCust]DﬁIustID:‘[m

B’ri» [chkFirstName ﬁirst Name :nf i

B?‘W [chkLastN ameﬁ.ast Name :{[r' ’L

m
o

Bi_; [chk_FirstLastﬁ%irst & Last Name|

T chicaddressPRadress]
T

o (chktate fBrae]

T eezip o]

% [chkPhone]%hone:Tﬂ

% [chiBmail B Mail]

Erf [chkNotesﬁ\I otes:

Figure 9.4: Customer Search Panel

33

The Customer Search panel is very comparable to the Advanced Search form’s
Customers tab, and in fact shares much code with that tab. The query generator is almost
identical to the VB.NET equivalent, and the error handling code is also very similar.

Errors are displayed in the red label at the top of the panel, which is only visible
when an error has been raised. Also of note is the drop-down list box at the top of the
form. This drop-down list is the control which allows users to select the type of search

they want to perform, allowing access to this and the other two search panels.

ﬂblTransSearchErrors]

Hh [(:hkCustl:DTraﬂsfEusl'ID:"r ;
Bh [chkTransID ﬁ'ransl'.D:T
B}" [chkNameTrans]BRTame:T
& [cthateﬁate:Iqu!Q'” i
B T
Sun Mon Tue Wed
27 28 29 30
3 4 5 6 7 8 9 3 4. .5 .6 7 8 9
10 11 12 13 14 15 16 10 11 12 13 14 15 16
17 18 19 20 21 22 23 17 18 19 20 21 22 23

24 25 26 27 28 29 30 24 25 26 27 28 29 30
iy 2 PR30 ° Al oLy MOy, Trliirg ggl= 72 oyt o AT 100 -/

%1 [chkHardware Vaue [Blardware Vaiue 1= B,
%1 [chicSofiware Value [Bofiware Value |- B
8 [chkLaborValue [P aborValue = B[
B [chkTaxValue FraxValue]~ BI]

% [chk_DownPaymem:ﬁovvnPayment:i= @]r

5 [chicPaidlnFullfBaidlnFull] P [chkPaidInFullValue]

Ei_ [ch.kNotesTransﬁl\T otes:

k
|

4
o

Figure 9.5: Transaction Search Panel

34

The Transaction Search panel is also quite comparable to its VB.NET counterpart,
and is largely self-explanatory. Most of the unique design features are also present in the
VB.NET version and were already addressed, so functional analysis would be redundant.

There are some features worth individual mention, however. This form has
intermediary textboxes like the Add/Update Transaction ASP.NET form: one for each
Calendar control and one for the PaidInFull checkbox. Also of note, the drop-down list
boxes in this form are identical in functionality to the comboboxes in the VB.Net
interface, but their actual implementation was quite different. The final object of note is
the red textbox at the top of the interface, used for error output similarly to the red

textbox in the Customer Search panel.

35

t{k\l!«.ml},'sisExmrs]

% [chicCustiDAnalysisfusiD]

Bate:

B B 5

€ Aprl 2005 > < ’Apt‘il‘2905 | a“
Sun Mon Tue Wed Thu Fn Sat Sun Mon Tue Wed Thu Fn Sat
27 28 29 30 31 1 2 27 28 29 30 31 1 2
3 4 5 6 7 8 9 3 4 5 6 7 8 9
10 11 12 13 14 15 16 10 11 12 13 14 15 16
17 18 19 20 21 22 23 17 18 19 20 21 22 23
24 25 26 27 28 29 30 24 25 26 27 28 29 30
1 2 3 4 5 6 7 Bnd 1 2 3 4 5 & 7

%esults:

Tfustomermthmne]

R otal Hardware Value {ibITotalHardware Value]
R otal Software Value fibTotalS oftware Value]
Fotal Labor Valuc:ﬂbl’l‘otall,ab orValue]

R otal Tax Value floTotal TaxValue]

Hotal Value :ﬁblTotalValue]

Hotal Transactions:ﬁbl'l'otal'l'mns]

Figure 9.6: Contract Summary Panel
This form is functionally identical to its VB.NET counterpart, and analysis of that
functionality would be redundant. There are no controls unique to this panel that are
worthy of much additional commentary, although it is worth noting that there is a red
label which is used to output error messages.
The most important element in this screenshot is the “Execute Search” button,
which is actually a functional part of all Search panels and is responsible for executing

the correct query generators according to the currently selected item in the main Search

36

panel drop-down list box. This button functions similarly to the equivalent button in the
VB.NET interface, but there are some important differences. The primary difference is
that this button isn’t passing query information to another form for display purposes.
Instead it simply stores query information, executes a procedure to fill the proper
DataGrid, and makes the proper panel visible.

In the case of a Contract Summary search, the button does not fill a DataGrid or
alter panel visibility. In this case, the button executes a procedure which queries the
database and displays the results to the label controls on the Contract Summary panel
itself. The code behind this procedure is identical to the code described for the Contract

Summary tab in the VB.NET interface.

37

X. Results and Conclusion

The Lightspeed Technologies database and interfaces meet the requirements and
objectives set for them by both project planning and the owner of Lightspeed. Valuable
customer information is readily available and searchable. Transaction information is
likewise readily available and searchable. The interfaces also support the retrieval of
summary information useful in the evaluation of service contracts.

The owner of Lightspeed reports that both front ends are quite easy to use and
practical for day-to-day usage. Information can be added and manipulated within the
database easily, and the interfaces are familiar enough to Windows users that any
potential employee should not have difficulty learning to use them effectively.

The system is currently being utilized as anticipated. Currently, transaction
information is not being regularly entered into the system because the owner only desires
transaction information for contractual clients. The customer information, however, is
being used regularly for various purposes. The owner expressed appreciation for the
Notes fields within the two tables because it helps him keep track of information that he
had been keeping track of mentally until the implementation of this system. This should
also help smooth the process of hiring a new employee in the future.

Unfortunately, the future could hold many potential hurdles for this system. If
Lightspeed wishes to utilize the ASP.NET front-end from a remote location, the Access
database will need to be migrated to something more secure in order to support that
operation. Also, the database will need a new table to contain login information, and the
ASP.NET front-end will need an authentication page to utilize this information. Luckily,

this migration should be relatively painless. The code of both the ASP.NET and

38

VB.NET front-ends only requires changes to OLEDB Connection objects’ connection
strings to be functional on a new DBMS. The creation of an authentication page should
be another relatively simple addition of one small database table, one new ASP.NET
form, and several small additions to the existing forms to ensure authentication and
authorization.

Fortunately, the future difficulties that can be foreseen are side effects of planning
decisions made with conscious awareness of those potential difficulties. The
implementation and testing went fairly smoothly, especially considering that much of the
knowledge necessary to complete the project was acquired with the aid of reference
books and classes during the implementation process.

Overall, the project is considered a success by the owner of Lightspeed.
The database and code generated for this project will likely be utilized in one form or

another for many years.

39

XI. References

Holzner, S. (2003). Teach Yourself Microsoft Visual Basic NET 2003 in 21 Days:
Sams Publishing.
Walther, S. (2004). ASP.NET Unleashed (Second ed.): Sams Publishing.

40

APPENDIX A - VB.NET Code

Validate Module

Module Validation
'Path to Database, can be changed freely
'note that if type changes, connection strings in all
'Connection Objects must be changed
Public strDatabasePath As String = "c:\lightspeed\lightspeed.mdb"

'Validates Email Addresses via Regular Expression
Function EmailValidation(ByVal strTest As String) As Boolean
Dim regexVal As New
System.Text.RegularExpressions.Regex ("\w+ ([—+.]\w+) *@\w+ ([~
CIN\wH) AN \wH ([=.] \w+) *")
If regexVal.IsMatch(strTest.Trim) Or strTest.Trim = "" Then
Return True
Else
Return False
End If

End Function
'Validates ZIP Codes via Regular Expression
Function ZIPValidation(ByVal strTest As String) As Boolean
Dim regexVal As New System.Text.RegularExpressions.Regex(""[0-
91{5} (\-[0-91{4}){0,1}$")
If regexVal.IsMatch(strTest.Trim) Or strTest.Trim = "" Then
Return True
Else
Return False
End If
End Function
'Validates State Abbreviation via Regular Expression
Function StateValidation (ByVal strTest As String) As Boolean
Dim regexVal As New System.Text.RegularExpressions.Regex(""[A-

Z1{2}8")
If regexVal.IsMatch(strTest.Trim.ToUpper) Or strTest.Trim = ""
Then
Return True
Else
Return False
End If

End Function
'Validates Phone Number via Regular Expression
Function PhoneValidation(ByVal strTest As String) As Boolean
Dim regexVal As New System.Text.RegularExpressions.Regex (""[0-
91 {3}\-[0-9]1{3}\-[0-9]1{4}s$")
If regexVal.IsMatch(strTest.Trim) Or strTest.Trim = "" Then
Return True
Else
Return False
End If

End Function
'Expansion of IsNumeric, returns false if the string includes a $

Function TruelIsNumeric(ByVal strTest As String) As Boolean
If IsNumeric(strTest) And Not strTest.StartsWith("$") Then

A-1

Return True
Else
Return False
End If
End Function
'Simple validation, verifying a string is not blank
Function RequiredValidation(ByVal strTest As String) As Boolean
If Not strTest.Trim = "" Then
Return True
Else
Return False
End If
End Function
End Module

A-2

View Customers Form

'creates connection string, fills datagrid
Private Sub frmViewCust Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

OleConDB.ConnectionString = "Jet OLEDB:Global Partial Bulk
Ops=2;Jet OLEDB:Registry Path=;Jet OLEDB:Database Locking Mode=1;Jet
OLEDB:Database Password=;Data Source=""" & strDatabasePath & """;"

& "Password=;Jet OLEDB:Engine Type=5;Jet OLEDB:Global Bulk
Transactions=1;Provider=""Microsoft.Jet.OLEDB.4.0"";Jet OLEDB:System
database=;Jet OLEDB:SFP=False;Extended Properties=;" _

& "Mode=Share Deny None;Jet OLEDB:New Database
Password=; Jet OLEDB:Create System Database=False;Jet OLEDB:Don't Copy
Locale on Compact=False;Jet OLEDB:Compact Without Replica
Repair=False;User ID=Admin;Jet OLEDB:Encrypt Database=False"

dstCustomers.Clear ()

OleAdapDB.Fill (dstCustomers)

dtgCustomers.DataMember = "customers"
End Sub

'opens the Update Customer Record form using selected CustID,
disables self
Private Sub btnEditRecord Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnEditRecord.Click
Dim intRow As Integer
Dim strQuery As String
intRow = dtgCustomers.CurrentRowIndex
strQuery = "select * from customers where CustID=" &
dtgCustomers.Item(intRow, O0)
'if there is no record selected, error
If Not intRow = -1 Then
Dim frmUpAddCust As New frmUpAddCust
frmUpAddCust.OleDbDataAdapterl.SelectCommand.CommandText =
strQuery
frmUpAddCust.strType = "Edit"
frmUpAddCust. frmViewCust = Me
Me.Enabled = False
frmUpAddCust.Show ()
Else
MsgBox ("No Row is Selected")
End If
End Sub

'opens the Add Customer Record form, disables self
Private Sub btnAddRecord Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles btnAddRecord.Click
Dim frmUpAddCust As New frmUpAddCust
frmUpAddCust.strType = "Add"
frmUpAddCust. frmViewCust = Me
Me.Enabled = False
frmUpAddCust.Show ()
End Sub

'creates query string and fills the datagrid with the results

A-3

Private Sub btnQuickSearch Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnQuickSearch.Click
Dim strName As String
Dim strQuery As String
strName = txtQuickSearch.Text
strQuery = "select * from customers where FirstName Like '%" &
strName & "%' or LastName Like '%" & strName & "%'"

OleAdapDB. SelectCommand.CommandText = strQuery
dstCustomers.Clear ()
OleAdapDB.Fill (dstCustomers)
dtgCustomers.DataMember = "customers"

End Sub

'opens the View Transactions form, sets Query to select records
match selected CustID
Private Sub btnViewTransactions Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnViewTransactions.Click
Dim intRow As Integer
Dim strQuery As String
intRow = dtgCustomers.CurrentRowIndex

'if there is no record selected, error
If Not intRow = -1 Then
strQuery = "SELECT customers.CustID, transactions.TransID,
customers.FirstName, customers.LastName, transactions.[Date],
transactions.PaidInFull, " & _
"transactions.HardwareValue + transactions.LaborValue +
transactions.SoftwareValue + transactions.TaxValue AS TotalValue,

transactions.DownPayment " & _
"FROM (transactions INNER JOIN customers ON
transactions.CustID = customers.CustID) where customers.CustID=" &

dtgCustomers.Item(intRow, O0)

Dim frmViewTrans As New frmViewTransactions
frmViewTrans. frmViewCust = Me
frmViewTrans.OleAdapDB. SelectCommand.CommandText = strQuery
frmViewTrans.Show ()
Me.Enabled = False

Else
MsgBox ("No Row is Selected")

End If

End Sub

'opens an Add Transaction form, sends current selected CustID
Private Sub btnAddTrans Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles btnAddTrans.Click
Dim intRow As Integer
Dim strQuery As String
intRow = dtgCustomers.CurrentRowIndex

'if there is no record selected, error

If Not intRow = -1 Then
Dim frmAddTrans As New frmUpAddTrans
frmAddTrans.strType = "Add"
frmAddTrans.intCustID = dtgCustomers.Item(intRow, O0)

A-4

frmAddTrans. frmReferrer = Me
frmAddTrans.Show ()
Me.Enabled = False
Else
MsgBox ("No Row is Selected")
End If
End Sub

'shows the Search form, disables the current form
Private Sub btnSearch Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnSearch.Click
Dim frmAdvancedSearch As New frmAdvancedSearch
frmAdvancedSearch. frmViewCust = Me
Me.Enabled = False
frmAdvancedSearch.Show ()
End Sub

'support function for search page, executes query and fills
datagrid
Public Sub PerformSearch()
Me.Enabled = True
dstCustomers.Clear ()
OleAdapDB.Fill (dstCustomers)
dtgCustomers.DataMember = "customers"
End Sub
End Class

A-5

View Transactions Form

Dim strBaseQuery As String
Public frmViewCust As frmViewCust

'creates connection string, fills datagrid, sets strBaseQuery
Private Sub frmViewCust Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

OleConDB.ConnectionString = "Jet OLEDB:Global Partial Bulk
Ops=2;Jet OLEDB:Registry Path=;Jet OLEDB:Database Locking Mode=1;Jet
OLEDB:Database Password=;Data Source=""" & strDatabasePath & """;"

& "Password=;Jet OLEDB:Engine Type=5;Jet OLEDB:Global Bulk
Transactions=1;Provider=""Microsoft.Jet.OLEDB.4.0"";Jet OLEDB:System
database=;Jet OLEDB:SFP=False;Extended Properties=;"

& "Mode=Share Deny None;Jet OLEDB:New Database
Password=;Jet OLEDB:Create System Database=False;Jet OLEDB:Don't Copy
Locale on Compact=False;Jet OLEDB:Compact Without Replica
Repair=False;User ID=Admin;Jet OLEDB:Encrypt Database=False"

dstTransactions.Clear ()
OleAdapDB.Fill (dstTransactions)
dtgTransactions.DataMember = "transactions"

strBaseQuery = OleAdapDB.SelectCommand.CommandText
End Sub

'sends the current selected entry to the Update Form
Private Sub btnEditRecord Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnEditRecord.Click
Dim intRow As Integer
Dim strQuery As String
intRow = dtgTransactions.CurrentRowIndex

'if the row exists, execute - if not, error
If Not intRow = -1 Then
strQuery = "select * from transactions where TransID=" &

dtgTransactions.Item(intRow, O0)
Dim frmUpTrans As New frmUpAddTrans
frmUpTrans.OleDbDataAdapterl.SelectCommand.CommandText =
strQuery
frmUpTrans.strType = "Edit"
frmUpTrans. frmViewTrans = Me
frmUpTrans. frmReferrer = Me
frmUpTrans.Show ()
Me.Enabled = False
Else
MsgBox ("No Row is Selected")
End If
End Sub

'creates query string and fills the datagrid with the results
Private Sub btnQuickSearch Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnQuickSearch.Click
Dim strQuery As String

A-6

strQuery = strBaseQuery & " AND (transactions.[Date] BETWEEN #"
& CalStartDate.SelectionStart & "# AND #" & calEndDate.SelectionStart &
"#) ”
OleAdapDB.SelectCommand.CommandText = strQuery
dstTransactions.Clear ()
OleAdapDB.Fill (dstTransactions)
dtgTransactions.DataMember = "transactions"
End Sub

'Cleanup - enables referring form
Private Sub frmViewTransactions Closed(ByVal sender As Object,
ByVal e As System.EventArgs) Handles MyBase.Closed
frmViewCust.Enabled = True
End Sub
End Class

A-7

Add/Update Customer Form

Public frmViewCust As frmViewCust
Public strType As String

'the following were created by wizard

Private Sub btnCancel Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnCancel.Click

Private Sub btnUpdate Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnUpdate.Click

Private Sub btnLoad Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnLoad.Click

Public Sub UpdateDataSet ()

Public Sub LoadDataSet ()

Public Sub UpdateDataSource (ByVal ChangedRows As

Public Sub FillDataSet (ByVal dataSet As LightSpeedVB.dstUpAddCust)

'end auto-generated functions

'loads the dataset and adds a record, if necessary
Private Sub frmUpAddCust Load(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles MyBase.Load
OleDbConnectionl.ConnectionString = "Jet OLEDB:Global Partial
Bulk Ops=2;Jet OLEDB:Registry Path=;Jet OLEDB:Database Locking
Mode=1;Jet OLEDB:Database Password=;Data Source=""" & strDatabasePath &

mww . n
’

& "Password=;Jet OLEDB:Engine Type=5;Jet OLEDB:Global Bulk
Transactions=1;Provider=""Microsoft.Jet.OLEDB.4.0"";Jet OLEDB:System
database=;Jet OLEDB:SFP=False;Extended Properties=;" _

& "Mode=Share Deny None;Jet OLEDB:New Database
Password=;Jet OLEDB:Create System Database=False;Jet OLEDB:Don't Copy
Locale on Compact=False;Jet OLEDB:Compact Without Replica
Repair=False;User ID=Admin;Jet OLEDB:Encrypt Database=False"

Try:
'Attempt to load the dataset.
Me.LoadDataSet ()
Catch eLoad As System.Exception
'Add your error handling code here.
'Display error message, if any.
System.Windows.Forms.MessageBox.Show (eLoad.Message)
End Try

If strType = "Add" Then
Tey
'Clear out the current edits
Me.BindingContext (objdstUpAddCust,
"customers") .EndCurrentEdit ()
Me.BindingContext (objdstUpAddCust,
"customers") .AddNew ()
Catch eEndEdit As System.Exception
System.Windows.Forms.MessageBox.Show (eEndEdit.Message)
End Try
End If
End Sub

A-8

'Validates input with a series of if statments, also outputs errors
if needed
Function ValidateAddUpCust () As Boolean
Dim boolErrorFlag As Boolean = False
Dim strErrors As String = "The Following Errors were Found:" &
ControlChars.NewLine & ControlChars.NewLine

If Not RequiredValidation(editFirstName.Text) Then
boolErrorFlag = True
strErrors += "First Name Must Be Entered" &
ControlChars.NewLine
End If

If Not StateValidation(editState.Text) Then
boolErrorFlag = True
strErrors += "State is Not Valid, should be in abbreviated
format 'SD'" & ControlChars.NewLine
End If

If Not ZIPValidation(editZIP.Text) Then
boolErrorFlag = True
strErrors += "ZIP Code is Not Valid, should be in the
format '57042' or '57042-1111"" & ControlChars.NewLine
End If

If Not PhoneValidation (editPhone.Text) Then
boolErrorFlag = True
strErrors += "Phone Number is Not Valid, should be in the
format '605-555-5555"'"'" & ControlChars.NewLine
End If

If Not EmailValidation(editEmail.Text) Then
boolErrorFlag = True
strErrors += "E-mail Address is Not Valid" &
ControlChars.NewLine
End If

If boolErrorFlag Then
MsgBox (strErrors)
Return False
Else
Return True
End If
End Function

'clean up - enables referring page
Private Sub frmUpAddCust Closed(ByVal sender As Object, ByVal e As
System.EventArgs) Handles MyBase.Closed
frmViewCust.Enabled = True
frmViewCust.Focus ()
End Sub
End Class

A-9

Add/Update Transaction Form

Public strType As String

Public frmViewTrans As frmViewTransactions
Public intCustID As Integer

Public frmReferrer As Object

'the following functions were created by the Data Form Wizard

Private Sub btnCancel Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnCancel.Click

Private Sub btnDelete Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnDelete.Click

Private Sub btnAdd Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnAdd.Click

Private Sub btnLoad Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnLoad.Click

Private Sub btnCancelAll Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles btnCancelAll.Click

Public Sub UpdateDataSet ()

Public Sub LoadDataSet ()

Public Sub UpdateDataSource (ByVal ChangedRows As
LightSpeedVB.dstUpAddTrans)

Public Sub FillDataSet (ByVal dataSet As LightSpeedVB.dstUpAddTrans)

'end auto-generated functions

'loads the dataset, if necessary
Private Sub frmUpAddTrans Load(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles MyBase.Load
OleDbConnectionl.ConnectionString = "Jet OLEDB:Global Partial
Bulk Ops=2;Jet OLEDB:Registry Path=;Jet OLEDB:Database Locking
Mode=1;Jet OLEDB:Database Password=;Data Source=""" & strDatabasePath &

mwowmw . n
’

& "Password=;Jet OLEDB:Engine Type=5;Jet OLEDB:Global Bulk
Transactions=1;Provider=""Microsoft.Jet.OLEDB.4.0"";Jet OLEDB:System
database=;Jet OLEDB:SFP=False;Extended Properties=;"

& "Mode=Share Deny None;Jet OLEDB:New Database
Password=;Jet OLEDB:Create System Database=False;Jet OLEDB:Don't Copy
Locale on Compact=False;Jet OLEDB:Compact Without Replica
Repair=False;User ID=Admin;Jet OLEDB:Encrypt Database=False"

If strType = "Edit" Then
TEY
'Attempt to load the dataset.
Me.LoadDataSet ()
Catch eLoad As System.Exception
'Add your error handling code here.
'Display error message, if any.
System.Windows.Forms.MessageBox.Show (eLoad.Message)
End Try
Dim datRecordDate As Date
datRecordDate = editDate.Text
calEdit.SetDate (datRecordDate)
End If
End Sub

'Inserts or Updates are record, as appropriate

A-10

Private Sub btnUpdate Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnUpdate.Click
If ValidateAddUpTrans() Then
'handles updates differently depending on type
If strType = "Edit" Then
Try
'Attempt to update the datasource.
Me.UpdateDataSet ()
Catch eUpdate As System.Exception
'Add your error handling code here.
'Display error message, if any.

System.Windows.Forms.MessageBox.Show (eUpdate.Message)
End Try

frmViewTrans.dstTransactions.Clear ()

frmViewTrans.OleAdapDB.Fill (frmViewTrans.dstTransactions)
ElseIf strType = "Add" Then
Dim conInsert As System.Data.OleDb.OleDbConnection
Dim strInsert As String
Dim cmdInsert As System.Data.OleDb.0OleDbCommand

conlnsert = New

System.Data.OleDb.OleDbConnection ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DAT

A Source=" & strDatabasePath)

strInsert = "insert into transactions (CustID, [Date],
HardwareValue, SoftwareValue, LaborValue, TaxValue, DownPayment, Notes,

PaidInFull) Values (@CustID, @Date, @HardwareValue, @SoftwareValue,

@LaborValue, @TaxValue, @DownPayment, @Notes, @PaidInFull)"
cmdInsert = New

System.Data.OleDb.OleDbCommand (strInsert, conInsert)

cmdInsert.Parameters.Add ("@CustID", intCustID)

cmdInsert.Parameters.Add ("@Date",
calEdit.SelectionStart)

cmdInsert.Parameters.Add ("@HardwareValue",
editHardwareValue.Text)

cmdInsert.Parameters.Add ("@SoftwareValue",
editSoftwareValue.Text)

cmdInsert.Parameters.Add ("@LaborValue",
editLaborValue.Text)

cmdInsert.Parameters.Add ("Q@TaxValue",
editTaxValue.Text)

cmdInsert.Parameters.Add ("@DownPayment",
editDownPayment.Text)

cmdInsert.Parameters.Add ("@Notes", editNotes.Text)

cmdInsert.Parameters.Add ("@PaidInFull",
editPaidInFull.Checked)

conlnsert.Open()
cmdInsert.ExecuteNonQuery ()
conInsert.Close ()

End If
Me.Close ()
End If
End Sub

A-11

'used to keep the pre-generated textbox consistent with catalog
'facilitates usage of pre-generate functions
Private Sub calEdit DateChanged(ByVal sender As System.Object,
ByVal e As System.Windows.Forms.DateRangeEventArgs) Handles
calEdit.DateChanged
editDate.Text = calEdit.SelectionStart
End Sub

'clean up - enables referring form
Private Sub frmUpAddTrans Closed(ByVal sender As Object, ByVal e As
System.EventArgs) Handles MyBase.Closed
frmReferrer.Enabled = True
frmReferrer.Focus ()
End Sub

'validates and outputs any error messages necessary
Function ValidateAddUpTrans() As Boolean
Dim boolErrorFlag As Boolean = False
Dim strErrors As String = "The Following Errors were Found:" &
ControlChars.NewLine & ControlChars.NewLine

If Not TruelIsNumeric (editHardwareValue.Text) Then
boolErrorFlag = True
strErrors += "HardwareValue Must Be Numeric" &
ControlChars.NewLine
End If

If Not TruelsNumeric(editSoftwareValue.Text) Then
boolErrorFlag = True
strErrors += "SoftwareValue Must Be Numeric" &
ControlChars.NewLine
End If

If Not TruelIsNumeric (editLaborValue.Text) Then
boolErrorFlag = True
strErrors += "LaborValue Must Be Numeric" &
ControlChars.NewLine
End If

If Not TrueIsNumeric(editTaxValue.Text) Then
boolErrorFlag = True
strErrors += "TaxValue Must Be Numeric" &
ControlChars.NewLine
End If

If Not TruelIsNumeric (editDownPayment.Text) Then
boolErrorFlag = True
strErrors += "DownPayment Must Be Numeric" &
ControlChars.NewLine
End If

'if all of the values were numbers, check to make sure the
total isn't zero
If Not boolErrorFlag Then
If (editHardwareValue.Text + editSoftwareValue.Text +
editLaborValue.Text + editTaxValue.Text) = 0 Then

A-12

boolErrorFlag = True
strErrors += "The Total Value cannot be Zero!
Values must be entered.”
End If
End If

If boolErrorFlag Then
MsgBox (strErrors)
Return False

Else
Return True

End If

End Function
End Class

Numeric

Advanced Search Form

Public frmViewCust As frmViewCust

Dim strQuery As String

Dim strErrors As String

Dim boolErrorFlag As Boolean = False

Dim boolSearchSuccessFlag As Boolean = False

'Query Bulider for Transaction Searches

Private Sub handleTransactionQuery ()
Dim intCount As Integer = 0
boolErrorFlag = False

strErrors = "The Following Errors were Detected:" &
ControlChars.NewLine & ControlChars.NewLine
strQuery = "select *, customers.CustID, customers.FirstName,

customers.LastName, HardwareValue+SoftwareValue+LaborValue+TaxValue as
TotalValue From (transactions INNER JOIN customers ON
transactions.CustID = customers.CustID)"

'the following if statements build the query, validate input,
and create error messages
If chkTransID.Checked Then
If TruelIsNumeric(txtTransID.Text) Then
checkFirstEntry (intCount)
strQuery += " TransID=" & txtTransID.Text & " "
Else
boolErrorFlag = True
strErrors += "TransID Must Be Numeric" &
ControlChars.NewLine
End If
End If

If chkCustIDTrans.Checked Then
If TrueIsNumeric (txtCustIDTrans.Text) Then
checkFirstEntry (intCount)
strQuery += " transactions.CustID=" &
txtCustIDTrans.Text & " "
Else
boolErrorFlag = True
strErrors += "CustID Must Be Numeric" &
ControlChars.NewLine
End If
End If

If chkNameTrans.Checked Then
checkFirstEntry (intCount)

strQuery += " (FirstName Like '%" & txtNameTrans.Text & "%'
or LastName Like '%" & txtNameTrans.Text & "%') "
End If

If chkDate.Checked Then
checkFirstEntry(intCount)
If cboDate.SelectedItem = "Equal" Then
strQuery += " [Date] = #" & calStartDate.SelectionStart
& " # n
Else

A-14

strQuery += " ([Date] BETWEEN #" &
calStartDate.SelectionStart & "# AND #" & calEndDate.SelectionStart &
"#) "
End If
End If

If chkHardwareValue.Checked Then
If TrueIsNumeric (txtHardwareValue.Text) Then
checkFirstEntry (intCount)
strQuery += " HardwareValue" &
cboHardwareValueType.SelectedItem & txtHardwareValue.Text &
Else
boolErrorFlag = True
strErrors += "HardwareValue Must Be Numeric" &
ControlChars.NewLine
End If
End If

If chkSoftwareValue.Checked Then
If TrueIsNumeric (txtSoftwareValue.Text) Then
checkFirstEntry(intCount)
strQuery += " SoftwareValue" &
cboSoftwareValueType.SelectedItem & txtSoftwareValue.Text &
Else
boolErrorFlag = True
strErrors += "SoftwareValue Must Be Numeric" &
ControlChars.NewLine
End If
End If

If chkLaborValue.Checked Then
If TruelIsNumeric (txtLaborValue.Text) Then
checkFirstEntry (intCount)
strQuery += " LaborValue" &
cboLaborValueType.SelectedItem & txtLaborValue.Text & " "
Else
boolErrorFlag = True
strErrors += "LaborValue Must Be Numeric" &
ControlChars.NewLine
End If
End If

If chkTaxValue.Checked Then
If TruelIsNumeric (txtTaxValue.Text) Then
checkFirstEntry(intCount)
strQuery += " TaxValue" & cboTaxValueType.SelectedItem
& txtTaxValue.Text & " "
Else
boolErrorFlag = True
strErrors += "TaxValue Must Be Numeric" &
ControlChars.NewLine
End If
End If

If chkDownPayment.Checked Then

If TrueIsNumeric (txtDownPayment.Text) Then
checkFirstEntry(intCount)

A-15

strQuery += " DownPayment" &
cboDownPaymentType.SelectedItem & txtDownPayment.Text &
Else
boolErrorFlag = True
strErrors += "DownPayment Must Be Numeric" &
ControlChars.NewLine
End If
End If

If chkNotesTrans.Checked Then
checkFirstEntry(intCount)
strQuery += " transactions.Notes Like '%" &
txtNotesTrans.Text & "%' "
End If

If chkPaidInFull.Checked Then
checkFirstEntry(intCount)
strQuery += " PaidInFull=" & chkPaidInFullValue.Checked & "

End If
End Sub

'Query Builder for Customer Searches
Private Sub handleCustomerQuery ()
Dim intCount As Integer = 0

strQuery = "select * From Customers"”
boolErrorFlag = False
strErrors = "The Following Errors were Detected:" &

ControlChars.NewLine & ControlChars.NewLine

'the following if statements build the query, validate input,
and create error messages
If chkCustID.Checked Then
If TrueIsNumeric(txtCustID.Text) Then
checkFirstEntry (intCount)
strQuery += " CustID=" & txtCustID.Text & " "
Else
boolErrorFlag = True
strErrors += "CustID Must Be Numeric" &
ControlChars.NewLine
End If
End If

If chkFirstName.Checked Then
checkFirstEntry(intCount)
strQuery += " FirstName Like '%" & txtFirstName.Text & "%'

End If

If chkLastName.Checked Then

checkFirstEntry (intCount)

strQuery += " LastName Like '%" & txtLastName.Text & "%'
End If

If chkFirstLast.Checked Then
checkFirstEntry(intCount)

A-16

strQuery += " (FirstName Like '%" & txtFirstLast.Text & "%'
or LastName Like '%" & txtFirstLast.Text & "%')"
End If

If chkPhone.Checked Then

checkFirstEntry (intCount)

strQuery += " Phone Like '%" & txtPhone.Text & "%' "
End If

If chkEmail.Checked Then

checkFirstEntry (intCount)

strQuery += " Email Like '%" & txtEmail.Text & "&' "
End If

If chkAddress.Checked Then

checkFirstEntry(intCount)

strQuery += " Address Like '%" & txtAddress.Text & "%' "
End If

If chkCity.Checked Then

checkFirstEntry(intCount)

strQuery += " City Like '%" & txtCity.Text & "%' "
End If

If chkState.Checked Then

checkFirstEntry (intCount)

strQuery += " State Like '%" & txtState.Text & "%' "
End If

If chkZIP.Checked Then

checkFirstEntry (intCount)

strQuery += " ZIP Like '%" & txtZIP.Text & "%' "
End If

If chkNotes.Checked Then
checkFirstEntry (intCount)
strQuery += " Notes Like '%" & txtNotes.Text & "%' "
End If
End Sub

'Support function for Query Builders, ensures correct string format
Private Sub checkFirstEntry(ByRef intCount As Integer)
If intCount = 0 Then
strQuery = strQuery + " where "

Else
strQuery = strQuery + " and "
End If
intCount = intCount + 1
End Sub

'toggles the label attached to the checkbox when value is changed
Private Sub chkPaidInFullValue CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
chkPaidInFullValue.CheckedChanged
If chkPaidInFullValue.Checked Then
chkPaidInFullValue.Text = "Paid"
Else

A-17

chkPaidInFullValue.Text = "Unpaid"
End If
End Sub

'ensures the correct calander objects are visible for searching
Private Sub cboDate SelectedIndexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cboDate.SelectedIndexChanged
If cboDate.SelectedItem = "Equal" Then
calEndDate.Visible = False
1blAnd.Visible = False
Else
calEndDate.Visible = True
1blAnd.Visible = True
End If
End Sub

'runs correct query generator, outputs errors, and redirects
Private Sub btnSearch Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnSearch.Click
'run the correct query generator based on selected tab
If tabSearch.SelectedTab.Text = "Customers" Then
handleCustomerQuery ()
Elself tabSearch.SelectedTab.Text
handleTransactionQuery ()

"Transactions" Then

ElseIf tabSearch.SelectedTab.Text = "Contract Summary" Then
If ValidateAnalysis() Then
PerformAnalysis ()
End If
End If

'display message if there were errors, send query to proper
form if not
If boolErrorFlag Then
MsgBox (strErrors)

Else
boolSearchSuccessFlag = True
If tabSearch.SelectedTab.Text = "Customers" Then
frmViewCust.OleAdapDB. SelectCommand.CommandText =
strQuery
frmViewCust.PerformSearch ()
Me.Close ()
ElseIf tabSearch.SelectedTab.Text = "Transactions" Then
Dim frmViewTrans As New frmViewTransactions
frmViewTrans.frmViewCust = Me.frmViewCust
frmViewTrans.OleAdapDB. SelectCommand.CommandText =
strQuery
frmViewTrans.Show ()
Me.Close ()
'special case - results boolSearchSuccessFlag is search
successful
'but handled by current page
ElseIf tabSearch.SelectedTab.Text = "Contract Summary" Then
boolSearchSuccessFlag = False
End If
End If

A-18

End Sub

'initialization for combo boxes and calendar objects
Private Sub frmAdvancedSearch Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

cboHardwareValueType.SelectedItem = "="
cboSoftwareValueType.SelectedItem = "="
cboLaborValueType.SelectedItem = "="
cboTaxValueType.SelectedItem = "="
cboDownPaymentType.SelectedItem = "="
cboDate.SelectedItem = "Equal"

calStartDateAnalysis.SetDate (calEndDateAnalysis.SelectionStart.AddYears
(-1))
End Sub

'Cleanup - enables referring form
Private Sub frmAdvancedSearch Closed(ByVal sender As Object, ByVal
e As System.EventArgs) Handles MyBase.Closed
If Not boolSearchSuccessFlag Then
frmViewCust.Enabled = True
End If
End Sub

'loads summary data from database and outputs that data
Private Sub PerformAnalysis|()
Dim conDB As System.Data.OleDb.OleDbConnection
Dim cmdSelect As System.Data.OleDb.OleDbCommand
Dim dtrAnalysis As System.Data.OleDb.OleDbDataReader
Dim strSelect As String
conDB = New
System.Data.OleDb.OleDbConnection ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DAT
A Source=" & strDatabasePath)

'if searching by a CustID, load the Customer Names
If chkCustIDAnalysis.Checked Then
cmdSelect = New System.Data.OleDb.OleDbCommand ("select
FirstName, LastName from Customers where CustID=" &
txtCustIDAnalysis.Text, conDB)
conDB.Open ()
dtrAnalysis = cmdSelect.ExecuteReader ()
If dtrAnalysis.Read() Then

lblName.Text = dtrAnalysis(0) & " " & dtrAnalysis(1)
Else

MsgBox ("No Record Found!")

1lblName.Text = "No Record Found!"
End If

dtrAnalysis.Close ()
conDB.Close ()

strSelect = "select count (TransID), sum(HardwareValue),
Sum (SoftwareValue), Sum(LaborValue), Sum(TaxValue) from transactions
where CustID=" & txtCustIDAnalysis.Text _

& " and ([Date] between #" &
calStartDateAnalysis.SelectionStart & "# and #" &
calEndDateAnalysis.SelectionStart & "#) "

Else

A-19

lblName.Text = "All Customers"

strSelect = "select count (TransID), sum(HardwareValue),
Sum (SoftwareValue), Sum(LaborValue), Sum(TaxValue) from transactions
where"

& " ([Date] between #" &
calStartDateBRnalysis.SelectionStart & "# and #" &
calEndDateBAnalysis.SelectionStart & "#) "

End If

cmdSelect = New System.Data.OleDb.OleDbCommand(strSelect,
conDB)

conDB.Open ()

dtrAnalysis = cmdSelect.ExecuteReader ()

dtrAnalysis.Read()

1blTotalTrans.Text = dtrAnalysis(0)

'"if dtrAnalysis=0, the other summary info will be DBNull, test
prevents errors
If Not dtrAnalysis(0) = 0 Then
1blTotalHardwareValue.Text dtrAnalysis (1)
1lblTotalSoftwareValue.Text = dtrAnalysis(2)
1blTotallLaborValue.Text = dtrAnalysis(3)
1lblTotalTaxValue.Text = dtrAnalysis(4)
1blTotalValue.Text = dtrAnalysis(l) + dtrAnalysis(2) +
dtrAnalysis(3) + dtrAnalysis(4)
End If

I

dtrAnalysis.Close()
conDB.Close ()
End Sub

'validation for the Contract Summary search
Function ValidateAnalysis() As Boolean
If chkCustIDAnalysis.Checked AndAlso
TrueIsNumeric (txtCustIDAnalysis.Text) Then
Return True
ElseIf Not chkCustIDAnalysis.Checked Then
Return True
Else
MsgBox ("Customer ID must be entered and must be Numeric")
Return False
End If
End Function

'used to ensure no conflics when searching, unchecks conflicting
controls
Private Sub chkFirstLast CheckedChanged 1 (ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
chkFirstLast.CheckedChanged
If chkFirstLast.Checked Then
chkFirstName.Checked = False
chkLastName.Checked = False
End If
End Sub

A-20

'used to ensure no conflics when searching, unchecks conflicting
control
Private Sub chkFirstName CheckedChanged_1(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
chkFirstName.CheckedChanged
If chkFirstName.Checked Then
chkFirstLast.Checked = False
End If
End Sub

'used to ensure no conflics when searching, unchecks conflicting
control
Private Sub chkLastName CheckedChanged 1(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
chkLastName.CheckedChanged
If chkLastName.Checked Then
chkFirstLast.Checked = False
End If
End Sub
End Class

A-21

APPENDIX B — ASP.NET Code
Validate.vb

Imports System
Imports System.Web.UI

Public Class Validate
Inherits Page

'Validates Email Addresses via Regular Expression
Function EmailValidation (ByVal strTest As String) As Boolean
Dim regexVal As New
System.Text.RegularExpressions.Regex("\w+([—+.]\w+)*@\w+([—
S\wH) AN A\w ([=.]\wt) <)
If regexVal.IsMatch(strTest.Trim) Or strTest.Trim = "" Then
Return True
Else
Return False
End If

End Function

'Validates ZIP Codes via Regular Expression
Function ZIPValidation (ByVal strTest As String) As Boolean
Dim regexVal As New System.Text.RegularExpressions.Regex(""[0-
91{5} (\-[0-9]1{4}){0,1}$")
If regexVal.IsMatch(strTest.Trim) Or strTest.Trim = "" Then
Return True
Else
Return False
End If
End Function

'Validates State Abbreviation via Regular Expression
Function StateValidation (ByVal strTest As String) As Boolean
Dim regexVal As New System.Text.RegularExpressions.Regex(""[A-
z1{2}s")
If regexVal.IsMatch(strTest.Trim.ToUpper) Or strTest.Trim = ""
Then
Return True
Else
Return False
End If
End Function

'Validates Phone Number via Regular Expression
Function PhoneValidation (ByVal strTest As String) As Boolean
Dim regexVal As New System.Text.RegularExpressions.Regex(""[0-
91{3}\-[0-9] {3}~ [0~9] {4}§")
If regexVal.IsMatch(strTest.Trim) Or strTest.Trim = "" Then
Return True
Else
Return False
End If
End Function

B-1

'Expansion of IsNumeric, returns false if the string includes a $
Function TruelIsNumeric(ByVal strTest As String) As Boolean
If Microsoft.VisualBasic.IsNumeric(strTest) And Not
strTest.StartsWith("$") Then
Return True
Else
Return False
End If
End Function

'Simple validation, verifying a string is not blank
Function RequiredValidation(ByVal strTest As String) As Boolean
If Not strTest.Trim = "" Then
Return True
Else
Return False
End If
End Function
End Class

B-2

Index.aspx

<%@ Page Language="VB" Inherits="Validate" Src="Validate.vb" %>
<%@ import Namespace="System.Data.OleDb" %>
<script runat="server">

'standard Page Load - handles initialization for page
Sub Page Load

dim intCustID as integer

dim strView as String

' Retrieve Form GET data
intCustID = convert.toint32 (Request.QueryString("CustID"))
strView = Request.QueryString("View")

'if returning from "Edit Transaction”, handle correctly
if strView="Trans" then
1blCustID.Text=intCustID
1lblViewMode.Text="Trans"
pnlViewCust.Visible=False
pnlViewTrans.Visible=True
end if

'loads the correct data for a view mode

if 1lblViewMode.Text="Cust" then
LoadCustView("")

else if 1lblViewMode.Text="Trans"
LoadTransView("")

else if 1lblViewMode.Text="CustSearch"
LoadCustView (1lblTempQuery.text)

else if 1lblViewMode.Text="TransSearch"
LoadTransView (1lblTempQuery.text)

end if

'initializes the Calendars

if not ispostback
dim CurDate as New Date
curDate = System.DateTime.Now.ToShortDateString
CalStartDate.SelectedDate=curDate
CalStartDate.VisibleDate=curDate
CalEndDate.SelectedDate=curDate
CalEndDate.VisibleDate=curDate
CalStartDateAnalysis.SelectedDate=curDate.AddYears (-1)
CalStartDateAnalysis.VisibleDate=curDate.AddYears (-1)
CalEndDateAnalysis.SelectedDate=curDate
CalEndDateAnalysis.VisibleDate=curDate
txtStartDate.Text=curDate.ToShortDateString
txtEndDate.Text=curDate.ToShortDateString

end if

End Sub

'Loads information from the DB for Transaction Viewing
Sub LoadTransView (strSearchQuery as String)

Dim conDB As OleDbConnection

dim strSelect as string

Dim cmdSelect As OleDbCommand
conDB = New OleDbConnection (
"PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA Source=" & lblDatabasePath.Text

)

if not strSearchQuery=""
strSelect=strSearchQuery
else if 1blCustID.Text="" then
strSelect="select customers.CustID, FirstName, LastName,
TransID, [Date], PaidInFull,
HardwareValue+SoftwareValue+LaborValue+TaxValue as TotalValue,
DownPayment, transactions.Notes from (transactions INNER JOIN customers
ON transactions.CustID = customers.CustID)"
else
strSelect="select customers.CustID, FirstName, LastName,
TransID, [Date], PaidInFull,
HardwareValue+SoftwareValue+LaborValue+TaxValue as TotalValue,
DownPayment, transactions.Notes from (transactions INNER JOIN customers
ON transactions.CustID = customers.CustID) where customers.CustID=" &
1blCustID. text
end if

cmdSelect = New OleDbCommand (strSelect , conDB)
conDB.Open ()
dgrdTransactions.DataSource = cmdSelect.ExecuteReader ()
dgrdTransactions.DataBind ()
conDB.Close ()

End Sub

'Loads information from the DB for Customer Viewing
Sub LoadCustView (strSearchQuery as String)
Dim conDB As OleDbConnection
Dim cmdSelect As OleDbCommand
conDB = New OleDbConnection (
"PROVIDER=Microsoft.Jet .OLEDB.4.0;DATA Source=" & lblDatabasePath.Text

)

'Uses the Search Query, if it existis
if strSearchQuery = "" then
cmdSelect = New OleDbCommand("Select * From customers",
conDB)
else
cmdSelect = New OleDbCommand(strSearchQuery, conDB)
end if

conDB.Open ()
dgrdCustomers.DataSource = cmdSelect.ExecuteReader ()
dgrdCustomers.DataBind ()
conDB.Close ()
End Sub

'if an item is selected on the datagrid, highligh and store its key
in a label
Sub dgrdTransactions ItemCommand(s As Object, e As
DataGridCommandEventArgs)
If e.CommandName="Select" Then
e.Item.BackColor = System.Drawing.Color.LightBlue

B-4

e.Item.Font.Bold = True
1blTransID. text=dgrdTransactions.DataKeys (e.Item.ItemIndex)
1blCustID.text=e.item.cells(2).text
End If
End Sub

'if an item is selected on the datagrid, highligh and store its key
in a label
Sub dgrdCustomers ItemCommand(s As Object, e As
DataGridCommandEventArgs)
If e.CommandName="Select" Then
e.Item.BackColor = System.Drawing.Color.LightBlue
e.Iltem.Font.Bold = True
1blCustID.text=dgrdCustomers.DataKeys (e.Item.ItemIndex)
End If
End Sub

'if there is a selected item, redirect - otherwise, show error
message
Sub btnEditCust Click(sender As Object, e As EventArgs)
if not 1blCustID.Text="" then
response.redirect ("UpAddCust.aspx?Type=Edit&CustID=" &
1blCustID. text)
1blCustID.text=""
else
1blViewCustErrors.text="No Record Selected"
1blViewCustErrors.visible=true
end if
End Sub

'redirect to AddCust page

Sub btnAddCust Click(sender As Object, e As EventArgs)
response.redirect ("UpAddCust .aspx?Type=Add")
1lblCustID. text=""

End Sub
'if there is a selected item, redirect - otherwise, show error
message
Sub btnViewTrans Click(sender As Object, e As EventArgs)
if not 1lblCustID.Text="" then

pnlViewCust.Visible=False
pnlViewTrans.Visible=True
1blViewMode. text="Trans"
LoadTransView("")

else
1blViewCustErrors.text="No Record Selected"
1blViewCustErrors.visible=true

end if

End Sub

'Returns from TransView to CustView, avoiding cleanup by
redirecting
Sub btnReturn Click(sender As Object, e As EventArgs)
response.redirect ("index.aspx")
End Sub

'if there are selected items, redirect - otherwise, show error
message
Sub btnEditTrans_ Click(sender As Object, e As EventArgs)
if not 1blCustID.Text="" and not 1lblTransID.Text="" then
response.redirect ("UpAddTrans.aspx?Type=Edit&TransID=" &
1blTransID.text & "&CustID=" & lblCustID.Text)
1blCustID.Text=""
1blTransID.text=""
else
1blViewTransErrors.text="No Record Selected"
lblViewTransErrors.visible=true
end if
End Sub

'if there is a selected item, redirect - otherwise, show error
message
Sub btnAddTransaction Click(sender As Object, e As EventArgs)
if not 1lblCustID.Text="" then
response.redirect ("UpAddTrans.aspx?Type=Add&CustID=" &
1blCustID.Text)
1blCustID.text=""
else
1blViewCustErrors.text="No Record Selected"”
1lblViewCustErrors.visible=true
end if
End Sub

'sends user to the search panel, goes to last selected panel
Sub btnSearch Click(sender As Object, e As EventArgs)
pnlViewCust.Visible=False
pnlSearch.Visible=True
if cboSearchType.SelectedItem.Value="Customers"
pnlCustomers.Visible=True
else if cboSearchType.SelectedItem.Value="Transactions"
pnlTransactions.Visible=True
else if cboSearchType.SelectedItem.Value="Contract Summary"
pnlAnalysis.Visible=True
end if
End Sub

'shows the correct panels for the selected item
Sub cboSearchType SelectedIndexChanged(sender As Object, e As
EventArgs)

If cboSearchType.SelectedItem.Value="Customers" Then
pnlCustomers.Visible=True
pnlTransactions.Visible=False
pnlAnalysis.visible=false

Else if cboSearchType.SelectedItem.Value="Transactions" Then
pnlTransactions.Visible=True
pnlCustomers.Visible=False
pnlAnalysis.visible=false

Else if cboSearchType.SelectedItem.Value="Contract Summary"

Then
pnlAnalysis.visible=true
pnlTransactions.visible=false
pnlCustomers.visible=false

End If

B-6

End Sub

Sub cboDate_SelectedIndexChanged (sender As Object, e As EventArgs)
if cboDate.SelectedItem.Value="Between" then
calEndDate.Visible=True
1blAnd.Visible=True
else
calEndDate.visible=false
1blAnd.Visible=false
end if
End Sub

'keeps the Calendar object synchronized with an associated textbox

Sub calStartDate_ SelectionChanged(sender As Object, e As EventArgs)
txtStartDate.Text=calStartDate.SelectedDate

End Sub

'keeps the Calendar object synchronized with an associated textbox

Sub calEndDate_SelectionChanged(sender As Object, e As EventArgs)
txtEndDate.Text=calEndDate.SelectedDate

End Sub

'will select the correct Query type and run it, ensuring necessary
items are visible or invisible
Sub btnSearchEx Click(sender As Object, e As EventArgs)
if cboSearchType.SelectedItem.Value="Customers" then
if handleCustomerQuery() then
1blViewMode. text="CustSearch"”
1blTempQuery.text=strQuery
LoadCustView (strQuery)
pnlSearch.Visible=False
pnlViewCust.Visible=True
end if
else if cboSearchType.SelectedItem.Value="Transactions" then
if handleTransactionQuery() then
1blViewMode. text="TransSearch"
1blTempQuery.text=strQuery
LoadTransView (strQuery)
pnlSearch.Visible=False
pnlViewTrans.Visible=True
end if
else if cboSearchType.SelectedItem.Value="Contract Summary"
If ValidateAnalysis() Then
PerformAnalysis ()
End If
end if
End Sub

' <KLKLLLKLKLKLLDDDDD>D>>>>>
'Imported VB.NET Search Code
T <KLKLLLKLLKLLIODDO>O>>>>>
Dim strQuery as String

"function to build the Customer Search queries and handle
errors
Function handleCustomerQuery() as Boolean
Dim intCount As Integer = 0

B-7

Dim boolErrorFlag as Boolean = False
Dim strErrors as String = "The Following Errors were

Detected:" & "
" & "
"

"%'

"%'

strQuery = "select * From Customers"

'if statements to perform validation/query creation
If chkCustID.Checked Then
If TrueIsNumeric (txtCustID.Text) Then
checkFirstEntry (intCount)
strQuery += " CustID=" & txtCustID.Text & " "
Else
boolErrorFlag = True
strErrors += "CustID Must Be Numeric" & "
"
End If
End If

If chkFirstName.Checked Then
checkFirstEntry (intCount)
strQuery += " FirstName Like '%" & txtFirstName.Text &

End If

If chkLastName.Checked Then
checkFirstEntry (intCount)
strQuery += " LastName Like '$" & txtLastName.Text &

End If

If chkFirstLast.Checked Then
checkFirstEntry (intCount)

strQuery += " (FirstName Like '%" & txtFirstLast.Text &
or LastName Like '%" & txtFirstLast.Text & "%')"
End If

If chkPhone.Checked Then

checkFirstEntry (intCount)

strQuery += " Phone Like '$%" & txtPhone.Text & "%' "
End If

If chkEmail.Checked Then

checkFirstEntry (intCount)

strQuery += " Email Like '%" & txtEmail.Text & "g' "
End If

If chkAddress.Checked Then
checkFirstEntry (intCount)
strQuery += " Address Like '%" & txtAddress.Text & "$'

End If

If chkCity.Checked Then
checkFirstEntry (intCount)
strQuery += " City Like '

End If

3" & txtCity.Text & "%' "

If chkState.Checked Then
checkFirstEntry (intCount)

B-8

strQuery += " State Like '$" & txtState.Text & "g' "
End If

If chkZIP.Checked Then

checkFirstEntry (intCount)

strQuery += " ZIP Like '%" & txtZIP.Text & "%' "
End If

If chkNotes.Checked Then

checkFirstEntry (intCount)

strQuery += " Notes Like '%" & txtNotes.Text & "&' "
End If

If boolErrorFlag then
1blCustSearchErrors.text=strErrors
1lblCustSearchErrors.visible=true
return false

else
return true

end if

End Function

'support function for the query builders, chooses to add
"where" or "and" to
'the SQL string depending upon positioning
Private Sub checkFirstEntry(ByRef intCount As Integer)
If intCount = 0 Then
strQuery = strQuery + " where "

Else
strQuery = strQuery + " and "
End If
intCount = intCount + 1
End Sub

'function to build the Customer Search queries and handle
errors
Function handleTransactionQuery() as Boolean
Dim intCount As Integer = 0
Dim boolErrorFlag as Boolean = False
Dim strErrors as String = "The Following Errors were
Detected:" & "
" & "
"

strQuery = "select *, customers.CustID as CustlID,
FirstName, LastName, transactions.Notes as Notes,
HardwareValue+SoftwareValue+LaborValue+TaxValue as TotalValue From
(transactions INNER JOIN customers ON transactions.CustID =
customers.CustID) "

'if statements to perform validation/query creation
If chkTransID.Checked Then
If TruelsNumeric (txtTransID.Text) Then
checkFirstEntry (intCount)
strQuery += " TransID=" & txtTransID.Text & " "
Else
boolErrorFlag = True
strErrors += "TransID Must Be Numeric" & "
"
End If

B-9

End If

If chkCustIDTrans.Checked Then
If TruelIsNumeric (txtCustIDTrans.Text) Then
checkFirstEntry (intCount)
strQuery += " transactions.CustID=" &
txtCustIDTrans.Text & " "
Else
boolErrorFlag = True
strErrors += "CustID Must Be Numeric" & "
"
End If
End If

If chkNameTrans.Checked Then
checkFirstEntry (intCount)

strQuery += " (FirstName Like '$" & txtNameTrans.Text &
"%' or LastName Like '%" & txtNameTrans.Text & "%') "
End If

If chkDate.Checked Then
checkFirstEntry (intCount)

If cboDate.SelectedItem.value = "Equal" Then
strQuery += " [Date] = #" & txtStartDate.text & "#
"
Else
strQuery += " ([Date] BETWEEN #" &
txtStartDate.text & "# AND #" & txtEndDate.text & "#) "
End If
End If

If chkHardwareValue.Checked Then
If TruelIsNumeric (txtHardwareValue.Text) Then
checkFirstEntry (intCount)

strQuery += " HardwareValue" &
cboHardwareValueType.SelectedItem.Value & txtHardwareValue.Text & " "
Else
boolErrorFlag = True
strErrors += "HardwareValue Must Be Numeric" &
"
 ”
End If
End If
If chkSoftwareValue.Checked Then
If TruelIsNumeric(txtSoftwareValue.Text) Then
checkFirstEntry(intCount)
strQuery += " SoftwareValue" &
cboSoftwareValueType.SelectedItem.Value & txtSoftwareValue.Text & " "
Else
boolErrorFlag = True
strErrors += "SoftwareValue Must Be Numeric" &
"
"
End If
End If

If chkLaborValue.Checked Then
If TruelIsNumeric (txtLaborValue.Text) Then
checkFirstEntry (intCount)

B-10

strQuery += " LaborValue" &
cboLaborValueType.SelectedItem.Value & txtLaborValue.Text & " "
Else
boolErrorFlag = True
strErrors += "LaborValue Must Be Numeric" & "
"
End If
End If

If chkTaxValue.Checked Then
If TruelIsNumeric (txtTaxValue.Text) Then
checkFirstEntry (intCount)
strQuery += " TaxValue" &
cboTaxValueType.SelectedItem.Value & txtTaxValue.Text &
Else
boolErrorFlag = True
strErrors += "TaxValue Must Be Numeric" & "
"
End If
End If

If chkDownPayment.Checked Then
If TruelsNumeric (txtDownPayment.Text) Then
checkFirstEntry (intCount)
strQuery += " DownPayment" &
cboDownPaymentType.SelectedItem.Value & txtDownPayment.Text &
Else
boolErrorFlag = True
strErrors += "DownPayment Must Be Numeric" & "
"
End If
End If

If chkNotesTrans.Checked Then
checkFirstEntry (intCount)

strQuery += " transactions.Notes Like '%" &
txtNotesTrans.Text & "%' "
End If

If chkPaidInFull.Checked Then
checkFirstEntry (intCount)
strQuery += " PaidInFull=" & chkPaidInFullValue.Checked

End If

'output errors if there are any, else return true

If boolErrorFlag then
lblTransSearchErrors.text=strErrors
1blTransSearchErrors.visible=true
return false

else
return true

end if

End Function

'loads summary data from database and outputs that data
Private Sub PerformAnalysis/()

Dim conDB As System.Data.OleDb.OleDbConnection

Dim cmdSelect As System.Data.OleDb.OleDbCommand

Dim dtrAnalysis As System.Data.OleDb.OleDbDataReader

Dim strSelect As String

conDB = New
System.Data.OleDb.OleDbConnection ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DAT
A Source=" & lblDatabasePath.Text)

'if searching by a CustID, load the Customer Names
If chkCustIDAnalysis.Checked Then
cmdSelect = New System.Data.OleDb.OleDbCommand ("select
FirstName, LastName from Customers where CustID=" &
txtCustIDAnalysis.Text, conDB)
conDB.Open ()
dtrAnalysis = cmdSelect.ExecuteReader ()
If dtrAnalysis.Read() Then
lblName.Text = dtrAnalysis(0) & " " &
dtrAnalysis (1)
Else
lblAnalysisErrors.text="No Record Found!"
lblAnalysisErrors.Visible=true
lblName.Text = "No Record Found!"
End If
dtrAnalysis.Close ()
conDB.Close ()

strSelect = "select count (TransID), sum(HardwareValue),
Sum (SoftwareValue), Sum(LaborValue), Sum(TaxValue) from transactions
where CustID=" & txtCustIDAnalysis.Text

& " and ([Date] between #" &
calStartDateAnalysis.SelectedDate & "# and #" &
calEndDateRnalysis.SelectedDate & "#) "

Else

1blName.Text = "All Customers"

strSelect = "select count (TransID), sum(HardwareValue),
Sum (SoftwareValue), Sum(LaborValue), Sum(TaxValue) from transactions
where"

& " ([Date] between #" &
calStartDateAnalysis.SelectedDate & "# and #" &
calEndDateAnalysis.SelectedDate & "#) "

End If

cmdSelect = New System.Data.OleDb.OleDbCommand (strSelect,
conDB)

conDB.Open ()

dtrAnalysis = cmdSelect.ExecuteReader ()

dtrAnalysis.Read()

lblTotalTrans.Text = dtrAnalysis(0)

'if dtrAnalysis=0, the other summary info will be DBNull,
test prevents errors
If Not dtrAnalysis(0) = 0 Then
lblTotalHardwareValue.Text = dtrAnalysis(1)
lblTotalSoftwareValue.Text = dtrAnalysis(2)
lblTotalLaborValue.Text = dtrAnalysis(3)
lblTotalTaxValue.Text = dtrAnalysis(4)

B-12

lblTotalValue.Text = dtrAnalysis(l) + dtrAnalysis(2) +
dtrAnalysis(3) + dtrAnalysis(4)
End If

dtrAnalysis.Close ()
conDB.Close ()
End Sub

'validation for the Contract Summary search
Function ValidateAnalysis() As Boolean
If chkCustIDAnalysis.Checked AndAlso
TrueIsNumeric (txtCustIDAnalysis.Text) Then
Return True
ElseIf Not chkCustIDAnalysis.Checked Then
Return True
Else
lblAnalysisErrors.Text="Customer ID must be entered and
must be Numeric"
lblAnalysisErrors.Visible=True
Return False
End If
End Function

</script>
<html>
<head>
<title>LightSpeed ASP.NET Interface</title>
</head>
<body>
<form runat="server">
<asp:Panel id="pnlViewCust" runat="server">
<p>
<asp:Label id="1lblViewCustErrors" runat="server"
visible="False" forecolor="Red" enableviewstate="False"></asp:Label>
</p>
<p>
<asp:DataGrid id="dgrdCustomers" DataKeyField="CustID"
Runat="Server" EnableViewState="False" AutoGenerateColumns="False"
OnItemCommand="dgrdcustomers ItemCommand">
<Columns>
<asp:ButtonColumn Text="Select"
CommandName="Select"></asp:ButtonColumn>
<asp:BoundColumn DataField="CustID"
ReadOnly="True" HeaderText="CustID"></asp:BoundColumn>
<asp:BoundColumn DataField="FirstName"
ReadOnly="True" HeaderText="FirstName"></asp:BoundColumn>
<asp:BoundColumn DataField="LastName"
ReadOnly="True" HeaderText="LastName"></asp:BoundColumn>
<asp:BoundColumn DataField="Phone"
HeaderText="Phone"></asp:BoundColumn>
<asp:BoundColumn DataField="Notes"
HeaderText="Notes"></asp:BoundColumn>
</Columns>
</asp:DataGrid>

B-13

<asp:Button id="btnEditCust"
onclick="btnEditCust Click"” runat="server" Text="Edit
Record"></asp:Button>

<asp:Button id="btnAddCust" onclick="btnAddCust Click"

runat="server" Text="Add Record"></asp:Button>
<asp:Button id="btnAddTransaction"
onclick="btnAddTransaction Click" runat="server" Text="Add
Transaction"></asp:Button>
<asp:Button id="btnViewTrans"
onclick="btnViewTrans Click" runat="server" Text="View
Transactions"></asp:Button>
</p>
<p>

<asp:Button id="btnSearch" onclick="btnSearch Click"

runat="server" Text="Search"></asp:Button>
</p>
</asp:Panel>

<asp:Panel id="pnlViewTrans" runat="server" Visible="False">

<p>

<asp:Label id="1lblViewTransErrors" runat="server"

forecolor="Red"></asp:Label>
</p>
<p>
<asp:DataGrid id="dgrdTransactions"
DataKeyField="TransID" Runat="Server" EnableViewState="False"
AutoGenerateColumns="False"
OnItemCommand="dgrdtransactions ItemCommand">
<Columns>
<asp:ButtonColumn Text="Select"
CommandName="Select"></asp:ButtonColumn>
<asp:BoundColumn DataField="TransID"
ReadOnly="True" HeaderText="TransID"></asp:BoundColumn>
<asp:BoundColumn DataField="CustID"
ReadOnly="True" HeaderText="CustID"></asp:BoundColumn>
<asp:BoundColumn DataField="FirstName"
HeaderText="FirstName"></asp:BoundColumn>
<asp:BoundColumn DataField="LastName"
HeaderText="LastName"></asp:BoundColumn>
<asp:BoundColumn DataField="Date"
HeaderText="Date" DataFormatString="{0:d}"></asp:BoundColumn>
<asp:BoundColumn DataField="PaidInFull"
ReadOnly="True" HeaderText="PaidInFull"></asp:BoundColumn>
<asp:BoundColumn DataField="TotalValue"
HeaderText="TotalValue"></asp:BoundColumn>
<asp:BoundColumn DataField="DownPayment"
ReadOnly="True" HeaderText="DownPayment"></asp:BoundColumn>
<asp:BoundColumn DataField="Notes"
HeaderText="Notes"></asp:BoundColumn>
</Columns>
</asp:DataGrid>
</p>
<p>
<asp:Button id="btnEditTrans"
onclick="btnEditTrans_Click" runat="server" Text="Edit
Transaction"></asp:Button>
</p>
<p>

B-14

<asp:Button id="btnReturn" onclick="btnReturn Click"
runat="server" Text="Return to Customers"></asp:Button>
</p>
</asp:Panel>
<asp:Panel id="pnlSearch" runat="server" Visible="False">
<p>
<asp:DropDownList id="cboSearchType" runat="server"
OnSelectedIndexChanged="cboSearchType SelectedIndexChanged"
AutoPostBack="True">
<asp:ListItem Value="Customers"
Selected="True">Customers</asp:ListItem>
<asp:ListItem
Value="Transactions">Transactions</asp:ListItem>
<asp:ListItem Value="Contract Summary">Contract
Summary</asp:ListItem>
</asp:DropDownList>
</p>
<p></p>
<p></p>
<p>
<asp:Panel id="pnlCustomers" runat="server"
Visible="False" HorizontalAlign="Left">
<asp:Label id="1lblCustSearchErrors" runat="server"
forecolor="Red" enableviewstate="False"></asp:Label>
<p>
<asp:CheckBox id="chkCustID"
runat="server"></asp:CheckBox>
<asp:Label id="Labelll"
runat="server">CustID:</asp:Label>
<asp:TextBox id="txtCustID"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkFirstName"
runat="server"></asp:CheckBox>
<asp:Label id="Labell" runat="server">First
Name:</asp:Label>
<asp:TextBox id="txtFirstName"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkLastName"
runat="server"></asp:CheckBox>
<asp:Label id="Label2" runat="server">Last
Name:</asp:Label>
<asp:TextBox id="txtLastName"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkFirstLast"
runat="server"></asp:CheckBox>
<asp:Label id="LabellO" runat="server">First &
Last Name:</asp:Label>
<asp:TextBox id="txtFirstLast"
runat="server"></asp:TextBox>
</p>
<p>

B-15

<asp:CheckBox id="chkAddress"
runat="server"></asp:CheckBox>
<asp:Label id="Label3"
runat="server">Address:</asp:Label>
<asp:TextBox id="txtAddress"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkCity"
runat="server"></asp:CheckBox>
<asp:Label id="Labeld"
runat="server">City:</asp:Label>
<asp:TextBox id="txtCity"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkState"
runat="server"></asp:CheckBox>
<asp:Label id="Label5"
runat="server">State:</asp:Label>
<asp:TextBox id="txtState"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkZip"
runat="server"></asp:CheckBox>
<asp:Label id="Label6"
runat="server">ZIP:</asp:Label>
<asp:TextBox id="txtZIP"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkPhone"
runat="server"></asp:CheckBox>
<asp:Label id="Label7"
runat="server">Phone:</asp:Label>
<asp:TextBox id="txtPhone"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkEmail"
runat="server"></asp:CheckBox>
<asp:Label id="Label8" runat="server">E-
Mail:</asp:Label>
<asp:TextBox id="txtEmail"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkNotes"
runat="server"></asp:CheckBox>
<asp:Label id="Label9"
runat="server">Notes:</asp:Label>

<asp:TextBox id="txtNotes" runat="server"
TextMode="MultiLine" Width="240px" Height="86px"></asp:TextBox>
</p>
</asp:Panel>

<asp:Panel id="pnlTransactions" runat="server"
Visible="False" Width="572px">
<p>
<asp:Label id="lblTransSearchErrors"
runat="server" visible="False" forecolor="Red"
enableviewstate="False"></asp:Label>
</p>
<p>
<asp:CheckBox id="chkCustIDTrans"
runat="server"></asp:CheckBox>
<asp:Label id="Label20"
runat="server">CustID:</asp:Label>
<asp:TextBox id="txtCustIDTrans"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkTransID"
runat="server"></asp:CheckBox>
<asp:Label id="Label2l"
runat="server">TransID:</asp:Label>
<asp:TextBox id="txtTransID"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkNameTrans"
runat="server"></asp:CheckBox>
<asp:Label id="Label22"
runat="server">Name:</asp:Label>
<asp:TextBox id="txtNameTrans"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkDate"
runat="server"></asp:CheckBox>
<asp:Label id="Labell2"
runat="server">Date:</asp:Label>
<asp:DropDownList id="cboDate" runat="server"
OnSelectedIndexChanged="cboDate SelectedIndexChanged"
AutoPostBack="True">
<asp:ListItem Value="Equal"
Selected="True">Equal</asp:ListItem>
<asp:ListItem
Value="Between">Between</asp:ListItem>
</asp:DropDownList>
</p>
<p>
<asp:Calendar id="calStartDate" runat="server"
OnSelectionChanged="calStartDate SelectionChanged"></asp:Calendar>
<asp:Label id="1blAnd" runat="server"
visible="False" font-bold="True">and</asp:Label>
<asp:Calendar id="calEndDate" runat="server"
Visible="False"
OnSelectionChanged="calEndDate SelectionChanged"></asp:Calendar>
</p>
<p>
<asp:TextBox id="txtStartDate" runat="server"
visible="false"></asp:TextBox>

<asp:TextBox id="txtEndDate" runat="server"
visible="false"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkHardwareValue"
runat="server"></asp:CheckBox>
<asp:Label id="Label23"
runat="server">HardwareValue:</asp:Label>
<asp:DropDownList id="cboHardwareValueType"
runat="server">
<asp:ListItem Value="="
Selected="True">=</asp:ListItem>
<asp:ListItem
Value=">">></asp:ListItem>
<asp:ListItem
Value="<"><</asp:ListItem>
<asp:ListItem
Value=">=">>=</asp:ListItem>
<asp:ListItem
Value="<="><=</asp:ListItem>
</asp:DropDownList>
<asp:TextBox id="txtHardwareValue"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkSoftwareValue"
runat="server"></asp:CheckBox>
<asp:Label id="Labell3"
runat="server">SoftwareValue:</asp:Label>
<asp:DropDownList id="cboSoftwareValueType"
runat="server">
<asp:ListItem Value="="
Selected="True">=</asp:ListItem>
<asp:ListItem
Value=">">></asp:ListItem>
<asp:ListItem
Value="<"><</asp:ListItem>
<asp:ListItem
Value=">=">>=</asp:ListItem>
<asp:ListItem
Value="<="><=</asp:ListItem>
</asp:DropDownList>
<asp:TextBox id="txtSoftwareValue"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkLaborValue"
runat="server"></asp:CheckBox>
<asp:Label id="Labell5"
runat="server">LaborValue:</asp:Label>
<asp:DropDownList id="cboLaborValueType"
runat="server">
<asp:ListItem Value="="
Selected="True">=</asp:ListItem>
<asp:ListItem
Value="> ">></asp:ListItem>

B-18

<asp:ListItem
Value="<"><</asp:ListItem>
<asp:ListItem
Value=">=">>=</asp:ListItem>
<asp:ListItem
Value="<="><=</asp:ListItem>
</asp:DropDownList>
<asp:TextBox id="txtLaborValue"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkTaxValue"
runat="server"></asp:CheckBox>
<asp:Label id="Labell6"
runat="server">TaxValue:</asp:Label>
<asp:DropDownList id="cboTaxValueType"
runat="server">
<asp:ListItem Value="="
Selected="True">=</asp:ListItem>
<asp:ListItem
Value=">">></asp:ListItem>
<asp:ListItem
Value="g<"><</asp:ListItem>
<asp:ListItem
Value=">=">>=</asp:ListItem>
<asp:ListItem
Value="g<="><=</asp:ListItem>
</asp:DropDownList>
<asp:TextBox id="txtTaxValue"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkDownPayment"
runat="server"></asp:CheckBox>
<asp:Label id="Labell4"
runat="server">DownPayment:</asp:Label>
<asp:DropDownList id="cboDownPaymentType"
runat="server">
: <asp:ListItem Value="="
Selected="True">=</asp:ListItem>
<asp:ListItem
Value=">">></asp:ListItem>
<asp:ListItem
Value="<"><</asp:ListItem>
<asp:ListItem
Value=">=">>=</asp:ListItem>
<asp:ListItem
Value="<="><=</asp:ListItem>
</asp:DropDownList>
<asp:TextBox id="txtDownPayment"
runat="server"></asp:TextBox>
</p>
<p>
<asp:CheckBox id="chkPaidInFull"
runat="server"></asp:CheckBox>
<asp:Label id="Labell8"
runat="server">PaidInFull:</asp:Label>

B-19

<asp:TextBox id="txtPaidInFull" runat="server"
Visible="False"></asp:TextBox>
<asp:CheckBox id="chkPaidInFullValue"
runat="server"></asp:CheckBox>
</p>
<p>
<asp:CheckBox id="chkNotesTrans"
runat="server"></asp:CheckBox>
<asp:Label id="Labell9"
runat="server">Notes:</asp:Label>

<asp:TextBox id="txtNotesTrans" runat="server"
TextMode="MultilLine" Width="240px" Height="86px"></asp:TextBox>
</p>
</asp:Panel>
</p>

<p>
<asp:Panel id="pnlAnalysis" runat="server"
Visible="False" Width="540px" Height="77px">
<p>
<asp:Label id="1lblAnalysisErrors"
runat="server" forecolor="Red" enableviewstate="False"></asp:Label>
</p>
<p>
<asp:CheckBox id="chkCustIDAnalysis"
runat="server"></asp:CheckBox>
<asp:Label id="Label25"
runat="server">CustID:</asp:Label>
<asp:TextBox id="txtCustIDAnalysis"
runat="server"></asp:TextBox>
</p>
<p>
<asp:Label id="Label24"
runat="server">Date:</asp:Label>
</p>
<p>
<asp:Calendar id="calStartDateAnalysis"
runat="server"></asp:Calendar>
<asp:Label id="Labell7" runat="server" font-
bold="True">and</asp:Label>
<asp:Calendar id="calEndDateAnalysis"
runat="server"></asp:Calendar>
</p>
<p>
<asp:Label id="Label26" runat="server" font-
bold="True">Results:</asp:Label>
</p>
<hr />
<p>
<asp:Label id="Label28" runat="server" font-
bold="True">Customer: </asp:Label><asp:Label id="lblName"
runat="server" enableviewstate="False" font-bold="True"></asp:Label>
</p>
<p>
 <asp:Label id="Label29"
runat="server">Total Hardware Value: </asp:Label><asp:Label

B-20

id="1lblTotalHardwareValue" runat="server"
enableviewstate="False"></asp:Label>
</p>
<p>
<asp:Label id="Label33" runat="server">Total
Software Value: </asp:Label><asp:Label id="lblTotalSoftwareValue"
runat="server" enableviewstate="False"></asp:Label>
</p>
<p>
<asp:Label id="Label31l" runat="server">Total
Labor Value: </asp:Label><asp:Label id="lblTotalLaborValue"
runat="server" enableviewstate="False"></asp:Label>
</p>
<p>
<asp:Label id="Label36" runat="server">Total
Tax Value: </asp:Label><asp:Label id="1lblTotalTaxValue" runat="server"
enableviewstate="False"></asp:Label>
</p>
<p>
<asp:Label id="Label38" runat="server" font-
bold="True">Total Value: </asp:Label><asp:Label id="1lblTotalValue"
runat="server" enableviewstate="False" font-bold="True"></asp:Label>
</p>
<p>
<asp:Label id="Label40" runat="server" font-
bold="True">Total Transactions: </asp:Label><asp:Label
id="1blTotalTrans" runat="server" enableviewstate="False" font-
bold="True"></asp:Label>
</p>
</asp:Panel>
</p>

<p>
<asp:Button id="btnSearchEx"
onclick="btnSearchEx Click" runat="server" Text="Execute
Search"></asp:Button>
</p>
</asp:Panel>
<p>
<asp:Label id="1blCustID" runat="server"
visible="False"></asp:Label>
</p>
<p>
<asp:Label id="1blTransID" runat="server"
visible="False"></asp:Label>
</p>
<p>
<asp:Label id="1lblViewMode" runat="server"
visible="False">Cust</asp:Label>
</p>
<p>
<asp:Label id="1lblTempQuery" runat="server"
visible="False"></asp:Label>
</p>
<p>

B-21

<asp:Label id="lblDatabasePath" runat="server"
visible="False"
enabled="False">c:\lightspeed\lightspeed.mdb</asp:Label>
</p>
</form>
</body>
</html>

B-22

UpAddCust.aspx

<%@ Page Language="VB" Inherits="Validate" Src="Validate.vb" %>
<%Q@ import Namespace="System.Data.OleDb" %>
<script runat="server">

Dim strType as String
Dim intCustID as Integer

Sub Page_ Load
' Retrieve Form GET data
intCustID = convert.toint32 (Request.QueryString("CustID"))
strType = Request.QueryString("Type")

if Not IsPostBack Then
If strType="Edit" then
Dim conDB As OleDbConnection
Dim cmdSelect As OleDbCommand
Dim dtrRecord as OleDBDataReader

conDB = New OleDbConnection (
"PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA Source=" & lblDatabasePath.text
)
cmdSelect = New OleDbCommand("Select * From customers where
CustID=@CustID", conDB)
cmdSelect.Parameters.Add("@CustID", intCustID)
conDB.Open ()
dtrRecord = cmdSelect.ExecuteReader ()
dtrRecord.read()
txtFirstName.text=dtrRecord ("FirstName")
txtLastName.text=dtrRecord ("LastName")
txtAddress.text=dtrRecord ("Address")
txtCity.text=dtrRecord("City")
txtState.text=dtrRecord("State")
txtZIP.text=dtrRecord("ZIP")
txtPhone.text=dtrRecord ("Phone")
txtEmail.text=dtrRecord("Email")
txtNotes.text=dtrRecord ("Notes")
conDB.Close ()
End If
End if
End Sub

—_—

'Performs the appropriate OLEDB Actions and redirects if Validated
Sub btnSubmit Click(sender As Object, e As EventArgs)
if ValidateCust () then
if strType="Edit" then

EditRecord()
else if strType="Add" then
AddRecord ()
end if
response.redirect ("index.aspx")
end if
End Sub

'Redirects to Initial Page

B-23

Sub btnCancel Click(sender As Object, e As EventArgs)
response.redirect ("index.aspx")

End Sub

'OLEDB Commands Necessary to add a New Record

Sub AddRecord()

Dim conDB As OleDbConnection
Dim strInsert As String
Dim cmdInsert As OleDbCommand

conDB = New

OleDbConnection ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA Source=" &
lblDatabasePath.text)

strinsert =
Address, City,
@LastName,
cmdInsert =

cmdInsert.Parameters.Add ("@FirstName",
cmdInsert.Parameters.Add("@LastName",

State,
@Address,
New OleDbCommand (strInsert,

"insert into customers
ZIP, Phone, Email,
@City, @State, QZIP,

LastName,
(@RFirstName,
@Notes)"

(FirstName,
Notes) Values

@Phone, @Email,
conDB)

txtFirstName.Text)
txtLastName.Text)

cmdInsert.Parameters.Add ("@Address", txtAddress.Text)
cmdInsert.Parameters.Add ("@City", txtCity.Text)
cmdInsert.Parameters.Add ("@State", txtState.Text)
cmdInsert.Parameters.Add ("QZIP", txtZIP.Text)
cmdInsert.Parameters.Add ("@Phone", txtPhone.Text)
cmdInsert.Parameters.Add ("@Email"”, txtEmail.Text)
cmdInsert.Parameters.Add ("@Notes", txtNotes.Text)
conDB.Open ()

cmdInsert.ExecuteNonQuery ()
conDB.Close ()

End Sub

'OLEDB commands necessary to edit an existing record

Sub EditRecord()

Dim conDB As OleDbConnection
Dim strUpdate As String
Dim cmdUpdate As OleDbCommand

conDB = New

OleDbConnection ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA Source=" &

lblDatabasePath.text)
strUpdate =
LastName=@LastName,
ZIP=@ZIP, Phone=@Phone,
CustID=Q@CustID"
cmdUpdate

cmdUpdate.Parameters.
cmdUpdate.Parameters.
cmdUpdate.Parameters.
cmdUpdate.Parameters.
.Add ("@State",
cmdUpdate.Parameters.
cmdUpdate.Parameters.
cmdUpdate.Parameters.
cmdUpdate.Parameters.

cmdUpdate.Parameters

Address=

New OleDbCommand (strUpdate,

@Address, City=@City,

conDB)

Add ("@FirstName",
Add ("@LastName",
Add ("@Address",

Add ("@City", txtCity.Text)
txtState.Text)

Add ("Q@ZIP", txtZIP.Text)

Add ("@Phone", txtPhone.Text)
Add ("@Email", txtEmail.Text)
Add ("@Notes", txtNotes.Text)

"Update customers Set FirstName=@FirstName,
State=@State,
Email=Q@Email, Notes=@Notes where

txtFirstName.Text)
txtLastName.Text)
txtAddress.Text)

B-24

cmdUpdate.Parameters.Add ("@CustID", intCustID)

conDB.Open ()
cmdUpdate.ExecuteNonQuery ()
conDB.Close ()

End Sub

'Validate text - returns true if passed, returns false and outputs
errors if failed
Function ValidateCust () as Boolean
Dim boolErrorFlag As Boolean = False
Dim strErrors As String = "The Following Errors were
Found:" & "
" & "
"

If Not RequiredValidation(txtFirstName.Text) Then
boolErrorFlag = True
strErrors += "First Name Must Be Entered" & "
"
End If

If Not StateValidation(txtState.Text) Then
boolErrorFlag = True
strErrors += "State is Not Valid, should be in
abbreviated format 'SD'" & "
"
End If

If Not ZIPValidation(txtZIP.Text) Then
boolErrorFlag = True
strErrors += "ZIP Code is Not Valid, should be in the
format '57042' or '57042-1111'" & "
"
End If

If Not PhoneValidation (txtPhone.Text) Then
boolErrorFlag = True
strErrors += "Phone Number is Not Valid, should be in
the format '605-555-5555''" & "
"
End If

If Not EmailValidation (txtEmail.Text) Then
boolErrorFlag = True
strErrors += "E-mail Address is Not Valid" & "
"
End If

If boolErrorFlag Then
1blErrors.text=strErrors
1blErrors.visible=True
Return False

Else
Return True

End If

End Function

</script>
<html>
<head>
<title>LightSpeed ASP.NET - Add/Update Customer</title>
</head>
<body>

B-25

<form runat="server">
<p>
<asp:Label id="1lblErrors" runat="server" forecolor="Red"
visible="False"></asp:Label>
</p>
<p>
<asp:Label id="Labell" runat="server">First
Name:</asp:Label>
<asp:TextBox id="txtFirstName" runat="server"
MaxLength="50"></asp:TextBox>
</p>
<p>
<asp:Label id="Label2" runat="server">Last
Name:</asp:Label>
<asp:TextBox id="txtLastName" runat="server"
MaxLength="50"></asp:TextBox>
</p>
<p>
<asp:Label id="Label3" runat="server">Address:</asp:Label>
<asp:TextBox id="txtAddress" runat="server"
MaxLength="50"></asp:TextBox>
</p>
<p>
<asp:Label id="Label4" runat="server">City:</asp:Label>
<asp:TextBox id="txtCity" runat="server"
MaxLength="50"></asp:TextBox>
</p>
<p>
<asp:Label id="Label5" runat="server">State:</asp:Label>
<asp:TextBox id="txtState" runat="server"
MaxLength="2"></asp:TextBox>
</p>
<p>
<asp:Label id="Label6" runat="server">ZIP:</asp:Label>
<asp:TextBox id="txtZIP" runat="server"
MaxLength="10"></asp:TextBox>
</p>
<p>
<asp:Label id="Label7" runat="server">Phone:</asp:Label>
<asp:TextBox id="txtPhone" runat="server"
MaxLength="14"></asp:TextBox>
</p>
<p>
<asp:Label id="Label8" runat="server">E-Mail:</asp:Label>
<asp:TextBox id="txtEmail" runat="server"
MaxLength="50"></asp:TextBox>
</p>
<p>
<asp:Label id="Label9" runat="server">Notes:</asp:Label>

<asp:TextBox id="txtNotes" runat="server" MaxLength="255"
TextMode="MultilLine" Height="86px" Width="240px"></asp:TextBox>
</p>
<p>
<asp:Button id="btnSubmit" onclick="btnSubmit Click"
runat="server" Text="Submit"></asp:Button>

B-26

<asp:Button id="btnCancel" onclick="btnCancel Click"
runat="server" Text="Cancel"></asp:Button>
</p>
<p>
<asp:Label id="lblDatabasePath" runat="server"
visible="False"
enabled="False">c:\lightspeed\lightspeed.mdb</asp:Label>
</p>
</form>
</body>
</html>

B-27

UpAddTrans.aspx

<%@ Page Language="VB" Inherits="Validate" Src="Validate.vb" %>
<%@ import Namespace="System.Data.OleDb" %>
<script runat="server">

Dim strType as String
Dim intTransID as Integer
Dim intCustID as Integer

Sub Page_ Load
' Retrieve Form GET data
intTransID = convert.toint32 (Request.QueryString("TransID"))
intCustID = convert.toint32 (Request.QueryString("CustID"))
strType = Request.QueryString("Type")

'if it's the first page load
if Not IsPostBack Then
calDate.SelectedDate=System.DateTime.Now.ToShortDateString
calDate.VisibleDate=System.DateTime.Now.ToShortDateString
txtDate.text=calDate.SelectedDate
'if it's an edit, load the init data from DB
If strType="Edit" then
Dim conDB As OleDbConnection
Dim cmdSelect As OleDbCommand
Dim dtrRecord as OleDBDataReader
conDB = New OleDbConnection (
"PROVIDER=Microsoft.Jet .OLEDB.4.0;DATA Source=" & lblDatabasePath.Text
)
cmdSelect = New OleDbCommand("Select * From transactions
where TransID=@TransID", conDB)
cmdSelect.Parameters.Add("@TransID", intTransID)
conDB.Open ()
dtrRecord = cmdSelect.ExecuteReader ()
dtrRecord.read ()
txtDate.text=dtrRecord("Date")
txtHardwareValue.text=dtrRecord ("HardwareValue")
txtSoftwareValue.text=dtrRecord("SoftwareValue")
txtLaborValue.text=dtrRecord ("LaborValue")
txtTaxValue.text=dtrRecord("TaxValue")
txtDownPayment . text=dtrRecord ("DownPayment")
chkPaidInFull.Checked=dtrRecord("PaidInFull")
txtNotes.text=dtrRecord ("Notes")
conDB.Close ()
calDate.SelectedDate=txtDate.text
calDate.VisibleDate=txtDate.text
End If
End if
End Sub

'performs correct validation/execution depending on type, redirects
appropriately
Sub btnSubmit Click(sender As Object, e As EventArgs)
if ValidateTrans() then
if strType="Edit" then
EditRecord ()

B-28

response.redirect ("index.aspx?View=Trans&CustID="&intCustID)
else if strType="Add" then

AddRecord ()
response.redirect ("index.aspx")
end if
end if
End Sub

'procedure to submit changes to DB
Sub EditRecord()
Dim conDB As OleDbConnection
Dim strUpdate As String
Dim cmdUpdate As OleDbCommand

conDB = New
OleDbConnection ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA Source=" &
lblDatabasePath.Text)

strUpdate = "Update transactions Set [Date]=@Date,
HardwareValue=@HardwareValue, SoftwareValue=@SoftwareValue,
LaborValue=@LaborValue, TaxValue=@TaxValue, DownPayment=@DownPayment,
PaidInFull=Q@PaidInFull, Notes=@Notes where TransID=@TransID"

cmdUpdate = New OleDbCommand (strUpdate, conDB)

cmdUpdate.Parameters.Add ("@Date", txtDate.Text)

cmdUpdate.Parameters.Add ("@HardwareValue",
txtHardwareValue.Text)

cmdUpdate.Parameters.Add ("@SoftwareValue",
txtSoftwareValue.Text)

cmdUpdate.Parameters.Add ("@LaborValue", txtLaborValue.Text)

cmdUpdate.Parameters.Add ("@TaxValue", txtTaxValue.Text)

cmdUpdate.Parameters.Add ("@DownPayment", txtDownPayment.Text)

cmdUpdate.Parameters.Add ("@PaidInFull", chkPaidInFull.Checked)

cmdUpdate.Parameters.Add ("@Notes", txtNotes.Text)

cmdUpdate.Parameters.Add ("@TransID", intTransID)

conDB.Open ()
cmdUpdate.ExecuteNonQuery ()
conDB.Close ()

End Sub

'procedure to add records to DB
Sub AddRecord()
Dim conDB As OleDbConnection
Dim strInsert As String
Dim cmdInsert As OleDbCommand

conDB = New
OleDbConnection ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA Source=" &
lblDatabasePath.Text)

strInsert = "insert into transactions (CustID, [Date],
HardwareValue, SoftwareValue, LaborValue, TaxValue, DownPayment,
PaidInFull, Notes) Values (Q@CustID, @Date, @HardwareValue,
@SoftwareValue, @LaborValue, @TaxValue, @DownPayment, @PaidInFull,
@Notes)"

B-29

cmdInsert = New OleDbCommand(strInsert, conDB)
cmdInsert.Parameters.Add ("@CustID", intCustID)

cmdInsert.Parameters.Add ("@Date", txtDate.Text)

cmdInsert.Parameters.Add ("@HardwareValue",
txtHardwareValue.Text)

cmdInsert.Parameters.Add ("@SoftwareValue",
txtSoftwareValue.Text)

cmdInsert.Parameters.Add ("@LaborValue"”, txtLaborValue.Text)

cmdInsert.Parameters.Add ("Q@TaxValue", txtTaxValue.Text)

cmdInsert.Parameters.Add ("@DownPayment"”, txtDownPayment.Text)

cmdInsert.Parameters.Add ("@PaidInFull", chkPaidInFull.Checked)

cmdInsert.Parameters.Add ("@Notes", txtNotes.Text)

conDB.Open ()
cmdInsert.ExecuteNonQuery ()
conDB.Close ()

End Sub

'Validate text - returns true if passed, returns false and outputs
errors if failed
Function ValidateTrans() As Boolean
Dim boolErrorFlag As Boolean = False
Dim strErrors As String = "The Following Errors were Found:" &
"<pr>" & "
"

If Not TrueIsNumeric (txtHardwareValue.Text) Then
boolErrorFlag = True
strErrors += "HardwareValue Must Be Numeric" & "
"
End If

If Not TrueIsNumeric (txtSoftwareValue.Text) Then
boolErrorFlag = True
strErrors += "SoftwareValue Must Be Numeric" & "
"
End If

If Not TrueIsNumeric (txtLaborValue.Text) Then
boolErrorFlag = True
strErrors += "LaborValue Must Be Numeric" & "
"
End If

If Not TrueIsNumeric(txtTaxValue.Text) Then
boolErrorFlag = True
strErrors += "TaxValue Must Be Numeric" & "
"
End If

If Not TrueIsNumeric (txtDownPayment.Text) Then
boolErrorFlag = True
strErrors += "DownPayment Must Be Numeric" & "
"
End If

'if all of the values were numbers, check to make sure the total
isn't zero
If Not boolErrorFlag Then
If (txtHardwareValue.Text + txtSoftwareValue.Text +
txtLaborValue.Text + txtTaxValue.Text) = 0 Then

B-30

boolErrorFlag = True
strErrors += "The Total Value cannot be Zero! Numeric
Values must be entered."
End If
End If

If boolErrorFlag Then
lblErrors.text=strErrors
1blErrors.visible=true
Return False

Else
Return True

End If

End Function

'keeps txtDate and calDate synchronized

Sub calDate SelectionChanged(sender As Object, e As EventArgs)
txtDate.text=calDate.SelectedDate

End Sub

'leaves the page, back to referring page
Sub btnCancel Click(sender As Object, e As EventArgs)
if strType="Edit" then

response.redirect ("index.aspx?View=Trans&CustID="&intCustID)
else if strType="Add" then
response.redirect ("index.aspx")
end if
End Sub

</script>
<html>
<head>
<title>LightSpeed ASP.NET - Add/Update Transaction</title>
</head>
<body>
<form runat="server">
<p>
<asp:Label id="1lblErrors" runat="server" visible="False"
forecolor="Red"></asp:Label>
</p>
<p>
<asp:Label id="Labell" runat="server">Date:</asp:Label>
<asp:TextBox id="txtDate" runat="server"></asp:TextBox>
</p>
<p>
<asp:Calendar id="calDate" runat="server"
OnSelectionChanged="calDate SelectionChanged"></asp:Calendar>
</p>
<p>
<asp:Label id="Label2"
runat="server">HardwareValue:</asp:Label>
<asp:TextBox id="txtHardwareValue"
runat="server"></asp:TextBox>
</p>
<p>

B-31

<asp:Label id="Label3"
runat="server">SoftwareValue:</asp:Label>
<asp:TextBox id="txtSoftwareValue"
runat="server"></asp:TextBox>
</p>
<p>
<asp:Label id="Label4"
runat="server">LaborValue:</asp:Label>
<asp:TextBox id="txtLaborValue"
runat="server"></asp:TextBox>
</p>
<p>
<asp:Label id="Label5" runat="server">TaxValue:</asp:Label>
<asp:TextBox id="txtTaxValue" runat="server"></asp:TextBox>
</p>
<p>
<asp:Label id="Label6"
runat="server">DownPayment:</asp:Label>
<asp:TextBox id="txtDownPayment"
runat="server"></asp:TextBox>
</p>
<p>
<asp:Label id="Label7"
runat="server">PaidInFull:</asp:Label>
<asp:TextBox id="txtPaidInFull" runat="server"
Visible="False"></asp:TextBox>
<asp:CheckBox id="chkPaidInFull"
runat="server"></asp:CheckBox>
</p>
<p>
<asp:Label id="Label9" runat="server">Notes:</asp:Label>

<asp:TextBox id="txtNotes" runat="server"
TextMode="MultiLine" Height="86px" Width="240px"
MaxLength="255"></asp:TextBox>
</p>
<p>
<asp:Button id="btnSubmit" onclick="btnSubmit_ Click"
runat="server" Text="Submit"></asp:Button>
<asp:Button id="btnCancel" onclick="btnCancel Click"
runat="server" Text="Cancel"></asp:Button>
</p>
<p>
<asp:Label id="1lblDatabasePath" runat="server"
visible="False"
enabled="False">c:\lightspeed\lightspeed.mdb</asp:Label>
</p>
</form>
</body>
</html>

B-32

APPENDIX C - Project Planning Documentation

Abstract

This project is to create a customer information database with transactional information,
primarily to facilitate tracking of contractual work. This database will interact with two
different front-ends to simplify its usage and to provide additional functionality. One
front end will be an executable written in Visual Basic. NET which will allow a user to
add, view, or edit any transaction or customer information. This front end will also allow
a user to query the database for any desired information. The other front end will be an
ASP.NET web interface which will allow similar functionality in an internet-based
application.

C-1

Introduction

This project is to create a customer information database with transactional
information, primarily to facilitate tracking of contractual work. This database will
interact with two different front-ends to simplify its usage and to provide additional
functionality.

The client is a small local computer repair shop. In addition to typical PC repair,
the shop sells computer/networking hardware and provides network support services.
This full-service nature has led to the establishment of several service contracts, but there
is currently no method in place to perform any kind of analysis on the contracts. In
addition, the growing customer base has brought the need for some kind of customer

information database to the forefront.

Statement of problem and summary of current situation

The main problem is that the client has no way to easily track transactional
information. There is currently no point-of-sale system in place, and as such there is no
electronic record of transactions. The client also has no customer database more
sophisticated then an address book, and many customers’ information is not even in that

resource. However, paper records of many transactions and customers do exist.

The client only has one computer, a standard Windows XP machine with Internet
connectivity. There is no server of any kind. This computer is well secured however,
running Windows XP Service Pack 2 with a software firewall and protected by a

hardware firewall/router which provides network address translation.

Goals

The main goal is to provide a well designed database to store customer and
transaction information. The database is the single most important factor in the success
of this project, addressing most of the problems directly. The intent is to fully populate
the database with all existing customer information and perhaps some existing

transactional data. However, to be fully successful, the database must be easily usable.

To make the database more usable, a front-end will be developed in Visual Basic
NET. This interface will provide the ability to insert, edit, and view records stored in the
database. Both transactional information and customer information will be input and
edited through this form, so it must be capable of handling both types of record. In
addition to those functions, it will provide advanced querying features allowing the user
to search both customer and transaction information. The results of these searches will
also include summary information such as the total value of all listed transactions and the
number of transaction listed. This Visual Basic interface will also be designed to allow
for relatively easy migration to a different Database Management System (DBMS) in the
future. The client considers it a strong possibility that both hardware and software
availability will change in the near future, and the Visual Basic interface must be capable

of adapting to those possible changes.

In addition to the Visual Basic.NET interface, a web interface in ASP.NET will
be created utilizing the same database structure. This interface will not be active at the
completion of the project, but the client wishes to have web functionality available should
hardware or software upgrades make such functionality practical. In the current situation

implementation of a web server and a more secure database is not practical, however.

C-3

Like the Visual Basic interface, this code should be as open to future changes as possible,
and is intended to allow for easy migration to a different DBMS in the future. While this
web interface is not going to be active, the goal is for it to provide the same functionality
as the Visual Basic interface. The graphical user interface itself could be very different,
but the functionality is to remain virtually unchanged. Less query functionality in the
web interface is acceptable to the client because most queries will be run in the office on

the Visual Basic interface.
Scope of Work, Plan of Action, Activities

The budget for this project is extremely limited, and because of that it will be
designed to operate on the resources that are currently available. This is the single most
limiting factor of this project, and has resulted in many compromises in the planning
stage. The most important compromise at this point is the usage of Microsoft Access as
the DBMS. The client expressed some interest in MySQL, but in the end preferred to go
with software which is currently installed and wouldn’t require the only available
workstation to run additional background services. Most other DBMS options are well

out of the viable price range for the client.

The choice of Access as the DBMS is a large part of the reason why the ASP web
interface will not be active upon project completion. Access is simply not secure enough
to entrust with sensitive information online. The other major factor is the current lack of
a server or web host. An HTTP server could easily be run on the workstation after some
firewall configuration, but the client does not wish to risk leaving the only available

computer open to attacks. Outside web hosts could provide the desired functionality, but

C-4

the client does not wish to incur another expense just to support the web interface at this

time.

Much of the early Graphical User Interface (GUI) design is complete.
Consultation with the client has resulted in an ‘alpha’ of the GUI for all screens except
for the Advanced Search, which has been the subject of much debate and remains too
uncertain to effectively illustrate. All of the alpha GUI screenshots shown below could
be changed at any point, but the overall layout is expected to remain the same.
Development of the Visual Basic.NET interface will be an iterative process involving

prototype releases followed by testing of those prototypes.

f ™ Lightspeed - Add/Edit Record

} ™ Lightspeed - View Customer Records

The first iteration will be the customer information interface. This interface will
consist of two forms and will allow for updating, adding, and viewing of customer
information stored in the database. In addition, it will allow for simple querying based on
customer name. This iteration is going to be created first because the client wishes to
have a usable customer information database as soon as possible. Also, it is a logical

choice for the first iteration since the transactional information is dependent upon the

C-5

customer information. Part of the testing of this iteration will be the beginnings of data

entry into the database as well as the verification that this data entry has been successful.

M ightspeed - Add/Edit/View Transaction

L ® Lightspeed - Yiew Transactions

The second iteration will be the transaction information interface. Like the
customer information interface, this will consist of two forms and allow for updating,
inserting, and viewing of transactional information stored in the database. It will also
allow for simple searching by date. Testing of this iteration will mostly consist of
inserting and updating existing transactions from paper records, while ensuring that these

records remain properly recorded in the database.

The final iteration will be the advanced searching features. This will consist of
one or two forms, providing many querying options to the user to maximize the
functionality of the database system. The main goal of this iteration is to enable
advanced queries which will allow the user to easily judge the costs associated with an
ongoing service contract, perhaps to be used in later contract negotiations. Otherwise, the
intent is to provide enough functionality that the user can always find the desired record

or records, assuming that the user can provide enough information to do so effectively.

C-6

The testing of this iteration will consist of running a large variety of queries to ensure that

the desired functionality has been achieved.

The development of the ASP.NET web interface will take place after the Visual
Basic.NET interface and will largely draw upon that earlier work. As such, only one
release is planned for the web interface, and it will be as similar as possible to the Visual
Basic interface in order to avoid potential confusion and to lessen the learning curve
associated with the web interface. The web interface will be created and tested on a
separate copy of the database on a private server away from the client’s site. This
interface will not be publicly available and will not be connected to the active database in

any way to prevent any possible security concerns.

Work Breakdown Structure and Gantt Chart

1.0 Database Development
1.1 Database Design
1.2 Database Creation
2.0 Visual Basic Interface Development
2.1 Refine GUI Design
2.2 Iteration 1: Customer Information Interface
2.2.1 Develop Add Customer
2.2.2 Develop View Customer
2.2.3 [Iteration Testing
2.3 Iteration 2: Transaction Interface
2.3.1 Develop Add Transaction
2.3.2 Develop View Transaction
2.3.3 Iteration Testing
2.4 Iteration 3: Search Interface
2.4.1 Design Search GUI
2.4.2 Develop Search Capability
2.4.3 [Iteration Testing
2.5 Unified Testing
3.0 Additional Data Entry
4.0 ASP Web Interface Development
4.1 Alter Visual Basic GUI to Web Interface
4.2 Develop Add & View Customer
4.3 Develop Add & View Transaction

C-7

4.4 Develop Search Capability
4.5 Web Interface Testing
5.0 Presentation

Database Development
1.1 Database Design
1.2 Database Creation
=] 2.0 Visual Basic Interface Development
2.1 Refine GUI Design 4
&1 2.2 Iteration 1: Customer Information Interface
224 Develop Add Customer
2.2.2 Develop View Customer
223 Rteration Testing
iz} 2.3 reration 2: Transaction Information Interface
2.3 Develop Add Transaction :
2.3.2 Develop View Transaction
2.3.3 tteration Testing
=l 2.4 Reration 3: Search Inteiface
2.4.1 Design Search GUI
2.4 .2 Develop Search Capability
2.4 .3 Rteration Testing
2.5 Unified Testing
3.0 Additional Data entry
=] 4.0 ASP Web Interface Development
4.1 Alter Visual Basic GUI to Web Interface
4.2 Develop Add & View Customer
4.3 Develop Add & View Transaction
4.4 Develop Search Capabilty
4.5 Web Interface Testing
5.0 Presentation

Deliverables

The project deliverables include:

e A sample database based upon the final design and including valid data for testing
purposes.

e The Visual Basic.NET interface code and executable, to be used with the sample
database.

e The ASP.NET script used for the web interface. Since the development server
will not be available to the public, an active webpage will not be deliverable.

These deliverables may be supplemented by additional project documentation,

including program documentation and design documents created during application or
database design.

C-8

	Dakota State University
	Beadle Scholar
	Spring 4-1-2005

	Customer & Transaction Database with Custom Interfaces
	Ross Denholm
	Recommended Citation

	tmp.1522266487.pdf.ho57L

