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Recent Developments on the Carbamation of Amines
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Abstract: Organic carbamates represent an important class of compounds showing various interesting properties. They find wide utility 
in various areas as pharmaceuticals, agrochemicals (pesticides, herbicides, insecticides, fungicides etc.), intermediates in organic synthe-
sis, protection of amino group in peptide chemistry, and as linker in combinatorial chemistry etc. Classical synthesis of carbamates in-
volves use of harmful reagents such as phosgene, its derivatives and carbon monoxide. Recently, various kinds of synthetic methods have 
been developed for the synthesis of organic carbamates. In the present review, I would like to highlight the recent developments on the 
synthesis of organic carbamates using variety of reagents.  
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1. INTRODUCTION  

Organic carbamates are the stable class of compounds derived 
from the unstable carbamic acid (H2N-COOH) by the substitution 
of amino and acid ends through the various kinds of structurally 
diverse alkyl/aryl, aryl-alkyl or substituted alkyl/aryl and aryl-alkyl 
groups, and are identified by the presence of the linkage O-CO-NH- 
[1, 2]. When the carbamate linkage is present in a cyclic system, 
this class of compounds is referred to as cyclic carbamates [3]. 
When the carbamate group is attached with any inorganic atom 
either metal or non metal, such compounds are referred to as inor-
ganic carbamates [4].  

The reaction of carbamation of amines has frequently been util-
ized in the synthesis of organic carbamates which holds unique 
applications in the field of pharmaceuticals [5], agrochemicals (pes-
ticides, herbicides, insecticides, fungicides etc.) [6], intermediates 

in organic synthesis [7], for the protection of amino groups in pep-
tide chemistry [8], as linkers in combinatorial chemistry [9] etc.
Functionalization of amines as carbamates offers an attractive 
method for the generation of derivatives, which may have interest-
ing medicinal and biological properties [10]. Organic carbamates 
have been extensively used as useful synthons for the synthesis of 
structurally diverse synthetic intermediates/molecules of biological 
significance [11]. Therefore, considerable interest has been gener-
ated in the recent past for the development of efficient and safe 
methodologies for carbamate esters synthesis.  

Organic carbamates have frequently been employed as de-
mandable pharmaceuticals in the forms of drugs and prodrugs [12].
In recent years, several reports have indicated that carbamate link-
age present in between the active pharmacophores of various struc-
turally diverse molecules increases manifold biological activities of 
semisynthetic/synthetic natural/synthetic molecules [13]. Further-

OAcO

OHOOH

O

O

O

NHO

O
R1

R3

R2

OH

O

OH

Taxol analogues: anticancer drugs

N

N
OH3CHN

O

Physostigmine: Anti-alzheimer drug

N O

O

NO

NH

O

F
Linezolid: Antibacterial drug

O NHCH3

O

Carbaryl: Insecticide

S

N

N

O
NH2

O

N

Cl

Cl

Capravirine: anti-HIV

Fig. (1). Biologically active drug molecules bearing carbamate linkage.

*Address correspondence to this author at the Natural Products Chemistry Division, North-East Institute of Science and Technology (CSIR), Jorhat-785006, Assam, India; Tel: -------
----------; Fax: 91-376-2370011; E-mail: devduttchaturvedi@gmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IR@NEIST - North East Institute of Science and Technology (CSIR)

https://core.ac.uk/display/234671342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1594    Current Organic Chemistry, 2011, Vol. 15, No. 10 Devdutt Chaturvedi 

more, the role of carbamate linkage have been extensively studied 
in structurally diverse natural/semisynthetic molecules against vari-
ous disease such as anti-cancer, anti-bacterial, anti-fungal, anti-
malarial, anti-viral, anti-HIV, anti-estrogenic, anti-progestational, 
anti-osteoporosis, anti-inflammatory, anti-filarial, anti-tubercular, 
anti-diabetic, anti-obesity, anti-convulsant, anti-helminthes, Alz-
heimer disease, CNS and CVS active etc [14, 15, 13, 5]. Some of 
the important biologically active drug molecules bearing carba-
mates have shown in Fig. (1). 

2. CLASSIFICATION OF CARBAMATES 

Carbamates can be mainly classified into two groups, namely 
inorganic and organic. Depending upon the structural variations on 
the attached moieties they are further classified as shown in Fig.
(2).

3. METHODS OF PREPARATION 

3.1. Phosgenation Technique  

Phosgene (1) is a potentially useful, versatile building block in 
organic synthesis [16]. It offers the possibility of binding two nu-
cleophilic units to the same carbon atom and such two-component 
system is particularly well suited for the combinatorial synthesis of 
carbonate, ureas and carbamate (Scheme 1). Phosgene is extremely 

toxic which limits its use. Safer substitutes have been proposed 
such as 1,1,1-Trichloromethylformate (Diphosgene, 2) [17], and 
bis-(1,1,1-trichloromethyl) carbonate (Triphosgene 3) [18], which 
are frequently used in recent years. Depolymerization of 3 into 1
has widely replaced phosgene by triphosgene, which is relatively 
safer to use [19]. Thus, carbamates 6 synthesis has been achieved 
through the reaction of an amine 4 with an alcohol 5 using either 1,
or 2 or 3 as source of carbonyl equivalent (Scheme 1).
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Chloroformates and isocyanates are intermediates produced 
from phosgene, have frequently been employed in the synthesis of 
organic carbamates. Chloroformates [20] 7, can be obtained through 
the reaction of alcohol/phenol 5 with phosgene 1, reacts with 
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amines/substituted amines 4 (i.e. aminolysis) afforded carbamates 
[21] 6 (Scheme 2). Carbamates synthesis through the chlorofor-
mates route has been achieved using different reaction conditions 
such as use of strong bases [22] (NaOH, NaHCO3, Et3N, pyridine 
and triphenylphosphene), metals [23], ultrasound [24],
bis(trimethylsilyl)acetamide [21] in combination with azides [23]. 
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7 615
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Scheme 2. 

In recent years, there has been much attention on the synthesis 
of carbamates using chloroformates as key intermediate. Thus, 
Pandey et al have reported [25] an efficient synthesis of carbamates 
6 through the reaction of variety of amines 4 with chloroformates 7
using catalytic amount of Yttria-Zirconium based Lewis acid cata-
lyst (Scheme 3).  

RNH2  + ClCOOR1 RNHCOOR1

Yttria-zirconia based 
Lewis acid catalyst

r.t., 5 min-6h, 88-96%4 7 6

Scheme 3. 

Later on, Mormeneo et al have reported [26] a versatile method 
for the synthesis of carbamates 6 through an in-situ generated 
polymer supported chloroformate resin 9. Bis-trichloromethyl car-
bonate (BTC) has been used as a phosgene equivalent to afford a 
supported chloroformate 9, which on sequential one-pot reaction of 
variety of alcohols 5 with amines 4 afforded the corresponding 
carbamates 6 in high yields (Scheme 4).  

Raje et al have reported [27] an efficient, one-pot synthesis of 
N-substituted (3-oxobutyl) carbamates 12, via tandem condensation 
of primary amines 4, with methyl chloroformate 7 followed by the 
conjugate addition of the resulting carbamates with methyl vinyl 

ketone 11 in the presence of Sn4+ modified Zeolite H� (H�-SnA) at 
room temperature (Scheme 5).
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More recently, Kim and Jung have reported [28] a simple and 
efficient synthesis of carbamates 6, through reacting equimolar 
amounts of amines 4, chloroformates 7, and Indium metal (Scheme 
6). Thus, carbamates of structurally diverse substituted aliphatic, 
aromatic, heterocyclic amines were prepared using various kinds of 
chloroformates.  
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Scheme 6. 

Isocyanates [29] 13, obtained through the reaction of phosgene 
1 and amines 4, react with hydroxy compounds 5 (i.e. alco-
hols/phenols) afforded the corresponding carbamates (Scheme 7)
[30]. Polyurethanes [31], the building blocks of isocyanates have 
been used in industry. Synthesis of carbamates starting from isocy-
anates could be achieved through the use of strong bases [32], and 
metal halides [33] etc. Carbamates could be converted into isocy-

anates by thermal decomposition at higher temperatures using dif-
ferent reaction conditions such as use of metal catalysts [34], 
chlorocatecholborane/boron halides with triethylamine [35], silanes 
[36], chlorosilanes [37], dichlorosilanes [38], Mitsunobu’s reaction 
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conditions [39], montmorillonite K-10 [40], Bi2O3 [41], and re-
cently used basic metal oxide nanoparticles [42] etc.

3.2. Reductive Carbonylation of Nitro-aromatics 

The reductive carbonylation of aromatic nitro-compounds 14 to 
the corresponding carbamates is an interesting approach towards 
synthesis of carbamates 15 (Scheme 8) [43]. The carbonylation 
reaction of nitro-aromatics is an exothermic reaction and is cata-
lyzed by palladium, ruthenium, and to a lesser extent rhodium. Fur-
thermore, platinum [44], iridium [45], and iron [46] have also been 
reported to be active in this reaction.  
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Scheme 8. 

For a reductive carbonylation of aromatic nitro-compounds car-
ried out in alcohol, it might generally be considered that the carba-
mate 15 is formed by reaction of aromatic isocyanates ArNCO, 
with an alcohol R-OH, outside the coordination sphere of the metal 
[47]. However, Cenini has found in the case of Ru3 (CO)12 with 

NEt4Cl as a cocatalyst that the alcohol participates in the catalytic 
cycle, since when it was absent, practically no isocyanate was ob-
tained (Scheme 9).

Several reports have been published by Gladfelter and Cenini 
giving more insight into the mechanism of the catalytic cycle of the 
rhodium and ruthenium catalysts. Gladfelter [48] has proposed a 
mechanism using Ru(dppe) (CO)3 16 (dppe = bis(diphenyl-
phosphene)-ethane as a catalyst, in which an aromatic amine 4 is 
suggested as a linker intermediate (Scheme 10).

Very similar results were obtained by Cenini using [(PPh3)2N] 
[Rh(CO)4] 22 as a catalyst (Scheme 11) [49]. 

Most previously reported catalytic systems for the reductive 
carbonylation of aromatic nitro-compounds usually have employed 
corrosive Lewis acids and or a base [50] such as pyridine or triethy-
lamine in excess amounts. For example, supported palladium is 
inactive in the absence of a Lewis acid even in the presence of an 
excess of pyridine, whereas PdCl2 exhibits, good activity in the 
absence of Lewis acids but requires excess of base. Palladium (II) 
complexes of the type [Pd(Py)2Cl2] can catalyze the reaction at low 
Py:Pd ratio but the method requires promotors such as FeCl3 or 
MoCl5 and aprotic solvents such as chlorobenzene [51]. On the 
other hand reductive carbonylation of aromatic nitro-compounds 
could be catalyzed by palladium anchored to montmorillonite [52], 
supported Pd-1,10-phenanthroline derivatives in the presence of a 
Bronsted acid [53] Pd complexes with 1,10-phenanthroline deriva-
tives [54], and Pd heteropolyanion is an approach to this problem. 
In addition to this ruthenium carbonyl complexes such as Ru3
(CO)12 or Ru(CO)3(PPh3)2 are efficient homogeneous catalysts in 
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the reductive carbonylation of aromatic nitro-compounds to carba-
mates if additives such as alkylammonium salts [55] chelating 
ligands [56] or anilines [57] are used. Palladium [58] has been often 
applied as catalyst in the homogeneous and heterogeneous catalyst 
systems. Rhodium [59] catalysts also have been applied less often 
to the reductive carbonylation of nitrobenzene than ruthenium and 
palladium catalysts. 

Chandrasekhar et al have reported [24] an efficient protocol for 
the synthesis of carbamates 15 through reductive carbonyltion of 
aromatic-nitro compounds 14 with either (Boc)2O, or ClCOOEt 
using Sn/NH4Cl system under ultrasound radiation (Scheme 12).  

More recently, Tomkinson and coworkers have reported [60] an 
efficient protocol for the synthesis of N-aryl N-hydroxy carbamates 
28, through one-pot procedure involving zinc-mediated reduction of 
nitroarenes 14 in the presence of chloroformates 7 (Scheme 13).
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Scheme 13. 

3.3. Oxidative Carbonylation of Amines 

 Carbamates 6, have been prepared in good to excellent yields 
through the reaction of amines 4, alcohols 5, carbon monoxide and 
oxygen in the presence of novel metal catalysts. The metallic cata-
lysts used during the oxidative carbonylations are palladium [61], 

platinum and alkali metal halides [62], CO, Cu and Rh (Scheme 14)
[63]. Pd and Cu halides have also been employed as a catalysts 
during the oxidative carbonylation process [64].

R1NH2   +    CO  +    HOR2  + 1/2 O2
Metal catalyst

R2O NHR1

O

4 5 6

Scheme 14. 

Use of Iodine promoted Pd-catalyzed [65], and Gold-complex 
with triphenylphosphine [66] have also been reported in the synthe-
sis of carbamates (Scheme 15).  
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Scheme 15. 

Mizuno et al have reported [67] the synthesis of 2-
oxazolidinone derivatives in which 2-aminoethanols 29 were easily 
subjected to the thiocarboxylation with CO promoted by elemental 
sulfur followed by oxidative cyclization with molecular oxygen to 
afford the corresponding 2-oxazolidinones 30 in good yields under 
mild conditions (Scheme 16). 
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 Wan et al have reported [68] an efficient synthesis of carba-
mate esters 6, through the oxidative carbonylation of amines 4 with 
alcohols 5 using polymer-supported palladium manganese 
bimetallic catalyst (Scheme 17).

Ar-NH2  +  CO  +    ROH
O2

PVP-PdCl2-MXn
Ar-NHCOOR

4 5 6

Scheme 17. 

Later on, Shi et al have reported [69] a novel synthesis of car-
bamates 6 through the oxidative carbonylation of amines 4 with 
alcohols 5 using PdCl2/ZrO2-SO4

2-catalyst system at 170oC
(Scheme 18).

R-NH2  +  CO  +    R1OH
O2

R-NHCOOR1
PdCl2-ZrO2-SO44 5 6

Scheme 18. 

Shi et al have reported [70] an efficient and clean synthesis of 
carbamates 6 through oxidative carbonylation of aromatic amines 4
using polymer immobilized gold catalysts (Scheme 19).  

Ar-NH2  +  CO  +    ROH
O2

Au/Polymer
Ar-NHCOOR

4 5 6

Scheme 19. 

Later on, Shi et al have also reported [71] a high yielding effi-
cient carbonylation of amines 4 with variety of alcohols 5 using 
palladium complex-ionic liquid afforded carbamates 6. The desired 
products could be precipitated by adding water into the resulting 
reaction mixture and the catalysts system could be reused with 
slight loss of catalytic activity (Scheme 20).

Ar-NH2  +  CO  +    ROH
O2 Ar-NHCOOR

Pd(phen)Cl2-[Bmim]BF44 5 6

Scheme 20. 

Recently, Mei and coworkers have reported [72] the methyl N-
phenyl carbamates 6 through the oxidative carbonylation of aniline 
4, using a series of recoverable Co(salen) in zeolite Y as catalysts 
wherein Co(salen) complexes were successfully encapsulated in 
zeolite Y by a flexible ligand method (Scheme 21). They have stud-
ied the catalytic activity of various kinds of Co(salen) over zeolite 
based catalysts.  

Ar-NH2  +  CO  +    ROH
O2 Ar-NHCOOR

4 5 6Co(salen)in zeolite

Scheme 21. 

3.4. Using Metal/Non-Metal Carbonates/ Bicarbonates 

Carbonates and bicarbonates have been effectively employed 
for providing carbonyl functionality for the preparation of carba-
mates. Variety of metal carbonates such as potassium carbonate 
(K2CO3), sodium carbonate (Na2CO3), and cesium carbonate 
(Cs2CO3) has been used alone and in combination with different 

catalytic systems. Synthesis of carbamates 6 through the reaction of 
variety of secondary amines 4 with structurally diverse alkyl halides 
31 was achieved using K2CO3/tetra-n-butylammonium hydrogen 
sulfate (Scheme 22) [73]. This method produces carbamates 6 as a 
major product along with the minor amount of N-alkylated amines 
32.
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Scheme 22. 

Sodium carbonate have also been used in the synthesis of car-
bamates [74]. Moreover, this method was not efficient for produc-
tion of only O-alkylated carbamates 6 due to the exclusive forma-
tion of N-alkylated amines 32 (Scheme 23).
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Scheme 23. 

The role of Cs2CO3 in minimizing the synthesis of N-alkylated 
tertiary amines 32 during the one-pot, efficient synthesis of carba-
mates 6 from the corresponding alkyl halides 31 and amines 4 was 
first investigated by Butcher [75] (Scheme 24). He found that 
Cs2CO3 was much better than K2CO3 in yielding better yields of 
carbamates from their corresponding alkyl halides and amines. 
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Scheme 24. 

 Several bicarbonates have been used for the synthesis of car-
bamates. Of these sodium bicarbonate (NaHCO3) has found use in 
peptide chemistry [76]. Inesi and their coworkers have reported 
[77] the synthesis of linear carbamates 6 starting from correspond-
ing primary and secondary amines 4 and alkyl halides 31 using
tetra-ethylammoniumhydrogen carbonate (Et4NHCO3) as the car-
bonyl source (Scheme 25). The yields of carbamates were affected 
by the nature of alkyl halides used. They have further extended 
their methodology for the synthesis of cyclic carbamates 33 starting 
from the corresponding haloamines 34 using Et4NHCO3.  
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3.5. Syntheses of Carbamates Using Carbon Dioxide 

Carbon dioxide has been frequently used in its various condi-
tions and forms, as a cheap and safe alternative for the synthesis of 
carbamates [78], carbonates [79], and several other interesting or-
ganic transformations [80]. Carbamates synthesis using various 
forms of carbon dioxide such as gaseous, electrochemical, and su-
percritical has been achieved in recent years employing diversity of 
reagents and catalytic systems. 

3.5a. Gaseous Carbon Dioxide 

 Although carbon dioxide 35 has low reactivity [81] e.g. with 
amines 4 it forms unstable carbamic acids 36, which revert to their 
corresponding starting materials (Scheme 26).

R-NH2  +  CO2 R-NH-COOH

4 35 36

Scheme 26. 

However, Yoshida et al have reported [82] the synthesis of car-
bamates 6 starting from CO2 35, amines 4, and unsaturated ethers 
37 (Scheme 27). This method limits carbamates synthesis only from 
secondary aliphatic amines. Moreover, it requires longer reaction 
times (~70-80 h) and afforded low yields (3-12%). 

Later on, Yoshida et al have also reported [83] synthesis of car-
bamates 6 through the one-pot reaction of amines 4 with alkyl hal-
ides 31 using gaseous CO2 (Scheme 28). Carbamates obtained in 
this method are also limited to primary and secondary aliphatic 
amines, require longer reaction times (~45 h), and affording 6-25% 
yields. 
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~ 45h

6-25%

Scheme 28. 

Later on, Ishii et al have reported [84] the synthesis of carba-
mates 6 through the one-pot reaction of primary or secondary ali-
phatic amines 4 with ortho-esters 38 using gaseous CO2 (Scheme 
29). This method takes longer reaction times and afforded carba-
mates in low yields. 
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+ CO2

R1
N
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+
4 35

R3C(OR4)3
38 6

Scheme 29. 

Monocarbamates of 1,2-diols 40 have been synthesized [85] 
from the corresponding 1,2-epoxides 39 through the reaction of 
primary and secondary aliphatic amines using gaseous CO2

(Scheme 30). However, about half of the epoxide is lost due to the 
accompanying nucleophilic ring opening by the amine afforded N-
alkylated product 41.

Monocarbamates 40 could also be obtained [86] starting from 
an epoxide 39 using tetrakis(dimethyl)-titanium(IV) and gaseous 

CO2 (Scheme 31). But this method was not satisfactory due to its 
longer reaction time (~3-4 d), and low yields (5-20%).  

Similarly, chloromethyl oxirane 43 or phenyl oxirane 44 on re-
action with CO2 and aliphatic amines in methanol gave various 
kinds of substituted carbamates [87] in 2-17% yields (Scheme 32).

Later on, better yields have been reported by Yoshida et al 
through the reaction of various epoxides 50, with variety of amines 
4 using gaseous CO2 35 (Scheme 33) [88] However, this method 
suffers from leading to isomeric mixtures. 

Kojima et al have reported [89] carbamates synthesis from ep-
oxides 50, amines 4, and CO2 35, wherein the latter was previously 
fixed on an aluminium porphyrin (Scheme 34).
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Toda et al have reported [90] the synthesis of cyclic carbamates 
55 (i.e. oxazolidinones) through the reaction of carbon dioxide with 
�-bromoacylophenones 53 in the presence of aliphatic primary 
amines 4 in methanol afforded 3-alkyl-4-hydroxy oxazolidone-2 
derivatives 55 under mild reaction conditions (Scheme 35).  

This reaction led to the formation of bis(2-oxazolidinones) [91]
57 when 2-methoxy 3,3-dimethyl-2-phenyloxirane 54 or �-bromo-
i-butyrophenone 53 was reacted with CO2 and aliphatic �,�-
diamines 56 (Scheme 36). 
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Reaction of 2-(1-haloalkyl)-oxiranes 58 with carbon dioxide 
and aliphatic primary amines gave five-and six-membered cyclic 
carbamates 59 (Scheme 37) [92]. 

O
Br

R

R'NH-COONH3R' O N

O
R'

R

OH

O N

O

R'

R

OH

+

58

45

59a 59b

Scheme 37.

In the above reaction it was shown that there is an ionic species 
45 involved which is formed when 2 molar ratio of amine 4 was 
reacted with CO2 (Scheme 38).

45
2 RNH2  +  CO2 RNH-COONH3R

4 35

Scheme 38.

An improvement in the yields of carbamate formation has been 
achieved by using different basic reagents, which might be helpful 
in increasing the nucleophilicity of the ionic species 43. Thus, Hori 
et al. have reported [93] the synthesis of carbamates 6 through the 
reaction of primary and secondary amines 4, CO2, and alkyl halides 
31 in the presence of a strong proton acceptor like DBU (Scheme 
39).

RX  +
R1

NH
R2

CO2,   DBU

R O

O

N

R1

R2

64
31

Scheme 39. 

Aresta et al. have reported [94] synthesis of carbamates 6 em-
ploying ionic species 45 through the alkylation with alkyl halides 
31 using 18-Crown 6-ether as a phase transfer catalyst (Scheme 40). 

RNH-COONH3R
R' X

18-Crown-6-ether
R' O

O
N

H

R4 35 45
6

31

2 RNH2 + CO2

Scheme 40. 

However, this method was useful for the preparation of carba-
mates of only primary and secondary aliphatic amines. The effect of 
several strong bases (CyTMG, TMG, DBU, MTDB, CyTEG, etc)
in increasing the nucleophilicity of 45 resulting the formation of 
carbamates 6, was studied by McGhee et al [95] They have demon-
strated the role of various strong bases in yielding O-alkylated car-
bamate products using various kinds of alkylating agents (Scheme 
41).

2 RNH2  +  CO2 RNH-COONH3R
R' X

R' O

O

N

H

R4 35 43

6

31

base

40-78%

Scheme 41. 

O-Allyl carbamates [96] 62 could be obtained by the addition of 
preformed carbamate ion 60 [R.R’NH-COO

-
H+Base] generated 

from various primary and secondary amines 4 and CO2, to a THF 
solution of allylic chlorides 61 containing a palladium/phosphine 
catalyst (Scheme 42). 

Later on, Perez et al. have reported [97] synthesis of N-alkyl 
carbamates 6 in good to excellent yields through a clean and mild 
transcarboxylation of several amines 4 with the previously synthe-
sized DBU-CO2 complex and subsequent O-alkylation by different 
alkyl halides 31 (Scheme 43).  

Cyclic carbamates [98] 66 could be obtained in good yields (33-
93%) under mild reaction conditions from amino alcohols 65 and 
carbon dioxide using phosphorus (III) reagents 63 [i.e. Ph3P, 
(PhO)3P] and halogenoalkanes 64 (i.e. CCl4 and CCl3.CCl3)
(Scheme 44).

Tominaga et al. have reported [99] an efficient protocol for the 
synthesis of 2-oxazolidinones from CO2 and 1,2-amino alcohols 65
catalyzed by n-Bu2SnO afforded 53-94% yields (Scheme 45).  

Synthesis of cyclic carbamates 67a and 67b from amino alco-
hols 65 involves sequential carboxylation with carbon dioxide fol-
lowed by a Mitsunobu’s reaction was reported by Dinsmore and 
Mercer [100]. Unexpectedly, the stereochemical course of the Mit-
sunobu’s reaction is dependent on whether the carbamic acid inter-
mediate is N-substituted with hydrogen (retention) or carbon (inver-
sion) (Scheme 46).

We have reported [101] an efficient, one-pot, high yielding pro-
tocol for the synthesis of carbamates 6 through the reaction of vari-

R
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R
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X
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Scheme 42. 
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Scheme 43. 
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ous amines 4 with variety of alkyl halides 31 using benzyltrimethy-
lammonium hydroxide (Triton-B)/CO2 system (Scheme 47).

We have also reported [102] the synthesis of carbamates 6 in 
high yields through the reaction of a variety of alcoholic tosylates 
68 with various amines 4 using Triton-B/CO2 system (Scheme 48). 

Use of Amberlite IRA 400 resin (basic resin) in the synthesis of 
carbamates 6 in high yields through the reaction of corresponding 

variety of alcoholic tosylates 68 with various amines 4 was also 
reported by our group (Scheme 49) [103].  

The utility of basic resin in the synthesis of carbamates 6 in 
high yields from the corresponding alkyl halides 31 and amines 4
using gaseous CO2 was also investigated by our group (Scheme 50)
[104]. 
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A direct synthesis in high yields of carbamates 6 from the pri-
mary alcohols 5 and amines 4 using Mitsunobu’s reagent/CO2 sys-
tem has been first reported by our group (Scheme 51) [105]. 

The above method for the preparation of carbamates 6 was fur-
ther extended from a variety of primary, secondary and tertiary 
alcohols 5 and amines 4 using Mitsunobu’s reagent/CO2 system by 
our group (Scheme 52) [106].

The use of zeolite-based catalysts in the synthesis of carbamates 
6 was investigated by Srivastava et al [107] through the reaction of 
corresponding amines 4, gaseous CO2, and alkyl halides 31 over 
either titano-silicate molecular sieves or metal phthalocyanine com-
plexes encapsulated in Zeolite–Y. The catalysts could be used with 
little or no loss in activity (Scheme 53). 

Srivastava et al have also reported [108] efficient protocol for 
the synthesis of carbamates 6 using CO2 mediated by Zeolite-based 
organic-inorganic hybrid catalysts (Scheme 54).  

Recently, Singh have reported synthesis of various kinds of 
methyl carbamates [109] 6 through the corresponding amines 4 and 
methyl iodide 31 using tetra-ethyl ammonium bromide-
superoxide/CO2 system (Scheme 55).

Singh and coworkers have further investigated [110] the im-
proved and efficient protocol for the synthesis of methyl carbamates 
6, through the reaction of corresponding amines 4 with methyl io-
dide 31 using tetra-ethyl ammonium bromide-superoxide/CO2 sys-
tem under microwave conditions (Scheme 56).  

Carbon dioxide has been converted into carbamates 6 through 
the reaction of various amines 4 with variety of alcohols 5 catalyzed 
by tin complexes [111]. The addition of acetals as dehydrating 
agent under high CO2 pressure is the key to achieve high yields 
(Scheme 57).

R1NH2   +    CO2  +    HOR2
R2O NHR1

O
Tin complexes

4 35 5
624-90%

200oC, 24h,

Scheme 57. 

Sasaki and Dixneuf have first reported [112] synthesis of vinyl 
carbamates (70, 71, 72) starting from diethylamine 4, and alkynes 
69 using CO2 in presence of a ruthenium catalyst Ru3(CO)12
(Scheme 58).The overall yields of the products is poor in most of 
the reactions. 

Later on, Sasaki and Dixneuf have reported [113] the a direct 
synthesis of vinyl carbamates 73 in good yields through direct reac-
tion of secondary amines 4 with acetylene 69 using gaseous CO2 in 
presence of catalytic amount of RuCl3.3H2O (Scheme 59). 

Sasaki and Dixneuf have also reported [114] the synthesis of 2-
oxoalkyl substituted carbamates 75 in good yields through the reac-
tion of secondary amines 4, �-ethynyl alcohols 74 and CO2 using 
Ru3(CO)12 catalyst (Scheme 60).
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Matsudo and coworkers have reported [115] synthesis of enol 
carbamates 76 in good yields with high regio and stereoselectivity 
through the reaction of amines 4, terminal alkynes 69 and using 
gaseous CO2 in presence of catalytic amount of (�4-cyclooctadiene) 
(�6-1,3,5-cyclooctatriene)ruthenium [Ru (COD) (COT)] and tertiary 
phosphine (Scheme 61). They have further extended their method-
ology for the synthesis of cyclic enol carbamates 78 using N-
substituted propargyl amines 77 and CO2.

Later on, Dixneuf et al have also reported [116] the synthesis of 
vinyl carbamates 79 through the reaction of an alkyne 69 with an 
amine 4 using gaseous CO2 in presence of various kinds of ruthe-
nium complexes i.e. RuCl2(PR3)carene) and RuCl2(nor-
bornadiene)(pyridine)2 (Scheme 62). They have studied the cata-
lytic role of different Ru-complexes in affording better yields of 
vinyl carbamates. 

Shim et al have synthesized [117] carbamates 81 through the 
reaction of amines 80, acetylenic alcohols 74, and carbon dioxide 
using a lanthanide catalyst. Thus, the reaction of perhydro-azepine 
80 with 3,3-dimethyl prop-1-yne-3-ol 74 and CO2 in presence of 
MCl3 (M = Ce, Pr, Nd, Gd) gave carbamates 81 (n = 6) in 20-38% 
yields. They have also prepared the carbamates (n = 4, 5) in 31 and 
21% yields (Scheme 63).

Dixneuf and coworkers have reported [118] regioselective syn-
thesis of O-1-(1,3-dienyl)carbamates 83 through regioselective ad-
dition of CO2 and secondary amines 4 to isopropenylacetylene 82 in 
the presence of [Ph2P(CH2)nP.Ph2]Ru(�3-CH2-C(Me)=CH2)2 cata-
lyst (Scheme 64). The yields were dependent on the nature of le-
gand used in catalyst. They have realized that legand wherein n = 2, 
afforded better yields of the products. The addition is favored in 
case of secondary cyclic amines. 
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Kim and coworkers have reported [119] the synthesis of carba-
mates 84 through the reaction of various kinds of propargyl alco-
hols 74 with variety of amines 4 using gaseous CO2 in presence of 
catalytic amount of [Cu (1) (BF4)2 (1 = 2, 5, 19, 22, tetraaza [6, 6] 
(1, 1’) ferrocenophane, 1,5-diene) (Scheme 65).

Recently, Bhanage et al have reported [120] synthesis of vinyl 
carbamates 79 through reaction of various kinds of alkynes 69,
amines 4, and CO2 using ruthenium tris(2,2,6,6-tetramethyl 3,5-
heptanedionate) metal complex as a catalyst (Scheme 66).

Carbon dioxide providing the carbonyl functionality for the 
synthesis of carbamates is not sufficient itself in yielding high 
yields of desired carbamates. Therefore, several researchers have 
considered that by adding basic reagents to reaction mixture may 
increase the basicity and nucleophilicity of the ionic species 43.
Consequently, it has been proposed that metal carbonates such as 
Na2CO3, K2CO3, Cs2CO3 etc are good basic reagents, which could 
provide carbonyl functionality in addition to its basic properties. 
Based on this concept there are many reports appreared in the re-
cent past on the use of metal carbonates/CO2 system for the synthe-
sis of carbamates. Thus, Butcher have reported [121] a carbamate 

synthesis 6 in good to excellent yields (58-96%) from various alkyl 
halides 31 and amines 4 using the cesium carbonate/CO2 system 
(Scheme 67).

RCH2X  +
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NH
R2

CO2, Cs2CO3

RH2C O

O

N

R1

R2DMF, 58-96%
31 4 6

Scheme 67. 

Later on, Jung and coworkers have reported [122] synthesis of 
carbamates 86 using solid phase Merrifield resin 85 in good to ex-
cellent yields using cesium carbonate/CO2 and TBAI as phase 
transfer catalyst (Scheme 68).  

Later on, they have also reported synthesis of carbamates [123] 
6 in solution phase through the reaction of various kinds of struc-
turally diverse aliphatic, aromatic, and heterocyclic amines 4 with 
variety of alkyl halides 31 using cesium carbonate/CO2 system in 
presence of a catalytic amount of TBAI (Scheme 69).  
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They have extended their methodology in the synthesis of pep-
tidomimetic using various kinds of protected amino acids (Scheme 
70).

A direct synthesis of N-alkyl carbamates 6 from primary amines 
4, and alkyl halides 31 using cesium carbonate/CO2 system has also 
been reported by Jung and their coworkers (Scheme 71) [124]. 

CO2/Cs2CO3,TBAI,

DMF, 23oC, 20h-6 days R' O

O

N

R

R'
RNH2

4
652-92%

+      R'X
31

Scheme 71. 

A study on comparative yields of carbamates 6 using different 
metal carbonates and bases on O-as well as N-alkylated products 
was reported by Shi and Shen (Scheme 72) [125]. They have real-
ized that best yields (> 87%) of carbamates could be achieved using 
DBU/CO2 system. 

We have reported [126] a convenient, high yielding, one-pot 
synthesis of carbamate esters in high yields (70-90%) from corre-
sponding alcoholic tosylates 68, and amines 4 using the K2CO3/CO2
system in the presence of a catalytic amount of tetra-n-
butylammonium iodide (Scheme 73). This method has been used 
for carbamates derived from various aliphatic primary, secondary, 
and aromatic amines. 

Recently, Vos and coworkers have reported [127] an efficient 
and green synthesis of carbamates 6 through the coupling of various 
amines 4 with variety of alcohols 5 using Cs2CO3/CO2 system 
(Scheme 74).

R1

R2

NH + CO2
R1

R2

N OR

O

ROH+
Cs2CO3

4 5 6
upto 69%

Scheme 74. 

A very recent report for the synthesis of radio-labeled carba-
mates 6 through the incorporation of [11C] CO2 using various kinds 
of alkyl halides 31, amines 4 and catalytic amount of DBU was 
reported by Hooker and coworkers (Scheme 75) [128].

R1

R2

NH +
R1

R2

N OR

O

RCH2Cl

4 31 6

DBU, 11CO2

75oC, 10min.,
77%

11C

Scheme 75. 

3.5b Electrochemical Carbon Dioxide 

 Inesi and coworkers have first reported [129] the synthesis of 
linear carbamates and cyclic carbamates (6 & 34) from the corre-
sponding amines 4, alkyl halides 31 or haloalkylamines 33 using 
electrogenerated-superoxide activated carbon dioxide (O2

. -/CO2)
(Scheme 76).

Later on, Inesi and coworkers have also reported [130] synthe-
sis of carbamates 6 using carbon dioxide through an electrochemi-
cal process (Scheme 77). This synthesis is based on the reaction of 
amines 4, with the electrochemically generated base 92 (associated 
with the Et4N+ cation) from 2-pyrrolidone 91 followed by sequen-
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Scheme 69. 
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tial addition of CO2 and ethyl iodide, afforded carbamates in high 
yields.  

N
H

O

e , MeCN, EtN ClO4

N O
NEt4

1. R2NH

2. CO2

3. EtI

R2N-COOEt

91
92

6

33-89%

Scheme 77. 

Later on, Inesi et al have also reported [131] an improved elec-
trochemical synthesis of chiral oxazolidin-2-ones 66 starting from 
the corresponding chiral 1,2-amino alcohols 65. Subsequent CO2
bubbling and addition of tosyl chloride afforded desired cyclic 
carbamates 66 in high yields (Scheme 78).

H2N OH

R1 2. CO2
3. TsCl

HN O

O
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65 66

MeCN-Et4NClO4

e1. 66-88%R2 R2

Scheme 78. 

The utility of electrochemically generated cyanomethyl an-
ion/carbon dioxide system in affording high yields of carbamates 6
using various kinds of amines 4 and alkyl halides 31 was further 
investigated by Inesi and their coworkers (Scheme 79) [132].
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Scheme 79.

 Recently, Inesi and coworkers have reported [133] a new elec-
trochemical procedure for the synthesis of carbamates 6 in high 
yields starting from the corresponding amines 4, and alkyl halides 
using electrochemical carbon dioxide-saturated room temperature 
ionic liquid [Bmim]BF4 solutions (Scheme 80).
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Scheme 80. 

 Dunach and Tascedda have reported [134] a new and selective 
electrochemical procedure for the synthesis of five membered ring 
cyclic carbamates 94 & 95 involving nickel-catalyzed CO2 incorpo-
ration into aziridines 93 under mild electrochemical conditions 
(Scheme 81). Out of several Ni catalysts used, Ni (bipy)3(BF4)2 was 
shown to be an efficient catalyst for this transformation afforded 
100% yields of desired carbamates. 
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Scheme 81. 

 Recently, Lu and coworkers have reported [135] a new and ef-
ficient electrochemical synthesis of carbamates through the electro-
chemical incorporation of carbon dioxide into amines catalyzed by 
an electrogenerated Ni complex [Ni(bpy)3Cl2] using tetraethylam-
monium bromide (Scheme 82).  
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Scheme 82. 

3.5c. Supercritical Carbon Dioxide 

Yoshida et al have first reported [136] the synthesis of carba-
mates 6 in good yields starting from the corresponding amines 4
and alkyl halides 31 using supercritical CO2/K2CO3 in presence of 
tetra-n-alkylammonium halides acting as phase transfer catalyst 
(Scheme 83). They have also demonstrated the role of different 
phase transfer catalysts on carbamates synthesis and found that 
tetrabutylammonium bromide was best among all in affording high 
yields of carbamates. 
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4 31 1- 4h,72-94%
6

Scheme 83. 

Later on, Baker and coworkers have reported [137] solvent free 
ruthenium-catalyzed synthesis of vinyl carbamates 79 through the 
reaction of phenyl acetylene 69 with diethyl amine 4 using superi-
critical CO2 (Scheme 84). They have also studied the effect of tem-
perature on the catalytic activity of Ru-complexes and found that 
the best yields of vinyl carbamates were obtained at 120oC. 
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R2

RuCl3.xH2O

3h, 60-120oC
79 (E& Z)

69 4
100%

Scheme 84. 

Recently, Jiang and coworkers have demonstrated [138] a new 
and efficient protocol for the synthesis of oxazolidinones 96 and 
oxaolones 97 through the cycloaddition reaction of CO2 with prop-
argyl alcohols 74 and amines 4 under supercritical conditions 
(Scheme 85).

NH
R1

R2

1. O2 /CO2

2. EtI
N

R1

R2
OEt

O

4 6

BrCH2.(CH2)nNH2
1. O2 /CO2 CH2.(CH2)nNH

O
O

33
34

upto 97%

upto 98%

Scheme 76. 
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Recently, Ikariya and coworkers have reported [139] the stereo-
selective synthesis of Z-alkenyl carbamates 79 from the corre-
sponding amines 4 and alkynes 56 using CO2-soluble ruthenium-
P(OEt)3 catalyst under supercritical conditions (Scheme 86).

Very recently, Ikariya and coworkers have also reported [140] 
the synthesis of 5-vinyl 1,3-oxazolidine-2-ones 99, through car-
boxylative transformation of 2,3-allenic amines 98 and CO2 pro-
moted by palladium catalysts under supercritical conditions 
(Scheme 87).

3.5d. Organic Carbonates and Carbon Dioxide 

Organic carbonates constitute an important source for carbonyl 
functionality during the synthesis of carbamates. Their reaction 
with amines represents an alternative synthetic route to carbamates 
that has gained growing attention in the last few years as a non-
phosgene route to the synthesis of organic carbamates [141]. Nowa-
days, dimethyl carbonate (DMC) 100 can be produced on a large 
scale by oxidative carbonylation of methanol [142]. Other organic 

carbonates can be easily obtained by transesterification of DMC 
with phenols [143] and long chain high boiling alcohols [144]. The 
reaction between primary and secondary amines and dialkyl car-
bonates needs a suitable catalyst in order to get satisfactory conver-
sion rates and high selectivities. Strong bases such as alkali metal 
alkoxides, Zn, Co, Sn, Al, and Tin compounds have been widely 
employed as catalysts in the carboalkoxylation of anilines and more 
generally of aromatic amines [145]. Moreover, Lewis acids, such as 
AlCl3, SnCl2, ZnCl2, Zn(OAc)2.2H2O, FeCl3, or metal(Rh, Ru) 
complexes have proved to be effective in promoting the conversion 
of propyl amine and diethyl carbonate selectively to propyl and 
ethyl carbamate [142]. 

 Primary and secondary aliphatic amines can react with CO2 ac-
cording to equilibrium (eq.1) afforded monoalkylammoniumalkyl-
carbamate ion [78] 45 that serves as a convenient source of carba-
mate moiety in the synthesis of carbamates using DMC 100
(Scheme 88) [146]. O-Carbomethoxylation of carbamate anion is 
the first step eq. 2, to afford a mixed carbamic-carbonic anhydride 
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scCO2, CuI
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60oC, 12-24h
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O
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Scheme 85. 
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RNH-COOCOMe 101. This step could be catalyzed by acidic spe-
cies, such as RNH3

+, RNH-COOH, present at equilibrium. Selective 
decarboxylation of 101 through expulsion of a CO2 molecule from 
its carbamic moiety leads to the formation of carbamate 6.

Organic carbonates have received much attention in recent 
years as cheap and safe alternatives to the non-phosgene routes for 
the synthesis of organic carbamates. Therefore, several researchers 
over the world have become interested to synthesize carbamates 
through this route.  

Ogura and coworkers have first reported [147] an efficient syn-
thesis of N-succinimidyl carbamates 103 through the reaction of 
corresponding amines 4 with N,N’-disuccinimidyl carbonate (DSC) 
102 using triethyl amine (Scheme 89). 

Later on, Ogura and their coworkers have demonstrated [148] 
an efficient protocol for the synthesis of carbamates 6 through the 
reaction of corresponding amines 4 with benzotriazole carbonate 
104 (Scheme 90). 

Use of N,N’-disuccinimidyl carbonate 102 has been further ex-
plored for the synthesis of carbamates [149] 108 from azides 107
and mixed carbonates 106 by Ghosh and coworkers (Scheme 91).

Ghosh and coworkers have also reported [150] synthesis of car-
bamates 112 in high yields starting from the corresponding amines 
111 and a mixed carbonate 110, which is obtained through a reac-
tion of alcohol 109 with DSC 102 (Scheme 92).  

Chiral carbamates 6 have also been synthesized through an en-
zymatic alkoxy-carbocylyzation reaction with vinyl carbonates 113
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and racemic amines 4 using Candida antarctica lipase, CAL was 
reported by Pozo and Gotor (Scheme 93) [151]. 

Gotor and coworkers have reported [152] the chemoenzymatic 
synthesis of a 2’-deoxynucleoside urethan. 2’(Deoxynucleoside 5’ 
and 3’(N-alkyl)carbamates (117 & 119) were synthesized in a two-
step procedure using lipase catalysis in the regioselective vinyloxy 
carbonylation step (Scheme 94). The regioselectivity of the reaction 
depends upon the type of lipase enzyme used. Total regioselectivity 
is obtained in the presence of PS lipase and only a small amount of 
the regioselective product is obtained when the reaction is catalyzed 
by CA lipase. 

Aresta et al have reported [153] the synthesis of carbamates 6
through the reaction of aromatic amines 4 with DMC 100 or 
diphenyl carbonate (DPC) 120 in the presence of organo phospho-

rous acids [Ph2P(O).OH, (PhO)2P(O).OH, (BuO)2P(O).OH/ 
(BuO)P(O)(OH)2 equimolar mixtures] (Scheme 95). They have 
further realized that better yields of carbamates were obtained using 
DPC. 

Urpi and coworkers have reported [154] an efficient protocol 
for the synthesis of tert-butyl carbamates 6 through reaction of az-
ides with trimethyl phosphine followed by addition of 2-(tert-
butoxycarbonyloxyamino)-2-phenylacetonitrile 121 at -20oC
(Scheme 96).

Chandrasekhar et al have reported [155] an excellent one-pot 
method for the synthesis of carbamates 6 through reaction of azides 
with di-tert-butylcarbonates (Boc) 123 using the inexpensive and 
safe hydride source i.e. polymethylhydrosiloxane (PMHS) under 
Pd-C catalysis (Scheme 97).  
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RN3   +   (Boc)2O
PHMS / PD-C

EtOH, rt
RNH-Boc

RNH-Cbz  +   (Boc)2O
PHMS / PD-C

EtOH, rt
RNH-Boc

72-98%123

123

6

6
75-98%

Scheme 97. 

The enzyme lipase has also been used as a catalyst in the syn-
thesis of chiral carbamates [156] 6 starting from racemic amines 4
and alkylvinyl carbonates 113 (Scheme 98).

Lemaire and coworkers have reported [157] efficient synthesis 
of carbamates 6 through the reaction of amines 4 with DMC 100
catalyzed by �-Al2O3 (Scheme 99).

RN3   +   (Boc)2O
PHMS / PD-C

EtOH, rt
RNH-Boc

RNH-Cbz  +   (Boc)2O
PHMS / PD-C

EtOH, rt
RNH-Boc

72-98%
123

123

6

6
75-98%

Scheme 99. 

Chaudhari and coworkers have reported [158] an efficient pro-
tocol for the synthesis of carbamates 6 through the reaction of vari-
ous carbonates (100, 120) with variety of amines 4 catalyzed by 
silicagel (Scheme 100).

O

R2O OR2
+    R1NH2

O

R1HN OMe

Silicagel, 150oC,

3- 8h, upto 96%

100, 120
64

Scheme 100. 

Carloni and coworkers have reported [159] synthesis of carba-
mates 6 through reaction of diethyl carbonate 124 with variety of 
amines 4 using a heterogeneous catalyst a hybrid organic-inorganic 
material prepared by anchoring TBD to MCM-41 silica. (Scheme 
101).

O OEt

O

+ R-NH2
Et O NHR

O

Et

heterogeneous catalyst

124
4

6

upto 98%

Scheme 101. 

Selva and workers have reported [160] an efficient synthesis of 
carbamates 6 from primary aliphatic amines 4 with dialkyl carbon-
ates (100 & 124) in supercritical CO2 (Scheme 102).

scCO2 , 130-140oC

14-20h, 50-83%

O

R1O OR1
+    RNH2

O

RHN OR1

100, 124
4

6

Scheme 102. 

Sodeoka and coworkers have reported [161] a convenient 
method for the synthesis of carbamates 6 through reaction of vari-
ous amines 4 with variety of polymer-supported N-hydroxy suc-
cinimide substituted carbonates 125 (Scheme 103).

N

O

O

O OR

O
S

R1-NH2+
R1HN OR

O
base

125

4
6

upto 98%

Scheme 103. 

Later on, Christention and coworkers have reported [162] the 
synthesis of carbamate protected polyamines (130, 131, 132, 134,
135, 136) using alkyl phenyl carbonates (126, 127, 128). This is an 
economical, practical and versatile method for selective Boc, Cbz,
and Alloc protection of polyamines. This method allows Boc, Cbz, 
and Alloc protection of primary amines in the presence of secon-
dary amines by reaction of polyamines with alkylphenyl carbonates. 
Also, this method allows monocarbamation of simple symmetrical 
aliphatic �,�-alkanediamines in high yields with respect to the dia-
mine. Furthermore, the method allows selective carbamate protec-
tion of a primary amine located on a primary carbon in the presence 
of a primary amine located on a secondary or a tertiary carbon in 
excellent yields (Scheme 104). The alkyl-phenyl carbonates inves-
tigated in this study were tert-butylphenylcarbonate (126), benzyl-
phenylcarbonate (127), and allylphenylcarbonate (128), which in-
troduces the Boc, Cbz, and Alloc protecting groups. 

Later on, Curini and workers have reported [163] that ytterbium 
triflate, Yb(OTf)3 can be efficiently used for the preparation of car-

O
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Scheme 98. 
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bamates 6, through reaction of various amines 4 with DMC 100
under solvent free conditions (Scheme 105).

O

MeO OMe
+    RNH2

O

RHN OMe

Yb(OTf)3

80oC, 8h, 61-96%
100

4
6

Scheme 105. 

Later on, Deng and coworkers have reported [164] the synthesis 
of carbamates 6 through the reaction of primary and secondary 
aliphatic amines 4 with DMC 100 using ionic liquids (Scheme 106).

O

MeO OMe

O

N OMe
Ionic liquid, 170oC, 1h

upto 99%

R1

NH
R2

+
R1

R2100 4 6

Scheme 106. 

Conversion of azides to tert-butyl carbamates [165] 6 could also 
be synthesized using di-tert-butyl dicarbonate 123, decaborane (20 
mol%) and 20% Pd-C at room temperature in methanol (Scheme 
107).

RN3   +   (Boc)2O
Decaborane, 20% Pd-C

1.5h-8h, rt,  71-100%
RNH-Boc

123 6

Scheme 107. 

Chandrasekhar and coworkers have reported [166] the one-step 
conversion of N-benzyl, N-trityl, N-diphenyl amines 137 to tert-
butyl carbamates 6 using Boc 123 in the presence of polymethylhy-
drosiloxane (Scheme 108).

N
R

R1
X +   (Boc)2O

X = Bn, Tr, DPM
137 123

N-Boc
R

R1

PMHS-10% Pd(OH)2/C

rt, 2-8h, 82-92% 6

Scheme 108. 

Chaudhari and coworkers have reported synthesis of carba-
mates [167] 6 through the reaction of various organic carbonates 

(100, 120, 124) with various amines 4, using various catalysts 
(Scheme 109). Out of several catalysts used, n-butyltin oxide was 
found to be best in affording good yields of the carbamates. 

RO OR

O

R1NH2 +
carboxylation catalyst

RO NHR1

O

4
100, 120, 124 6

4-24h, upto 93%

Scheme 109. 

 Shen et al have reported [168] a facile synthesis of N-methyl 
N-aryl carbamates from aromatic amines 4 and DMC 100 in the 
presence of potassium carbonate and tetrabutylammonium bromide 
under solvent free conditions (Scheme 110).

MeO OMe

O
R1NH2 +

Base/PTC

MeO NHR1

O

100
4

5-35h, 51-98%
6

Scheme 110. 

Distaso and Quaranta have reported [169] a high yielding syn-
thesis of carbamates 6 through reaction of various aliphatic amines
4 and dimethyl carbonate 100 catalyzed by group III metal (Sc, La) 
triflates, under mild reaction conditions (Scheme 111). Sc(OTf)3 is 
more effective than La salt.  

O
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Scheme 111. 

 Distaso and Quaranta have also reported [170] carbomethylat-
ing reactivity of methyl phenyl carbonate 138 towards aromatic 
amines 4 in the presence of group 3 metal (Sc, La) triflate catalyst 
under mild conditions to afford the corresponding carbamates 6 in 
high yields (Scheme 112). They have optimized the effect of the 
various catalysts at different temperature, time, and molar ratio of 
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amines on the yields of the carbamates. Sc(OTf)3 is more effective 
than La salt.  

Cotarca and workers have reported [171] an efficient synthesis 
of o-nitrophenyl carbamates 6 through the reaction of bis(o-
nitrophenyl)carbonate 139 with aliphatic amines 4 under mild reac-
tion conditions (Scheme 113).

Later on, Selva and coworkers have reported [172] a high yield-
ing one-pot synthesis of methyl carbamates 6 from primary ali-
phatic amines 4 and dimethyl carbonates 100 using supercritical 
CO2 (Scheme 114). The pressure of CO2 largely influences both the 
reaction conversion and the selectivity towards urethanes. Gener-
ally, conversion goes through a maximum (70-80%) in the mid-
range (40 bar) and drops at lower and higher pressures, whereas 
selectivity is continuously improved (from 50% up to 90%) by an 
increase of pressure. 

Deng and coworkers have reported [173] synthesis of carba-
mates 6 and dicarbamates 141 through reaction of variety of ali-
phatic amines 4 and bisamines 140 with dimethyl carbonate 100
catalyzed by acid functionalized ionic liquids (Scheme 115). They 
have realized that -SO3H functionalized ionic liquids were found to 
be most effective among the applied ionic liquids.  

Later on, Li and coworkers have reported [174] synthesis of 
methyl-N-phenyl carbamates 6 through the reaction of dimethyl 
carbonate 100 with 1,3-diphenyl urea 142 under atmospheric pres-
sure (Scheme 116). Among various catalysts used, NaOMe was 
found to be best in affording high yields of carbamates. 

Later on, Han and Porco have reported [175] an efficient proto-
col for the synthesis of structurally diverse carbamates 6 through 
the reaction of various amines 4 with variety of carbonates (100,
120, 124 etc) using zirconium (IV) catalyzed exchange process 
using 2-hydroxy pyridine as catalytic additives (Scheme 117).
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Use of DMC 100 in the synthesis of methyl-N-phenyl carba-
mates 6 using aromatic amines using ordered AISBA-15 catalyst 
was recently reported by Halligudi and coworkers (Scheme 118)
[176]. 

Recently, Yoshida and coworkers have reported [177] an effi-
cient protocol for the synthesis of 5-vinylidineoxazolidin-2-ones 
144 by DBU-mediated CO2-fixation reaction of 4-(benzylamino)-2-
butynyl carbonates and benzoates 143 (Scheme 119). 

Use of DMC 100 was further explored in the synthesis of 
methyl-N-phenyl carbamates 6 from aromatic amines 4 catalyzed 
by ZnO-TiO2 catalyst (Scheme 120) [178]. 

N-Heterocyclic carboxymethylation of amines 4 using DMC
100 catalyzed by ionic liquid, afforded corresponding carbamates 6
in high yields was reported by Gao and coworkers (Scheme 121)
[179].
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Scheme 121. 

Recently, Sureshbabu and Hemantha have reported [180] the 
synthesis of dipeptidyl carbamates 147 through the reaction of an 
amino acid 146 with their synthesized F-moc aminoalkoxy pen-
tafluorophenyl carbonate 145. They have further explored the utility 
of 145 in synthesis of oligopeptidyl carbamates using variety of 
amino acids (Scheme 122).

A most recent report for an efficient preparation of N-tert-butyl 
carbamates 6 of various amines 4 using di-tert-butyl carbonate 123
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in presence of Amberlyst 15 under solvent free conditions was re-
ported by Pal and their coworkers (Scheme 123) [181]. 

More recently, A direct conversion of various allylic imines 149
to their corresponding �-ethoxy carbamates 151 using diethyl pyro-
carbonate 150 was reported by Grognec and coworkers (Scheme 
124) [182]. The imines were synthesized from the corresponding 
aldehydes 148 using allylic amines 4.

Iwasaki and coworkers have reported [183] the synthesis of hy-
droxy carbamates 6 (a & b) from cyclic five-membered carbonates
152 and primary amines 4 at room temperature (Scheme 125).

3.6. Carbamates Synthesis from Dithiocompounds 

3.6a. Using Dithiocarbamates/Thiocarbamates 

Tandel and coworkers have reported an efficient synthesis of 
carbamates 6 from dithiocarbamate 153 through either series of 
transformations or direct conversion using NaOMe/MeOH afforded 
carbamates 6 (Scheme 126) [184]. The overall yields in carbamates 
from dithiocarbamates during three step is 36%, whereas the direct 
conversion afforded 95%. 

Recently, Fochi and coworkers have reported an efficient pro-
tocol for the synthesis of various kinds of carbamates 6 through 
reaction of corresponding thiocarbamates 155 with alcohol 5 in 
triethylamine (Scheme 127) [185]. 
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Scheme 127. 

3.6b. From Carbon-Imido Dithiolates 

 Rajappa and coworkers have reported [186] that carbon-imido 
dithiolates 156 are important precursors for the synthesis of carba-
mates 6 and can be first converted into S-methyl thiocarbamates 
[187] 155 using zeolite catalyzed partial hydrolysis. This method 
therefore provides an alternative route to methyl carbamates 6
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[188]. The carbon di-imidodithiolates can also be converted into 
carbamates 6 through one-step synthesis (Scheme 128).

3.7. Carbamates Synthesis Through Rearrangement Reactions 

3.7a. Hoffmann Rearrangement  

Generally, Hoffmann rearrangement [189] converts primary 
carboxamides to amines using aqueous NaOH and Br2. In recent 
years, it has been used for the synthesis of carbamates 6 through the 
involvement of an isocyanate intermediate. Several researchers 
have directed their efforts on this rearrangement reaction in order to 
achieve an efficient synthesis of carbamates. 

Moriarty and coworkers have reported [190] an efficient proto-
col for the synthesis of methyl carbamates 6 from primary alkyl and 
aryl carboxamides 157 using hypervalent iodine. They have treated 
a series of primary alkyl/aryl carboxamides 157 with PhI(OAc)2 in 
KOH-MeOH at 5-10oC afforded the corresponding methyl carba-
mates 6 in good to excellent yields (Scheme 129). These conditions 
avoids the use of elemental bromine or heavy metal reagents such 
as Pb(OAc)4, AgOAc, Hg(OAc)2, while taking advantage of the 
commercial availability of PhI(OAc)2.

157 6

Scheme 129. 

Later on, Huang and coworkers have reported [191] the synthe-
sis of methyl carbamates 6 via a modified Hoffmann rearrange-
ment. They have treated a series of p-substituted aromatic and pri-
mary aliphatic carboxamides 157 with NBS and NaOMe in metha-
nol heated to reflux for ten minutes for the conversion of the car-
boxamides to their corresponding primary amino methyl carba-
mates 6 in nearly quantitative yields (Scheme 130). The mild oxida-
tive conditions of this modified Hoffmann rearrangement are shown 
to be particularly useful for the preparation of p-substituted ani-
lines. 

O

NH2R

NBS,  NaOMe

MeOH, reflux, 10min
85-100%

O

OMeN
H

R

157 6

Scheme 130. 

They have further elaborated [192] the synthesis of methyl car-
bamates 6 through the involvement of Hoffmann rearrangement 

using NBS and DBU in methanol (Scheme 131). This method has 
been widely useful for the conversion of alkyl and aryl carbox-
amides 157 to their corresponding methyl carbamates 6 in excellent 
yields under extremely mild conditions. 

O

NH2R
NBS,  DBU

MeOH, reflux, 25min.

89-100%

O

OMeN
H

R

157 6

Scheme 131. 

The synthesis of N-tert-butoxy carbamates 6 from primary car-
boxamides 157 using copper (II) reagent (prepared from copper (II) 
bromide and lithium tertiary butoxide i.e. CuBr2-LiOBu-t) afforded 
good to high yields, has also been reported by Yamaguchi and their 
coworkers (Scheme 132) [193]. 

O

NH2R 36-99%

O

ON
H

RCuBr2-LioBu-t, rt, 2-6h

157
6

Scheme 132. 

Later on, Matsumara and coworkers have reported [194] the 
electrochemical synthesis of carbamates 6 from primary carbox-
amides 157 and the process has been referred to as" Electrochemi-
cally induced Hoffmann rearrangement” which under new solvent 
systems containing a variety of alcohols 5 was developed since the 
reaction proceeds under mild conditions (neutral). An epoxy func-
tional group in the amide and alcohol remains intact during the 
electrolysis (Scheme 133).

O

NH2R

O

OR1N
H

R

157 640-98%
+    R1OH

5
CH3CN,

EI-Hofmann rearrangement

Scheme 133. 

Later on, Hiegel and Hogenaur have reported [195] a base cata-
lyzed synthesis of N-substituted carbamates 6 through the rear-
rangement of N-chloroamides (Scheme 134). These N-chloramides 
were obtained by the chlorination of amides 157 using trichloro 
isocyanuric acid (TCICA). 

MeS

MeS
N.R

ZnCl2, MeCN-Water, 60oC, 6-10h
reflux, 24h MeS NHR

O

155156

ZnCl2, MeOH60oC, 6h

MeO NHR

O

ZnCl2, MeOH-Water

60-80oC, 12h

6
PhH2CO NHR

O

PhCH2ONa, THF 30oC, 6h

6

upto 98%

52-98%upto 85%

upto 95%

Scheme 128. 
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RHN OMe

O

R NH2

O
TCICA
MeONa

157 646-98%

Scheme 134. 

Nishikawa and coworkers have reported the synthesis of carba-
mates 6 through the rearrangement reaction of trichloroacetamides 
158 using variety of alcohols 5 (Scheme 135) [196].

O

NHRCl3C

O

OR1N
H

R

158 6

+    R1OH

5
CuCl, Bu4NCl

Na2CO3,

upto 83%

Scheme 135. 

Gogoi and Konwar have reported [197] synthesis of methyl 
carbamates 6 through the modification of Hoffmann rearrangement. 
Thus, a series of methyl carbamates 6 were synthesized in good to 
excellent yields using NaOCl as an oxidant in the presence of 
KF/Al2O3/ MeOH at reflux conditions (Scheme 136).

RHN OMe

O

R NH2

O

157 6

NaOCl/KF/Al2O3

MeOH, reflux, 30min.

72-95%

Scheme 136. 

A most recent method for the synthesis of carbamates 6 starting 
from the corresponding amines 157 through Hoffmann rearrange-
ment using microreactor technique has been reported by Ley and 
their coworkers (Scheme 137) [198].

R NH2

O

157

O

OR1N
H

R

6

+  R1OH

5

DBU or NBS, 120oC

Advion NanoTek LF microreactor
32-80%

Scheme 137. 

3.7b. Curtius Rearrangement  

Curtius rearrangement involves the pyrolysis of acyl azides 159
to yield isocyanates 13 (Scheme 138) [199]. Isocyanates 13 can 
treated with alcohols 5 to afford the corresponding carbamates 6. In 
recent years, much interest has been developed among the chemists 
to synthesize the carbamates through Curtius rearrangement by 
trapping of isocyanate intermediate with an alcohol. 

N3R

O
Heat, Curtius rearrangement

R-N=C=O
R'OH

OR'RHN

O

159 6

5

13

Scheme 138. 

Richer and Andersen have reported [200] the synthesis of car-
bamates 161 solid supports using polystyrene resin. They have 
prepared an acid azide derivative 160, which was previously loaded 
on polystyrene resin and treated with appropriate alcohol in m-
xylene. The carbamates were obtained in excellent yields (Scheme 
139).

N3

O

OR'HN

O

X

ROH, m-xylene

heat, upto 86%
X

160 161

Scheme 139. 

Lebel and Leogane have reported [201] an efficient protocol for 
the preparation of tert-butyl carbamates 6 from the corresponding 
acid 162. The reaction of carboxylic acid 162 with di-tert-butyl 
dicarbonate 123 and sodium azide allowed the formation of an acyl 
azide 159, which undergoes a Curtius rearrangement in the pres-
ence of tetrabutylammonium bromide and zinc(II)triflate afforded 
the corresponding carbamates 6 through the trapping of isocyanate 
intermediate (Scheme 140). They have also extended the same pro-
tocol for the direct synthesis of carbamates of aromatic amines us-
ing aromatic acid [202, 203]. 

OHR

O
Boc2O, NaN3, n-Bu4NBr, Zn(OTf)2

O-t-BuRHN

O

6
40-50oC, 16-24h, 57-98%

162

Scheme 140. 

Dussault and Xu have reported a direct conversion of various 
acid azides 159 to their corresponding carbamates 6 through Curtius 
rearrangement using an alcohol 5 (Scheme 141) [204]. Similar kind 
of approach was adopted by Saigo and coworkers for the synthesis 
of fullerene carbamates through reaction of corresponding fullerene 
acid azide with an alcohol [205]. 

159
N3R

O

EtOH, Benzene

reflux, 47-60%
OEtRHN

O

6

Scheme 141. 

Ikegami and coworkers have reported synthesis of carbamates 6
of various sugar and other functionalities using corresponding acid 
162. Insitu conversion of acid 162 to the corresponding azides 159
was achieved using diphenylphosphoryl azides (DPPA), followed 
by addition of an alcohol afforded corresponding carbamates
(Scheme 142) [206]. They have further explored their methodology 
for the synthesis of carbamate linked glycoconjugates using various 
kinds of sugar acids and DPPA [207]. 

OHR

O

OR1RHN

O

R1OH, DPPA, Base

Benzene, reflux 6
5-30h, upto 94%

162

Scheme 142. 

3.7c. Lossen rearrangement 

The Lossen rearrangement is a useful chemical reaction in 
which O-activated hydroxamic acids 163 can be converted into the 
corresponding isocyanates 13 (Scheme 143) [208]. Carbamate 6 can 
be synthesized through insitu trapping of an isocyanate intermediate 
13 through an alcohol 5. In recent years, based on the above con-
cept researchers become interested to synthesize carbamates using 
hydroxamic acids through the Lossen rearrangement reaction. 
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Recently, Papot and coworkers have reported an efficient syn-
thesis of carbamates 6 through the reaction of a hydroxamic acid
163 with an alcohol 5 promoted by 2,4,6-trichloro-1,3,5-triazine 
164 (cyanuric chloride, TCT) in presence of excess of N-methyl 
morpholine (NMM) through Lossen rearrangement reaction 
(Scheme 144) [209].  

R'OH
OR'RHN

O

65
NHR

O

OH

163

+

N

N

N

Cl

ClCl
164

NMM, 0oC to reflux

67-99%

Scheme 144. 

A most recent method for the synthesis of carbamates 6 through 
the reaction of hydroxamic acids 163 with an alcohol 5 using car-
bonyl diimidazole (CDI) through Lossen rearrangement was re-
ported by Dube and coworkers (Scheme 145) [210]. 

OR1RHN

O

65
NHR

O
OH

163
+

 60oC to reflux
81-99%

CDI, 5-40min.
R1OH

Scheme 145. 

3.8. Miscellaneous Methods for the Synthesis of Carbamates 

3.8a. Carbamates Synthesis Using Sodium Cyanate  

Recently, use of sodium cyanate 165 in the synthesis of primary 
carbamates 6 through reaction with alcohol 5 using various kinds of 
acidic catalysts such as trichloroacetic acid, silica supported-
sulfuric acid, silica supported-perchloric acid, and Al(HSO4)3 has 
been realized by Modaressi-Alam and coworkers (Scheme 146)
[211-214]. 

ROH      +       NaOCN
5 165 RO NH2

O

6
60-70oC, 30-60min

60-95%

Acidic catalyst

Scheme 146. 

3.8b. Carbamates Synthesis Using Burgess Reagent 

 Burgess reagent [215] 168 is prepared from a reaction of an al-
cohol 5 with chlorosulfonyl isocyanate 166 and triethyl amine 167
(Scheme 147), has been shown to be an efficient for the stereo-
specific cis-dehydration of secondary and tert. to provide olefins. 
Primary alcohols do not undergo elimination due to competing (and 
predominant) displacement reaction to form corresponding methyl 
carbamates. Several kinds of alcohols have been used in order to 
get more efficient Burgess reagent which could afford carbamates 
in high yields. In recent years, researchers have directed their ef-
forts to synthesize carbamates through Burgess reagent. 

RO N

O

S

O

O

NEt3ROH   +   OCNSO2Cl +   Et3N
5 166 167 R = Me, PhCH2

168

Scheme 147. 

Nicolaou and coworkers have reported [216] an efficient, one-
pot synthesis of methyl carbamates 170 through the corresponding 
cis-diols 169 using methyl-Burgess reagent 168 (Scheme 148).  

R1 R2

HO OH
Et3N-SO2-N-COOMe

Nu  (90-95%) R1 R2

NHCOOMe Nu

169

168

170 .

Scheme 148. 

Later on, Wood and coworkers have reported [217] a novel, 
one-step conversion of primary alcohols 5 into carbamate-protected 
6 amines using benzyl-Burgess reagent 168 (Scheme 149).

Conversion of Baylis-Hillman adducts 171 of �-amino acids 
into corresponding methyl carbamates 172 using methyl Burgess 
reagent 168 was reported by Mamaghani and Badrian (Scheme 150)
[218].

3.8c. Synthesis of Carbamates from Oximes 

Goti and coworkers have reported the synthesis of various sub-
stituted aromatic carbamates 174 through the reaction of variety of 
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aromatic oximes 173 with alcohols using methyltrioxorhenium 
(MTO) and urea-hydrogen peroxide (UHP) (Scheme 151) [219]. 

N OH

R R1

R2

MTO, UHP

R3OH, rt

upto 72%

NH

R R1

R2

173 174

OR3

O

Scheme 151. 

Recently, Elghamry have reported the synthesis of carbamates 6
through the reaction of oximinoacetoacetate 175 with variety of 
aromatic amines 4 under solvent free conditions (Scheme 152)
[220].

NOH
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70-75%
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175

NH2

O

O
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4 6

Scheme 152. 

4. CONCLUSIONS 

This review gives a comprehensive survey regarding the syn-
thesis of organic carbamates through the various starting materials 
from the beginning to the recent reports (covering upto December, 
2009). Organic carbamates have clearly been demonstrated to be 
extremely useful and stable reagents, exhibiting unique physical, 
chemical and biological properties. Furthermore, in organic synthe-
sis, organic carbamates have shown to be a powerful instrument 
serving mainly as protecting groups for amines as well as synthons 
for several other functional group manipulations. Organic carba-
mates have become excellent templates for the formation of C-C 
and carbon-hetero atom bonds. Organic carbamates have also been 
utilized in the introduction of oxygen moieties as well as in the 
activation of various functional groups, which allows for a plethora 
of other applications. Organic carbamates have frequently been 
used a demandable synthons for the synthesis of various structurally 
diverse synthetic intermediates which have broad applications in 
drug discovery synthesis. In recent years, it has been realized by 
various researchers that introduction of carbamate functionality in 
various biologically active synthetic/natural/semisynthetic mole-
cules increases many fold biological activities. In addition, organic 
carbamates have made a great impact in the fields of polymer sci-
ence, biology and medicine. Organic carbamates have been utilized 
in industry as well and thus made their way into everyday life. 
Their wide utility as useful agrochemicals makes their further de-
mand for their synthesis. This important functional group class, 
although often overlooked, holds potential and no doubt will offer 
new and exiting chemistry in the near future. 
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