
Expedient Method for Oxidation of Alcohol
by Hydrogen Peroxide in the Presence
of Amberlite IRA 400 Resin (Basic) as

Phase-Transfer Catalyst

Nishi Bhati, Kuladip Sarma, and Amrit Goswami

Synthetic Organic Chemistry Division, North East Institute of Science

and Technology, Jorhat, Assam, India

Abstract: Amberlite IRA 400 (strongly basic), a classical polymer imparts phase-

transfer catalysis in the oxidation of primary and secondary alcohols by hydrogen

peroxide to give excellent yields of the corresponding carbonyl compounds or car-

boxylic acids in acetonitrile solvent at reflux temperature in 4–6 h. The catalytic

system is inert to other susceptible oxidation sites such as carbon–carbon double bonds
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Catalytic oxidation of alcohols to the corresponding carbonyl compounds and car-

boxylic acids is a highly desirable functional group transformation both in indus-

trial chemistry as well as in organic synthesis because of the wide-ranging utility

of these products as important precursors and intermediates for many drugs,

vitamins, and fragrances.[1,2] Historically such oxidations were carried out with

toxic oxo chromium(V) reagents,[3] pyridinium chlorochromate,[4] hypochlor-

ites,[5] permanganate,[6] oxidants, etc. Subsequent developments involved the

use of other oxidizing agents activated by different transition metals,[7,8] heavy

metals,[9] halides,[10] dimethyl sulphoxide (DMSO),[11] hypervalent iodines

such as Des-Martin-Periodate,[12] etc. However, these reagents are either toxic,

hazardous to handle, cannot be stored because of their explosive nature, or
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sensitive to other susceptible sites apart from the target, and in some cases it is

cumbersome to recover the catalyst from the products. Quite a few reports[13–

16] have appeared using oxygen or hydrogen peroxide under different catalytic

conditions for such purposes, but these are not devoid of many problems.

Keeping in mind the different problems associated with the reported methods

and taking the mandatory environmental considerations into account, it was

deemed desirable to have a recyclable catalytic system for oxidation of primary

and secondary alcohols using hydrogen peroxide as the oxidant because it is con-

venient and cheap and produces water as the only by-product.

RESULTS AND DISCUSSIONS

Because hydrogen peroxide is the desired green oxidant of choice[17] and also

because of our success[18] in the oxidative transformation of functional group,

we wanted to study the much-sought-after oxidation of primary and secondary

alcohols with hydrogen peroxide under the influence of a suitable catalytic

system that is recyclable and hence economical, mild and efficient. Among

the polyoxometallic compounds, sodium tungstate is considered as ecologi-

cally benign[19] and suitable to activate hydrogen peroxide (Scheme 1).

Therefore, we studied the oxidation of several primary and secondary

aliphatic and aromatic alcohols with hydrogen peroxide (30%) using sodium

tungstate in the presence of strongly basic amberlite IRA-400 resin in chloride

form. The use of basic amberlite IRA-400 resin has two advantages. First, it

acts as a phase-transfer catalyst (PTC), and second, it can very easily be

separated out from the reaction mixture as it remains in the solid form. The

molar ratio of the substrate–hydrogen peroxide–sodium tungstate was 10:40–

60:1. Sodium tungstate needs activation prior to its participation in the

oxidation reaction. Reaction was therefore performed by first stirring together

sodium tungstate and hydrogen peroxide (30%) in the presence of a little

dilute sulfuric acid for about 30 min at room temperature at pH 1.5 followed

by addition of the substrate, amberlite resin, and more of hydrogen peroxide in

acetonitrile. It was refluxed for 4–6 h to give a good yield of the carbonyl

products. The catalyst Na2WO4 was first oxidized by hydrogen peroxide to bis-

peroxotungstate complex (A), which is feebly active towards alcohols

(Scheme 2). However, at pH 1.5, this peroxo complex was converted to the

Scheme 1.
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monoprotonated active form (B), which remains in equilibrium with the diproto-

nated form (C). The diprotonated bisperoxo complex (C) present as minor

component is reactive in the homogenous phase but unable to move into the

organic phase. The dominant active monoprotonated complex (B) formed at

pH 1.5 moves into the organic phase by the exchange of its anionic part with

the chloride anion of the basic resin (QþCl2, Qþ ¼ ammonium cation on

styrene divinylbenzene matrix) and oxidized the substrate alcohol to the corre-

sponding carbonyl compound. The requirement of acidic pH is therefore

advocated for the formation of the active monoprotonated bisperoxotungstate

complex (B), and the basic resin has no role to play at this stage but is

essential at the later stage to bring it to the organic phase through exchange

and carry forward the oxidation.

When this reaction was carried out[20] in the presence of a strongly acidic

resin (amberlite IR 120 resin, sulphonic acid group on styrene divinylbenzene

matrix), the entire reaction followed a different course to form phenolic

compounds from the benzylic alcohols, which is under further investigation.

The reaction was studied in a series of solvents to check the efficiency in

terms of product yield, time duration, and temperature (Table 1) with three

Scheme 2.

Table 1. Oxidation of alcohols to carbonyls in different solvent systems using

Na2WO4, H2O2 (30%) and amberlite IRA-400 resin (strongly basic)

Entry Solvent Time (h) Temperature (8C)

Yield (%)b

7 10 14

1 Dichloromethanea 120 42 — — —

2 Dichloroethane 8–16 80 81 87 90

3 Acetonitrile 4–6 80 86 93 96

4 Ionic liquid 7–10 50 75 80 83

5 Water 12–16 90 73 79 81

aProducts were not isolated.
bIsolated yield.
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representative substrates, viz cyclohexanol, 1-phenylethanol, and benzhydrol

(7, 10, and 14, Table 2). Although the reaction does not take place at all in

dichloromethane, it gives the best yield in acetonitrile at reflux temperature

in half the time (4–6 h) as water and dichloroethane (8–16 h). On the other

hand, the reaction in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate

Table 2. Oxidation of primary and secondary alcohols to carbonyls and carboxylic acids

Entry Substrate Producta

Reaction condition

Alcohol–H2O2–

Na2WO4

Time

(h)

Yield

(%)b

1 Benzyl alcohol Benzaldehyde 10:50:1 4 83

2 4-Methoxybenzyl

alcohol

4-Methoxy

benzaldehyde

10:50:1 4 79

3 4-Nitrobenzyl

alcohol

4-Nitro

benzaldehyde

10:50:1 4 81

4 4-Chlorobenzyl

alcohol

4-Chloro

benzaldehyde

10:50:1 4 80

5 Cinnamyl alcohol Cinnamaldehyde 10:50:1 4 73

6 Cyclopentanol Cyclopentanone 10:40:1 5 84

7 Cyclohexanol Cyclohexanone 10:40:1 5 86

8 2,6-Dimethyl

cyclohexanol

2,6-Dimethyl

cyclohexanone

10:40:1 6 78

9 4-tert-Butyl

cyclohexanol

4-tert-Butyl

cyclohexanone

10:40:1 6 63

10 1-Phenyl ethanol Acetophenone 10:60:1 5 93

11 1-(4-iso-Butyl)-

phenyl ethanol

4-Isobutyl

acetophenone

10:60:1 6 87

12 Benzoin Benzil 10:40:1 6 87

13 Cholesterol 5-Cholesten-3-one 10:60:1 6 73

14 Benzhydrol Benzophenone 10:60:1 4 96

15 Octanol Octanoic acid 10:60:1 6 85c

16 Hexanol Hexanoic acid 10:60:1 6 90c

17 Borneol (+)-Camphor 10:60:1 6 61

18 2-Methyl-1-

butanol

2-Methylbutyric

acid

10:60:1 6 81

19 4-Hydroxy-3-

methoxybenzyl

alcohol

Vanillin 10:60:1 4 75

20 Pregnenelone Pregn-5-ene-3,20-

dione

10:60:1 5 73

aThe products were identified by comparison of physical and spectroscopic data with

the authentic samples.[8b,10d,21,22]

bIsolated yield.
cRemaining ester.
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was completed within 7–10 h at 50 8C with 75–83% yield. It is clear from

Table 2 that most substrates underwent direct oxidation to give the correspond-

ing aldehydes, ketones, acids, and esters in excellent yields. The oxidation of

aliphatic as well as aromatic secondary alcohols (6–12, 14, Table 2)

proceeded with high efficiency to give ketones, and the primary aromatic

alcohols proceeded with moderate efficiency to give aldehydes (1–5, 17, 19,

Table 2). The primary aliphatic alcohols (15, 16, 18, Table 2) underwent

oxidation to provide synthetically and commercially useful acids or esters.

The resin that functions as the PTC does not require any regeneration and

hence can be used along with the aqueous layer containing the metal catalyst

for more than five runs without any appreciable loss of activity, as no structural

change was observed. This is confirmed from the observation of superimposable

IR spectra of fresh IRA amberlite 400 resin, and the resin was isolated after use

more than five times (Fig. 1). The polymeric basic amberlite resin PTC with

sodium tungstate as the activator for hydrogen peroxides has the advantage

that C55C double bond present in any alcohol substrates is left untouched

(5 and 20, Table 2). The untouchability of the C55C bond by this oxidizing

system is further observed when the synthesis of an important pregnan series

steroidal hormone progesterone (20d) was undertaken as a part of our

continued effort[23] for preparation of different corticosteroid drug intermedi-

ates. Thus, during the oxidation of the secondary hydroxyl group in the

3-position of pregnenolone (20b) by the Oppenauer reaction (Scheme 3), the

5,6 double bond is shifted to the 4,5 position (appeared at dH 5.70 ppm) to

give progesterone[24] with the stable a,b conjugated enone form. However,

when pregnenolone (20b) was oxidized with hydrogen peroxide and sodium

Figure 1. Superimposable IR spectra of fresh amberlite IRA 400 resin (basic) (A) and

the resin isolated after use (B).
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tungstate with amberlite basic resin, no shift of this double bond at the 5,6

position (appeared at dH 5.23 ppm) was observed in the product pregn-5-ene-

3,20-dione (20c). Pregn-5-ene-3,20-dione is a very important intermediate for

preparation of different 17a-substituted 5-ene-3,20-dione corticosteroid[25]

drugs.

In summary, we have described an expedient method for oxidation of

primary and secondary alcohols by hydrogen peroxide using amberlite IRA

400 resin in chloride form (strongly basic) and sodium tungstate as catalyst.

This method is high yielding, clean, safe, operationally simple, and cost-

effective and can be exploited successfully for large-scale industrial pro-

duction of carbonyl compounds by recycling the catalytic system.

REPRESENTATIVE EXPERIMENTAL PROCEDURE

Sodium tungstate (0.329 g, 1 mmol) was stirred with dil. H2SO4 (0.5 mL, pH

1.5) and H2O2 (30%, 6.8 mL, 0.06 mol) in a 50-mL flask for 30 min. Then

resin (0.1 g, ,1% of the total reaction volume) and diphenylmethanol

(1.84 g, 10 mmol) in acetonitrile (15 mL) were added to the reaction

mixture. The resultant was then heated to 80 8C. The aliquots of the

reaction mixture were taken at different time intervals and monitored by gas

and thin-layer chromatography (TLC). After about 4 h the reaction mixture

was cooled to room temperature. The solid resin was filtered, and the

solvent removed under reduced pressure. The residual aqueous layer was

extracted in ethyl acetate (50 mL) and then washed with water

(3 � 10 mL), at which time no residual peroxide was detected in the

organic phase. It was dried over anhydrous sodium sulphate and concentrated

under reduced pressure. The residual crude reaction mixture was purified by

silica-gel column chromatography using 20% ethyl acetate in pet. ether

(40–60 8C) as eluent to give the pure ketone benzophenone (1.75 g, 95%).

The catalyst (amberlite resin) was washed thoroughly with ethyl acetate and

dried at 100 8C for 2 h. The same catalyst and aqueous layer were then used

Scheme 3. Synthesis of progesterone and pregn-5-ene-3,20-dione: (i) Pd-C/H2, rt,

8 h; (ii) KHSO4–SiO2–MeOH, 64 8C, 4 h.[26]; (iii) H2O2–Na2WO4–amberlite IRA-

400 (resin), 80 8C 6 h; (iv) Oppenauer oxidation; (v) (COOH)2–EtOH, 3 h.[25a]
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for other different substrates. The reaction carried out under triphase catalysis

in other organic ionic solvents and water was worked up in an analogous

manner to isolate the products from the organic phase. Similarly the other

substrate alcohols were oxidized to the corresponding carbonyl derivatives

(Table 2).
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