Dakota State University

Beadle Scholar

Masters Theses

Fall 12-1-2005
Sioux Valley Intensive Air Web-Based Scheduling
Application

Chad Breidenbach
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

Recommended Citation

Breidenbach, Chad, "Sioux Valley Intensive Air Web-Based Scheduling Application” (2005). Masters Theses. 64.
https://scholar.dsu.edu/theses/64

This Thesis is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses by an authorized

administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Ftheses%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/64?utm_source=scholar.dsu.edu%2Ftheses%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

SIOUX VALLEY INTENSIVE AIR WEB-BASED
SCHEDULING APPLICATION

A graduate project submitted to Dakota State University in partial fulfillment of the
requirements for the degree of

Master of Science
in
Information Systems
December, 2005
By
Chad Breidenbach
Project Committee:
Dr. Omar El-Gayar

Dr. Ronghua Shan
Dr. Stephen Krebsbach

We certify that we have read this project and that, in our opinion, it is satisfactory
in scope and quality as a project for the degree of Master of Science in Information

Systems.

Project Committee

Faculty supervisor: Date:

Committee member: / e /4, et Date: /77/ 2 2ecE

Committee member: Date:

iii

ACKNOWLEDGMENT

A Web-Based Scheduling Application was identified by the Sioux Valley Hospital
Intensive Air Program as a business need. This request became part of the Sioux Valley
Information Technology Department Project List and was identified as a priority project.

I would like to acknowledge the contributions of the Web Development Team of the
Sioux Valley Information Technology Department: Jeff Leat-Webmaster, Tim Rusten-Web
Developer, Kendra Schnabel-Web Developer/Layout and Design.

This project is proprietary of Sioux Valley Hospitals and Health System. There was
no additional compensation for this project for myself or any contributing member of the
programming team.

I would also like to acknowledge the support of my wife, Elizabeth, and family who
supported my efforts while working on this project. Without their support this project would

not have been possible.

iv

ABSTRACT

The pilots of the Sioux Valley Intensive Air Program currently maintain their schedule
on a static calendar. They cannot directly update the schedule and upon taking the shift of
another pilot, the pilot taking a shift must notify the pilot whose shift he or she took. The
change must also be reported as a courtesy to the Program Manager.

The pilots of the Sioux Valley Intensive Air Program wish to implement a Web-Based
Scheduling Application that will give them up-to-date scheduling information and allow them
to make shift changes online while providing automatic notification of a shift change to the
pilot whose shift is affected and the Program Manager.

The process of addressing this business need began by identifying this as a priority
project on the Project List maintained by the Sioux Valley Information Technology Web
Development Team (Project Team). Upon selecting the project, a Project Plan, Work
Breakdown Structure and Gantt chart were created to organize the project and identify the
activities necessary to accomplish successful application development.

End-user requirements were then determined through an initial meeting with a
designated representative of the Sioux Valley Intensive Air Program. A Project Charter was
developed from those requirements to ensure that the program representative and the Web
Development Team had a clear understanding of the project requirements. Once the Project
Charter was reviewed and agreed upon, the Project Team met to determine Project
Specifications for addressing user needs. Use Case Descriptions and a Use Case Diagram

were created from those specifications to model the “to-be” application I wished to create.

Application Development began by establishing a Plan of Action to summarize the
approach needed to develop the application. Data requirements were identified for the
application to ensure that the proper information would be maintained for the application.
HTML and JavaScript code was used to develop the user interface for the application while
ASP code was used so that the application would dynamically interact with the MS SQL
Server 2000 database.

Once the application was developed, it was demonstrated to the representative of the
Sioux Valley Intensive Air Program. The application received favorable review by the
representative indicating that it would provide great value to their operation. We also
discussed future enhan(;ements to the application, but overall he stated that the application
provided the functionality initially desired by the Intensive Air Program. After his approval
of the application, a User’s Guide was created to help the pilots use the application for their

scheduling needs.

05/30/06 14:07 FAX 16053315852 FHLBDMSIOUXFALLS o1

vi

DECLARATION

1 hereby certify that this project constitutes my own product, that where the language of others
is set forth, quotation marks so indicate, and that appropriate credit is given where I have used
the language, ideas, expressions or writings of another.

I declare that the project describes original work that has not previously been presented for the
award of any other degree of any institution.

Signed,

4l F bl —

Chad Breidenbach

vii

TABLE OF CONTENTS

ACKNOWLEDGMENT I
ABSTRACT IV
DECLARATION VI
TABLE OF CONTENTS viI
LIST OF TABLES VIII
LIST OF FIGURES IX
INTRODUCTION 1

BACKGROUND OF THE PROBLEMcccvvtittitiietetteeeteeeettieieeiiiiiiiiieeeeeaesssssssssssesssssssisissssssisssissmisnes 1

STATEMENT OF THE PROBLEMcuuiiiiuiiiieiuiiieiiiietriieeesaiieeesssisssssissssiesstiiieststiiesstaiiestaniesssssssssssessnes 2

OBJECTIVES OF THE PROJECT ... ctuuitttuuietiutetimuieesiieeesaiissssssssssiessssisttiiessstiieeessasieettaesatiussetssssssnns 3
LITERATURE REVIEW 7
REQUIREMENTS ANALYSIS 12
SYSTEM DESIGN 21
IMPLEMENTATION AND RESULTS 32
CONCLUSIONS 34
REFERENCES 37
APPENDIX A: PROJECT PLANNING 38
APPENDIX B: USER’S GUIDE 41
APPENDIX C: APPLICATION DEVELOPMENT 48

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

LIST OF TABLES
Summary of Interview-eFlightSchedule.comccoiiniininie. 8
Summary of Interview-SkyScheduler...........cocooeneniiniiininnncnncns 9
Summary of Interview-MyYFBO.COML..........cccorensceareanennecesonasessesssss 10
INEIVIBNW REDOIL ousnsssrnsssnsssmsssnensmesnssssansounssussssonussussessaspunssmssssosss 12
Project Charter Attachment...........c.coveeruerennisensesarsanscsassasnsssosessssncs 14
Projest SpeciflCatiOnS . .onosmussemseimmersosisisongoossosmsnassash s fogessniss 15
Use Case DEACTIPLIONE osexcnsssvsnissssonssessssnsrnnmsansusssanssossunserssvoomsessaos 17
Data TADIESccconeeeicsanccsinsminssisinsisnssssumsnaivessnassmussssasnsswassenspeeves 22

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.

LIST OF FIGURES
Calendar Creator sample schedule.........c.cccooeeeiieeeniiiiininnnnee. 2
Network diagram of DIMZ SEIVET ...cvconssssssssssrcssonsssvorsessossrernss 4
Work Breakdown Structure (tabular form).........cccecceevveeevvneennnne 6
Work Breakdown Structure (graphical form)..........cccccecueeuenen. 6
Project CHarler.. . oummanssisdmmsmasmipaminssisnirmrvoysnmie 14
UsE a5t PIARTAIN s coovsvvisomosssosncimassressssmmessoresssmmsensesommmsnsiiny 20
Window Navigation Diagram...........ccccceeeeervuevnurininennueinennnnennne 21
Data Tables created with MS SQL Server 2000...................... 23
Database SCHETHH . ..comwmswssssussmsssisiumsmmempsmsussissvenssasarsssnesy 24
Entity Relationship (B-R) Diagrafi ...cc.coummessscssoonssssssnossossasn 24
Home page (weekly schedule).........cccooviiniiiiiiniininin, 25
IECRIRLY SCHOUNIRL b oo Sk et B e s b e B Al 26
Pilot shift change WiRdOWscomosmmmmsonmssmieansenseesssossssns 26
Changed pilot schedule................... N R AR 27
Enter Pilot Info window..........cocuveiiiiiiiiiiniiiiiiiiicccieccee 28
Schedule AN WINAOW .«.cousssavsmorssrsrmnsssansssssesssssssssssessonss 29
CAIEDAAE B ...occoninsismsionsomsirsomamsisos snsemsnsst b A Erinas s RIS 29
Schedule with drop-down menus...........ccceeveiviieiiiiiiieeneennens 30

ix

CHAPTER 1

INTRODUCTION

Background of the Problem

Sioux Valley Hospital opened in 1894 as the first hospital in Sioux Falls, SD.
Now known as Sioux Valley Hospital USD Medical Center, the hospital has evolved and
is now a part of Sioux Valley Hospitals and Health System. Part of their evolution
included the region’s first air ambulance service which is now called the Sioux Valley
Intensive Air Program (Sioux Valley Hospitals and Health System-History, 2005).

The Sioux Valley Intensive Air Program has been operating since 1977 and has
flown more than 15,000 patients. Intensive Air was the first CAMTS (Commission on
Accreditation of Medical Transport Services) accredited flight program in South Dakota.
Operations include a Bell 230 helicopter and two King Air 200 fixed-wing aircraft.
Intensive Air is staffed with four specialized flight teams (Sioux Valley Hospitals and
Health System-Intensive Air, 2005).

Currently, there are 12 pilots who fly for the fixed-wing portion of the Sioux
Valley Hospital Intensive Air Program. The fixed-wing portion of the program has
recently averaged close to 900 patient flights per year. Flights are primarily conducted
within a 300 mile radius of Sioux Falls, but lately many flights have been made to points
beyond said radius. They hold an FAA Part 135 Certificate (Commercial Air Carrier

Certificate) that allows them to conduct business in all of the United States and Canada.

The schedule of the pilots of the Sioux Valley Hospital Intensive Air Program is
currently maintained in the flight office on an application called Calendar Creator that

creates a static listing of shifts on which the pilots are on duty.

lendar Creator 7.0 Deluxe - [Pilot Schedule : G

]

=8

Sunday Monday Tuesday Friday Saturday 1

13 14 15 16 I7 18 19
Mark Tim Tim Sherwin Sherwin Shane Shane
Steve Arlen Mike Mark Mark Gary Gary
Jeff Steve Steve Tim Tim Dick Dick
Gary Shane Shane Rick Rick Arlen Arlen k]
Figure 1. Sample schedule on Calendar Creator
Statement of the Problem

If a pilot wishes to obtain the schedule for the current month, they must obtain a
copy via fax, in paper form from the airport office or through a screen shot that would
have to be emailed to them. Since the pilots do not have real-time access to the most
recent schedule and cannot view recent changes that have been made to the schedule,
they would not have knowledge of which pilots are available for a certain shift on a
certain day. If a pilot has recently taken a shift (e.g. earlier in the same week), they may
not be eligible for a shift exchange because they may be limited by FAA or company

policy to the number of hours they may work that week.

If a change is to be made to a schedule, a pilot must contact the pilot whose shift
they wish to take. If the change occurs, the pilot requesting the shift must also notify the
Program Manager of the change and the airport office to ensure that the schedule is
updated or edited. The Program Manager must also reconcile pilot hours at the end of the
month to determine hours worked and report to Human Resources. The Intensive Air
Pilots would not have immediate access to the most recent schedule and would have to

obtain an updated schedule as previously mentioned.

Objectives of the Project

The pilots of the Sioux Valley Hospital Intensive Air Program wish to implement
a Web-Based Scheduling Application that allows them to view and change scheduling
information online, thereby increasing the efficiency of their off-hours labor.

The major deliverables of the project include the following: The schedule is
established over a predetermined number of days and will be repeated in the next
schedule (e.g. the first scheduled 13 weeks will be repeated over the next 13 week
period). Any pilot affected by a change in the schedule will be notified by email of that
change. The schedule will be updated (or refreshed) every ten minutes. The application
will allow all pilots to view and edit schedules for all shifts.

The scope of this project will include the development of a Web-Based
Scheduling Application. The interface and functionality of the application will be
constructed using ASP-VB Script. A IIS 6.0 web server in an internet environment
(DMZ) with access to a SQL Server database will be utilized. The server must allow

ASP pages to be served.

Internet Firewall EPICISSUES Internal Firewall Internal Server
(“DMZ” Server,

Figure 2. Network diagram of the DMZ server

This project was of limited scope and scope creep was not evident during the
development of the application. Any additions or advanced functionality desired by the

Sioux Valley Intensive Air Program will be addressed as requested.

Since I was unfamiliar with the use of ASP and its integration with HTML and
JavaScript programming, I utilized the expertise of the Web Development Team to guide
me through that process. Within the Project Specifications, I identified that the weekly
and monthly schedules could be viewed interchangeably by clicking a toggle “switch”.
This functionality was replaced by having different links within the main menu of
“Weekly” and “Monthly”. Functionality not originally identified but subsequently added
was a toggle switch included within both the weekly and monthly schedules which allows
notes to be presented and hidden at the user’s discretion. Also, an additional email will
be sent back to the person making the change as a reminder to themselves of the schedule
change.

I will be involved in implementation of the schedule for Sioux Valley Intensive
Air Program. The pilots will need to enter scheduling information based on the
upcoming schedule. Monitoring to ensure that the schedule is copied forward as
requested will be done as needed. End-user training will be offered if requested. Since

the application is very intuitive and doesn’t involve elements beyond assigning pilots to a

specific shift in a one-to-one relationship, user acceptance of the application is not
anticipated to be a significant factor.

Baseline numbers on the amount of time being spent by pilots and support staff on
scheduling-related activities were not readily available. Efficiency gained through this
application will need to be obtained from the Intensive Air Program after
implementation.

A Work Breakdown Structure has been created to organize the tasks essential for
successful completion of the project. Figure 3 depicts the Work Breakdown Structure in

tabular form while Figure 4 depicts the Work Breakdown Structure in graphical form.

===1

31 Pmﬂgohllp-dculmxcmunwmwﬂutpaicm.nmudgmd

The pilots will be able to view, print and submit updates to the
3.3 Upon submitting an update request, mmﬂuwwmmmm

Figure 3. The Work Breakdown Structure in tabular form is used to organize the project
into smaller “work packages” or manageable tasks.

Figure 4. Diagram of the Work Breakdown Structure for the Sioux Valley Intensive Air
Web-Based Scheduling Application.

CHAPTER 2

LITERATURE REVIEW

In undertaking the project, I thought it was prudent to analyze how the identified
problem is typically addressed. Through an internet search, I identified three external
vendors who offered flight scheduling applications. I contacted them to determine if the
functionality of their applications was similar to what was being requested by the Sioux
Valley Intensive Air Program. Once appropriate functionality was determined, I gathered
information such as price, length of obligation, etc.

eFlightSchedule.com offers a flight scheduling program intended primarily for
flight instruction programs. Pilots are assigned to specific aircraft at specific times. In
order for pilot scheduling to occur, a pilot must be designated as a CFI (Certified Flight
Instructor) to a specific aircraft and each specific aircraft would have to be designated as
ground instruction. This would require that each pilot on the same shift be assigned to
one of the two aircraft within the “fleet”. Since the shifts of pilots overlap (e.g. the first
shift has two pilots scheduled from 4 a.m. to 4 p.m., the second has two pilots scheduled
from 10 a.m. to 10 p.m.) there would be an inherent conflict in scheduling aircraft to
pilots in the overlapping time frames. The application does offer email notification of
flights, custom color coding of schedules and use of a custom logo for a specific
organization.

The cost to use the eFlightSchedule.com scheduling application is a base rate of

$20 per month with a charge of $5 per aircraft per month. Since the Sioux Valley

Intensive Air Program has two fixed-wing aircraft, the cost per month would total $30 to
use them as an external vendor. The commitment to use the application is on a month-to-
month basis. Table 1 is a summary of the interview held with eFlightSchedule.com
President Eddie Rohwedder.

Table 1. Summary of the interview with President Eddie Rohwedder.

eFlightSchedule.com

President: Eddie Rohwedder
(949) 302-8726

September 13, 2005

Flight scheduling program intended primarily for flight instruction programs.

The pilots must be entered as CFI (Certified Flight Instructor).

Two pilots can’t be assigned to the same plane and need to be designated as ground
instruction.

The application offers email notification of flights, custom color coding of schedules and
use of a custom logo for the organization.

No annual commitment for this; on a month-to-month basis.

The cost is a base rate of $20 per month with a charge of $5 per aircraft per month on a
month-to-month basis.

Monthly cost: $30

SkyScheduler of Columbus, Ohio, offers an application that is also geared toward
use in flight schools for flight training programs. As long as the pilots are entered in the
SkyScheduler application as instructors, the system would work in scheduling pilots.
This application offers more flexibility than the eFlightSchedule.com application in that
pilots can be assigned to an aircraft group instead of having to designate specific pilots to
specific aircraft. The SkyScheduler application also offers last-minute cancellation
tracking, real-time dispatching and other features beyond what has been requested by the

Sioux Valley Intensive Air Program. The application offers functionality similar to what

was requested such as email notification of scheduled flights and also a summary of a
pilot’s upcoming schedule.

The basic package would offer the requested functionality at the rate of $10 per
aircraft per month or $20 for the program. This arrangement is also on a month-to-month
basis and with a 5% discount for annual prepayment. Table 2 is a summary of the
interview held with SkyScheduler President Mike Carr.

Table 2. Summary of the interview with President Mike Carr.

SkyScheduler

President: Mike Carr

Columbus, OH

(877) 759-7483

September 7, 2005

The online application is geared toward flight schools; as long as the pilots were entered in the
system as instructors, the system would work in scheduling pilots.

The service is offered (and billed) month-to-month, and no long-term commitment is necessary.
Pilots can be assigned to an aircraft group instead of having to designate specific pilots to specific
aircraft.

The application offers last-minute cancellation tracking, real-time dispatching and other features
beyond what has been requested by the Sioux Valley Intensive Air Program.

The application offers email notification of scheduled flights and also a summary of a pilot’s
upcoming schedule.

The application is an online service with nothing to install or maintain.

The price for the basic package (which would function as a scheduler) is $10/aircraft per month
(or $20/month for us).

The step-up program would cost $20 per aircraft per month ($40) and also include maintenance
tracking.

The basic package would offer the requested functionality at the rate of $10 per aircraft per
month. Agreement is month-to-month with a 5% discount for annual prepayment.

Monthly cost: $20

MyFBO.com of Danville, Virginia, offers an online scheduling application that is
intended to schedule individual flights and not intended to be a flight scheduling
application. As with the eFlightSchedule.com application, the system could be “tricked”

to allow pilots to be scheduled to individual aircraft for individual flights. This

10

application also offers functionality beyond what has been requested such as maintaining
pilot information, email notification of flights and tracking of aircraft maintenance data.

The package that would include the basic functionality needed would cost $27 per
month. Additional requirements can be accounted for and quoted via an online quote.
Based on those additional requirements, the total cost per month would be $46 with a
month-to-month commitment. Table 3 is a summary of the interview held with
MyFBO.com President Paul Liepe.

Table 3. Summary of the interview with President Paul Liepe.

MyFBO.com

President: Paul Liepe
Danville, VA

(434) 793-6800

September 12, 2005

The online scheduling application that is intended to schedule individual flights and not intended
to be a flight scheduling application.

The system can be “tricked” to allow pilots to be scheduled to individual aircraft for individual
flights.

This application also offers functionality beyond what has been requested such as maintaining
pilot information and tracking of aircraft maintenance data, but does offer email notification of
flights.

The software is an online service. There is nothing to install or maintain. The service is offered
(and billed) month-to-month, and no long-term commitment is necessary.

You do not need to have a web site to use the online system. It can be used without any web site
at all, or link to it from an existing web site.

The monthly base charge for the application is $27. The total amount depends on a number of
variables -- how many aircraft, how many instructors / captains, and whether the number of
instructors exceeds the number of aircraft.

Quotes can be obtained online from http://myfbo.com/myfbo/quote.asp. Click "Classic Edition"
and then enter the number of resources (aircraft and flight staff).

The quote obtained online based on the needs of the Sioux Valley Intensive Air Program was $46
per month with a month-to-month commitment.

Build Instead of Buy

The applications that are available through external vendors would meet many of

the requirements identified by the Sioux Valley Intensive Air Program with only slight

11

adjustments needed to accommodate pilot scheduling. With these applications available
at a very reasonable cost with no lengthy commitment, it would seem that outsourcing the
scheduling function would be a desirable option. However, the decision to create the
Web-Based Scheduling Application in-house instead of purchasing this service was due
to the following criteria:

The application was relatively straightforward and offered the functionality
desired without having to purchase additional hardware or software. The resources to
develop the application were already in place and the expense of developing and
maintaining the application would be minimal to the organization.

The in-house application has a much simpler and intuitive design and will be
more user-friendly, increasing the likelihood of end-user acceptance. The representative
for the Sioux Valley Intensive Air Program indicated that some of the pilots are not
technically skilled with computers and would need a very simple design. Editing pilot
and shift information with the in-house application is less cuambersome to the end-users
without having to worry about “assigning” aircraft to specific pilots, pilots to specific a
group of aircraft, etc., that would be necessary with the functionality of the external
applications.

Building this application in-house gives us the flexibility to develop functionality
specific to the needs of our user group. The in-house application is customizable to work
processes. Having the application in-house allows the Web Development Team to build
any enhancements as needed to meet business requirements without having to restructure

or adapt operations.

12

CHAPTER 3

REQUIREMENTS ANALYSIS

As mentioned in the beginning of this report, a scheduling application was
identified as a priority project from the Project List maintained by the Sioux Valley
Information Technology Web Development Team. Based on the documentation that they
had gathered, I began the planning process by creating a Project Plan (Appendix A) and
Work Breakdown Structure of the project. From the Work Breakdown Structure, I
created a Gantt chart to establish timelines for completion of tasks necessary for
completion of the Sioux Valley Intensive Air Web-Based Scheduling Application
(Appendix A).

The next step in the process was to gather information on the end-user
requirements. On August 30, 2005, I met with Sherwin Bolks, representative of the
Sioux Valley Intensive Air Program, to determine what functionality was needed by the
pilots. Table 4 is the Interview Report that lists the requirements for the application as
requested by Sherwin Bolks.

Table 4. The Interview Report with representative of the Sioux Valley Intensive Air
Program Sherwin Bolks.

Interview Report
Interview Notes Approved By: Chad Breidenbach
Person Interviewed: Sherwin Bolks

Interviewer: Chad Breidenbach
Date: August 30, 2005

13

Table 4. The Interview Report with representative of the Sioux Valley Intensive Air
Program Sherwin Bolks.

Primary Purpose: To determine current scheduling policy, confirm end-user
requirements and content required for a web-based scheduling application. I also
confirmed the expected functionality of the application.

Summary of Interview:

We discussed the essential elements that should be included in a web-based scheduling
application. We also discussed the environment in which the pilots operate in relation to
regulatory policy (FAA, etc.) and company policy (hours that a pilot may be on duty, Human
Resources policies, etc.) that may affect the schedules of the pilots. I shared with him the
timelines of the project and exchanged contact information so that we could maintain open lines
of communication so that I could receive timely feedback on questions that arose during
application development.

Open Items:

Listing of on-call pilots and “Notes section” for each day of the schedule; different colors for the
different pilot shifts.

Detailed Notes:

v Currently, only pilots should have read/write access to the schedule.

v' Security concerns if there is an event that requires confidentiality (e.g. a plane crash,
etc.).

v There will be one or two super users, but the application will allow all pilots to view and
edit schedules for all three shifts.

v Any pilot affected by a change and the Program Manager will be notified of by email of
that change. In the subject line, have the standard text that displays w/ date?

v The change in the schedule does not need to be approved by anyone; the email is sent as a
courtesy to the Program Manager to make him aware of any activity that would affect
pay, vacation, sick leave, and all payroll/HR-related items.

v The schedule established over a predetermined number of days will be repeated in the
next schedule (e.g. the first scheduled 90 days will be repeated over the next 90 day
schedule.) The subsequent schedule will be based on the initial preceding 90 days prior
to any edits.

v" The web page containing the schedule will be refreshed every 10-60 minutes. (This is
very flexible per Sherwin.)

v The schedule should have flexibility to eventually edit pilots, shift change times, etc.

Those requirements were used to create a Project Charter that was presented to
Sherwin Bolks and members of the Web Development Team to sign-off and ensure that
all parties had a clear understanding of the project requirements. Figure 5 is a sample of

the Project Charter. Table 5 is the Project Charter Attachment.

14

Project Title: Sioux Valley intensive Air Web-Based Scheduling Apphicanon

ed Start Date: 30..2005 Projected Finish Date: November 28, 2005

ject) er: Chad Bresdend -7298, brei midco

Objectives: Create a web-based scheduling appiicanon for pifots of the Sioux Valley htﬂmvl'e\vmdﬂ aliows them
10 access and make changes to flight schedules online. s«mwnammlmmmmmemmn
appiication will be developed using Visual Basic-based Active Server Pages. The using 2
SQL server database

v Dame. develop and confirm the end-user scheduling requirements of the Sioux Vatley Intensive Air program
¥ Cieate desired functionality using ASP-VB Scupt, JavaScript and a SQL Sexver database

¥ Collaborate with the Project Team when necessary 1o ensure proper functionality

Vi Pfuunmefhuhpromnlomes;ou\ﬂlev!umwmrmu:hvmdm

ROLES AND RESPONSIBILITIES
Chad Breidenbach Project Manager Provade direction to project; design and create functionality
Sherwin Bolks Pilot hnmqum\lﬂtylnum\fAumn
Jeff Leat Web Master Advise on techmical issues
Tim Rusten Programmer Advise on programming 1ssues

Kendra Schmabe! Graphics Advise on layout and design issues

Figure 5. The Project Charter was used to ensure that all parties had a clear
understanding of the project requirements.

Table 5. Project Charter Attachment.

Project Charter Attachment
Below are the requirements (standards) as determined in a validation session on August 30,
2005 with Sherwin Bolks, representative for the Sioux Valley Intensive Air program:

v Only pilots will have read/write access to the schedule.

v' Security/privacy concerns exist in the event of an incident that requires confidentiality
(e.g. a plane crash, etc.).

v' There will be one or two super users, but the application will allow all pilots to view and
edit schedules for all three shifts.

v’ Any pilot affected by a change and the Program Manager will be notified by email of that
change.

v A change in the schedule does not need to be approved by anyone. An email would be
sent as a courtesy to the Sioux Valley Intensive Air Program Manager to make him aware
of any activity that would affect pay, vacation, sick leave, and all payroll/HR-related
items.

v The schedule established over a predetermined number of days will be repeated in the
next schedule (e.g. the first scheduled 90 days will be repeated over the next 90 day
schedule.) The subsequent schedule will be based on the initial preceding 90 days prior
to any edits.

The web page containing the schedule should be refreshed every 10-60 minutes.

The schedule should have flexibility to eventually edit pilots, shift change times, etc.
Pilots would like to see a listing of on-call pilots and a notes section for each day of the
schedule.

AN

15

Once the requirements were agreed upon, I met with the Web Development Team
to understand how they normally approach a project. After sharing the specific
requirements given to me by the Intensive Air Program, the team and I began to
brainstorm on how we would address the functionality needed for the application. Table
6 highlights the results of that meeting in the Project Specifications document.

Table 6. The Project Specifications were established in a meeting with the Web

Development Team to establish how to address the functionality needed for the
application.

Project Specifications
for the Sioux Valley Intensive Air Web-Based Scheduling Application

Banner name (to be the header on each page):
“Sioux Valley Fixed-Wing Schedule”
The user is presented with the Log In page.
The user logs in. The next page the user is guided to is a calendar which displays the next 7-8
days of the schedule (today’s schedule and the next seven days.) A toggle link (switch) is
available to allow the user to view the full schedule for the current month.
The user has an option to view future months using a drop-down menu with an onChange event.
Each shift will be indicated by a different color.
When you click on a person’s name, a window will appear allowing pilots to trade with one
another.
The window should display the current pilot and a substitution pilot chosen by the user. This
window will allow the user to swap pilots and shifts. The window will also include a field
named: “Reason for swap”; with a drop-down menu and free text option.
Upon onClick of the submit button, the change identified in window will occur.
An email will then be sent to both pilots affected by a change and the Program Manager to notify
them of that change. The subject line of the email will read:
“Schedule change as of (today’s date).”
The body of email will default the following text:
Ex. “(Pilot requesting change) is rescheduled to (new date requested) at (schedule time
requested).”
G pilot) is rescheduled to (scheduled date of the requesting pilot) at (scheduled shift
time of the requesting pilot).”
(The pilot requesting change will be allowed to free-text any additional information.)

An option somewhere in the page above the calendar (link) will allow the user the option to print
the schedule by week for the next seven days or by month. There will be a notes section by each
day on the schedule.

16

Having more specifically identified the functionality of the application, Use Case
Descriptions were written and a Use Case Diagram was created to address the main
scenarios that would occur as a user interacts with the application. The Use Case
Descriptions were shared with the project team and the representative from the Intensive
Air Program to verify that we had addressed the essential elements needed for the
application. Table 7 is a sample of the Use Case Descriptions. Figure 6 is the Use Case

Diagram that was developed from the Use Case Descriptions.

17

Table 7. Use Case Descriptions were developed to address the main scenarios that
would occur as a user interacts with the application.

USE CASE 1 - Enter pilot information

CHARACTERISTIC INFORMATION

Brief description

Only users with Administrator (superuser) privileges will be allowed to go into the Scheduling
Application and enter/edit pilot information such as username, password, first name, last name,
email address and security level.

Primary Actor

A superuser.

Stakeholders

Sioux Valley Intensive Air Pilots.

Trigger

Need to enter or edit pilot information for new and/or existing pilots.

Preconditions

The user needs to be entered in the Scheduling Application as a superuser having administrator
privileges.

Guarantees

Success End Condition
Applicable pilot information is entered and the pilot is available in the system and can be
scheduled.
Failed End Condition
Pilot information is not saved in the Scheduling Application and the pilot cannot be scheduled.
MAIN SUCCESS SCENARIO

1. Superuser provides username and password to the Scheduling Application.

2. Scheduling Application validates student according to log on rules.

3a. Scheduling Application displays the menu options to the superuser.

4. Superuser selects option from the menu to add a new user.

5. Superuser enters pilot-specific information and saves information.
EXTENSIONS
*a. Superuser exits the Application:

al. Scheduling Application does not save entered information.
3b. Invalid log on:

3b.1. Scheduling Application notifies the pilot [repeat at 1]

Pilot Edit Rules

NUMBER Rule Description: The Scheduling Application shall
LOGI Verify if the pilot username is invalid

LOG2 Verify if the password for a pilot username is invalid

18

Table 7. Use Case Descriptions were developed to address the main scenarios that
would occur as a user interacts with the application. (Continued)

USE CASE 2 - Add pilot to the schedule

CHARACTERISTIC INFORMATION

Brief description

A pilot with Administrator privileges (superuser) logs onto the Scheduling Application and enters
a pilot into the system.

Primary Actor

A superuser.

Stakeholders

Sioux Valley Intensive Air Pilots.

Trigger

Superuser needs to add a pilot to the flight schedule.

Preconditions

The user needs to be entered in the system as superuser having Administrator privileges.

Guarantees

Success End Condition
The superuser has entered the pilot into the schedule.
Failed End Condition
The superuser doesn’t enter pilot into the schedule and the Scheduling Application is unchanged.
MAIN SUCCESS SCENARIO
3. Superuser provides username and password to the Scheduling Application.
4. Scheduling Application validates user according to log on rules.
3a. Scheduling Application displays the menu options to the superuser.
5. Superuser selects option from the Main Menu to add a pilot to the schedule.
5. Superuser selects the desired date for scheduling the pilot from a pop-up calendar.
6. Superuser enters pilot-specific information and saves information.
EXTENSIONS
*a. Superuser exits the application:
al. Scheduling Application does not save entered information.

3b. Invalid log on:
3b.1. Scheduling Application notifies the pilot [repeat at 1]

Pilot Edit Rules

NUMBER Rule Description: The Scheduling Application shall
LOGI Verify if the pilot username is invalid

LOG2 Verify if the password for a pilot username is invalid

Table 7. Use Case Descriptions were developed to address the main scenarios that
would occur as a user interacts with the application. (Continued)

19

USE CASE 3 - Change a pilot shift

CHARACTERISTIC INFORMATION

Brief description

A pilot logs onto the system and takes the shift of another pilot.
Primary Actor

A pilot.

Stakeholders

Sioux Valley Intensive Air Program.

Trigger

Pilot needs to take a shift of another pilot on the schedule.
Preconditions

The pilot who is executing the change and the pilot being replaced are in the system.

Guarantees

Success End Condition
The pilot has taken the shift of another pilot and the schedule is updated.

Failed End Condition
The pilot is unable to complete the change and the system is unchanged.
MAIN SUCCESS SCENARIO
Pilot provides username and password to the scheduling application.
Scheduling Application validates user according to log on rules.
. Scheduling Application displays the menu options to the pilot.
Pilot selects either the ‘Weekly’ or ‘Monthly’ option from the menu.
Pilot selects the name of the pilot on the shift desired.

NLow oL

and the pilots involved in the schedule change.
8. Pilot saves information entered including the pilot taking the shift and notes.
9. Scheduling Application displays the schedule with updated shift information.

Scheduling Application presents a pop-up window that includes scheduling information

10. Scheduling Application emails notification of the change to the pilot whose schedule was

affected and the Program Manager.
EXTENSIONS
*a. Superuser exits the application:
al. Scheduling Application does not save entered information.
3b. Invalid log on:
3b.1. Scheduling Application notifies the pilot [repeat at 1]

Pilot Edit Rules

NUMBER Rule Description: The Scheduling Application shall
LOGI Verify if the pilot username is invalid

LOG2 Verify if the password for a pilot username is invalid

Scheduling Application

Enter pilot -
information =

Add pilot to the z
schedule s

20

Superuser

Figure 6. The Use Case Diagram is a graphical depiction derived from the Use Case

Descriptions.

After the Use Case Descriptions were written and the Use Case Diagrams were

created, a Plan of Action was developed to summarize the approach needed to develop

the application (Appendix C).

21

CHAPTER 4

SYSTEM DESIGN

The first major task of system design was to develop a window navigation
diagram (WND) based on the Use Case Descriptions. Figure 7 is a sample of the

diagram used to illustrate the expected functionality of the application.

Press Save Button

PressSave Bution
Figure 7. Window Navigation Diagram.

Once the window navigation diagram was completed, data requirements for the
application were established. After I identified the essential data requirements for the
application, I reviewed these with Jeff Leat to determine if all attributes needed for the
database tables were appropriate. Table 8 shows the essential data elements needed for

the application.

Table 8. Data tables for the scheduling application.

Configuration

Attribute Data Type

Item VARCHAR(50) NOT NULL,
Value VARCHAR(500);

Schedule Information

Attribute Data Type

SchedulelD INTEGER(4) NOT NULL,
User ID INTEGER(4),

Shift DATETIME(8);

Schedule Modifications

Attribute Data Type

ModID INTEGER(4) NOT NULL,
ScheduleID INTEGER(4),

UserID INTEGER(4),

NewPilot INTEGER (4),

Changed DATETIME(8),

Notes VARCHAR(1000);

User Information

Attribute Data Type

UserID INTEGER(4) NOT NULL,
UserName VARCHAR(50),

Pass VARCHAR(50),

FName VARCHAR(50),

LName VARCHAR(50),

LastOn DATETIME(S),

SecurityLevel INTEGER(4);

Once the data requirements were identified, database tables were created using

MS SQL Server 2000. Figure 8 is a sample of those tables.

23

varchar
varchar

nt
| datetime
| varchar

NN

i

on

'varchar s)
varchar 50 v E
'varchar 50 v |
varchar 50 Ve E
' datetime '8 v
it |4 v

Figure 8. Database iables in MS SQL Server 2000.
A database schema and Entity-Relationship (E-R) Diagram were created to show
the interrelationships of the database tables. They are shown in Figure 9 and Figure 10,

respectively.

e Ot 2 | iUserID
| sUserName

| sPass
| sFName
sLName
_ |dLastOn
iSecurityLevel

iModID
| iScheduleID

Figure 9. Database Schema.

| : -] PK | iSchedulelD
sUserName Is assigned
sPass iUserlD
sFName dShift
sLName ’
dLastOn
iSecurityLevel
PK | iModID
\ iSchedulelD Includes
Makes P—% iUserlD
iNewPilot
dChanged
sNotes

Figure 10. Entity-Relationship (E-R) Diagram

25

The next step was to develop the user interface (GUI) using HTML and
JavaScript (Appendix C). ASP code was used so that the application could dynamically
interact with the MS SQL Server 2000 database.

VB.net and ASP.net are the most current versions of the technology that was used
to develop this application. However, the Sioux Valley Web Development Team is still
using ASP 3.0 as their main development platform.

The Sioux Valley Web Development Team will begin using VB.net and ASP.net
in the spring or summer of 2006. The high current volume of projects, the team’s
familiarity with legacy technology, and the implementation of higher priority projects
such as the EPIC Information System, has slowed the team’s transition to the newer
technology.

Once the user has logged in, the application defaults to the weekly view of the
pilot schedule for the current week. Figure 11 is a screenshot of the home page (weekly

view) for the Web-Based Scheduling Application.

2 Intensive Air Fixed-Wing Pilot Schedule - Microsoft . &%
Bo Edt Vew Favortes ook Heb &
Om - O B @G P e @35 B-1J S
agricess (@) .20

Week Beginning| 4162006 v
nday April 16, 2006
No Schaduled pilot
Monday April 17, 2006
Na Scheduled Pitot .
Tuesday April 18, 2006
No Schuduled Pilot o
Wednesday April 19, 20
b4g

 Gdde Rickenbacker
Thursday April 20, 2006
No Scheduled Pilot
Friday April 21, 2006
Mo Scheduled Pilot
Saturday April 22, 2006
No Scheduled Pilot

Figure 11. Home page of the Web-Based Scheduling Application.

The schedule may also be viewed as a monthly schedule. Figure 12 is a

screenshot of the monthly schedule.

3 Intensive Air Fix
Fle Edt Vew Favortes Jook Hebp

Sioux Valley Fixed-Wing Schedule

Add/Edit User

Monthly

Schedule Admin

Luy Out

3 4
: Steve 1105 : Steve 1105 : Dick 1106 0400: Dick 1106 0400: Dick 1106 0400: Mark 1113
Chris 1117 Tim 1112 Arlen 1116 Sherwin 1103 Sherwin 1103 Sherwin 1103
: Rick 1107 |1000: Reck 1107 [1000: Gary 1109 ' 1000: Gary 1109 1000: Arlen 1116 100C: Arlen 1116 .
i Mark 1113 Mark 1113 Aren 1116 | Arlen 1116 Tim 1112 Tim 1112
i : Jeff 1114 | 1600: Mike 1110 |1600: Shane 1111 | 1600: Mike 1110 1600: Shane 1111 {1600: Shane 1111
| Shane 1111 Shane 1111 Steve 1105 Steve 1105 Chris 1117 Chns 1117
7 8 9 10 11 12 13
0400: Dick 1106 0400: Mike 1110 | 0400: Mike 1110 |0400: Jeff 1114 10400: Mike 1110 0400: Jeff 1114 0400: Jeff 1114
Shane 1111 Gary 1109 Gary 1109 Sherwin 1103 Sherwin 1103 Sherwin 1103 Sherwin 1103
1000; Arlzn 1116 1000: Dick 1106 |1000: Dick 1106 [1000: Chns 1117 | 1000: Chris 1117 1000: Gary 1109 100C: Gary 1109
Tim 1112 Jeff 1114 Steve 1105 Steve 1105 | Steve 1105 Dick 1106 Dick 1106
1600: Shane 1111 |[1500: Mark 1113 ' 1600: Mark 1113 |[1600: Mark 1113 | 1600: Arlen 1116 1600: Steve 1105 |1500: Steve 1105
Chris 1117 Shane 1111 Shane 1111 Shane 1111 | Tim 1112 Mark 1113 Mark 1113
14 15 16 17 18 19 20
0400: Jeff 1114 0400: Mike 1110 |0400: Mike 1110 [0400: Rick 1107 0400: Rick 1107 0400: Dick 1106 0400: Dick 1106
Sherwin 1103 Arlen 1116 Rick 1107 Mark 1113 Mark 1113 Tim 1112 Tim 1112
1000: Chns 1117 1000: Dick 1106 |1000: Dick 1106 |1000: Gary 1109 1000: Jeff 1114 1000: Aden 1116 1000: Arlen 1116
Dick 1106 Gary 1109 Gary 1109 Sherwin 1103 Sherwin 1103 Mike 31110 Mike 1110
1600: Steve 1105 [1600: Jeff 1114 1600: Shane 1111/1600: Steve 1105 1600: Steve 1105 [1600: Chris 1117 160C: Chris 1117
Mark 1113 Tim 1112 Tim 1112 Shane 1111 Shane 1111 Shane 1111 Shane 1111
21 22 23 |24 25 26 27
0400: Dick 1106 0400: Dick 1106 |0400: Dick 1106 | 0400: Sherwin 1103 0400: Sherwin 1103 :0400: Steve 1105 [0400: Steve 1105
Tim 1112 Jeff 1114 | Rick 1107 | Rick 1107 Rick 1107 Sherwin 1103 Sherwin 1103
gm 3 itore

26

Figure 12. Monthly schedule.
The HTML coding used to create the calendar can be viewed in Appendix C

under the title “Calendar Code”. When a schedule change is to be made, the user must

simply click on the name of the pilot whose shift is to be changed. When this occurs, the

following window will appear as in Figure 13.

A hitp://apps.siouxvalley.org - Int

isive Air Fixed-Win

Pilot Sch

Figure 13. The window used to complete a shift change.

27

At this point, any information that is entered in the New Pilot field and the Notes
section is retained. The processing of this information is done by the modifySchedule.asp
(Appendix C) module. Once the ASP code has processed this information, it appears on
the HTML-based schedule. Figure 14 shows the schedule with the appropriate change

made.

Fixed-Wing Schedule 88

hly | Add/Edit User | Schedule Admin Log Out

Figure 14. Weekly schedule showing a completed shift change.
After the change is being processed, an email is also being created and sent by the
functions.asp (Appendix C) module. The information related to the schedule change is
placed on an email and sent out to the pilots involved in the shift change and the Program
Manager.
For a user to enter pilot information and create a new pilot in the system, the
“Add/Edit User” hyperlink must be selected. When a pilot is entered into the system, the

information pertaining to that pilot is entered on the form depicted in Figure 15.

28

Gt Vew Fgvorkes Tooks Hep

Om- O Bﬁﬁiﬁm*moia&i Us
& A R

Tedule |

Figure 15. The form used to enter pilot information.
Only users assigned the security level of Administrator will be able to enter information
on this HTML screen. When the user presses the Save button, the information is passed
to the admin.asp (Appendix C) module for processing and entered into the database.
To add pilots onto a schedule, the user must click the “Schedule Admin”
hyperlink. When selected, the following HTML screen will appear as depicted in Figure

16.

29

Sioux \alle\ l1\ed Wing S

weekly | Monthly | Add/

Figure 16. HTML screen used to enter pilots onto a schedule.
The user must then either type the date of the schedule to be populated or click the
calendar icon to be presented with a calendar with a grid of dates from which the user

may choose. The grid is will appear as seen in Figure 17.

2 http://apps.sio... :

April 2006
We Th Fr
2728|2930 (31 [T &
3|als|slz|8]g
10[11(12[13|14]|15]16
17[18|19]2021]22]23
24|25 |26 2728 |29 |20

Figure 17. Calendar used to select a schedule date.
The specific schedule date to be entered from either option and the Choose button is

pressed to enter that value in the text box. When the specific date of the schedule to be

30

changed is selected, the user will be presented with a window that has a series of fields

with drop-down menus (Figure 18).

x Valley Fixed-Wing Schedule §

ithly | Add/Edit User

Figure 18. The window that contains a series of fields with drop-down menus.
If the schedule has previously been populated, that day’s schedule will appear, but edits
cannot be completed on the pilots that appear. When all shifts of the schedule have been
filled, the user presses the Save button and the entered information will be processed by
the adminSchedule.asp (Appendix C) module on the server.

Upon completion of the application, testing was undertaken to verify that the
application provided the functionality initially desired. The application was
subsequently demonstrated to the representative of the Sioux Valley Intensive Air
Program. He indicated that the application provided the precise functionality they
requested in a format that would greatly enhance their operation.

Upon approval of the Web-Based Scheduling Application by the program

representative, I proceeded to create a User’s Guide to assist the pilots in using the

31

application. Upon rollout of the application, he indicated that he will demonstrate the
application to the pilots and share the User’s Guide (Appendix B) with them at that time.
The final step that needs to occur before the application can be put into a “go-
live” environment, is approval by the Sioux Valley Information Technology Department
Change Advisory Board. It is anticipated that the approval will occur in January or

February of 2006.

32

CHAPTER 5

IMPLEMENTATION AND RESULTS

The implementation of the Web-Based Scheduling Application was installed into
a production environment on March 1, 2006. To gain some familiarity with the
application, pilots began testing the application as a prototype the following week on
Monday, March 6. About a month later, the pilots received training on the application.
Upon receiving training, they were asked what modifications should be made to improve
the application. The following suggestions were received and subsequently added to the
application:

Change displayed time from regular time to military time.

Change the font of the printed monthly schedule to fit on one printed page.

Configure the automated “Copy Schedule” link that copies the existing schedule

from 13 weeks in the past forward so that it copies the schedule from 18 weeks in

past forward.

Hide the “Copy Schedule” link so that the Administrator may not be able copy

forward an existing schedule if there are already pilots scheduled in those time

slots.

On May 1, 2006, the Web-Based Scheduling Application was put into use by the
pilots of the Sioux Valley Intensive Air Program.

Users of the application have been very pleased with the new web-based schedule

and have remarked that it has saved them a great deal of time by having the ability to

33

view and make changes to the existing schedule via the Internet. They are unable to
quantify the exact amount of time it has saved them and no monetary numbers have been

established to determine cost savings.

34

CHAPTER 6

CONCLUSIONS

Was the Objective Achieved?

I believe that the deliverables established at the beginning of this project were
achieved. The project could be qualified as small and limited in scope. The project was
well-defined by the customers and enhancements were not requested by them. Scope
creep did not occur during this process and did not necessitate any work beyond what

was needed for the basic functionality of the application

Anticipated Deliverable

The anticipated deliverable was achieved and created to the satisfaction of the
end-users. When I met with the representative of the Sioux Valley Intensive Air
Program, Sherwin Bolks, on Friday, December 2, 2005, to demonstrate the Web-Based
Scheduling Application. He expressed his satisfaction with the application and stated
that it was exactly what they were looking for. His response was the following: “Thanks
a ton for your efforts. I am very impressed with the product. Not only will this
application be very usable for our operation but for the employees that are computer-
challenged, it will be very easy for them to use as well. I am very excited to get this

product in use, eliminating the need for paper schedules with changes written on them in

35

several locations”. Subsequent feedback noted in Chapter Five verifies that the

application has significantly met the expectation of the end-users of the application.

Lessons Learned

This project was a review of HTML and JavaScript programming. However, the
use of these languages was limited in relation to the total scope of the build. The
majority of the coding was done using ASP code. ASP uses a VBScript variation of
Visual Basic used for scripting. The Web Development Team was very accommodating
with their time in helping me learn and understand how ASP code is written and in the

development of an interactive web application.

Future Work

The representative for the Sioux Valley Intensive Air Program mentioned two
future enhancements to the Web-Based Scheduling Application. He indicated that he
would like to see the mechanic on-call on the schedule. He also mentioned that he would
like to see a shift on the schedule for one pilot that runs from 10 p.m. to 10 a.m.

Other possible enhancements would be the addition of a constraint which would
not allow a pilot to be scheduled more than once in the same day or within a certain
period of time from another shift in which the pilot is already scheduled. This was
intentionally left out of this phase of development at the verbal request of the
representative of the Intensive Air Program. He and I both agreed that we should initially
configure the application with fewer constraints to allow more flexibility and if

scheduling issues arose, we would address them as needed.

36

In our follow-up meeting where I demonstrated the application, the representative
mentioned that the Program Manager is responsible for reporting pilot hours worked at
regular intervals to Human Resources. Functionality that would tabulate pilot hours
worked for certain intervals of time and put that information into a report format could be
proposed and addressed in the future.

As indicated in Chapter Five, specific features have been added to the application
to make it more user-friendly and adaptable to their work environment.

Any requested enhancements will be addressed in the next phase by the Web
Development Team. The current application addresses the immediate needs of the pilots

of the Sioux Valley Intensive Air Program.

37

REFERENCES

Sioux Valley Hospitals and Health System-History. (n.d.). Retrieved September 12, 2005
from http://www.siouxvalley.org/AboutSiouxValley/Hospital % SCHistory.cfm

Sioux Valley Hospitals and Health System-Intensive Air. (n.d.). Retrieved September 12,

2005 from
http://www .siouxvalley.org/CentersofExcellence/Trauma/Intensive Air/Index.cfm

38

APPENDICES

Appendix A: Project Planning

The Project Plan was developed in INFS 788: Project Planning and was used to identify
a project that addressed a business need for the organization.

Project Plan for
Sioux Valley Hospital Intensive Air Web-Based
Scheduling Application
Submitted by
Chad Breidenbach

INFS 788-Project Planning
August 12, 2005

Introduction

The Sioux Valley Intensive Air program has been operating since 1977 and has flown
more than 15,000 patients. Intensive Air was the first CAMTS (Commission on
Accreditation of Medical Transport Services) accredited flight program in South Dakota.
Operations include a Bell 230 helicopter and two King Air 200 fixed-wing aircraft.
Intensive Air is staffed with four specialized flight teams. Currently, there are 12 pilots
who fly for the Sioux Valley Hospital Intensive Air Program.

Problem Statement

The pilots of the Sioux Valley Hospital Intensive Air Program currently schedule
manually on a scheduling sheet. When pilots are in a remote location they must call in to
verify when they are on duty. This makes it very cumbersome to view or adjust current
schedules. They are seeking a more efficient way of scheduling, updating existing
schedules and having immediate access to scheduling information.

Objective

The pilots of the Sioux Valley Hospital Intensive Air Program wish to implement a web-
based scheduling application that allows them to view and update scheduling information
online, thereby increasing the efficiency of their off-hours labor.

The scope of this project will include the development of a web-based scheduling
application. The interface and functionality of the application will be constructed using

39

ASP-VB Script. A IIS 6.0 web server in an internet environment (DMZ) with access to a
SQL Server database will be utilized. The server must allow ASP pages to be served.

The Plan of Action will be to complete the programming for the programming staff at
Sioux Valley to provide the Intensive Air pilots the requested functionality. I will be the
primary provider of Layout, Programming and Database development for this
application. I will also collaborate with a designated graphics person within the Sioux
Valley Information Technology department.
Specific functionality of the web-based application will include the following:
v" The schedule established over a predetermined number of days will be repeated in
the next schedule (e.g. the first scheduled 90 days will be repeated over the next
90 day schedule).

v' Any pilot affected by a change in the schedule will be notified by email of that
change.

v The web page containing the schedule will be refreshed every 10 minutes.

v There will be one or two super users, but the application will allow all pilots to
view and edit schedules for all three shifts.

The end-result will be a very user-friendly and efficient scheduling application, thus
increasing efficiency and job satisfaction for the pilots of the Sioux Valley Hospital
Intensive Air Program.

Work Breakdown Structure

See Visio and Excel attachment

Gantt Chart

See Excel attachment

40

The Gantt chart was created to establish timelines for the completion of tasks.

41

Appendix B:

USER’S GUIDE

A User’s Guide was developed for the pilots of the Sioux Valley Intensive Air Program as
a quick reference guide to the Web-Based Scheduling Application.

User’s Guide

. v .
Sioux Valley Hospital
USD Medical Center

Sioux Valley Fixed-Wing Intensive Air Program
Web-Based Scheduling Application

Table of Contents

Infroduction
How to Log On

How to Change Shifts

--

42

43

Infroduction

Welcomel!l

This User’s Guide includes instructions which will assist you in utilizing the
Web-Based Scheduling Application developed for the Fixed-Wing Sioux
Valley Intensive Air Program.

The application was designed to be very easy to use. However, if you
should run intfo any problems, this guide will assist you by giving you some
insight on how it should function and additional resources available.
Good luck with the application!

Sioux Valley Web Development Team

How to Log On

The link to the log on screen of the scheduling application is
http://apps.siouxvalley.org/intensiveair/login.asp?surl=/intensiveair/Default.asp

Once you select the link, the Home Page of the application should
appear as follows:

Once you have entered your user Username and Password, click the
“Submit” button and you will be taken to the home page.

Note:

5 Usernames and Passwords are not case-sensitive (upper-case or lower-
case letfters may be used).

25 Your Username and Password will be provided to you by Sherwin Bolks.

45

How to Change a Pilot Shift

The Home Page of the application will appear as follows:

Sioux Valley Fixed-Wing Schedule

weekly | Monthlyl.og Ou

that you wish o take, simply clic

that shift.
: 12/6/2005
|Schedule Time: 4:00 PM
eduled Pilot:Charlie Brown
New Pilot: Bolks, Shemwin §
Original pilot scheduled was ﬁ

INotes Charlie Brown.

Note:

% The logged-in user's name will appear in the New Pilot field. However,
any pilot can make a change for any other pilot on the schedule.

46

In the Notes section, make sure to identify the name of the pilot who
originally occupied the shift you took for record-keeping purposes.

You may also type in any additional information that may be helpful to
you, the pilot whose shift you took and the Program Manager. Once you
have completed this, click the “Save” button and the schedule will be
updated.

Sioux Valley Fixed-Wing Schedule

Weekly | Monthiylog Out

».-.: i

o
A
)
)
)
¥
g
o i

EEREBEES LR ALY

EE R R R

kA

0
AN

If you wish to view the Notes section of the schedule, select the “Toggle
Notes On/Off” link in the upper right-hand corner of the page.

47

The same functionality is available with the monthly schedule. To access
the monthly schedule, simply click on the *Monthly” link available in the
Main Menu.

. 0 e : ;‘:

x|

x)

S e .%

.

1 2 3 .

4:00 AM: Sherwin Bolks 4:00 AM: Chad Breidenbach 1

Charlie Brown Charlie Brown ~

10:00 AM: Fred Flintstone 10:00{AM: Jeff Leat {

Joe Foss Fred Flintstone 1

4:00 PM: test ea;lkisdj 4:00 AM: Chad Breidenbach X

Sherwin Bolks Mike Christianson A

4 5 6 7 8 9 10 &
4:00 AM: Chuck Yeager]

Howard Hughes »

10:00 AM: Fred Flintstone)

Joe Foss .

4:00 PM: Sherwin Bolks o

Eddie Rickenbacker ",

11 12 13 14 15 16 17 ¥
18 19 20 21 22 23 24 :
25 26 27 28 29 30 |31 g
L §

*®;

L

»:

If a printed schedule is needed, you may select the “Print” link available
with either the weekly or monthly schedule. Printing the monthly schedule
may require you to select the “Options” tab from the pop-up window and
choose the “Landscape” option.

Note:

25 Once you save a schedule change, email nofification of the change will
automatically be sent to the pilot whose schedule was affected, the new
pilot on that shift and the Program Manager.

If you have any questions regarding the scheduling application, contact
Sherwin Bolks at the Airport Office or via email (bolkss@siouxvalley.org) or
Chad Breidenbach, Sioux Valley Information Technology Department, at
extension 89908 or email (breidenc@siouxvalley.orQ).

48

APPENDIX C:

Application Development

A Plan of Action was developed to summarize the approach needed to develop the
application.

Plan of Action
for the Sioux Valley Intensive Air Web-Based Scheduling Application

Determine Data Requirements for the Web-Based Scheduling Application.
Determine data requirements by identifying attributes needed for requested functionality.

Verify the integrity of the database schema by ensuring that the primary and foreign keys
are appropriate.

Build the User Interface

The pages that are required for viewing by the pilots of the Sioux Valley Intensive Air
Program will be determined with the layout of those pages completed in HTML. Design
and graphic requirements will also be established at this time.

Integrate GUI with data

The data management function will be accomplished by using Visual Interdev 6.0 to

write the ASP code. ASP code will be created to interact with the HTML pages to
achieve the requested functionality and appropriate interaction between the web pages.

Test and ensure proper functionality and data integrity

Testing of the application will be conducted to ensure proper functionality before
demonstrating to the representative of the Sioux Valley Intensive Air Program.

49

The following are the copies of the Program Code used in the development of the Web-
Based Scheduling Application.

Calendar Code

(The JavaScript code in this page is used to generate a calendar for a specific month
and display to the user. Once the user selects a date, the date will be passed back to the
parent page.)

<l==
calendar code
=i

<html>
<head>
<title>Select Date, Please.</title>
<style>
td {font-family: Tahoma, Verdana, sans-serif; font-size: 12px;}
</style>

<script language="JavaScript">

// months as they appear in the calendar's title
var ARR_MONTHS = ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"];
// week day titles as they appear on the calendar
var ARR_WEEKDAYS = [usuu' "Mo", "Tu", "We", "Th", "Frn, “Sa“],-
// day week starts from (normally 0-Su or 1-Mo)
var NUM_WEEKSTART = 1;
// path to the directory where calendar images are stored. trailing slash req.
var STR_ICONPATH = 'img/';

var re_url = new RegExp ('datetime=(\\-?\\d+)');
var dt_current = (re_url.exec(String(window.location))
? new Date (new Number (RegExp.$1)) : new Date());
var re_id = new RegExp ('id=(\\d+)');
var num_id = (re_id.exec(String(window.location))
? new Number (RegExp.$1) : 0);
var obj_caller = (window.opener ? window.opener.calendars[num_id] : null);

if (obj_caller && obj_caller.year_scroll) {
// get same date in the previous year
var dt_prev_year = new Date(dt_current) ;
dt_prev_year.setFullYear (dt_prev_year.getFullYear() - 1);
if (dt_prev_year.getDate() != dt_current.getDate())
dt_prev_year.setDate(0) ;

// get same date in the next year

var dt_next_year = new Date(dt_current) ;

dt_next_year.setFullYear (dt_next_year.getFullYear() + 1);

if (dt_next_year.getDate() != dt_current.getDate())
dt_next_year.setDate(0) ;

}

// get same date in the previous month

var dt_prev_month = new Date (dt_current) ;

dt_prev_month.setMonth(dt_prev_month.getMonth() - 1);

if (dt_prev_month.getDate() != dt_current.getDate())
dt_prev_month.setDate (0) ;

// get same date in the next month

var dt_next_month = new Date (dt_current) ;

dt_next_month.setMonth (dt_next_month.getMonth() + 1);

if (dt_next_month.getDate() != dt_current.getDate())
dt_next_month.setDate (0) ;

// get first day to display in the grid for current month

var dt_firstday = new Date(dt_current);

dt_firstday.setDate (1) ;
dt_firstday.setDate(1l - (7 + dt_firstday.getDay() - NUM_WEEKSTART) % 7);

// function passing selected date to calling window
function set_datetime(n_datetime, b_close) {
if (!obj_caller) return;

var dt_datetime = obj_caller.prs_time (
(document .cal ? document.cal.time.value : ''),
new Date (n_datetime)

)i

if (!dt_datetime) return;
if (b_close) ({
window.close() ;
obj_caller.target.value = (document.cal
? obj_caller.gen_tsmp(dt_datetime)
obj_caller.gen date(dt_datetime)
)i
window.opener.document . frmForml.blnPass.value='1"';
window.opener.document . frmForml . submit () ;

}

else obj_caller.popup (dt_datetime.valueOf ()) ;

}

</script>

</head>

<body bgcolor="#FFFFFF" marginheight="5" marginwidth="5" topmargin="5" leftmargin="5"
rightmargin="5">

<table class="clsOTable" cellspacing="0" border="0" width="100%">

<tr><td bgcolor="#4682B4">

<table cellspacing="1" cellpadding="3" border="0" width="100%">

<tr><td colspan="7"><table cellspacing="0" cellpadding="0" border="0" width="100%">
<tr>

<script language="JavaScript">

//var compCurrMonth = dt_current.getMonth() ;

//document .write ('current month = '+compCurrMonth) ;

document .write (

'<td>'+(obj_caller&&obj_caller.year_ scroll?'<img
src="'+STR_ICONPATH+'prev_year.gif" width="16" height="16" border="0" alt="previous
year"> ':'')+'<img
src="'+STR_ICONPATH+'prev.gif" width="16" height="16" border="0" alt="previous
month"></td>"'+

'<td align="center" width="100%"><font

color="#ffffff">'+ARR_MONTHS [dt_current.getMonth()]+' '+dt_current.getFullYear() +
'</td>"'+

'<td><img
src="'+STR_ICONPATH+'next.gif" width="16" height="16" border="0" alt="next
month">'+(obj_caller && obj_caller.year_scroll?' <img
src="'+STR_ICONPATH+'next_year.gif" width="16" height="16" border="0" alt="next
year"s':'')+'</td>"

)i

</script>

< /xS

</table></td></tr>

<trs

<script language="JavaScript'">

// print weekdays titles
for (var n=0; n<7; n++)

document .write ('<td bgcolor="#87cefa" align="center">‘+ARR_WEEKDAYS[(NUM_WEEKSTART+n)%7]+'</f0nt></td>');
document .write('</tr>"');

// print calendar table
var dt_current_day = new Date (dt_firstday);
while (dt_current_day.getMonth() == dt_current.getMonth() ||

50

51

dt_current_day.getMonth() == dt_firstday.getMonth()) {

// print row heder

document .write('<tr>"');

for (var n_current_wday=0; n_current_wday<7; n_current_wday++) {

if (dt_current_day.getDate() == new Date() .getDate() &&
dt_current_day.getMonth() == new Date().getMonth() &&
dt_current_day.getFullYear () == new Date() .getFullYear())

// print current date
document .write ('<td bgcolor="#ffb6cl" align="center"
width="14%">"');
else if (dt_current_day.getDay() == 0 || dt_current_day.getDay() == 6)
// weekend days
document .write ('<td bgcolor="#dbeaf5" align="center"
width="14%">");
else
// print working days of current month
document .write ('<td bgcolor="#ffffff" align="center"

width="14%">"') ;

document .write('<a
href:“javascript:set_datetime('+dt_current_day.va1ue0f() +', true);">');

if (dt_current_day.getMonth() == this.dt_current.getMonth())
// print days of current month
document .write ('") ;
else
// print days of other months
document .write ('") ;

document .write (dt_current_day.getDate () +'</td>");
dt_current_day.setDate (dt_current_day.getDate () +1) ;

// print row footer
document .write ('</tr>"');

if (obj_caller && obj_caller.time_comp)

document .write ('<form onsubmit="javascript:set_datetime ('+dt_current.valueOf ()+',
true)" name="cal"s><tr><td colspan="7" bgcolor="#87CEFA"><font color="White" face="tahoma,
verdana" size="2">Time: <input type="text" name="time"
value="'+obj_caller.gen_time(this.dt_current)+'" size="8"
maxlength="8"></td></tr></form>");
</script>
</table></tr></td>
</table>
</body>
</html>

adminSchedule.asp

(The JavaScript code embedded in this section will open a pop-up window with
copyDate.asp when selecting the “Copy from 13 weeks prior” link.)

<!-- #include file="include/dbConnection.asp" -->
<!-- #include file="include/security.asp" -->
<!-- #include file="include/functions.asp" -->

<%

'If they don't have rights deny them

If Session("intensiveair_loggedin") <> "2" Then
Response.Redirect "denied.asp"

End If

'Initialize the arrShift array and the arrErrorPilot array

Dim arrShift ()
Dim arrErrorPilot ()

52

'Get the shift start times from the db

sql = "SELECT * FROM Configuration WHERE sItem LIKE 'Shift%' ORDER BY sItem"
Set oShift = Server.CreateObject ("ADODB.RecordSet")

oShift.Open sgl, oConn

iCnt = 0

'Loop thru the recordset

While NOT oShift.EOF

sThisShift = Trim(oShift ("sValue"))

sThisShiftMinute = Minute (sThisShift)

If Len(sThisShiftMinute) < 2 Then
sThisShiftMinute = "0" & sThisShiftMinute

End If

'Bump the size
ReDim Preserve
ReDim Preserve
arrShift (iCnt)

arrErrorPilot (iCnt)

of the array by 1 and enter the value in the array
arrshift (iCnt)

arrErrorPilot (iCnt)

= Hour (sThisShift) & ":" & sThisShiftMinute

iCnt = iCnt + 1
'go to the next record
oShift.MoveNext

Wend

'Object cleanup
Set oShift = nothing

'Grab the variables

= nn

sDate = Trim(Request.Form("sDate"))

'If the form was submitted run this code

If Trim(Request.Form("blnPass")) = "true" Then
'Error Checking
If sDate = "" OR (sDate <> "" AND NOT IsDate (sDate)) Then

blnError = true

sErrDate =

End If

" errorxr"

For intX = 0 to ubound(arrShift)
For intY = 1 to 2

sThisPilot = Trim(Request.Form("shiftpilot" & intX & "-" &
intY))
If sThisPilot = "" Then
arrErrorPilot (intX) = " error"
blnError = true
End If
Next
Next
'If there were no errors do the db stuff
If NOT blnError Then
'Loop thru all members of the array
For intX = 0 to ubound(arrShift)
For intY = 1 to 2
sThisPilot = Trim(Request.Form("shiftpilot" & intX &
"-n & intY))
'If this is a valid pilot id continue
If sThisPilot <> "" AND sThisPilot <> "xxxx" Then
'INsert into the db
sql = "INSERT INTO Schedule (iUserID,
dshift) " & _
"VALUES (" & sThisPilot &
" o'n g gDate & " " & arrShift (intX) & "')"

Next

Next

oConn.execute sql
End If

'Reload the page

53

Response.Redirect "adminSchedule.asp?added=1"
End If
End If

btnSave = "CHOOSE"
%>

<!-- #include file="include/header.asp" -->
<script language="JavaScript" src="/intensiveair/include/cal/calendar2.js"></script>
<script language="javascript">

function repeatMe ()

dt = document.frmForml.sDate.value;

if (dt == ')
{

alert ('Please choose a date.');
} else {

newWin =

window.open(’copyDate.asp?dt='+dt,'dtwin','1eft=10,top=10,width=300,height=300,resizable,
scrollbars') ;

}
</script>

<table border=0 cellpadding=3 cellspacing=0>

<%
If Trim(Request.QueryString("added")) = "1" Then
%>
<tr>
<td class="head error" colspan="4">The schedule has been updated.</td>
</tr>
<%
ElseIf sTaken = "2" Then
%>
<tr>

<td class="head error" colspan="4">There is already a pilot scheduled for
this time.</td>

</tr>
<%
End If
%>
<tr>
<td class="head" colspan="4">Create Schedule:</td>
</tr>
<tr>

<td> </td>
<td class="subHead<%=sErrDate%>">Date (mm/dd/yyyy) :</td>
<td class="data"><input type="text" name="sDate" id="sDate"
value="<%=sDate%>" size="10"
maxlength="10"> <img
src="/intensiveair/include/cal/img/cal.gif" width="16"
height="16" border="0" alt="Click Here to choose the date"
></td>
<td class="data" nowrap> <a
style="cursor:hand;color:blue;text-decoration:underline;"
onClick="repeatMe () ">Copy From 13 Weeks Ago</td>
</tr>
</table>
<table border=0 cellpadding=3 cellspacing=0>
<%
'If the date has been chosen then enter the pilots
If sDate <> "" AND IsDate(sDate) Then
%>
<tr>
<td> </td>
<td class="subHead center">Shift</td>
<td class="subHead center"s>Pilot #1l</td>
<td class="subHead center">Pilot #2</td>

54

</tr>
<%
Response.Write "<input type=""hidden"" name=""blnPass"" id=""blnPass""
value=""true"">"
'Loop thru the shift array
For intX = 0 to ubound(arrShift)
%>
<tr>
<td> </td>
<td class="subHead<%=arrErrorPilot (intX)%>"><%=arrShift (intX) $></td>
<%
'Check to see if this schedule was filled already
sql = "SELECT COUNT(*) AS iCnt " & _
"FROM Schedule s " & _
"INNER JOIN Users u ON u.iUserID=s.iUserID " & _
"WHERE dShift='" & sDate & " " & arrShift (intX) & "'

Set oCheck = Server.CreateObject ("ADODB.REcordSet")
oCheck.Open sql, oConn

'Check the number of pilots scheduled
If NOT oCheck.EOF Then

iPilotCnt = Trim(oCheck("iCnt"))
End If

iThisCnt = 1

'If it was filled display the name
If iPilotCnt > 0 Then
sql = "SELECT * " & _
"FROM Schedule s " & _
"INNER JOIN Users u ON u.iUserID=s.iUserID " & _
"WHERE dShift='" & sDate & " " & arrShift (intX) & "'

Set oPilotInfo = server.CreateObject ("ADODB.RecordSet")
oPilotInfo.Open sgl, oConn

While NOT oPilotInfo.EOF
%>
<input type="hidden" name="shiftpilot<%=intX & "-" & iThisCnt%>"
id="shiftpilot<%=intX & "-" & iThisCnt%>" value="Xxxx">
<td class="data"><%=Trim(oPilotInfo ("sFName")) & " " &
Trim(oPilotInfo ("sLName")) %$></td>
<%
oPilotInfo.MoveNext
iThisCnt = iThisCnt + 1
Wend

Set oPilotInfo = nothing
'If not then allow to choose
End If

For intY = iThisCnt to 2
%>
<td class="data"><select name="shiftpilot<%=intX & "-" & int¥%>"
id="ghiftpilot<%=intX & "-" & int¥%>">
<option value=""></option>
<%
'Grab a list of all pilots
sql = "SELECT * FROM Users ORDER BY sLName, sFName"
Set oPilots = Server.CreateObject ("ADODB.RecordSet")
oPilots.Open sqgl, oConn

'Loop thru the recordset
While NOT oPilots.EOF
sName = Trim(oPilots("sLName")) & ", " &
Trim(oPilots ("sFName"))
sID = Trim(oPilots ("iUserID"))
'Write out HTML
Response.Write "<option value=""" & sID & """"

55

If Trim(sID) = Trim(Request.Form("shiftpilot" &
intX)) AND Trim(Request.Form("blnPass")) <> "1" Then
Response.Write " selected"
End If
Response.Write ">" & sName & "</option>" & VbCrLf
oPilots.MoveNext
Wend

Set oPilots = nothing

%>
</select></td>
<%
Next
Set oCheck = nothing
%>
</tr>
<%
Next
btnSave = "SAVE"
End If
%>
<tr>

<td colspan=2></td>
<td align="left" colspan=2><input type="submit" name="btn<%=btnSave%>"
id="btn<%=btnSave%>" value="<%=btnSave%>"></td>
</tr>
</table>

<script language="javascript">
if (document.frmForml.sDate) document.frmForml.sDate.focus();

var call = new calendar2 (document.frmForml.sDate) ;
call.year_scroll = true;

call.time_comp = false;

</scripts>

<!-- #include file="include/footer.asp" -->

56

denied.asp

<!-- #include file="include/header.asp" -->

<table border=0 cellpadding=3 cellspacing=0>

<tr>
<td class="error"s>You do not have access to this area.</td>
</Er>
</table>
<!-- #include file="include/footer.asp" -->

modifySchedule.asp

(The JavaScript code embedded in this section will automatically close the popup if the
copy date function is successful.)

<!-- #include file="include/dbConnection.asp" -->
<!-- #include file="include/security.asp" -->
<!-- #include file="include/functions.asp" -->

<%

'Grab the schedule id

iID = Trim(request ("id"))

sNewPilot = Trim(Request.Form("newpilot"))
sNotes = Trim(Request.Form("notes"))

'Set new pilot id to the logged in user if it is not already set

If sNewPilot = "" AND Trim(Request.Form("blnPass")) = "" Then
sNewPilot = Session("intensiveair_ User_ID")

End If

'If the schedule id is sent then continue

If iID <> "" Then
'Select schedule info from db
sql = "SELECT u.*, s.dShift, s.iSchedulelID " & _

"FROM Schedule s " & _
"INNER JOIN Users u ON u.iUserID=s.iUserID " & _
"WHERE s.iScheduleID=" & iID

Set ORS = Server.CreateObject ("ADODB.RecordSet")

ORS.Open sqgl, oConn

'Loop thru recordset

If NOT oRS.EOF Then
s0ldPilot = Trim(oRS("sFName")) & " " & Trim(oRS("sLName"))
s01dPilotID = Trim(oRS("iUserID"))
sSchedID = Trim(oRS ("iScheduleID"))

'Get Modification Info
sql = "SELECT * " & _
"FROM ScheduleModifications sm " & _
"INNER JOIN Users u ON sm.iNewPilot=u.iUserID " & _
"WHERE iScheduleID=" & sSchedID & _
" ORDER BY dChanged DESC"
Set oMod = server.CreateObject ("ADODB.RecordSet")
oMod.Open sgl, oConn

If NOT oMod.eof Then
sOldpPilot = Trim(oMod ("sFName")) & " " &
Trim(oMod ("sLName"))

57

s01dPilotID = Trim(oMod ("iUserID"))
End If

Set oMod = nothing

sDate = Trim(oRS ("dShift"))
sSchedDate = Month(sDate) & "/" & Day(sDate) & "/" & Year (sDate)
sHour = Hour (sDate)
sMinute = Minute (sDate)
sAMPM = "AM"
If Len(sMinute) < 2 Then

sMinute = "0" & sMinute
End If
If sHour > 11 Then

If sHour > 12 Then

sHour = sHour - 12

End If

SAMPM = "PM"
End If
sSchedTime = sHour & ":" & sMinute & " " & sAMPM

End If

Set oRS = nothing

End If
'If form was submitted run through this code
If Trim(Request.Form("blnPass")) <> "" Then
'Error Checking
If sNewPilot = "" Then
blnError = true
sErrNewPilot = " error"
End If

If Len(sNotes) > 1000 Then
sNotes = left (sNotes,1000)
End If

'If no errors enter into database
If NOT blnError Then

sql = "INSERT INTO ScheduleModifications (iSchedulelID, iUserID,
iNewPilot, sNotes) " & _
"VALUES (" & iID & "," &
Session("intensiveair User_ ID") & "," & _
sNewPilot & ",'" & sNotes & "')"

oConn.execute sql

'Send an email
sBody = "Schedule Change:
" &

getPilotNameFromID (sNewPilot) & _

" is replacing " & getPilotNameFromID (sOldPilotID) &
- " on " & sSchedDate & " " & sSchedTime & ".<p>" &
sNotes & _

"<p>Click " & _

"Here to go to the schedule."

sSubject = "Schedule change as of " & Date

sOldPilotEmail = getEmailFromID (sOldPilotID)
If Trim(sOldPilotEmail) <> "" AND NOT IsNull (sOldPilotEmail) Then
arrOldPilotEmail = Split (Trim(sOldPilotEmail))
For intX = 0 to ubound(arrOldPilotEmail)
If IsEmail (arrOldPilotEmail (intX)) AND
arrOldPilotEmail (intX) <> "" Then
sendMail arrOldPilotEmail (intX),
"webmaster@siouxvalley.org", sSubject, sBody
End If
Next
End If

sNewPilotEmail = getEmailFromID (sNewPilot)
If Trim(sNewPilotEmail) <> "" AND NOT IsNull (sNewPilotEmail) Then

58

arrNewPilotEmail = Split (Trim(sNewPilotEmail))
For intX = 0 to ubound(arrNewPilotEmail)
If IsEmail (arrNewPilotEmail (intX)) AND
arrNewPilotEmail (intX) <> "" Then
sendMail arrNewPilotEmail (intX),
"webmaster@siouxvalley.org", sSubject, sBody
End If
Next
End If

sendMail "chadbreidenbach@yahoo.com", "webmaster@siouxvalley.org",
sSubject, sBody

blnDone = true

End If
End If
%>

<html>

<head>

<script language="javascript">
function endIt ()

{

sHref = window.opener.document.location.href;
window.opener.document .location.href=sHref;
this.window.close() ;
}
</script>
<title>Intensive Air Fixed-Wing Pilot Schedule Modifications</title>
<link rel="stylesheet" type="text/css" href="/intensiveair/include/style.css">

</head>

<body topmargin=0 leftmargin=0<%If blnDone Then response.write " onLoad=""endIt ()""" End
If%>>

<form method="post" name="frmForml" action="<%=Request.ServerVariables ("SCRIPT_NAME")%>">
<input type="hidden" name="blnPass" value="true">

<input type="hidden" name="id" value="<%=iID%>">

<table border=0 cellpadding=0 cellspacing=0>

<trs
<td class="subhead">Schedule Date:</td>
<td class="data"><%=sSchedDate%></td>
</tr>
<tr>
<td class="subhead">Schedule Time:</td>
<td class="data"><%=sSchedTime%></td>
</tr>
<tr>
<td class="subhead">Scheduled Pilot:</td>
<td class="data"><%=s0ldPilot%></td>
</tr>
<tx>

<td class="subhead<%=sErrNewPilot%>">New Pilot:</td>
<td class="data"><select name="newpilot">
<%
'Display all other users to choose from
sql = "SELECT * FROM Users WHERE iUserID <> " & s0ldPilotID & " ORDER BY sLName,
sFName"
Set oPilot = server.CreateObject ("ADODB.RecordSet")
oPilot.Open sql, oConn

If oPilot.EOF Then

Response.Write "<option value="""">No Pilots Found</option>" & VbCrLf
Else

Response.Write "<option value=""""></option>" & VbCrLf
End If

'Loop thru recordset
While NOT oPilot.EOF
sPilotID = trim(oPilot ("iUserID"))

a2

sPilotName = Trim(oPilot ("sLName")) & ", " & Trim(oPilot ("sFName"))
Response.Write "<option value=""" & sPilotID & """"
If Trim(sPilotID) = Trim(sNewPilot) Then
Response.Write " selected"
End If
Response.Write ">" & sPilotName & "</option>" & VbCrLf
oPilot .MoveNext
Wend

Set oPilot = nothing

</select></td>
</tr>
<tr>
<td class="subhead">Notes</td>
<td class="data"><textarea name="notes" cols=30
rows=4><%=sNotes%></textarea></td>

</tr>
<tr>
<td></td>
<td><input type="submit" name="btnSubmit" value="SAVE"></td>
g/tr>
</table>
</form>
</body>
</html>

copyDate.asp

(The JavaScript code embedded in this section will automatically close the popup
window if the copy date function is successful.)

<1-- #include file="include/dbConnection.asp" -->
<!-- #include file="include/security.asp" -->
<!-- #include file="include/functions.asp" -->

<%

'Grab the schedule id

sDate = Trim(request ("dt"))

'Compute the needed dates

sCopyDate = DateAdd("d",-91,sDate)

sCheckDate = Month (sCopyDate) & "/" & Day(sCopyDate) & "/" & Year (sCopyDate)

'If a real date has been submitted to page keep going

If sDate <> "" AND IsDate(sDate) Then
'Grab info from previous schedule
sql = "SELECT * FROM Schedule " & _
"WHERE dshift >= '" & sCheckDate & " 00:00:01' " & _
"AND dShift <= '" & sCheckDate & " 23:59:59'"

Set oCopy = server.CreateObject ("ADODB.RecordSet")
oCopy .Open sqgl, oConn

'If no info set a flag
If oCopy.EOF Then

blnEnd = true
End If

'Loop thru the recordset
While NOT oCopy .EOF
'Grab the variables
iUserID = Trim(oCopy ("iUserID"))
dshift = Trim(oCopy ("dShift"))
dshift = DateAdd("d",91,dshift)
'Insert these pilots into db with new schedule date

60

sql = "INSERT INTO Schedule (iUserID, dShift) VALUES (" & iUserID &

u'|u & dshift & III)II
oConn.execute sql
oCopy .Movenext
blnDone = true
Wend

Set oCopy = nothing
End If
%>

<html>

<head>

<script language="javascript">
function endIt ()

{
sHref = window.opener.document.location.href;
window.opener.document .location.href=sHref;
this.window.close() ;

</script>

<link rel="stylesheet" type="text/css" href="/intensiveair/include/style.css">
</head>

<body topmargin=0 leftmargin=0<%If blnDone Then response.write " onLoad=""endIt ()""" End
If%>>
<form method="post" name="frmForml" action="<%=Request.ServerVariables ("SCRIPT_NAME")%>">
<input type="hidden" name="blnPass" value="true">
<input type="hidden" name="dt" value="<%=sDate%>">
<table border=0 cellpadding=0 cellspacing=0>
<tr>
<td class="subhead">No Pilots scheduled on <%=sCheckDate%></td>
</EE>
<EXS
<td class="subhead">Close
Window</td>
</tr>
</table>
</form>
</body>
</html>

login.asp

(The JavaScript code embedded in this section sets the focus to the appropriate login
field.)

<!-- #include file="include/dbConnection.asp" -->
<!-- #include file="include/functions.asp" -->
<%

'Grab the variables

sUser = Trim(Request.Form("sUser"))

sPass = Trim(Request.Form("sPass"))

SURL = Trim(request ("surl"))

blnPass = Trim(Request.Form("btnSubmit"))

'Set the page to flow to
If sURL = "" Then

SURL = "default.asp"
End If

'If the form was submitted continue
If blnPass <> "" Then

'Error Checking
If sUser = "" OR sPass = "" Then

End If

blnError = true

If NOT blnError Then

End If

'Check login data

If Login(sUser, sPass) Then

'Go to the requested page if info is correct
Response .Redirect sURL

Else

blnError = true

End If

If blnError Then

not " & _
again.</td></tr>"
End If
End If
%>

'Display this error at the top of the page if info is incorrect
sError = "<tr><td class=""error"">The username and/or password did

"match any in our system. Please try

<!-- #include file="include/header.asp" -->

<input type="hidden" name="surl" value="<%=sURL%>">
<div class="login">
<table border=0 cellpadding=3 cellspacing=0 align="center"><%=sError%>

<tr>

value="<%=sUser%>"

</tr>
<tr>

</tr>
<tr>

name="btnSubmit"

</tr>
</table>
</div>
</form>

<td valign="top" align="right" class="login">Username: </td>

<td valign="top" align="left"><input type="text" name="sUser"

size="20" maxlength="20"></td>

<td valign="top" align="right" class="login">Password: </td>

<td valign="top" align="left"><input type="password" name="sPass"

value="" gize="20" maxlength="20"></td>

<td valign="top" align="center" colspan=2><input type="submit"

value="SUBMIT"></td>

<script language="javascript">
if (document.frmForml.sUser.value=="'")

document . frmForml . sUser. focus () ;

} else {

document . frmForml.sPass. focus () ;

</script>

<!-- #include file="include/footer.asp" -->

62

monthly.asp

(The embedded JavaScript in this section will hide or show the “Notes” section
depending on the user’s prior selection.)

<!-- #include file="include/dbConnection.asp" -->
<!-- #include file="include/security.asp" -->
<!-- #include file="include/functions.asp" -->

<%

'Initialize arrays for date display
ArrMonth = Array("“,“January“,"February","March","April","May",“June",“July“,
"August","September“,“October","November","December")

arrShift = Array("","shiftl","shift2",6 "shift3")

Dim arrDays (43)
Dim arrCols(43)

'Grab variables
sDate = trim(Request.Form("sDate"))

1Set default date if one is not specified
If sDate = "" Then

sDate = Month(Date) & "/1/" & Year (Date)
End If

'Calculate beginning and ending dates
sBeginDay = DatePart ("w", sDate)
sLoadDate = DateAdd("d",1l-sBeginDay, sDate)

'Loop thru every square of the calendar
For intX = 1 to 42
'Decide if the day displayed is the current month or another month
If (intX < 8 AND Day(sLoadDate) > intX) OR (intX > 20 AND Day (sLoadDate) <

8) Then
sTempClass = "offMonth"
Else
sTempClass = "onMonth"
End If
'"To add stuff to the day area on the map enter it here
sTemp = "<td valign=""top"" class=""" & sTempClass & """>" &
Day (sLoadDate) & "
"
sql = "SELECT u.*, s.dshift, s.iScheduleID " & _

"FROM Schedule s " & _
"INNER JOIN Users u ON u.iUserID=s.iUserID " &

"WHERE dShift >= '" & sLoadDate & " 00:00:01' " & _
"AND dShift <= '" & sLoadDate & " 23:59:59' " & _
"ORDER BY dshift AsC"

Set ORS = Server.CreateObject ("ADODB.RecordSet")

oRS.open sql, oConn
sCompareOutTime = ""

'Loop thru the recordset
While NOT oRS.EOF
iScheduleID = Trim(oRS ("iScheduleID"))
sThisDate = Trim(oRS("dshift"))
sHour = Hour (sThisDate)
sMinute = Minute (sThisDate)
If Len(sMinute) < 2 Then
sMinute = "0" & sMinute
End If
sSAMPM = "AM"

63

If sHour > 11 Then
If sHour > 12 Then
sHour = sHour - 12

End If
SAMPM = "PM"
End If
sThisTime = sHour & ":" & sMinute & " " & sAMPM

'Find if any Modifications

sql = "SELECT * " & _
"FROM ScheduleModifications sm " & _
"INNER JOIN Users u ON sm.iNewPilot=u.iUserID " &
"WHERE iScheduleID=" & iScheduleID & _ »
" ORDER BY dChanged DESC"

Set oMod = server.CreateObject ("ADODB.RecordSet")

oMod.Open sgl, oConn

If oMod.eof Then

sName = Trim(oRS("sFName")) & " " & Trim(oRS ("sLName"))
sUser = Trim(oRS ("iUserID"))
sNotes = ""

Else
sName = Trim(oMod ("sFName")) & " " & Trim(oMod ("sLName"))
sUser = Trim(oMod ("iNewPilot"))
sNotes = Trim(oMod ("sNotes"))

End If

Set oMod = nothing

'Find the correct shift number

sCompTime = Hour (sThisDate) & ":" & Minute (sThisDate)
If DateDiff(“n",sCompTime,Session(“intensivair_shiftB")) <= 0 Then
ishift = 3
ElseIf DateDiff ("n",sCompTime,Session("intensivair_shift2")) <= 0
Then
ishift = 2
Else
ishift =1
End If
If Trim(sThisTime) <> Trim(sCompareOutTime) Then
sOutTime = sThisTime & ":"
sCompareOutTime = sThisTime
Else
sOutTime = "" & sThisTime &
":"
End If

'Create clickable text to display on schedule
sTemp = sTemp & "<table border=0 cellpadding=0
cellspacing=0><tr><td nowrap><a " & _

"style=""cursor:hand"" onClick=""modMe ('" &

iSchedulelID & _
nrynn title=""modify this schedule""><span class="""

&

arrShift (iShift) & """>" & sOutTime &
"gnbsp;</td><td nowrap><a " & _

"style=""cursor:hand"" onClick=""modMe ('" &

iScheduleID & _
mrywn title=""modify this schedule""><span class="""

&

arrshift (ishift) & """>" & sName & _
"<div class=""data hide""

id=""tdNotes"">Notes:" & _
sNotes & "</div></td></tr></tables>"

ORS.movenext

' If NOT oRS.EOF Then

! sTemp = sTemp & "
"

! End If

Wend

sTemp = sTemp & "</td>"

arrDays (intX) Day (sLoadDate)
arrCols (intX) = sTemp

sLoadDate = DateAdd("d",1,sLoadDate)

Next

%>
<!-- #include virtual="/intensiveair/include/header.asp" -->

<script language="javascript">
function modMe (iID)

{

newWin =
window.open('modifyschedule.asp?id='+iID,'modwin','1eft=10,top=10,width=500,height=200,re
sizable, scrollbars') ;

function toggleNotes ()

var oNotes = document.all['tdNotes'];
for (var i=0;i<document.all['tdNotes'].length;i++)

{

if (oNotes[i] .className == 'show')
oNotes[i] .className = 'hide';
} else {

oNotes[i] .className="'show';

}
}

</script>

<table border=0 cellpadding=3 cellspacing=0 class="printLine">
<tr>
<td width="100%" align="right"><a style="cursor:hand;color:blue;text-

decoration:underline"
onClick="toggleNotes ()" title="Toggle Notes On/Off">Toggle Notes

on/Off
 <a style="cursor:hand;color:blue;text-

decoration:underline"
onClick="window.print ()" title="Print This Page">Print<p></td>

</tr>
</table>

<select name="sDate" onChange="document.frmForml.submit ()">
<option value=""></option>

<%
sThisDate = Month(Date) & "/1/" & Year (Date)
'Create the drop down listing the next years dates
For intX = -1 to 12
sTempDate = DateAdd("m",intX, sThisDate)
Response.Write "<option value=""" & Month(sTempDate) & w/i/v &
Year (sTempDate) & """"
If DateValue (sDate) = DateValue (sTempDate) Then
Response.Write " selected"
End If
Response.Write ">" & arrMonth(Month (sTempDate)) & " " & Year (sTempDate) &
"</option>"
Next
%>
</select>
<table border=1 cellpadding=3 cellspacing=0>
<tr>
<td>Sunday</td>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>

<td>Friday</td>

<%

%>

<td>Saturday</td>
</tr>

'Write it all out

iCnt = 0

iRowCnt = 0

For intX = 1 to 42
iCnt = iCnt + 1
If iCnt = 1 Then

Response.Write "<tr>"
iRowCnt + 1

iRowCnt =
End If

Response.Write arrCols (intX)

If iCnt = 7 Then

Response.Write "</tr>"

iCnt = 0

If arrDays(intX) < 7 AND iRowCnt > 1 Then
intX

End If
End If
Next

</table>

&lir=

#include

100

virtual="/intensiveair/include/footer.asp" -->

admin.asp

&limm
<!-- #include
<!-- #include

<%

#include

file="include/dbConnection.asp" -->
file="include/security.asp" -->

file="include/functions.asp" -->

'If they don't have rights deny them
If Session("intensiveair_loggedin") <> "2" Then
Response .Redirect "denied.asp"

End If

'Grab the variables

sUserName = Trim(Request.Form("username"))
sPassl = Trim(Request.Form("passl"))
sPass2 = Trim(Request.Form("pass2"))

sFName

Trim (Request .Form (" fname"))

sLName = Trim(Request.Form("lname"))
sSecLevel = Trim(Request.Form("secLevel"))
sPilotID = Trim(Request.Form("sPilotID"))
SsEmail = Trim(Request.Form("sEmail"))

'If the form was submitted run this code
If Trim(Request.Form("blnPass")) <> "" Then

'Error Checking

If sUserName = "" Then

blnError

tx

sErrUserName

End If

ue
= " error"

If sPassl = "" OR sPass2 = "" OR sPassl <> sPass2 Then

sErrPass
blnError
End If

e

If sFName = "" Then

sErrFName
blnError
End If

error"
ue

error"

true

If sLName = "" Then

sErrLName

errox"

66

blnError = true

End If
If sSecLevel = "" Then
sErrSecLevel = " error"
blnError = true
End If
' If sEmail = "" OR (sEmail <> "" AND NOT isEmail (sEmail)) Then
' sErrEmail = " error"
' blnError = true
i End If

'If no errors then continue
If NOT blnError Then
'If this is a new pilot insert into the db tables

If sPilotID = "" Then
sqgl = "INSERT INTO Users

(sUserName, sPass, sFName, sLName, iSecurityLevel, sEmail) " & _

"YALUES ('" & formatSQL(sUserName) & "', '" &
formatSQL (sPassl) & _

wr tn g formatSQL(sFName) & "','" &
formatSQL (sLName) & "'," & _

sSecLevel & ",'" & formatSQL(sEmail) & "')"

oConn.execute sql

'Reload the page
Response.Redirect "admin.asp?added=1"
'If this is an existing pilot update the db with the new info

Else
sql = "UPDATE Users SET sUserName='" & formatSQL (sUserName)
& "', sPass='" & _
formatSQL (sPassl) & "', sFName='" &
formatSQL (sFName) & _
"1, sLName='" & formatSQL (sLName) & "',
iSecurityLevel=" & _
sSecLevel & ", sEmail='" & formatSQL (sEmail)
&
"' WHERE iUserID=" & sPilotID
oConn.execute sql
'Reload the page
Response.Redirect "admin.asp?added=2"
End If
End If
'If the form was submitted when selecting a pilot grab that pilot info
ElseIf sPilotID <> "" Then
sql = "SELECT * FROM Users WHERE iUserID=" & sPilotID
Set oPilot = server.CreateObject ("ADODB.RecordSet")
oPilot.Open sql, oConn
'If a record came back grab the data
If NOT oPilot.EOF Then
sUserName = Trim(oPilot ("sUserName"))
sPass3 = Trim(oPilot ("sPass"))
sPass4 = Trim(oPilot ("sPass"))
sFName = Trim(oPilot ("sFName"))
sLName = Trim(oPilot ("sLName"))
sSecLevel = Trim(oPilot ("iSecurityLevel"))
sEmail = Trim(oPilot ("sEmail"))
End If
Set oPilot = nothing
End If
%>
<!-- #include file="include/header.asp" -->

<input type="hidden" name="blnPass" value="true">
<table border=0 cellpadding=3 cellspacing=0>
<%

If Trim(Request.QueryString("added")) = "1" Then

67

%>
<tr>
<td class="head" colspan="3">New User
Added</td>
</tr>
<%
ElseIf Trim(Request.QueryString("added")) = "2" Then
%>
<tr>
<td class="head" colspan="3">User Updated</td>
</tr>
<%
End If
%>
<tr>

<td> </td>
<td class="subHead<%=sErrUserName%>">Choose User to Edit:</td>
<td class="data"><select name="sPilotID"
onChange="frmForml.blnPass.value='"; frmForml.submit () ">
<option value="">New User</option>

<%
'Grab pilot info from the database
sql = "SELECT * FROM Users ORDER BY sLName, sFName"
Set oPilots = Server.CreateObject ("ADODB.RecordSet")
oPilots.Open sqgl, oConn
'Loop thru the recordset
While NOT oPilots.EOF
sName = Trim(oPilots("sLName")) & ", " & Trim(oPilots ("sFName"))
sID = Trim(oPilots("iUserID"))
Response.Write "<option value=""" & sID & """"
If sID = sPilotID Then
Response.Write " selected"
End If
Response.Write ">" & sName & "</option>" & VbCrLf
oPilots.MoveNext
Wend
Set oPilots = nothing
%>
</select></td>
</tr>
<tr>
<td> </td>
<td class="subHead<$%=sErrUserName%>">Username:</td>
<td class="data"><input type="text" name="username" value="<%=sUserName%>"
size="20" maxlength="50"></td>
</tr>
<tr>
<td> </td>
<td class="subHead<$%=sErrPass%>">Password:</td>
<td class="data"><input type="password" name="passl" value="<%=sPass3%>"
size="20" maxlength="50"></td>
c/trs>
<tr>
<td> </td>
<td class="subHead<%=sErrPass%>">Password Again:</td>
<td class="data"><input type="password" name="pass2" value="<%=sPass4%>"
size="20" maxlength="50"></td>
</tr>
<tr>
<td> </td>
<td class="subHead<%=sErrFName%>">First Name:</td>
<td class="data"><input type="text" name="fname" value="<%=sFName%>"
size="20" maxlength="50"></td>
</tr>
<tr>

<td> </td>

<td class="subHead<%=sErrLName%>">Last Name:</td>

<td class="data"><input type="text" name="lname" value="<%=sLName%>"
size="20" maxlength="50"></td>

68

</tr>
<tr>
<td> </td>
<td class="subHead<%=sErrEmail%>">Emails:
seperate by
semicolon (;)</td>
<td class="data"><input type="text" name="sEmail" value="<%=sEmail%>"
size="40" maxlength="2000"></td>

</tr>
<tr>
<td> </td>
<td class="subHead<%=sErrSecLevel%>">Security Level:</td>
<td class="data"><input type="radio" name="secLevel"
value="1"<%If sSecLevel = "1" Then Response.Write " checked" End
If%>>
Normal User <input type="radio" name="secLevel"
value="2"<%If sSecLevel = "2" Then Response.Write " checked" End
If%>>
Administrator</td>
</tr>
<E¥>
<td colspan=2></td>
<td align="left"><input type="submit" name="btnSubmit" value="SAVE"></td>
</tr>
</table>

<!-- #include file="include/footer.asp" -->

69

default.as

(The embedded JavaScript in this section will hide or show the “Notes” section
depending on the user’s prior selection.)

<!-- #include file="include/dbConnection.asp" -->
<!-- #include file="include/security.asp" -->
<!-- #include file="include/functions.asp" -->

<%

'Create arrays to show the date info
ArrMonth = Array("“,“January“,“February“,“March“,“April“,“May",“June“,"July",
"August", "September", "October", "November", "December")

arrDay =
Array("","Sunday","Monday","Tuesday","Wednesday","Thursday","Friday“,"Saturday“)
arrShift = Array("","shiftl","shift2", "shift3")

'Grab the shift info from the configuration table
sql = "SELECT * FROM Configuration WHERE sItem LIKE 'shift%' ORDER BY sItem"

Set oConfig = Server.CreateObject ("ADODB.RecordSet")
oConfig.Open sql, oConn

'Set a session variable for each shift

While NOT oConfig.EOF
Session("intensivair " & Trim(oConfig("sItem"))) = Trim(oConfig("sValue"))
oConfig.MoveNext

Wend

Set oConfig = nothing

'Create a beginning datetime
sBeginDate = Month(Date) & "/" & Day(Date) & n/m & Year (Date) & " 00:00:01"
%>

<!-- #include virtual="/intensiveair/include/header.asp" -->

<script language="javascript">
function modMe (iID)

{

newWin =
window.open(‘modifyschedule.asp?id:'+iID,'modwin','1eft=10,top=10,width:SOO,height=200,re
sizable, scrollbars') ;

}

function toggleNotes ()

{

var oNotes = document.all['tdNotes'];
for (var i=0;i<document.all['tdNotes'].length;i++)

{

if (oNotes[i] .className == 'show')
{

oNotes[i] .className = 'hide';
} else {

oNotes [i] .className='show';

}
}

</script>

<table border=0 cellpadding=3 cellspacing=0 class="printLine">
<tr>

70

<td width="100%" align="right"><a style="cursor:hand;color:blue;text-

decoration:underline"

onClick="toggleNotes ()" title="Toggle Notes On/Off">Toggle Notes
on/0Off

 <a style="cursor:hand;color:blue;text-
decoration:underline"

onClick="window.print ()" title="Print This Page">Print<p></td>

</tr>

</table>

<table border=0 cellpadding=3 cellspacing=0>
<%
'Loop thru the week
For intX = 0 to 6
'Calculate this specific date
sThisDate = DateAdd("d",intX, sBeginDate)
sEndTime = DateAdd("d",1,sThisDate)
sEndTime = DateAdd("s",-2,sEndTime)
sHeadDate = arrDay (DatePart ("w",sThisDate)) & " " &
arrMonth (Month (sThisDate)) & _

" v & Day(sThisDate) & ", " & Year (sThisDate)
%>
<tr>
<td class="head" colspan=3><%=sHeadDate%></td>
</tr>
<%
'Grab this schedule info from the db
sql = "SELECT s.*, sFName, sLName " & _
"FROM Schedule s " & _
"INNER JOIN Users u ON s.iUserID=u.iUserID " & _
"WHERE dShift >= '" & sThisDate & "' " & _
"AND dShift <= '" & sEndTime & "' " & _
"ORDER BY dshift AsSC"
Set ORS = Server.CreateObject ("ADODB.RecordSet")
oRS.open sgl, oConn
'If no records display this message
If oRS.EOF Then
%>
<tr>
<td> </td>
<td class="subHead error" colspan=2>No Scheduled Pilot</td>
</JEE>
<%
End If
sCompareOutTime = ""

'Loop thru the recordset
While NOT oORS.EOF
iScheduleID = Trim(oRS ("iScheduleID"))
sThisDate = Trim(oRS("dshift"))
sHour = Hour (sThisDate)
sMinute = Minute (sThisDate)
If Len(sMinute) < 2 Then
sMinute = "0" & sMinute
End If
sAMPM = "AM"
If sHour > 11 Then
If sHour > 12 Then
sHour = sHour - 12

End If
sAMPM = "PM"
End If
sThisTime = sHour & ":" & sMinute & " " & sAMPM

'Find if any Modifications

sql = "SELECT * " & _
"FROM ScheduleModifications sm " & _
"INNER JOIN Users u ON sm.iNewPilot=u.iUserID " & _
"WHERE iScheduleID=" & iScheduleID & _

i

" ORDER BY dChanged DESC"
Set oMod = server.CreateObject ("ADODB.RecordSet")
oMod.Open sgl, oConn

If oMod.eof Then

sName = Trim(oRS("sFName")) & " " & Trim(oRS ("sLName"))
sUser = Trim(oRS ("iUserID"))
sNotes = ""

Else
sName = Trim(oMod("sFName")) & " " & Trim(oMod ("sLName"))
sUser = Trim(oMod ("iNewPilot"))
sNotes = Trim(oMod ("sNotes"))

End If

Set oMod = nothing

'Find the correct shift
sCompTime = Hour (sThisDate) & ":" & Minute(sThisDate)
If DateDiff ("n", sCompTime, Session("intensivair_shift3")) <= 0 Then
ishift = 3
ElseIf DateDiff ("n", sCompTime, Session("intensivair_shift2")) <= 0
Then

ishift 2

Else
iShift
End If

1

If Trim(sThisTime) <> Trim(sCompareOutTime) Then
sOutTime = sThisTime
sCompareOutTime = sThisTime

Else
sOutTime = ""

End If

<tr>
<td> </td>
<td class="subHead <%=arrShift (iShift)%>"><a style="cursor:hand"
class="<%=arrshift (iShift) %>"
onClick="modMe ('<%=iScheduleID%>')" title="modify this
schedule"><%=sOutTime%>
</td>
<td class="data <%=arrShift (iShift)%>"> <a style="cursor:hand"
class="<%=arrShift (iShift) %>"
onClick="modMe ('<%=iScheduleID%>')" title="modify this
schedule"><%=sName%></td>
<td class="data hide" id="tdNotes">Notes:<%=sNotes%></td>

</ex>
<%
ORS .MoveNext
Wend
Set oRS = nothing
Next
%>
</table>
<!-- #include virtual="/intensiveair/include/footer.asp" -->
logout.asp
<%

Session.Abandon ()

Response .Redirect "default.asp"

functions.asp

<%

I***

1%%* Function will return true if login successful or false if not successful **
l**********i**
Function login(byVal sUserName, byVal sPass)

'Declare the variables

Dim sgl, oRS

'Grab info from the db

sql = "SELECT * FROM Users WHERE sUserName='" & sUserName & "' AND sPass='" &

sPass & "'"
Set ORS = Server.CreateObject ("ADODB.RecordSet")
ORS.Open sqgl, oConn

'Loop thru the recordset
If NOT oRS.EOF Then
'Set the session variables used for security

Session("intensiveair loggedin") = Trim(oRS("iSecurityLevel"))
Session("intensiveair_username") = sUserName
Session("intensiveair User_ ID") = Trim(oRS("iUserID"))

updateLogin Trim(oRS ("iUserID"))
login = true

Else
login = false

End If

Set oRS = nothing
End Function

’***

1** Function updates the dLastOn field in the Users table in the db *k
l***

Function updateLogin (byVal sUserID)
Dim sql

sql = "UPDATE Users SET dLastOn='" & now() & "' WHERE iUserID=" & sUserID
oConn.execute sqgl
End Function

’***

'*%* Function prepares a string for inclusion in SQL statement *k
l********************************'k**

Function formatSQL (byVal sStr)
formatSQL = replace(sStr,"'", "''")
End Function

|**‘k**********************************

'*x* Function sends an email to the requested address **
l**t**************************************

Function sendMail (byVal sTo, byVal sFrom, byVal sSubj, byVal sBody)
Dim Mail

Set Mail = CreateObject ("Persits.MailSender")

' enter valid SMTP host
Mail .Host "172.20.1.72"

Mail.From = sFrom
Mail.AddAddress sTo
Mail.Subject = sSubj
Mail.Body = sBody
Mail.ISHTML = True

Mail.Send

72

73

Set Mail = Nothing
End Function

l*t***
1#* Function returns the users name given the id * %
l********************i**i***********
Function getPilotNameFromID (byVal id)

Dim sql, oPil

sql = "SELECT * FROM Users WHERE iUserID=" & id
Set oPil = server.CreateObject ("ADODB.RecordSet")
oPil.Open sqgl, oConn

If NOT oPil.EOF Then

getPilotNameFromID = Trim(oPil ("sFName")) & " " & Trim(oPil ("sLName"))
End If

Set oPil = nothing
End Function

l***
1% Function returns the users email address given the id *%
l***t***
Function getEmailFromID (byVal id)

Dim sgl, oEmail

sql = "SELECT * FROM Users WHERE iUserID=" & id
Set oEmail = server.CreateObject ("ADODB.RecordSet")
oEmail .Open sgl, oConn

If NOT oEmail.EOF Then

getEmailFromID = Trim(oEmail ("sEmail"))
End If

Set oEmail = nothing
End Function

I**'ﬁ****************************
1*%* Function checks if the given email fits the format of a valid email add. **
I***t*****************
Function isEmail (byVal sEmail)
If Trim(sEmail) <> "" AND NOT IsNull(sEmail) Then

isEmail = false

Dim regEx, retVal

Set regEx = New RegExp

' Create regular expression:
regEx.Pattern =v*N\w-\.1{1, \@([\da-zA-2-1{1, }\.) {1, } [\da-zA-2-]{2,3}s$"

' Set pattern:
regEx.IgnoreCase = true

' Set case sensitivity.
retVal = regEx.Test (sEmail)

' Execute the search test.
If not retVal Then
exit function
End If
End If

isEmail = true
End Function

74

security.asp

<%

If Session("intensiveair loggedin") = "" Then
Response.Redirect "/intensiveair/login.asp?surl=" &
Trim(Request .ServerVariables ("SCRIPT_NAME"))

End If
%>
dbConnection.asp
<%
iCreate the database connection
Set oConn = Server.CreateObject ("ADODB.Connection")
oConn.Open "Driver={SQL Server};" & _
"Server=webtest;" & _
"Database=FixedWingSchedule;" & _
"Uid=fixed user;" & _
"pwd=fixe_ 1117"
%>

header.asp

<html>
<head>
<title>Intensive Air Fixed-Wing Pilot Schedule</title>
<%
IF InStr(lcase (Request.ServerVariables ("SCRIPT_NAME")), "default.asp") Then
%>
<meta http-equiv="refresh" content="600">
<%
End If
%>

<link rel="stylesheet" type="text/css" media="screen"
href="/intensiveair/include/style.css">

<link rel="stylesheet" type="text/css" media="print"
href="/intensiveair/include/print_style.css">

</head>

<body topmargin=0 leftmargin=0
background:"/intensiveair/images/cloudy_blue.jpg"<%=sBodyCode%>>
<table border=0 cellpadding=0 cellspacing=0 class="main">

<tr>
<td>
</td>
</tr>
<%
'If user is logged in let them see the nav bar
If Session("intensiveair loggedin") <> "" AND NOT
IsNull (Session("intensiveair_ loggedin")) Then
%>
<Er>

<td class="nav"> <a href="/intensiveair/default.asp"
title="Weekly View">Weekly | <a
href="/intensiveair/monthly.asp"
title="Monthly View">Monthly<%
'If the user has admin privileges give them these links also
If Session("intensiveair_loggedin") = "2" Then
%$> | Add/Edit
User | <a
href="/intensiveair/adminSchedule.asp" title="Schedule
Admin">Schedule Admin | <%

75

End If
%$>Log Out </td>
</tr>
<%
End If
%>
</table>

<form method="post" name="frmForml" action="<%=Request.ServerVariables ("SCRIPT_NAME") $>">

looter. asp

(This code is used to store “SCRIPT_NAME?” on the server side and pass it to the
JavaScript code.)

</form>
<script language="javascript">
var sThisPageJdS = ' <%=Trim (Request .ServerVariables ("SCRIPT_NAME")) %>';
</script>
</body>

</html>

	Dakota State University
	Beadle Scholar
	Fall 12-1-2005

	Sioux Valley Intensive Air Web-Based Scheduling Application
	Chad Breidenbach
	Recommended Citation

	tmp.1522265665.pdf.c_nqf

