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a b s t r a c t

The hexa-coordinated chelate complexes of the type [Ru(CO)2Cl2(P-P)](1a,b) [where P-P = 9,9-dimethyl-
4,5-bis(diphenylphosphino)xanthene(a) and [bis(2-diphenylphosphinophenyl)ether(b)] have been syn-
thesized by reacting the polymeric precursor [Ru(CO)2Cl2]n with the ligands in 1:1 molar ratio. The com-
plexes 1a,b are characterized by elemental analyses, Mass, IR and NMR spectroscopy together with the
single crystal X-ray structure determination of 1a. The compound 1a crystallizes in a monoclinic system
with space group C2/c showing a slightly distorted octahedral geometry around the Ru centre. The com-
plexes 1a and 1b are thermally stable up to 300 �C and exhibit high catalytic activity in transfer hydro-
genation of aldehyde and ketones to corresponding alcohols. The complexes 1a and 1b show much higher
catalytic activity for the hydrogenation of aldehyde than ketones. In general, the catalytic efficiency of 1b
is higher compared with 1a.

� 2009 Elsevier B.V. All rights reserved.

The stereo-electronic properties of phosphines and their deriv-
atives have aroused much interest in the recent time because of
their reactivity, structural novelty and catalytic activity [1–10]. A
deeper insight into the catalytic systems and the relationship be-
tween ligand properties and catalytic performance will give access
to more catalysts via rational design of the ligands. An important
aspect to design the ligands is based on their natural bite angle,
introduced by Casey and Whiteker [11] and is one of the most
extensively applied parameter for diphosphines. The metal
complexes containing large natural bite angle ligands such as xant-
phos [9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene], DPE-
phos [bis(2-diphenylphosphinophenyl)ether] and others with a
relatively comparable backbone exhibit interesting coordination
chemistry as well as catalytic activity [1,2,9,12]. Over the last dec-
ades, the ruthenium catalyzed reactions directed to organic syn-
thesis have got much attention and a large number of highly
efficient synthetic approaches are well documented in literature
[13–17]. As a part of our ongoing systematic study [3,18–21], we
report here the synthesis of two dicarbonylruthenium(II) com-
plexes 1a,b containing xantphos(a) and DPEphos(b) chelating li-
gands together with the X-ray crystal structure of 1a. The
catalytic activity of 1a,b was also investigated in transfer hydroge-
nation reaction.

The ligands a and b react with the polymeric precursor
[Ru(CO)2Cl2]n in 1:1 molar ratio to afford hexa-coordinated com-

plexes of the type [Ru(CO)2Cl2(P-P)] (1a,b) (Scheme 1), which are
isolated as air-stable, light yellow solids (thermal stability:
>300 �C). The synthesized compounds have been characterized by
elemental analyses, Mass spectrometry, IR and NMR spectroscopy
[22] together with the single crystal X-ray structure determination
of 1a (Fig. 1). The IR spectra of 1a and 1b show two equally intense
m(CO) bands in the region 1973–2073 cm�1 confirming the pres-
ence of two terminal carbonyl groups cis to one another. The 13C
NMR spectra show only one signal for the two non-equivalent car-
bonyl carbons as broad singlet in the region d = 184–189 ppm for
both 1a and 1b. 31P{1H} NMR spectra of 1a and 1b exhibit two
sharp singlets at around d = 20.21 and 14.35 ppm, respectively,
for two pentavalent P-atoms, exhibiting a down field shift com-
pared to the free ligands [(d = �12.3 ppm(a) and �16.03 ppm(b)],
which is in good agreement with the chelate formation in the
complexes. Elemental analyses and mass spectrometric results
are consistent with the proposed formula of 1a and 1b, which
are also substantiated by the single crystal X-ray structure of 1a
(Fig. 1). Regretfully, crystals suitable for single-crystal X-ray
diffraction were not obtained for 1b, although several attempts
have been made.

The complex 1a crystallizes in a monoclinic system with space
group C2/c where the Ru atom is situated at the centre of a dis-
torted octahedral environment formed by two P donor, two CO
and two Cl atoms. The selected bond lengths and bond angles are
presented in Fig. 1. The longer bond length of Ru1–P1
(2.5492(11) Å) compared with Ru1–P2 (2.3887(11) Å) may indicate
a weaker interaction in the former and is likely to be cleaved more
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easily during catalytic reaction. The natural bite angle, 111.7� of
the free xantphos ligand reduces to 107.56� (bite angle, P1–Ru1–
P2) upon complexation. The P1–Ru1–P2 plane is inclined by an an-
gle 38.48� to the plane of the backbone of xantphos ligand. The two
aromatic rings of the backbone are not coplanar (the angle be-
tween the two phenyl planes is 14.74�) due to the presence of
sp3 carbon and the oxygen atom in the ring. This folded structure
render the two methyl groups of the backbone locate equatorially
and axially, respectively, indicated by the two different methyl sig-
nals shown in the NMR spectrum.

The complex 1a exhibits some interesting intermolecular inter-
actions involving shorter distances than the sum of van der Waals
radii. The interactions between these molecules are presented by
dotted lines and summarized in Fig. 2. The monomeric units of
1a are held together through bifurcated [23,24] intermolecular
C–H� � �O, C–H� � �p and C–H� � �Cl, C–H� � �p interactions (Fig. 2) which
are considered as weak hydrogen bonds [24–26]. These hydrogen
bondings are mainly observed between one of the H atoms of the
phenyl ring of xantphos ligand and O atom of CO group or Cl atom
of the adjacent molecule. Such interactions provide an additional
stabilization to crystal cohesion and are essentially attributable
to the supramolecular nature of most organometallic molecules.

The catalytic activities of 1a and 1b were investigated for trans-
fer hydrogenation and the complexes were found to exhibit high
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Scheme 1. Syntheses of 1a and 1b.

Fig. 1. ORTEP drawing (30% probability) of the complex 1a. Hydrogen atoms have
been omitted for clarity. Selected bond lengths (Å) and angles (�): P1–Ru1
2.5492(11), P2–Ru1 2.3887(11), Cl1–Ru1 2.4583(12), Cl2–Ru1 2.4308(12), C38–
Ru1 1.882(5), C38–O3 1.114(6), C39–Ru1 1.926(5), C39–O2 1.100(6), P2–Ru1–P1
107.56(4), C39–Ru1–C38 89.4(2), C39–Ru1–P1 163.52(14), Cl1–Ru1–Cl2 94.66(5).

Fig. 2. Intermolecular short contacts in 1a (when viewed along b-axis) through C–H� � �O [H(35)� � �O(2)i 2.645 Å], C–H� � �p [H(35)� � �C(28)i 2.714 Å; H(10)� � �C(28)ii 2.852 Å] and
C–H� � �Cl [H(10)� � �Cl(1)i 2.901 Å] interactions (broken lines). Symmetry codes: (i) x, �1 + y, z (ii) x, 1 � y, ½ + z. All the hydrogen atoms except those involved in hydrogen
bonding have been omitted for clarity.
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efficiency in the reduction of aldehyde and ketones to their corre-
sponding alcohols (Scheme 2). Despite the large number of Ru(II)
catalysts reported for this particular transformations [27–30], the
use of ruthenium(II) carbonyl species (which are generally consid-
ered as sluggish catalysts for hydrogenation reaction [31]) are
quite scanty [29]. However, aldehydes are difficult to reduce by
catalysts commonly used for transfer hydrogenation, and control-
ling the chemoselectivity of the reaction presents a further chal-
lenge [32,33]. In the present study, the catalytic conversion by 1a
and 1b for some selected aldehyde and ketones are found in the
range 72–99% within the reaction time of 2–24 h (Table 1). The cat-
alytic activity of the complexes though exhibit slightly lower effi-
ciency for the hydrogenation of ketones (acetophenone,
benzophenone), but, show higher activity in case of aldehyde
(benzaldehyde) than the reported catalysts with similar configura-
tion [29,34]. Interestingly, the rate of catalytic conversion of alde-
hyde is found to be about eight times faster than the analogous
ketones. However, the catalytic efficacy of 1a and 1b decreases in
presence of the bulky substituent to the substrate. This might be
due to the steric hindrance caused by the bulky diphosphine ligand
around the metal centre during substrate binding. In general, the
catalytic activity of 1b is higher than 1a, which may be due to
the flexible backbone of the ligand b [35,36].

In summary, the synthesis and characterization of two new
ruthenium(II) carbonyl complexes 1a and 1b have been carried
out. Intermolecular C–H� � �O, C–H� � �p and C–H� � �Cl interactions
have been found to greatly stabilize the supramolecular structure
of 1a in the solid state, as determined by single crystal X-ray dif-
fraction. 1a and 1b exhibit high thermal stability (>300 �C) and
are found to be active in catalytic transfer hydrogenation of alde-
hyde and ketones. However, the complexes show much higher cat-
alytic efficiency for the reduction of aldehyde than ketones.
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Appendix A. Supplementary material

CCDC 681434 contains the supplementary crystallographic data
for 1a. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/da-
ta_request/cif. Supplementary data associated with this article
can be found, in the online version, at doi:10.1016/
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a Conversion of the substrates were obtained from GC analyses.
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