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Abstract 
 
Supported tritonX100 polyaniline nano-porous electrically active film has been fabricated successfully onto 
indium-tin-oxide conducting probe using electrochemical polymerization process. The doping of TX-100 in 
the polymeric network of PANI was suggested using cyclic voltammeter, UV-vis spectroscopy, and Fourier 
Transform Infrared spectroscopy. The change in the surface morphology of PANI thin film due to incorpora-
tion of tritonX-100 was investigated using Atomic Forced Microscopy and porosity has been confirmed 
scanning electron microscopy, respectively. The surface morphology, uniformly disperse hexagonal close 
packing of TX-100 in PANI matrices due to the incorporation of TX-100 in polymeric network of PANI was 
confirmed by Atomic Force Microscopy. The electrical conductivity of PANI-TX-100 increases from 1.06 × 
10�–2 S/cm�–1 to 4.95 × 10�–2 S/cm�–1 as the amount of TX-100 increases during the polymerization. The change 
in the morphology and electrical conductivity of PANI due to incorporation of TX-100 prove as a promising 
material for the sensing application. 
 
Keywords: Electrochemical Polymerization, Non ionic surfactant, Conducting Polyaniline, Atomic Force 

Microscopy, Scanning Tunneling Microscopy

1. Introduction 
 
The unique optical and electrical properties of conduct-
ing polymer make them a novel organic semi conducting 
material with great promise of their wide range of poten-
tial application includes storage batteries [1,2], electro-
chromic devices [3,4], light emitting diodes [5], non lin-
ear optics [6], and corrosion inhibitors [7] and sensors 
[8-11]. Among the conducting polymers, polyaniline 
(PANI), has attracted the interest of the researchers be-
cause of its good stability in air [12], simplicity of dop-
ing [13], improved electronic properties [14], electro 
chromic effect [15], well behaved electrochemical prop-
erties [16,17] and moderately high conductivity in the 
doped state [18]. The changes in electrical and optical 
properties with interaction of oxidizing or reducing 
agents make them suitable for sensing applications. 
However, the difficult processability and poor thermal 
stability of PANI has to overcome for the successful ap-
plication in sensors. In order to overcome this obstacle, 

different strategies for synthesis of PANI with colloids 
are a better alternate. Better processability may be 
achieved either by the synthesis on PANI in nano �– mi-
cro scale particle, which are easier to disperse in a poly-
mer matrix or by using an appropriate emulsifier which 
enhance the optical and electrical properties of PANI. 
Polymeric stabilizers (surfactant) affect the polymeriza-
tion condition, kinetics, and also the final properties of 
the polymer [19,20]. Surfactants used as additives during 
the polymerization of aniline to effect the locus polym-
erization by using the emulsion [21,22] or inverse emul-
sion [23-25] pathways, and thus to modify the molecular 
and supermolecular structure of the resulting PANI, and 
to improve the properties of the PANI with respect to 
conductivity, stability, solubility in organic solvents, and 
processibility. Surfactants have important implications in 
wetting, formation of foams, etc., in addition to aggrega-
tion of surfactants at interfaces [26]. Polymeric nanos-
tructures are formed on surfaces due to combination of 
interfacial, intra- and intermolecular forces [27].  
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Surfactants affect the preparation of PANI in three 
ways: 1) the presence of surfactant micellar and aqueous 
phases, thus altering the locus and the course of polym-
erization [23,28], 2) anionic surfactants may act as 
counter ions for conducting-polymer polycations, and 3) 
the hydrophobic part of the surfactant molecules may 
adsorb on the produced conducting polymer, a surfactant 
thus becoming a part of the resulting material. The role 
of non-ionic surfactants, e.g. those based on poly (ethyl-
ene oxide) and Triton X-100 (TX-100) are less frequent 
and those dealing with cationic types are rare in the lit-
erature [29-31]. The nonionic surfactant Triton X-100 
(TX-100) is a commercial product obtained by ethoxyla-
tion of p-(1,1,3,3-tetramethylbutyl) phenol and contains 
9.5 oxyethylene units per molecule [32]. There are sev-
eral theoretical [33-35] and experimental [31] studies 
concerning micellar properties of the TX100 system. 

PANI with TritonX-100 chemical synthesis has been 
reported [36,37]. However, no attempts have been made 
electrochemically polymerization towards the prepara-
tion of conductive thin film of PANI with the nonionic 
surfactant i.e., Triton X-100. In this study, we are re-
porting electrochemical polymerized conductive thin 
film of PANI-Triton X-100, [4-(1,1,3,3-tetramethylbutyl) 
phenyl polyethylene glycol, TX-100]. The effect of the 
nonionic surfactant i.e., TX-100 on the electropolymeri-
sation of aniline (An), at different surfactant ratios and 
potential windows is investigated. The doping of TX-100 
changes the surface morphology of PANI. It is also 
found that electrical conductivity of PANI-TX-100 was 
better then that of PANI and governed by changing the 
concentration of surfactant during the polymerization of 
aniline. The present methods have been simpler, less 
expensive and more convenient route to electrochemi-
cally synthesize PANI nanostructures with tunable elec-
trical properties. 
 
2. Experimental Section 
 
2.1. Materials and Methods 
 
Hydrochloric acid (32%) and aniline monomer (99.5%) 
of analytical grade were purchased from Fluka, India, 
respectively. Nonionic surfactants i.e., TritonX-100 
(TX-100, 99%) was purchased from Sigma Aldrich, 
USA. Other chemicals, NaH2PO4·H2O, Na2HPO4, HCl, 
and NaOH were from Fisher. Aqueous solutions were 
prepared using analytical grade regents and 18Mcm- 
resistance water (NANO pure Diamond, Barnstead, Du-
buque, IA). Sodium phosphate buffer solution (50 mM, 
pH 7.0, containing 0.9% NaCl) was prepared and used as 
common supporting electrolyte for cyclic voltametry 
experiments. Most measurements were carried out in a 

phosphate buffer (50 mM, pH 7.0, containing 0.9% NaCl) 
supporting electrolyte medium. Electrochemical polym-
erization and cyclic voltametric measurements were car-
ried out using Potentiostate/Glavan-ostat (Princeton Ap-
plied Research model). 

 
2.2. Thin Film Formation  
 
Polymerization of aniline on ITO electrode was carried 
out by electrochemical methods by applying an appro-
priate oxidation potential. In this study, chronoam-
perommetry method has been used for film formation by 
adjusting potential at �–0.2 to 0.9mV in 150 seconds from 
solutions containing 0.2M aniline into 1M HCl solution 
prepared in 10mL of de-ionized water. Aniline in elec-
trolyte was added to support electrochemical polymeri-
zation of TritonX-100 at different (0.05, 0.1, 0.2, and 0.4 
M in 0.2 M aniline based 1M HCl solution). The active 
electrode surface area for sensor was 0.25cm2 which was 
controlling by placing a physical mask during thin film 
formation. 
 
2.3. Surface Characterization 
 
The structural properties of electrochemically polymer-
ized PANI�–TX-100 films have been characterized using 
Fourier Transform Infrared spectrophotometer (Perkin 
Elmer) in the frequency range from 400 - 4000 cm�–1. 
UV-visible spectrophotomer (Ocean Optics) in the 
wavelength range from 300 - 1000 nm is used to study 
the optical properties of deposited thin films. The surface 
morphology of thin film was investigated using Atomic 
Force Microscopy (AFM). Atomic Force Microscopy 
(AFM, Digital Instruments, Multi mode III) was used 
under the tapping mode. The surface conductivities of 
rectangular materials pallet were measured using 
four-point probe method by Kithley four-probe system 
with 224 programmable current source, 181 nano 
voltameter and 195A digital multimeter. 
 
3. Results and Discussion 
 
3.1. Optical Properties 
 
The UV-visible absorption spectra of electrochemically 
polymerized thin film of PANI doped with HCl and 
TX-100 is shown in Figure 1(A). The absorption band at 
320 nm is attributed to the - * transition within benzoid 
segment (excitation of the nitrogen atom in benzoid 
segment) and at 420 nm is related to the polaron band - 
* transition in of PANI (protonation in PANI backbone, 

polaron/bipolaron transition that occurred in doped 
PANI). The absorption band at 850 nm is assigned to the  
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- localised polaron bands of doped PANI in its emar-
aldine salt form (conductive emaraldine salt state of 
PANI is represented by the letter two absorption bands) 
[8-11]. The absorption band at 320 nm and 440 nm are 
merged with the broadness in PANI-TX-100 and shifted 
towards the higher wavelength. The broadness and the 
intensity of merged absorption band increases on further 
increasing the amount of TX-100 during the polymeriza-
tion. This may be due to the overlapping of absorption 
band due to the - * electronic transition in PANI and 
TX-100 and affinity of TX-100 with PANI matrices. 
This also may be due to the interaction of TX-100 with 
the benzoid ring system of PANI. This interaction of 
TX-100 with PANI will support conjugation (i.e., delo-
calization of electron in the polymeric network of PANI) 
and decrease the band gap of PANI. A little shift in the 
absorption band at 850 nm towards the lower wavelength 
is observed with the introduction of TX-100 into the 
polymeric network of PANI. The intensity of this ab-
sorption band is increases on further increasing the 
amount of TX-100. This shows that TX-100 stabilized 
the quinoid ring system of PANI and PANI-TX-100 is 
found in the doped state.   

Figure 1(B) shows the infrared transmission spectrum 
of electrochemically polymerized thin film of PANI-HCl 
and PANI-TX-100 in the frequency range from 800 to 
1700 cm�–1. The infrared peak at 1570 and 1469 cm�–1 are 
assigned to the non-symmetric vibration mode of C=C in 
quinoid and benzenoid ring system in polyaniline respec-
tively. The C-N stretching vibration mode in aromatic 
amine nitrogen (quinoid system) in doped polyaniline is 
observed at 1297 cm�–1, which is corresponds to the oxi-
dation or protonation state of emareldine salt form [9,10]. 

The absorption band at 1237 cm�–1 is attributed to C-N 
stretching vibration mode in benzenoid ring system of 
polyaniline assigned to conducted protonated form. The 
absorption band at 1156 cm�–1 is assigned to in-plane vi-
bration of C-H bending vibration mode in N = Q = N, 
Q-N+H-B or B-N+H-B (where Q = quinoid and B = ben-
zenoid). This absorption band should occur during the 
polymerization i.e., polar structure of the conducted pro-
tonated form. The absorption bands at 884 and 816 cm-1 
are attributed to the aromatic ring and out of plane C-H 
deformation vibrations for 1,4-disubstituted aromatic 
ring system. The infrared spectrum of PANI-TX-100 
consist the entire absorption band, markers of PANI 
along with the characteristics infrared band markers of 
TX-100 at 1600, 1460, 1351, 1298, 1246, 1184, 1124 
and 953 cm�–1. The infrared markers at 1246 cm-1 of 
PANI are retained in PANI-TX-100 with the sharp inten-
sity. It means TX-100 is doped inside the polymeric 
network of PANI and may enhance the properties of re-
sulting polymer. The doping of TX-100 may also be 
proved by the breading of infrared absorption at 1124 
cm�–1 (corresponding to ether linkage in TX-100 
PANI-TX-100. The small shift in the peak position and 
intensity might be due to the level of doping and nature 
of dopant in the resulting polymeric network of PANI. 
The shift in the peaks position of PANI towards the 
lower wavenumber by introducing the TX-100 is may 
due to the weak interaction forces (hydrogen bonding 
and vander Waal forces etc.) between TX-100 and PANI 
matrices. TX-100 supports the polymeric network of 
PANI this is proving by the shift in the absorption bands 
at 884 and 816 cm�–1 towards the higher wave number. 
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Figure 1. (A) UV-vis spectra electrochemically polymerized thin film of (a) PANI-HCl/ITO (b) PANI-TX100/ITO (0.05M) 
and (c) PANI-TX100/ITO (0.1M) and (B) FTIR spectra electrochemically polymerized thin film of (a) PANI-HCl/ITO (b) 
PANI-TX100/ITO (0.05M) and (c) PANI-TX100/ITO (0.1M) 
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3.2. Atomic Force Microscopy  

The surface morphology of electrochemically deposited 
thin film is shown in Figure 2(a) PANI (b) 
PANI-TX-100 (0.05M) and (c) PANI-TX-100 (0.1M) 
investigated using AFM. The AFM micro images shows 
that TX-100 are uniformly dispersed as hexagonal closed 
packing into the PANI matrices and TX-100 phase and 
PANI phase are found to be strictly interconnected with 
no major macroscopic phase separation. This proves that 
incorporation of TX-100 change the surface morphology 
of PANI i.e., plane morphology changes into the rough 
surface. This changed morphology of PANI with em-
badation of TX-100 in PANI matrices may use in sensing 
applications. 

3.3. Scanning Electron Microscopy 

The surface morphologies of (a) PANI/ITO, (b) 
PANI-TX100/ITO (0.05M) electrode and (c) PANI- 
TX100/ITO (0.1M) electrodes have been investigated 
using Scanning Electron Microscopy (SEM) respectively. 
SEM of PANI film shows porous non-uniform sponge 
like, rough structure (Figure 3(a)) wherein, a new regu-
lar cage like network appears after the introduction of 
TX-100 in PANI backbone (Figures 3(b) and 3(c)) sug-
gesting that TX-100 is uniformly distributed in PANI 
matrix. After the increase of TX-100, cage like mor-
phology of PANI-TX-100 has been changes into another 
regular uniform porosity form resulting due to coverage 

of available active cites on PANI film surface by TX-100. 
It may be noted that the affinity of TX-100 is very strong 
with PANI and its incorporation in PANI. The porous 
surface morphology has suitable advantage for enzymes 
and antibodies immobilizations are expected to adsorb 
strongly on the surface of PANI-TX-100.  
 
3.4. Electrical Conductivity Measurements 
 
The results of electrical conductivity electrochemically 
polymerized PANI thin film prepared in the presence of 
nonionic surfactants TX-100 are summarized in Table 1. 
An increase in the electrical conductivity of PANI is ob-
served on further increasing the concentration of TX-100 
during the polymerization of aniline. It�’s suggested the 
electrochemical process for PANI is based on radical 
cation intermediate coupling and the surfactant mole-
cules provide a hydrophobic effect preventing the poly-
mer degradation, and thus improving the degree of 
structural order of PANI film [38]. The TX-100 may 
neutralize or stabilized the polymer chain that may en-
hance the polarons transfer, which leads to increase in 
conductivity. Thus the increase in the electrical conduc-
tivity of PANI �–TX-100 is due to the doping of TX-100 
in the polymeric network of PANI that may support the 
delocalization of electron within the PANI metrices. This 
change in the electrical conductivity with concentration 
of dopant proves that TX-100 doped PANI may be used 
as a sensing material.  

 

 
Figure 2. Atomic Force Microscopic images of (a) PANI-HCl/ITO (b) PANI-TX100/ITO (0.05M) and (c) PANI-TX100/ITO 
(0.1M) 
 

 
Figure 3. Scanning electron microscopy images of (a) PANI-HCl/ITO (b) PANI-TX100/ITO (0.05M) and (c) PANI- 
TX100/ITO (0.1M). 
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Table 1. Electrical conductivity of PANI and PANI-TX-100 thin film on to indium-tin-oxide probe. 

S. No. Matrix Added (TX-100) Temperature 
(C) Electrical conductivity 

1 PANI-HCl No TX-100 30C 2.36 × 10�–3 S/cm 
2 PANI-TX-100 0.05 M 30C 1.06 × 10�–2 S/cm 
3 PANI-TX-100 0.1 M 30C 1.38 × 10�–2 S/cm 
4 PANI-TX-100 0.2 M 30C 2.59 × 10�–2 S/cm 
5 PANI-TX-100 0.4 M 30C 4.95 × 10�–2 S/cm 

 
3.5. Cyclic Voltammogram Analysis 
 
In the Figure 4 shows CV of PANI and PANI-TX-100 
matrix at PBS (50mM, pH 7.0, containing 0.9% NaCl) at 
constant 30 mVs�–1 scan rate. The PANI layer was seen to 
be redox active in the potential region �–200 to +900 mV 
was studied, exhibiting three sets of redox peaks. Ini-
tially, the oxidation of aniline occurred at approximately 
+800 mV resulting due to nucleation of PANI. During 
subsequent scans the oxidation of aniline occurred at 
lower potentials due to the catalytic effect of PANI, 
which resulted in deposition of polymer on the electrode 
surface. Redox couples peaks were attributed to intrinsic 
redox processes of the polymer itself. The redox couple 
peak occurred at approximately +200 mV and is attrib-
uted to the transformation of PANI from the reduced 
leucoemeraldine (LE) state to the partially oxidized em-
eraldine state (EM). The redox couple peak at approxi-
mately +800 mV corresponds to transition of the PANI 
from LE to pernigraniline (PE) state, and is accompanied 
by the oxidation of aniline monomer [39]. The redox 
couple peak at approximately +500 mV, which is ge-
neally attributed to the redox reaction of p-benzoquinone  
 

-200 0 200 400 600 800

-2

-1

0

1

2

3

4
0 2 4 6 8 10

C
ur

re
nt

(A
)

Potential (mV)

(a)

(b)

(c)

-200 0 200 400 600 800

-2

-1

0

1

2

3

4
0 2 4 6 8 10

C
ur

re
nt

(A
)

Potential (mV)

(a)

(b)

(c)

 
Figure 4. Cyclic Voltammogram of (a) PANI-HCl/ITO (b) 
PANI-TX100/ITO (0.05M) and (c) PANI-TX100/ITO (0.1M) 
using as supporting electrolyte PBS (50mM, pH 7.0, con-
taining 0.9% NaCl). 

[40], is less intense. The cathodic and anodic peak posi-
tions of PANI-TX-100 thin film shifted and increase the 
charge transfer appreciably corresponding to PANI-HCl 
are shown in the curve (b). This increase in current was 
due to fast redox process at PANI-TX-100 matrix surface. 
Difference between cathodic (Epc) and anodic peak (Epa) 
shift ( Ep = Epa - Epc) was use to determine the kinetics 
of electron transfer in these matrixes. This may be due to 
electrostatic interactions between the head group of 
TX-100 and charged aniline at the hydrophilic interface 
of the micelles.  

4. Conclusions 

Electrochemical polymerization process was used for 
stable thin film deposition of TX-100 with PANI. 
TX-100 molecules in PANI had enhanced charge transfer 
and current voltage characteristics at electrode interface. 
Increases in oxidation peak current and enhanced broad-
ening were observed due to fast redox process in 
PANI-TX-100 matrix. UV-vis and FTIR spectroscopy 
confirms the interaction of TX-100 in PANI matrices. 
The electrical conductivity of PANI-TX-100 thin film 
increases on further increasing the concentration of 
TX-100 during the polymerization of aniline. AFM and 
SEM studies show the incorporation of TX-100 in PANI 
matrices that changes the surface morphology of PANI. 
The change in surface morphology and electrical con-
ductivity of PANI-TX-100 with the concentration of 
TX-100 shows the potential for sensing application. The 
electrical conductivity of PANI-TX-100 increases from 
1.06 × 10�–2 S/cm�–1 to 4.95 × 10�–2 S/cm�–1 as the amount of 
TX-100 increases during the polymerization. The elec-
trochemically synthesized PANI-TX-100 thin film en-
hances the electrical conductivity of PANI film and 
make suitable for sensing application. 
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