World Journal of Microbiology and Biotechnology

© Kluwer Academic Publishers 2002

10.1023/A:1015201215368

Optimization of dilution rate for the production of value added product and simultaneous reduction of organic load from pineapple cannery waste

J.N. Nigam¹ and M.C. Kakati²

- (1) Biochemistry Division, Regional Research Laboratory, Jorhat, 785 006 Assam, India
- (2) Computer Section, Regional Research Laboratory, Jorhat, 785 006 Assam, India

🖂 J.N. Nigam

Email: <u>jnnbio@yahoo.com</u> **Fax:** +91-376-370 011

Abstract *Candida utiilis* NRRL Y-900 was grown on pineapple cannery waste as the sole carbon and energy source in a chemostat at dilution rates ranging between 0.05 and 0.65 h⁻¹ to determine the growth kinetics. The cell yield coefficient varied with dilution rate and a maximum value of $0.662 \pm 0.002 \text{ g}_{x}/\text{g}_{carb}$ was obtained at a dilution rate of 0.4 h⁻¹. At steady state, the concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod

kinetics. At maximum specific growth rate (${}^{\mu}_{max}$) 0.65 h⁻¹, the saturation constants for carbohydrate, reducing sugar and COD were 0.51 ± 0.02 g_{carb}/1, 0.046 ± 0.003 g_{rs}/1, and 1.036 ± 0.001 g_{COD}/1, respectively. Maximum biomass productivity ($Q_{x max}$) 2.8 ± 0.03 g_x/1 h was obtained at a dilution rate of 0.5 h⁻¹. At this dilution rate, only 71.0 ± 0.41% COD was removed whereas at a dilution rate of 0.1 h⁻¹, 98.2 ± 0.35% reduction in COD was achieved. At a dilution rate of 0.4 h⁻¹, the optimal yeast productivity and reduction in COD were 2.7 ± 0.13 g_p/1 h, and 84.2 ± 0.42%, respectively.

Biomass - *Candida utilis* - chemostat - continuous culture - growth kinetics - pineapple cannery waste - steady state