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Abstract 

In this paper, a new algorithm which is based on the graph cut theory and local binary patterns (LBP) for content 

based image retrieval (CBIR) is proposed. In graph cut theory, each node is compared with the all other nodes 

for edge map generation. The same concept is utilized at LBP calculation which is generating nine LBP patterns 

from a given 3×3 pattern. Finally, nine LBP histograms are calculated which are used as a feature vector for 

image retrieval. Two experiments have been carried out for proving the worth of our algorithm. It is further 

mentioned that the database considered for experiments are Brodatz database (DB1), and MIT VisTex database 

(DB2). The results after being investigated shows a significant improvement in terms of their evaluation 

measures as compared to LBP and other existing transform domain techniques.      
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1. Introduction 

With the rapid expansion of worldwide network and advances in information technology there is an explosive 

growth of multimedia databases and digital libraries. This demands an effective tool that allow users to search 

and browse efficiently through such a large collections. In many areas of commerce, government, academia, 

hospitals, entertainment, and crime preventions large collections of digital images are being created. Usually, the 

only way of searching these collections was by using keyword indexing, or simply by browsing. However, as 

the databases grew larger, people realized that the traditional keywords based methods to retrieve a particular 

image in such a large collection are inefficient. To describe the images with keywords with a satisfying degree 

of concreteness and detail, we need a very large and sophisticated keyword system containing typically several 

hundreds of different keywords. One of the serious drawbacks of this approach is the need of trained personnel 

not only to attach keywords to each image (which may take several minutes for one single image) but also to 

retrieve images by selecting keywords, as we usually need to know all keywords to choose good ones. Further, 

such a keyword based approach is mostly influenced by subjective decision about image content and also it is 

very difficult to change a keyword based system afterwards. Therefore, new techniques are needed to overcome 

these limitations. Digital image databases however, open the way to content based searching. It is common 

phrase that an image speaks thousands of words. So instead of manual annotation by text based keywords, 

images should be indexed by their own visual contents, such as color, texture and shape. The main advantage of 

this method is its ability to support the visual queries. Hence researchers turned attention to content based image 

retrieval (CBIR) methods. Several methods achieving effective feature extraction have been proposed in the 

literature [Rui et al., Smeulders et al., kokare et al., and Liu et al.]. 

Swain et al. proposed the concept of color histogram in 1991 and also introduced the histogram intersection 

distance metric to measure the distance between the histograms of images. Stricker et al. used the first three 

central moments called mean, standard deviation and skewness of each color for image retrieval. Pass et al. 

introduced color coherence vector (CCV).  CCV partitions the each histogram bin into two types, i.e., coherent, 

if it belongs to a large uniformly colored region or incoherent, if it does not. Huang et al. used a new color 

feature called color correlogram which characterizes not only the color distributions of pixels, but also spatial 

correlation of pair of colors. Lu et al. proposed color feature based on vector quantized (VQ) index histograms 

in the discrete cosine transform (DCT) domain. They computed 12 histograms, four for each color component 
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from 12 DCT-VQ index sequences. 

Texture is another salient and indispensable feature for CBIR. Smith et al. used the mean and variance of the 

wavelet coefficients as texture features for CBIR. Moghaddam et al. proposed the Gabor wavelet correlogram 

(GWC) for CBIR. Ahmadian et al. used the wavelet transform for texture classification. Moghaddam et al. 

introduced new algorithm called wavelet correlogram (WC). Saadatmand et al. improved the performance of 

WC algorithm by optimizing the quantization thresholds using genetic algorithm (GA). Birgale et al. and 

Subrahmanyam et al. combined the color (color histogram) and texture (wavelet transform) features for CBIR. 

Subrahmanyam et al. proposed correlogram algorithm for image retrieval using wavelets and rotated wavelets 

(WC+RWC). 

The recently proposed local binary pattern (LBP) features are designed for texture description. Ojala et al. 

proposed the LBP and these LBPs are converted to rotational invariant for texture classification. Pietikainen et 

al. proposed the rotational invariant texture classification using feature distributions. Ahonen et al. and Zhao et 

al used the LBP operator facial expression analysis and recognition. Heikkila et al. proposed the background 

modeling and detection by using LBP. Huang et al. proposed the extended LBP for shape localization. Heikkila 

et al. used the LBP for interest region description. Li et al. used the combination of Gabor filter and LBP for 

texture segmentation. Zhang et al. proposed the local derivative pattern for face recognition. They have 

considered LBP as a nondirectional first order local pattern, which are the binary results of the first-order 

derivative in images. 

 To improve the retrieval performance in terms of retrieval accuracy, in this paper, we proposed the graph cut 

based local binary patterns (GCLBP) for CBIR. Two experiments have been carried out on Brodatz and MIT 

VisTex databases for proving the worth of our algorithm. The results after being investigated show a significant 

improvement in terms of their evaluation measures as compared to LBP and other existing transform domain 

techniques. 

The organization of the paper as follows: In section 1, a brief review of image retrieval and related work is 

given. Section 2, presents a concise review of local binary patterns (LBP). Section 3, presents the feature 

extraction, proposed system framework, and similarity measure. Experimental results and discussions are given 

in section 4. Based on above work conclusions are derived in section 5. 

 

2. 2. Local Binary Patterns 

Ojala et al. proposed the local binary pattern (LBP) operator which describes the surroundings of a pixel by 

generating a bit-code from the binary derivatives of a pixel as a complementary measure for local image 

contrast. The LBP operator takes the eight neighboring pixels using the center gray value as a threshold. The 

operator generates a binary code 1 if the neighbor is greater or equal than the center otherwise generates a binary 

code 0. The eight neighboring binary code can be represented by a 8-bit number. The LBP operator outputs for 

all the pixels in the image can be accumulated to form a histogram. Fig.1 shows an example of LBP operator.  

For given a center pixel in the image, LBP value is computed by comparing it with those of its neighborhoods: 
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where cg is the gray value of the center pixel, ig is the gray value of its neighbors, P is the number of 

neighbors and R  is the radius of the neighborhood. Fig. 2 shows the examples of circular neighbor sets for 

different configurations of ( , )P R . 

The LBP measure the local structure by assigning unique identifiers, the binary number, to various micro-
structures in the image. Thus, LBP capture many structures in one unified framework. In the example in Fig. 

3(b), the local structure is a vertical edge with a leftward intensity gradient. Other microstructures are assigned 

different LBP codes, e.g., corners and spots, as illustrated in Fig. 4. By varying the radius R and the number of 

samples P, the structures are measured at different scales, and LBP allows for measuring large scale structures 

without smoothing effects, as is, e.g., the case for Gaussian-based filters. 
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Fig. 1: LBP calculation for 3×3 pattern 

 

 
Fig. 2: Circular neighborhood sets for different (P,R) 

 

 
Fig. 3. Illustration of LBP. (a) The LBP filter is defined by two parameters; the circle radius R and the number of 

samples P on the circle. (b) Local structure is measured w.r.t. a given pixel by placing the center of the circle in 

the position of that pixel. (c) Samples on the circle are binarized by thresholding with the intensity in the center 

pixel as threshold value. Black is zero and white is one. The example image shown in (b) has an LBP code of 

124. (d) Rotating the example image in (b) 900 clockwise reduces the LBP code to 31, which is the smallest 

possible code for this binary pattern. This principle is used to achieve rotation invariance. 

 
Fig. 4: Various microstructures measured by LBP. The gray circle indicates the center pixel. Black and white 

circles are binarized samples; black is zero and white is one. 

After identifying the LBP pattern of each pixel (j, k), the whole image is represented by building a histogram: 
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where the size of input image is 1 2N N× . 

 

3. 3. Feature Extraction 

The weighted graph (Li Xi et al.,) with no self loops is ( ), ,G V E W= , where {1,2,......., }V N= the node set is 

(N=m.n is the total number of pixels in
m nQ R ×∈ ) E V V⊆ ×  represents the edge set, and ( )ij N N

W w
×

= denotes 

an affinity matrix with the element ijw  being the edge weight between nodes i and j. 

Based on the above graph cut theory we compare the each pixel of 3×3 pattern with remaining eight pixel gray 

values for generating binary code. Finally, nine LBP patterns are collected for LBP histogram calculation and 

these are used as a feature vector for image retrieval. The flowchart of the proposed system is shown in Fig. 5 

and algorithm for the same is given below: 

 

3.1 Proposed System Framework (GCLBP) 

Algorithm: 

Input: Image;  Output: Retrieval Result 

1. Load the input image. 

2. Collect the 3×3 pattern for a center pixel i. 

• Construct the graph cut for 3×3 pattern. 

• Generate nine LBP patterns. 

• Go to next center pixel. 

3. Calculate the graph cut LBP (GCLBP) histograms. 

4. Form the feature vector by concatenating the nine LBP features. 

5. Calculate the best matches using Eq. (5). 

6. Retrieve the number of top matches. 

 

 
Fig. 5: Proposed system framework 

 

3.2 Similarity Measurement  

In the presented work d1 similarity distance metric is used as shown below: 
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where Q is query image, Lg is feature vector length, I1 is image in database; ,I if is 

thi  feature of image I in the 

database, ,Q if is 
thi feature of query image Q. 

 

4. Experimental Results and Discussions 

For the work reported in this paper, retrieval tests are conducted on two different databases (Brodatz, and MIT 

VisTex) and results are presented separately. 

 

4.1. Database (DB1) 

The database DB1 used in our experiment that consists of 116 different textures comprising of 109 textures 
from Brodatz texture photographic album [Brodatz P.], seven textures from USC database 
[http://sipi.usc.edu/database/]. The size of each texture is 512 512×  and is further divided into sixteen 128 128×  
non-overlapping sub-images, thus creating a database of 1856 (116 16)×  images.  
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where 1N is number of relevant images and 1Γ is number of groups. 

 
Table 1: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval precision (ARP) 

(%) 

Method 
Number of top matches considered 

1 3 5 7 9 11 13 15 16 
LBP 100 89.17 84.67 81.71 79.01 76.33 73.86 71.18 69.65 

GCLBP 100 93.19 89.73 87.27 85.02 82.71 80.47 77.88 76.45 
 
 
 
 
 
 

Table 2: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval rate (ARR) (%) 

Method 
Number of top matches considered 

16 32 48 64 80 96 112 
LBP 69.65 80.16 84.47 87.05 89.02 90.44 91.63 
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GCLBP 76.45 84.57 87.85 89.79 91.13 92.18 93.03 
DT-CWT 74.16 83.83 87.13 89.11 90.48 91.48 92.3 

DT-RCWT 72.33 80.88 84.32 86.28 87.82 88.98 89.92 
 

Table 3: Performance of proposed method (GCLBP) with different distance measures in terms of average 

retrieval rate (ARR) (%) 

Method 
Distance 

Measure 
Number of top matches considered 

16 32 48 64 80 96 112 

GCLBP 

Manhattan 79.89 86.82 89.61 91.30 92.46 93.34 94.04 
Canberra 77.73 85.09 88.24 90.02 91.37 92.32 93.07 
Euclidean 78.81 85.59 88.43 90.24 91.54 92.47 93.25 

d1 76.45 84.57 87.85 89.79 91.13 92.18 93.03 
 

 
Fig. 6: comparison of proposed method (GCLBP) with LBP on DB1 database in terms of ARP 

 
Table 1 and Fig. 6 summarize the retrieval results of the proposed method (GCLBP), and LBP in terms of 

average retrieval precision and Table 2 and Fig. 7 illustrate the performance of proposed method (GCLBP), LBP 

and other transform domain techniques in terms of average retrieval rate. Table 3 and Fig. 8 summarize the 

performance of proposed method (GCLBP) with different distance measures in terms of average retrieval rate. 
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Fig. 7: Comparison of proposed method (GCLBP) with: (a) LBP on DB1 database in terms of ARR, (b) with 

LBP and other transform domain features on DB1 database in terms of ARR. 
From the Tables 1 to 3 and Fig. 6 to 8 the following can be observed: 

1. The average retrieval precision of proposed method (GCLBP) (100% to 76.45%) is more as compared to 
LBP (100% to 69.65%). 

2. The average retrieval rate of GCLBP (76.45% to 93.03%) is more compared to LBP (69.65% to 
91.63%), DT-CWT (74.16% to 92.3%), and DT-RCWT (72.33% to 89.92%). 

3. The performance of the proposed method with Manhattan distance (79.89% to 94.04%) is more as 
compared to Canberra (77.73% to 93.07%), Euclidean (78.81% to 93.25%), and d1 distance (76.45% to 
93.03%). 

From Tables 1 to 3, Fig. 6 to 8, and above observations, it is clear that the proposed method is outperforming the 

LBP and other transform domain techniques. Fig. 9 illustrates the retrieval results of query image based on the 

proposed method (GCLBP). 
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Fig. 8: Performance of proposed method (GCLBP) with different distance measures on DB1 database in terms 

of ARR. 
 

4.2. Database DB2 
The database DB2 used in our experiment consists of 40 different textures 

[http://vismod.www.media.mit.edu]. The size of each texture is 512 512× . Each 512 512×  image is divided into 

sixteen 128 128×  non-overlapping sub-images, thus creating a database of 640 (40 16)×  images. The 

performance of the proposed method is measured in terms of ARP and ARR. 
 

Table 4: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval precision (ARP) 

(%) 

Method 
Number of top matches considered 

1 3 5 7 9 11 13 15 16 
LBP 100 93.85 90.90 88.37 85.45 82.69 79.85 76.35 74.39 

GCLBP 100 97.13 95.25 93.05 90.45 87.52 84.87 81.46 79.44 
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Fig. 9: Retrieval results of proposed method (GCLBP) of query image: (a) 1, (b) 724, and (c) 1850 of database 

DB1. 
Table 4 and Fig. 10 summarize the retrieval results of the proposed method (GCLBP) and LBP in terms of 

average retrieval precision and Table 5 and Fig. 11 illustrate the performance of proposed method (GCLBP) and 

LBP in terms of average retrieval rate. Table 6 and Fig. 12 summarize the performance of proposed method 

(GCLBP) with different distance measures in terms of average retrieval rate.  
From the Tables 4 to 6 and Fig. 10 to 12 the following can be observed: 

1. The average retrieval precision of proposed method (GCLBP) (100% to 79.44%) is more as compared to 
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LBP (100% to 74.39%). 
2. The average retrieval rate of GCLBP (79.44% to 97.24%) is more compared to LBP (74.39% to 

97.08%). 
3. The performance of the proposed method with d1 distance (79.44% to 97.24%) is more as compared to 

Canberra (74.7% to 93.48%), Euclidean (80.07% to 97.20%), and Manhattan distance (80.47% to 
95.46%). 

From Tables 4 to 6, Fig. 10 to 12, and above observations, it is clear that the proposed method is outperforming 

the LBP and other transform domain techniques. 
 

 
Fig. 10: comparison of proposed method (GCLBP) with LBP on DB2 database in terms of ARP 

 
Table 5: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval rate (ARR) (%) 

Method 
Number of top matches considered 

16 32 48 64 80 96 112 
LBP 74.39 86.69 91.14 93.77 95.35 96.36 97.08 

GCLBP 79.44 88.36 92.00 94.22 95.54 96.53 97.24 
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Fig. 11: Comparison of proposed method (GCLBP) with LBP on DB2 database in terms of ARR. 

 
Fig. 12: Performance of proposed method (GCLBP) with different distance measures on DB2 database in terms 

of ARR. 
 
 
 

Table 6: Performance of proposed method (GCLBP) with different distance measures in terms of average 

retrieval rate (ARR) (%) 

Method 
Distance 

Measure 
Number of top matches considered 

16 32 48 64 80 96 112 

GCLBP 

Manhattan  80.47 88.62 91.560 93.21 94.23 94.97 95.46 
Canberra 74.70 84.57 88.260 90.58 92.00 92.81 93.48 
Euclidean 80.07 88.44 92.07 94.17 95.56 96.52 97.20 

d1  79.44 88.36 92.00 94.22 95.54 96.53 97.24 
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5. Conclusion 

A new algorithm which is based on the graph cut theory and local binary patterns (LBP) for content based image 

retrieval (CBIR) is proposed in this paper. The proposed method extracts the nine LBP patterns from a given 

3×3 pattern and these are used as the features. Two experiments have been carried out for proving the worth of 

our algorithm. The results after being investigated shows a significant improvement in terms of their evaluation 

measures as compared to LBP and other existing transform domain techniques. 
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