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Classifying SSD input-output streams to optimize storage overprovisioning 

ABSTRACT 

The data update mechanism for a solid-state drive (SSD) involves overprovisioning, e.g., 

a storage footprint larger than the actual data size, and write amplification, e.g., a physical 

amount of information written being a multiple of the actual amount of information. Both 

overprovisioning and write amplification overheads are at least partially a result of treating input 

data streams as statistically indistinguishable streams and subjecting them to fixed, pre-

configured provisioning. 

This disclosure describes techniques to classify the input-output streams of an SSD into 

various types, e.g., non-overlapped sequential data, chunked data streams of variable length, etc. 

Overprovisioning is optimized for each input stream based on its classification. The techniques 

thereby reduce both overprovisioning and write amplification overheads, resulting in SSD life 

and throughput that is significantly better than conventional techniques. 
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BACKGROUND 

In solid-state drives (SSDs), data is generally not updated in place. Rather, data update in 

SSDs involves garbage collection, in turn facilitated by overprovisioning of storage capacity. 

Overprovisioning entails a storage footprint larger than the actual data size. Garbage collection 

results in write amplification, an undesirable phenomenon where the amount of information 

physically written is a multiple of the logical amount of information to be written. Both 

overprovisioning and write amplification overheads are at least partially a result of treating input 

data streams as statistically indistinguishable streams and subjecting them to fixed, pre-

configured provisioning. 

 Non-volatile memories have features such as namespace and stream, which enable the 

host to tag the data stream based on the application that generates the data. If the data stream is 

thus tagged, the SSD can execute different garbage collection algorithms to improve 

performance. However, conventional execution of tag-based garbage collection requires deep 

knowledge of the data traffic and fixed overprovisioning for both tagged and untagged streams. 

Often, the data streams are random and deep data-stream knowledge is unknown. The present 

techniques of preconfigured, fixed overprovisioning result in poor usage of raw capacity, low 

write throughput, and high write amplification. In turn, these result in a shortened life and a poor 

response-time for the SSD. 

DESCRIPTION 

This disclosure describes techniques to classify SSD input-output traffic into classes 

based on non-overlapped sequential write, sequential alignable data chunk, and data coldness 

characteristics. Classification is performed without prior deep-traffic knowledge. 
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Overprovisioning for each class is calculated and dynamically adjusted for each data stream such 

that high overall SSD performance is achieved.  

Non-overlapped sequential write (NSW) data 

 NSW data is defined as data blocks that arrive at the SSD without overlapped logical 

block addresses. The total capacity needed by an NSW data stream is not be known until a trim 

command is received. The real, physical, overprovisioning capacity for such data streams is zero, 

and the effective overprovisioning (E_OP) is 100%. 

a. Create a data stream tag NSW_TAG_r where r is a predefined non-

negative integer. 

b. Configure RECYCLE_PRESERVE to true or false. 

c. Set up a write buffer with size of EU (Erase Unit) in DRAM. 

d. When a data block arrives, write it to the write buffer. 

e. If the data block violates the non-overlap property, declare the data 

block write as failed. 

f. If the write buffer is full, select a blank EU, attach the tag  

NSW_TAG_r and RECYCLE_PRESERVE values to the EU and flush the write 

buffer into the EU. 

g. To select a blank EU in step f, check if there are any dirty or 

recycled EUs with NSW_TAG_r, then check the general recycled EUs. 

h. Repeat steps c and g until a trim command for the tag NSW_TAG_r is 

received. 

i. When the trim for tag NSW_TAG_r is received, mark EUs associated with 

NSW_TAG_r as dirty. If the RECYCLE_PRESERVE is true, keep the tag to 

the EU. 

Fig. 1: Treatment of NSW data streams 

  Fig. 1 illustrates the treatment of NSW streams, per techniques of this disclosure. 
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Data chunks that are sequentially alignable with reference to the erase unit of the SSD 

 An erase unit (EU) is the size of the smallest data storage unit that an SSD can erase and 

reclaim for the purposes of storing new data. The total user data capacity is denoted as TUC, and 

the total storage capacity is denoted as TSC. Integer parameters B > (X × Δ), Δ ≥ 0, X ≥ 1 and Y 

≥ 1 are configured such that 

Y × EU = X × B, 

where if Y > 1, X = 1. All data chunks with sizes in the range of [B-Δ, B] are classified as a 

SADC (Sequential Alignable Data Chunk) stream. Each of Y storage EUs store just X data 

chunks. For such data chunks, the techniques preserve data block sequential alignment by 

padding data with reference to the erase unit. 

a. Create a data traffic tag as TF_TAG_j where j is a predefined non-

negative integer. 

b. Set EU the size of erase unit. 

c. Configure integer parameters B > (X * Delta),  Delta >=0, X >= 1 and 

Y >= 1 such that 

                  Y * EU = X * B, 

      where if Y > 1, X = 1.  

d. Denote as SAC (Sequential Alignment Class) the class of SSD IO 

traffic with data block sizes in the range of [B-Delta, B] and 

satisfying step c. 

e. Set the total user capacity as TUC. 

f. Set the Minimum Over Provision to 

           M_OP =( (  

                 ( (X * Delta) / (Y*EU) ) + 

                 ( (K * Y * EU)/TUC )   

                   ) * 100 ) %, 

where K >= 1 is a pre-configured number to reserve K*Y blank erase 

units for flushing write buffer and persistent buffering.  

g. Configure the storage overprovisioning rate as C_OP and the total raw 

storage capacity TSC as  

              TSC = TUC * (1 + C_OP), where C_OP >= M_OP. 

h. Set the overprovisioning rate for performance enhancement as 

             P_OP = (C_OP - M_OP). 
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i. Set a write buffer with size of EU for TF_TAG_j. If Y > 1, the 

sequence of EU index of the data block is tracked so that the tail EU 

of the data block is identifiable. 

j. When a write data block arrives at the write buffer, the padding is 

performed either immediately to make the data block size of B or 

until the tail EU is reached to satisfy step b. 

k. When the writer buffer is full, tag the write buffer with TF_TAG and 

flush the buffer into a blank erase unit in the storage media for 

persistence. 

l. The E_OP (Effective OP) is given  

E_OP =( P_OP +  ( 1/X ) * 100 )%, 

      where 0 <= r < R. 

Fig. 2: Treatment of SADC data streams 

  Fig. 2 illustrates the treatment of SADC data streams, per techniques of this disclosure. 

The condition E_OP > C_OP enables higher SSD capacity utilization, improves SSD throughput 

performance, and extends SSD life. 

Data coldness and dynamical effective overprovisioning 

a. Configure the total user data capacity (TUC) and total SSD storage 

capacity (TSC) for a data stream with overprovision C_OP, where 

C_OP = ( ( (TSC-TUC)/TUC ) * 100 ) %. 

b. Configure a positive number N to represent N categories of data 

coldness and denote the ith class of data coldness by Ci (0 <= i < 

N). Bigger i correspond to colder data. 

c. Denote by Pi the dynamic distribution of user data capacity with 

respect to coldness class Ci. The following equation is satisfied at 

all times: 

 sum (Pi) = 1, 0 <= i < N. 

d. Initialize  {Pi, 0<=i<N} with either P0 = 1 for a complete new setup, 

or by loading from previous saved values. 

e. Set N write buffers with each buffer size set to EU, and denote by 

WBi the writer buffer i for coldness class Ci. 

f. When the host requests a write, write to WB0. When WB0 is full, 

timestamp the buffer and flush WB0 into a blank EU in persistent 

media. 
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g. When recycling a programmed EU, write the valid data from the EU into 

an appropriate WBi based on the recycled EU timestamp. The selection 

of the WBi is based on a predefined schema of linear categorization. 

For example, if the recycled EU timestamp is in the range of 

(current_timestamp + (i-1)*beta,  current_timestamp + i*beta], (beta 

> 0 being a pre-configured parameter) WBi is selected. The older the 

timestamp is, the bigger the coldness index i is. 

h. When a write buffer WBi is full, flush the buffer into a blank EU in 

the SSD persistent media and assign a calculated-timestamp to it 

based on a predefined schema. For the linear categorization schema, 

the calculated-timestamp is current_timestamp + i*beta. 

i. When either user data arrives at WB0, or valid data from recycling 

arrives at WBi, recalculate Pi for 0 <= i < N. 

j. The runtime DE_OP (dynamic effective OP) is defined as 

DE_OP = C_OP / (1 - sum ( Fi(Alpha_i, Pi)) ),  

where 0 < i <N, Alpha_i is the weight factor for the coldness 

category Ci, and Fi are the effective functions. The simplest 

effective function is Fi(Alpha_i, Pi) = Alpha_i * Pi. 

 

Fig. 3: Overprovisioning based on data coldness 

The techniques adaptively classify SSD traffic dynamically distribute data storage 

overprovision based on data coldness as shown in Fig. 3. The condition DE_OP > C_OP 

achieved via the procedure illustrated in Fig. 3 enables higher SSD capacity utilization, improves 

SSD IO throughput performance, and extends SSD life. 

Classifying data using data coldness and NSW 

The techniques can also adaptively classify SSD IO traffic based on both data coldness 

and NSW sub-streams, as illustrated in Fig. 4.  

a. Configure the total user data capacity (TUC) and total SSD storage 

capacity (TSC) for a data stream with overprovision C_OP, where 

C_OP = ( ( (TSC-TUC)/TUC ) * 100 ) %. 

b. Configure an integer R >= 0. 

7

Defensive Publications Series, Art. 2407 [2019]

https://www.tdcommons.org/dpubs_series/2407



c. For each 0 <= r < R, follow Fig. 1 to create a NSW sub-stream with 

tag TAG_NSW_r. Denote by NSW_Pr the percentage of the sub-stream user 

data with respect to TUC. 

d. Configure a positive number N to represent N categories of data 

coldness. Denote by Ci (0 <= i < N) the ith class of the data 

coldness. Bigger i corresponds to colder data. 

e. Denote by Pi the dynamical distribution of user data capacity with 

respect to coldness class Ci, where 0 <= i < N. The following 

equation is satisfied at all times: 

sum( NSW_Pr + sum (Pi) ) = 1, where 0 <= r < R and 0 <= i < N. 

f. Initialize {NSW_Pr, 0<=r<R} and  {Pi, 0<=i<N} with either P0 = 1 for 

a complete new setup, or by loading from previously saved values. 

g. Set N write buffers, each with buffer size EU, and denote by WBi the 

writer buffer i for coldness class Ci. 

h. When a write data request comes from the host, 

i) if the data is associated with a tag NSW_TAG_ r, 0 <= r < R, 

follow Fig. 1 to handle the data. 

ii) if the data is not associated with any tags, write into WB0. 

When WB0 is full, timestamp the buffer and flush WB0 into a 

blank EU in persistent media. 

i. Follow steps g and h in Fig. 3 to recycle the EU without tag. 

j. When user data with tag CS_TAG_r (0<=r<R) arrives, user data without 

tags arrives at WB0, or valid data from recycling arrives at WBi 

(0<i<N), recalculate Pi for 0<=i<N. 

k. The runtime DE_OP (Dynamical Effective OP) is defined as 

             DE_OP = sum(NSW_Pr * 100) +  

         C_OP / (1 - sum(NSW_Pr) - sum ( Fi(Alpha_i, Pi))),  

where 0<=r<R, 0<i<N, Alpha_i is the weight factor for coldness 

category Ci, and Fi are the effective functions. The simplest 

effective function is Fi(Alpha_i, Pi) = Alpha_i * Pi. 

Fig. 4: Adaptive classification of SSD IO traffic based on both data coldness and NSW sub-streams 

The condition DE_OP > C_OP achieved via the procedure illustrated in Fig. 4 enables higher 

SSD capacity utilization, improves SSD IO throughput performance, and extends SSD life. 
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Classifying SADC streams using data coldness 

 The techniques classify SADC streams into N data coldness classes. Data block 

sequential alignment is preserved by padding data with reference to the EU while NSW data sub-

streams and data coldness classifications continue to exist.  

a. Set the data traffic tag (TF_TAG_j), where j is a non-negative 

integer. 

b. Set the size of Erase Unit (EU). 

c. Configure integer parameters B > (X * Delta),  Delta >= 0, X >= 1 and 

Y >= 1 such that 

                  Y * EU = X * B, 

where if Y > 1, X=1.  

d. Denote as SAC (Sequential Alignment Class) the class of SSD IO 

traffic with data block sizes in the range of [B-Delta, B], 

satisfying step c. 

e. Set the total user capacity (TUC) for the stream with tag TF_TAG_j. 

f. Configure an integer R >= 0. 

g. For each 0 <= r< R, follow steps from a to e of Fig. 1 to configure 

NSW substream tag NSW_TAG_r. Denote by NSW_Pr the percentage of the 

NSW substream user data with respect to TUC. 

h. Set R_Pr the percentage of remaining user data capacity with respect 

to TUC, 

R_Pr = 1.0 - sum(NSW_Pr), where 0<=r<R. 

i. Following Fig. 3, set N>=1 categories of data coldness for the 

remaining user data capacity. 

j. Set the minimum over provision to 

M_OP =( (  

          ( (X * Delta)/(Y*EU) ) + 

          ( (K * Y * EU)/TUC )  

        ) * 100) %, 

where 0<=r<R, K >= 1 is a pre-configured number to reserve K * Y 

blank erase units for flushing write buffer and persistent buffering.  

k. Configure the storage overprovisioning rate as C_OP and the total raw 

storage capacity TSC as 

TSC = TUC * (1 + C_OP), where C_OP >= M_OP. 

l. Set the over provisioning rate for performance enhancement as 

P_OP = (C_OP - M_OP) / R_Pr. 

m. Set a write buffer with size EU for the remaining user data. If Y > 

1, the sequence of EU index of the data block is tracked so that the 

tail EU of the data block is identifiable. 
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n. When a write data block arrives,  

i) if it is associated with a complete sequential tag NSW_TAG_r, 

follow Fig. 1 to handle the data with additional tag TF_TAG_j. 

Otherwise, follow Fig. 3 to handle the data with additional tag 

TF_TAG_j. 

ii) If the data block is not associated with a complete sequential 

tag NSW_TAG_r with 0<=r<R, the padding is performed either 

immediately to make the data block size of B, or until the tail 

EU is reached to satisfy step c. 

o. The E_OP (Effective OP) is given by 

E_OP = (  P_OP/( (1 - sum(NSW_Pr)) - sum (Fi(Alpha_i, Pi)) ) +   

                   ( 1/X  + sum(NSW_Pr) ) * 100 )%, where 0<=r<R. 

Fig. 5: Classifying SADC streams using data coldness 

 As is seen from Fig. 5, the effective overprovisioning (E_OP) is greater than the 

conventional storage overprovisioning rate (C_OP), enabling higher SSD capacity utilization, 

improving SSD IO throughput performance, and extending SSD life.  

Classifying data streams using NSW, SADC, and data coldness 

The techniques classify data streams and perform a garbage collection scheme to 

optimize the utilization, throughput, and life of an SSD. 

a. For an allocated data storage persistent media with capacity TSC, 

configure C_OP to support user data capacity TUC where, 

TSC = TUC * ( 1  + C_OP ). 

b. Classify data IO traffic, which can be characterized as in Fig. 2, 

into M categories and denote each category as TF_TAG_j where 0 <= j < 

M.  

c. For each category TF_TAG_j (0 <= j < M), set Nj to the number of 

coldness categories and Rj to the number of complete sequential 

streams in Fig. 5. 

d. Follow the steps in Fig. 4 to classify remaining user data. 

e. When a user data block arrives,  

a. if the data is associated with a tag TF_TAG_j, follow Fig. 2 to 

handle the data block;  

b. otherwise, follow Fig. 4 to handle the data block. 
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f. Follow both Fig. 2 and Fig. 4 to perform garbage collection to 

programmed EUs. 

Fig. 6: Classifying data streams using NSW, SADC, and data coldness 

 Fig. 6 illustrates classifying data streams based on NSW, SADC, and data coldness. 

CONCLUSION 

This disclosure describes techniques to classify the input-output streams of an SSD into 

various types, e.g., non-overlapped sequential data, chunked data streams of variable length, etc. 

Overprovisioning is optimized for each input stream based on its classification. The techniques 

thereby reduce both overprovisioning and write amplification overheads, resulting in SSD life 

and throughput that is significantly better than conventional techniques. 
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