

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 4925-4927

Tetrahedron Letters

Microwave-promoted one-pot synthesis of 4H-thiopyrans from α , β -unsaturated ketones via a three-component reaction

Madan G. Barthakur, Apurba Chetia and Romesh C. Boruah*

Medicinal Chemistry Division, Regional Research Laboratory, Jorhat 785 006, India

Received 21 March 2006; revised 24 April 2006; accepted 4 May 2006 Available online 30 May 2006

Abstract—An efficient one-pot synthesis of substituted 4*H*-thiopyrans has been accomplished from a three-component reaction of α , β -unsaturated ketones, Lawesson's reagent and alkynes under microwave irradiation. © 2006 Elsevier Ltd. All rights reserved.

The design of multi-component reactions (MCRs) is an important field of research from the point of view of combinatorial chemistry.¹ Generally, multi-component reactions, being one-pot processes, afford good yields. They are fundamentally different from two-component reactions in several aspects because of advantages such as the simplicity of one-pot procedures, possible structural variations, complicated synthesis and large number of accessible compounds.² The hetero Diels-Alder reaction of α,β -unsaturated thicketones with activated dienophiles has been reported as an elegant strategy for 4*H*-thiopyran synthesis.³ However, the monomeric forms of the α,β -unsaturated aliphatic thioketones, as such, are inaccessible because of their tendency to dimerize easily, even at low temperature.⁴ Generation of a monomeric thicketone usually necessitates either a stable thione dimer or dithiine-type dimer as precursors.⁵ Nevertheless, these methods are disadvantageous due to the multiple reaction steps, prolonged reaction times and moderate yields. Our earlier efforts for the thionation of the conjugated ketone system of 16-dehydropregnenolone acetate (16-DPA) using P_4S_{10} led to an adduct of 16-DPA-P₂S₅ which proved to be an efficient synthon for pyran synthesis as a masked conjugated enone.⁶ On the other hand our attempt to thionate 16-DPA with Lawesson's reagent afforded 3βacetoxy-2'-(p-anisyl)-2'-thio-6'-methyl-2'H,4'H-1',3',2'oxathiaphosphinino(16,17-d)androst-5-ene which failed to participate in a [4+2]cycloaddition reaction with

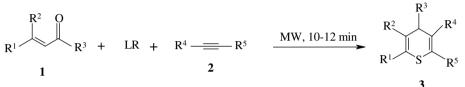
dienophiles under thermal conditions. Thus, thiopyran synthesis employing α , β -unsaturated ketones in a onepot reaction remained as an interesting goal.

The utility of microwave energy in synthetic organic chemistry has been increasingly recognized in recent years.7 Microwave-promoted solid phase heterogeneous reactions are environmentally benign methodologies having greater selectivity, enhanced reaction rates and produce cleaner products with manipulative simplicity.⁸ Microwave mediated multi-component reactions constitute an especially attractive synthetic strategy for rapid and efficient library generation due to the fact that products are formed in a single step and diversity can be achieved simply by varying the reacting components.⁹ In continuation of our efforts towards multi-component reactions,¹⁰ we report herein a facile and rapid synthesis of 4H-thiopyrans from a three-component reaction of an α,β -unsaturated ketone, an alkyne and Lawesson's reagent under microwave irradiation.

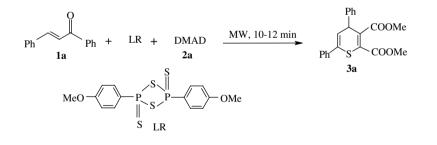
When a mixture of 1,3-diphenylprop-2-en-1-one 1a, Lawesson's reagent (LR) and DMAD 2a was irradiated in a Synthewave 402 Prolabo focused microwave unit at a frequency of 2450 MHz (80% power) for 10 min, 2,3-bis(methoxycarbonyl)-4,6-diphenyl-4*H*-thiopyran 3a was obtained as an oil in 95% yield.¹¹ The product was characterized by its spectroscopic and analytical data.¹² The ¹H NMR spectrum of 3a exhibited characteristic doublet proton signals at $\delta = 6.09$ and 4.81 (J = 7.5 Hz) for the olefinic and methine protons, respectively. The ¹³C NMR spectrum showed ester carbonyl carbon signals at $\delta = 166.06$ and 165.11 and the ESI mass spectra showed a molecular ion peak at m/z 389

Keywords: α , β -Unsaturated ketone; Thiopyran; Microwave; Lawesson's reagent; Diels–Alder reaction.

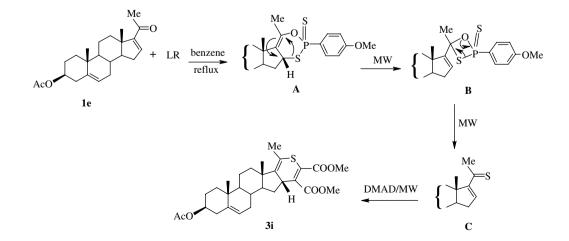
^{*} Corresponding author. Tel.: +91 376 2370327; fax: +91 376 2370011; e-mail: rc_boruah@yahoo.co.in


^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.05.020

 (M^++Na) . The cycloaddition reaction of **1a** with alkynes **2b** and **1b–d** with **2a–b** under identical conditions afforded thiopyrans **3b–h** in 85–92% yields (Table 1, entries 2–8). Similarly, the three-component reaction of 16-dehydropregnenolone acetate **1e**, LR and alkynes **2a–b** gave high yields of the corresponding thiopyrans **3i–j** (entries 9–10). However, our attempt to carry out the three-component reaction of **1a–d**, LR and **2a–b** under thermal conditions led to very poor yields of the products (**3a–h**) (Scheme 1).


In an effort to study the mechanism of the reaction, we attempted the [4+2]cycloaddition of 3 β -acetoxy-2'-(p-

anisyl)-2'-thio-6'-methyl-2'H,4'H-1',3',2'-oxathiaphosphinino(16,17-d)androst-5-ene A⁶ with DMAD under microwave conditions. Despite its failure under thermal conditions (refluxing toluene), we observed that adduct A readily underwent [4+2]cycloaddition under microwave conditions to afford thiopyran **3i** in high yield. The formation of **3i** from A indicated its role as a precursor to the transient α , β -unsaturated thioketone monomer C. The mechanism is not yet clear, however, it is proposed that microwave heating facilitated conversion of A into C via concomitant rearrangement and ring opening reactions involving a tetracyclic oxophosphetane intermediate **B** (Scheme 2). In contrast to the


Table 1. Microwave-promoted one-pot preparation of 4H-thiopyrans 3 via the three-component reaction of conjugated ketones 1, LR and alkynes 2

Entry	Conjugated ketone	\mathbb{R}^1	\mathbb{R}^2	R ³	Dienophile	R^4	R ⁵	Reaction time/min	Product	Yield (%)
1	1a	Ph	Н	Ph	2a	COOMe	COOMe	10	3a	95
2	1a	Ph	Н	Ph	2b	COOEt	Н	12	3b	90
3	1b	$p-ClC_6H_4$	Н	Ph	2a	COOMe	COOMe	10	3c	92
4	1b	p-ClC ₆ H ₄	Н	Ph	2b	COOEt	Н	10	3d	91
5	1c	Ph	Н	p-MeOC ₆ H ₄	2a	COOMe	COOMe	12	3e	90
6	1c	Ph	Н	p-MeOC ₆ H ₄	2b	COOEt	Н	12	3f	88
7	1d	Me	Н	Ph	2a	COOMe	COOMe	10	3g	87
8	1d	Me	Н	Ph	2b	COOEt	Н	10	3h	85
9	1e	Me	Androst		2a	COOMe	COOMe	12	3i	93
10	1e	Me	Androst		2b	COOEt	Н	12	3j	95

Scheme 1.

reaction of **1e** with LR which gave **A**, under identical conditions, no oxathiaphosphinino derivatives were obtained from chalcones **1a**–**d**.

In conclusion, we have demonstrated a microwave-promoted one-pot synthesis of thiopyrans employing threecomponent reactions of α , β -unsaturated ketones, LR and alkyne dienophiles. Under microwave irradiation, the oxathiaphosphinino derivative A could be readily converted to monomeric conjugated thioketone C which participated in the [4+2]cycloaddition reaction with alkynes. Our study supported the intermediacy of a six-membered oxathiaphosphinino derivative during the process of thionation of conjugated ketones to thioketones. Further mechanistic study and generalization of the scope of this reaction is in progress.

Acknowledgements

We are grateful to the Department of Science and Technology, New Delhi for financial support (Grant # SR/ S1/OC-09/2003). We also thank the Director, Regional Research Laboratory Jorhat for his keen interest in this work.

References and notes

- (a) Weber, L.; Illegen, K.; Almstetter, M. Synlett 1999, 366–374; (b) Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res 1996, 29, 123–131.
- 2. Domling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168–3210.
- (a) Saito, T.; Takekawa, K.; Takahashi, T. Chem. Commun. 1999, 1001–1002; (b) Saito, T.; Nagashima, M.; Karakasa, T.; Motoki, S. J. Chem. Soc., Chem. Commun. 1992, 411–413; (c) Saito, T.; Kimura, H.; Sakamaki, K.; Karakasa, T.; Moriyama, S. Chem. Commun. 1996, 811– 812; (d) Saito, T.; Nagashima, M.; Karakasa, T.; Motoki, S. J. Chem. Soc., Chem. Commun. 1990, 1665–1667.
- (a) Beslin, P.; Lagain, D.; Vialle, J.; Minot, C. *Tetrahedron* 1981, 37, 3839–3845; (b) Ohsugi, S.; Nishide, K.; Node, M. *Tetrahedron* 2003, 59, 1859–1871; (c) Lipkowitz, K. B.; Scarpone, S.; Mundy, B. P.; Bornmann, W. G. J. Org. Chem. 1979, 44, 486–494; (d) Karakasa, T.; Motoki, S. J. Org. Chem. 1979, 44, 4151–4155.
- (a) Karakasa, T.; Yamaguchi, H.; Motoki, S. J. Org. Chem. 1980, 45, 927–930; (b) Motoki, S.; Saito, T.; Karakasa, T.; Matsushita, T.; Furuno, E. J. Chem. Soc., Perkin. Trans. 1 1992, 2943–2948.
- Chetia, A.; Saikia, A.; Saikia, C. J.; Boruah, R. C. Tetrahedron Lett. 2003, 44, 2741–2744.
- (a) Varma, R. S. In *Microwaves: Theory and Application in Material Processing IV*; Clark, D. E., Sutton, W. H., Lewis, D. A., Eds.; American Ceramic Society: Westerville, OH, 1997; pp 357–365; (b) Varma, R. S.; Dahiya, R.

Tetrahedron **1998**, *54*, 6293–6298; (c) Varma, R. S.; Meshram, H. M. *Tetrahedron Lett.* **1997**, *38*, 7973–7976.

- (a) Kabalka, G. W.; Wang, L.; Pagni, R. M. Synlett 2001, 676–678; (b) Ranu, B. C.; Hajra, A.; Jana, U. Tetrahedron Lett. 2000, 41, 531–533; (c) Bose, A. K.; Manhas, M. S.; Ganguly, S. N.; Sharma, A. H.; Banik, B. K. Synthesis 2002, 1578–1591.
- (a) Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661–663; (b) Quiroga, J.; Cisneros, C.; Insuasty, B.; Abonia, R.; Nogueras, M.; Sanchez, A. Tetrahedron Lett. 2001, 42, 5625–5627; (c) Varma, R. S.; Kumar, D. Tetrahedron Lett. 1999, 40, 7665–7669; (d) Ranu, B. C.; Hajra, A. Tetrahedron 2001, 57, 4767–4773; (e) Balalaie, S.; Arabanian, A. Green Chem. 2000, 2, 274–276.
- (a) Chetia, A.; Saikia, C. J.; Lekhok, K. C.; Boruah, R. C. *Tetrahedron Lett.* **2004**, *45*, 2649–2651; (b) Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett. **2003**, *5*, 435–438.
- 11. Tanaka, H.; Motoki, S. Bull. Chem. Soc. Jpn. 1986, 59, 2047–2049.
- 12. Selected spectral and analytical data: Compound 3a,11 yield 95%, oil; IR (CHCl₃) v 2951, 1733, 1720 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.41-7.22 (10H, m), 6.09 (1H, d, J = 7.5 Hz), 4.81 (1H, d, J = 7.5 Hz), 3.79 (3H, s), 3.60 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 166.06, 165.11, 141.66, 136.73, 133.86, 130.78, 128.87 (3C), 128.64 (2C), 127.87 (3C), 127.51 (2C), 126.51, 120.59, 53.11, 52.37, 44.36; Mass spectra (ESI): m/z 389 (M⁺+Na). Compound 3c, yield 92%, oil; IR (CHCl₃) v 2970, 1733, 1721, 1263 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.45–7.24 (9H, m), 6.10 (1H, d, J = 5.0 Hz), 4.87 (1H, d, J = 4.8 Hz), 3.86 (3H, s), 3.66 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 166.06, 165.11, 141.66, 135.45, 135.11, 133.56, 130.09, 129.52, 129.44, 129.31, 128.87, 128.59 (2C), 127.88, 127.27 (2C), 126.51, 121.36, 53.11, 52.37, 44.36; Mass spectra (ESI): *m*/*z* 423 (M⁺+Na), 425 ([M⁺+Na] + 2). Compound 3e, yield 90%, oil; IR (CHCl₃) v 2951, 1739, 1727, 1248 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.40–6.94 (9H, m), 6.68 (1H, d, J = 4.5 Hz), 4.96 (1H, d, J = 4.5 Hz), 3.83 (3H, s), 3.78 (3H, s), 3.56 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 170.41, 166.99, 159.83, 148.10, 141.48, 136.83, 133.61, 129.85, 129.36, 129.08, 128.70 (2C), 128.59, 123.18, 128.20, 128.07, 123.18, 113.22, 55.24, 52.69, 51.36, 42.23; Mass spectra (ESI): m/z 419 (M⁺+Na). Compound 3g, yield 87%, oil; IR (CHCl₃) v 2952, 1732, 1727, 1257 cm⁻ ¹H NMR (300 MHz, CDCl₃) δ 7.45–7.23 (5H, m), 5.67 (1H, d, J = 4.2 Hz), 4.66 (1H, d, J = 4.3 Hz), 3.83 (3H, s), 3.62 (3H, s), 1.99 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 166.32, 165.40, 142.56, 134.11, 130.18, 128.99, 128.79, 128.02, 127.56, 127.28, 125.55, 120.24, 53.47, 52.70, 44.43, 22.01; Mass spectra (ESI): m/z 327 (M⁺+Na). Compound 3j, yield 95%, oil; IR (CHCl₃) v 2942, 1731, 1707, 1250 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.54 (1H, d, J = 16 Hz), 5.69 (1H, d, J = 16 Hz), 5.33 (1H, bs), 4.57 (1H, m), 4.12 (2H, q, *J* = 6 Hz), 2.13 (3H, s), 1.99 (3H, s), 1.24 (3H, t, J = 6 Hz), 0.98 (3H, s), 0.63 (3H, s), 2.55–0.95 (17H, m); ¹³C NMR (75 MHz, CDCl₃) δ 169.91, 164.20, 138.23, 127.54 (2C), 121.62, 119.56, 113.42, 72.36, 54.11, 52.62, 48.41, 48.02, 47.43, 36.53, 36.21, 34.86, 31.21, 30.84, 30.33, 26.28, 20.77, 20.10, 18.96, 17.82, 16.95, 16.20, 15.88; Mass spectra (ESI): m/z 493 (M⁺+Na).