
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

October 2019

JAVA INSTRUMENTATION OPTIMIZATION TECHNIQUES JAVA INSTRUMENTATION OPTIMIZATION TECHNIQUES

Ted Hulick

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Hulick, Ted, "JAVA INSTRUMENTATION OPTIMIZATION TECHNIQUES", Technical Disclosure Commons,
(October 24, 2019)
https://www.tdcommons.org/dpubs_series/2603

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234669868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2603?utm_source=www.tdcommons.org%2Fdpubs_series%2F2603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5901

JAVA INSTRUMENTATION OPTIMIZATION TECHNIQUES

AUTHORS:
Ted Hulick

ABSTRACT

Techniques are described herein for reducing overhead, risk, and code maintenance

for Java® instrumentation required to monitor customer-facing applications. These

techniques avoid transforms and retransforms, thereby eliminating risk and overhead as

there are no transformers registered with the Java Virtual Machine (JVM). This may use

the same call mechanism as a typical transform, and therefore requires no code changes in

instrumentation. The "dummy" transform may always obtain a real class (not a null) that

has not been initialized. Thus, a user may add a static block or other one-time-only objects.

These techniques are also portable, because the only hook is in the core JVM classloader,

and compact, because very little code is required for the agent itself.

DETAILED DESCRIPTION

The Java agent instrumentation package has existed for years. There are over

approximately fifty different Java agents in the market today, most notably in the

Application Performance Management (APM) space. Java agents vary greatly in how they

instrument and how often they instrument. In the APM market, the bar is high in terms of

resource consumption since the agents are meant to monitor resource use rather than to

create additional resource use.

There are several common Java agent functions that may impact resource usage,

such as the time required to initialize the agent before the application starts up, the number

of classes that are "retransformed" so they can be reviewed with a class structure, the time

required to review a class to determine if it should be instrumented, and the amount of time

for which instrumented methods in a class "block" in the application. There are also other

issues such as methods that are called only once immediately after class load and that need

to be instrumented to observe the call.

Most Java instrumentation uses transforms and retransforms to instrument classes

which can cause performance issues and in some versions of Java can lead to a complete

Java Virtual Machine (JVM) crash. For example, there have been in excess of fifty Java 8

2

Hulick: JAVA INSTRUMENTATION OPTIMIZATION TECHNIQUES

Published by Technical Disclosure Commons, 2019

 2 5901

crashes related to class retransformation, creating a need to reduce the transformations

required to achieve the necessary level of instrumentation. In addition, the initial transform

is called with no class reference (i.e., it does not exist). Oftentimes other class references

do not exist either, and frequently a method is called once immediately after the class is

loaded and a retransform cannot be issued in time to instrument the class before the method

is called. One example is a Runnable (run()) to launch a thread that occurs immediately

after class load.

For a typical Java agent, the Java agent entry is put into a special jar file which

specifies a "premain class" in the manifest contained in the jar file. The JVM boots up and

then executes the "premain method in the specified premain class," which temporarily

blocks the application from loading. The premain class generally initializes the agent by

loading agent jars into a newly created and isolated class loader that does not interfere with

the application. In addition, the premain usually adds a "transformer," which is a class that

contains the transform method and is called after premain when new classes are loaded.

The premain may evaluate any classes already loaded using "getAllClassesLoaded"

from an instrumentation handle. Selected classes are retransformed and run through the

transform method. After returning from the premain, the application may continue loading

and the application main class is called. As new classes load in the application, they are

also run through the transform method and are evaluated, and can be instrumented as well.

The transform returns null (e.g., use original) or new bytes (e.g., instrumented) back to the

JVM. There may be several reasons why a class is not instrumented immediately and might

need to be "retransformed." For example, a rule may be added after the initial startup, the

class superclasses/interfaces may not have been loaded yet, or only bytes but not the class

itself may yet exist.

A "retransform" cycle may "retransform" queued classes to be run back through the

transform for evaluation and instrumentation. Generally, instrumented methods call to the

instrumentation core in the entry of the method body, and call before exit from the method

body. Optionally, the method may be "wrapped" to catch exceptions that occur. The calls

are usually static and eventually transfer to "handlers" or "interceptors" that know how to

consume the arguments and the context depending on the purpose of the instrumentation.

3

Defensive Publications Series, Art. 2603 [2019]

https://www.tdcommons.org/dpubs_series/2603

 3 5901

The no transform Java agent described herein is designed to avoid transforms and

retransforms in the agent, thereby eliminating overhead and risk. Modification of a loaded

class may be enabled in time to instrument a one-time called method, such as a "run"

(Runnable). Furthermore, a transform method is supplied to the agent, but that method is

only called after a class has been created and before it has been initialized. This removes

two of the issues that create a need to retransform, and also guarantees that the user can

instrument methods called immediately after class load and only called one time, such as

"run()" async calls.

There are three main components of the Java agent described herein, each in

separate jar: boot proxy, main, and agent. Boot proxy receives callbacks from

java.lang.ClassLoader.defineClass() when a class is defined and not yet initialized (via the

clinit() method). "Main" is the premain entry point for the agent. It creates and isolates the

agent classloader so there is no conflict with the application. The instrumentation takes

place at the agent.

At the end of the premain call, java.lang.ClassLoader defineClass exits are

instrumented to call this on every class creation. The return class ($_ is converted at runtime)

and all arguments are passed to defineClass (protectionDomain):

boot.JavaAgentBoot.callTransformer($_,$args), where $args is the byte array. The user

may call getAllLoadedClasses() and instrument those loaded classes (mainly boot classes)

before premain using redefineClasses() instead of retransfrom(). The

getAllLoadedClasses() method may be similar to the Java class file transformer, which is

documented at:

docs.oracle.com/javase/7/docs/api/java/lang/instrument/ClassFileTransformer.html.

Afterwards, the java.lang.Classloader.defineClass may call the

boot.JavaAgentBoot.callTransformer, which calls a registered transformer method (e.g.,

similar to ClassFileTransformer) in the JavaAgentBoot (not in the JVM). The className

contains a "tag" that identifies that this was not a typical transform. The tag informs a user

of the difference in case it is desired to use this for both a callback and a real transform.

The tag may be stripped off the className before processing transform(ClassLoader loader,

String className, Class<?> classBeingRedefined, ProtectionDomain protectionDomain,

byte[] classfileBuffer).

4

Hulick: JAVA INSTRUMENTATION OPTIMIZATION TECHNIQUES

Published by Technical Disclosure Commons, 2019

 4 5901

The implementation of this method may transform the supplied class file and return

a new replacement class file. The transform may operate similarly to a typical transform

and provide back null or new bytes. The callTransformer method calls redefineClasses if

the class bytes were specified to be modified.

Figure 1 below illustrates an example call stack for a typical transform. In this

example, the class is null and the transform was called by the JVM.

Figure 1

Figure 2 below illustrates an example call stack for the optimized transform

described herein. In this example, there is a real class (not yet initiated) that may be timed

for instrumentation. Normally redefineClasses would generate a transform at the end, but

here there are no transformers, and as such it is not called.

Figure 2

5

Defensive Publications Series, Art. 2603 [2019]

https://www.tdcommons.org/dpubs_series/2603

 5 5901

Figure 3 below illustrates an example Plain Old Java Object (POJO). Here, the

POJO creates one run() to wait for user input to shut down the JVM, and creates ten threads

as part of a thread pool. Retransforming this class is not an option since these run() methods

are already executed by the time the class loads and a retransform is subsequently issued,

and as such the instrumentation would not be invoked.

Figure 3

Figure 4 below illustrates an example instrumentation for the run() classes.

Figure 4

Figure 5 below illustrates example results.

6

Hulick: JAVA INSTRUMENTATION OPTIMIZATION TECHNIQUES

Published by Technical Disclosure Commons, 2019

 6 5901

Figure 5

In summary, techniques are described herein for reducing overhead, risk, and code

maintenance for Java instrumentation required to monitor customer-facing applications.

These techniques avoid transforms and retransforms, thereby eliminating risk and overhead

as there are no transformers registered with the JVM. This may use the same call

mechanism as a typical transform, and therefore requires no code changes in

instrumentation. The "dummy" transform may always obtain a real class (not a null) that

has not been initialized. Thus, a user may add a static block or other one-time-only objects.

7

Defensive Publications Series, Art. 2603 [2019]

https://www.tdcommons.org/dpubs_series/2603

 7 5901

These techniques are also portable, because the only hook is in the core JVM classloader,

and compact, because very little code is required for the agent itself.

8

Hulick: JAVA INSTRUMENTATION OPTIMIZATION TECHNIQUES

Published by Technical Disclosure Commons, 2019

	JAVA INSTRUMENTATION OPTIMIZATION TECHNIQUES
	Recommended Citation

	Microsoft Word - 1075256_1

