
Technical Disclosure Commons

Defensive Publications Series

August 16, 2019

Classifying SSD input-output streams to optimize
storage overprovisioning
Bin Tan

Narges Shahidi

Manuel Benitez

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Tan, Bin; Shahidi, Narges; and Benitez, Manuel, "Classifying SSD input-output streams to optimize storage overprovisioning",
Technical Disclosure Commons, (August 16, 2019)
https://www.tdcommons.org/dpubs_series/2407

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234669527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2407?utm_source=www.tdcommons.org%2Fdpubs_series%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Classifying SSD input-output streams to optimize storage overprovisioning

ABSTRACT

The data update mechanism for a solid-state drive (SSD) involves overprovisioning, e.g.,

a storage footprint larger than the actual data size, and write amplification, e.g., a physical

amount of information written being a multiple of the actual amount of information. Both

overprovisioning and write amplification overheads are at least partially a result of treating input

data streams as statistically indistinguishable streams and subjecting them to fixed, pre-

configured provisioning.

This disclosure describes techniques to classify the input-output streams of an SSD into

various types, e.g., non-overlapped sequential data, chunked data streams of variable length, etc.

Overprovisioning is optimized for each input stream based on its classification. The techniques

thereby reduce both overprovisioning and write amplification overheads, resulting in SSD life

and throughput that is significantly better than conventional techniques.

KEYWORDS

● Solid state drive (SSD)

● Flash memory

● Overprovisioning

● Write amplification

● Data stream

● Stream classification

● Non-overlapped data stream

● NAND flash

2

Tan et al.: Classifying SSD input-output streams to optimize storage overprov

Published by Technical Disclosure Commons, 2019

BACKGROUND

In solid-state drives (SSDs), data is generally not updated in place. Rather, data update in

SSDs involves garbage collection, in turn facilitated by overprovisioning of storage capacity.

Overprovisioning entails a storage footprint larger than the actual data size. Garbage collection

results in write amplification, an undesirable phenomenon where the amount of information

physically written is a multiple of the logical amount of information to be written. Both

overprovisioning and write amplification overheads are at least partially a result of treating input

data streams as statistically indistinguishable streams and subjecting them to fixed, pre-

configured provisioning.

 Non-volatile memories have features such as namespace and stream, which enable the

host to tag the data stream based on the application that generates the data. If the data stream is

thus tagged, the SSD can execute different garbage collection algorithms to improve

performance. However, conventional execution of tag-based garbage collection requires deep

knowledge of the data traffic and fixed overprovisioning for both tagged and untagged streams.

Often, the data streams are random and deep data-stream knowledge is unknown. The present

techniques of preconfigured, fixed overprovisioning result in poor usage of raw capacity, low

write throughput, and high write amplification. In turn, these result in a shortened life and a poor

response-time for the SSD.

DESCRIPTION

This disclosure describes techniques to classify SSD input-output traffic into classes

based on non-overlapped sequential write, sequential alignable data chunk, and data coldness

characteristics. Classification is performed without prior deep-traffic knowledge.

3

Defensive Publications Series, Art. 2407 [2019]

https://www.tdcommons.org/dpubs_series/2407

Overprovisioning for each class is calculated and dynamically adjusted for each data stream such

that high overall SSD performance is achieved.

Non-overlapped sequential write (NSW) data

 NSW data is defined as data blocks that arrive at the SSD without overlapped logical

block addresses. The total capacity needed by an NSW data stream is not be known until a trim

command is received. The real, physical, overprovisioning capacity for such data streams is zero,

and the effective overprovisioning (E_OP) is 100%.

a. Create a data stream tag NSW_TAG_r where r is a predefined non-

negative integer.

b. Configure RECYCLE_PRESERVE to true or false.

c. Set up a write buffer with size of EU (Erase Unit) in DRAM.

d. When a data block arrives, write it to the write buffer.

e. If the data block violates the non-overlap property, declare the data

block write as failed.

f. If the write buffer is full, select a blank EU, attach the tag

NSW_TAG_r and RECYCLE_PRESERVE values to the EU and flush the write

buffer into the EU.

g. To select a blank EU in step f, check if there are any dirty or

recycled EUs with NSW_TAG_r, then check the general recycled EUs.

h. Repeat steps c and g until a trim command for the tag NSW_TAG_r is

received.

i. When the trim for tag NSW_TAG_r is received, mark EUs associated with

NSW_TAG_r as dirty. If the RECYCLE_PRESERVE is true, keep the tag to

the EU.

Fig. 1: Treatment of NSW data streams

 Fig. 1 illustrates the treatment of NSW streams, per techniques of this disclosure.

4

Tan et al.: Classifying SSD input-output streams to optimize storage overprov

Published by Technical Disclosure Commons, 2019

Data chunks that are sequentially alignable with reference to the erase unit of the SSD

 An erase unit (EU) is the size of the smallest data storage unit that an SSD can erase and

reclaim for the purposes of storing new data. The total user data capacity is denoted as TUC, and

the total storage capacity is denoted as TSC. Integer parameters B > (X × Δ), Δ ≥ 0, X ≥ 1 and Y

≥ 1 are configured such that

Y × EU = X × B,

where if Y > 1, X = 1. All data chunks with sizes in the range of [B-Δ, B] are classified as a

SADC (Sequential Alignable Data Chunk) stream. Each of Y storage EUs store just X data

chunks. For such data chunks, the techniques preserve data block sequential alignment by

padding data with reference to the erase unit.

a. Create a data traffic tag as TF_TAG_j where j is a predefined non-

negative integer.

b. Set EU the size of erase unit.

c. Configure integer parameters B > (X * Delta), Delta >=0, X >= 1 and

Y >= 1 such that

 Y * EU = X * B,

 where if Y > 1, X = 1.

d. Denote as SAC (Sequential Alignment Class) the class of SSD IO

traffic with data block sizes in the range of [B-Delta, B] and

satisfying step c.

e. Set the total user capacity as TUC.

f. Set the Minimum Over Provision to

 M_OP =((

 ((X * Delta) / (Y*EU)) +

 ((K * Y * EU)/TUC)

) * 100) %,

where K >= 1 is a pre-configured number to reserve K*Y blank erase

units for flushing write buffer and persistent buffering.

g. Configure the storage overprovisioning rate as C_OP and the total raw

storage capacity TSC as

 TSC = TUC * (1 + C_OP), where C_OP >= M_OP.

h. Set the overprovisioning rate for performance enhancement as

 P_OP = (C_OP - M_OP).

5

Defensive Publications Series, Art. 2407 [2019]

https://www.tdcommons.org/dpubs_series/2407

i. Set a write buffer with size of EU for TF_TAG_j. If Y > 1, the

sequence of EU index of the data block is tracked so that the tail EU

of the data block is identifiable.

j. When a write data block arrives at the write buffer, the padding is

performed either immediately to make the data block size of B or

until the tail EU is reached to satisfy step b.

k. When the writer buffer is full, tag the write buffer with TF_TAG and

flush the buffer into a blank erase unit in the storage media for

persistence.

l. The E_OP (Effective OP) is given

E_OP =(P_OP + (1/X) * 100)%,

 where 0 <= r < R.

Fig. 2: Treatment of SADC data streams

 Fig. 2 illustrates the treatment of SADC data streams, per techniques of this disclosure.

The condition E_OP > C_OP enables higher SSD capacity utilization, improves SSD throughput

performance, and extends SSD life.

Data coldness and dynamical effective overprovisioning

a. Configure the total user data capacity (TUC) and total SSD storage

capacity (TSC) for a data stream with overprovision C_OP, where

C_OP = (((TSC-TUC)/TUC) * 100) %.

b. Configure a positive number N to represent N categories of data

coldness and denote the ith class of data coldness by Ci (0 <= i <

N). Bigger i correspond to colder data.

c. Denote by Pi the dynamic distribution of user data capacity with

respect to coldness class Ci. The following equation is satisfied at

all times:

 sum (Pi) = 1, 0 <= i < N.

d. Initialize {Pi, 0<=i<N} with either P0 = 1 for a complete new setup,

or by loading from previous saved values.

e. Set N write buffers with each buffer size set to EU, and denote by

WBi the writer buffer i for coldness class Ci.

f. When the host requests a write, write to WB0. When WB0 is full,

timestamp the buffer and flush WB0 into a blank EU in persistent

media.

6

Tan et al.: Classifying SSD input-output streams to optimize storage overprov

Published by Technical Disclosure Commons, 2019

g. When recycling a programmed EU, write the valid data from the EU into

an appropriate WBi based on the recycled EU timestamp. The selection

of the WBi is based on a predefined schema of linear categorization.

For example, if the recycled EU timestamp is in the range of

(current_timestamp + (i-1)*beta, current_timestamp + i*beta], (beta

> 0 being a pre-configured parameter) WBi is selected. The older the

timestamp is, the bigger the coldness index i is.

h. When a write buffer WBi is full, flush the buffer into a blank EU in

the SSD persistent media and assign a calculated-timestamp to it

based on a predefined schema. For the linear categorization schema,

the calculated-timestamp is current_timestamp + i*beta.

i. When either user data arrives at WB0, or valid data from recycling

arrives at WBi, recalculate Pi for 0 <= i < N.

j. The runtime DE_OP (dynamic effective OP) is defined as

DE_OP = C_OP / (1 - sum (Fi(Alpha_i, Pi))),

where 0 < i <N, Alpha_i is the weight factor for the coldness

category Ci, and Fi are the effective functions. The simplest

effective function is Fi(Alpha_i, Pi) = Alpha_i * Pi.

Fig. 3: Overprovisioning based on data coldness

The techniques adaptively classify SSD traffic dynamically distribute data storage

overprovision based on data coldness as shown in Fig. 3. The condition DE_OP > C_OP

achieved via the procedure illustrated in Fig. 3 enables higher SSD capacity utilization, improves

SSD IO throughput performance, and extends SSD life.

Classifying data using data coldness and NSW

The techniques can also adaptively classify SSD IO traffic based on both data coldness

and NSW sub-streams, as illustrated in Fig. 4.

a. Configure the total user data capacity (TUC) and total SSD storage

capacity (TSC) for a data stream with overprovision C_OP, where

C_OP = (((TSC-TUC)/TUC) * 100) %.

b. Configure an integer R >= 0.

7

Defensive Publications Series, Art. 2407 [2019]

https://www.tdcommons.org/dpubs_series/2407

c. For each 0 <= r < R, follow Fig. 1 to create a NSW sub-stream with

tag TAG_NSW_r. Denote by NSW_Pr the percentage of the sub-stream user

data with respect to TUC.

d. Configure a positive number N to represent N categories of data

coldness. Denote by Ci (0 <= i < N) the ith class of the data

coldness. Bigger i corresponds to colder data.

e. Denote by Pi the dynamical distribution of user data capacity with

respect to coldness class Ci, where 0 <= i < N. The following

equation is satisfied at all times:

sum(NSW_Pr + sum (Pi)) = 1, where 0 <= r < R and 0 <= i < N.

f. Initialize {NSW_Pr, 0<=r<R} and {Pi, 0<=i<N} with either P0 = 1 for

a complete new setup, or by loading from previously saved values.

g. Set N write buffers, each with buffer size EU, and denote by WBi the

writer buffer i for coldness class Ci.

h. When a write data request comes from the host,

i) if the data is associated with a tag NSW_TAG_ r, 0 <= r < R,

follow Fig. 1 to handle the data.

ii) if the data is not associated with any tags, write into WB0.

When WB0 is full, timestamp the buffer and flush WB0 into a

blank EU in persistent media.

i. Follow steps g and h in Fig. 3 to recycle the EU without tag.

j. When user data with tag CS_TAG_r (0<=r<R) arrives, user data without

tags arrives at WB0, or valid data from recycling arrives at WBi

(0<i<N), recalculate Pi for 0<=i<N.

k. The runtime DE_OP (Dynamical Effective OP) is defined as

 DE_OP = sum(NSW_Pr * 100) +

 C_OP / (1 - sum(NSW_Pr) - sum (Fi(Alpha_i, Pi))),

where 0<=r<R, 0<i<N, Alpha_i is the weight factor for coldness

category Ci, and Fi are the effective functions. The simplest

effective function is Fi(Alpha_i, Pi) = Alpha_i * Pi.

Fig. 4: Adaptive classification of SSD IO traffic based on both data coldness and NSW sub-streams

The condition DE_OP > C_OP achieved via the procedure illustrated in Fig. 4 enables higher

SSD capacity utilization, improves SSD IO throughput performance, and extends SSD life.

8

Tan et al.: Classifying SSD input-output streams to optimize storage overprov

Published by Technical Disclosure Commons, 2019

Classifying SADC streams using data coldness

 The techniques classify SADC streams into N data coldness classes. Data block

sequential alignment is preserved by padding data with reference to the EU while NSW data sub-

streams and data coldness classifications continue to exist.

a. Set the data traffic tag (TF_TAG_j), where j is a non-negative

integer.

b. Set the size of Erase Unit (EU).

c. Configure integer parameters B > (X * Delta), Delta >= 0, X >= 1 and

Y >= 1 such that

 Y * EU = X * B,

where if Y > 1, X=1.

d. Denote as SAC (Sequential Alignment Class) the class of SSD IO

traffic with data block sizes in the range of [B-Delta, B],

satisfying step c.

e. Set the total user capacity (TUC) for the stream with tag TF_TAG_j.

f. Configure an integer R >= 0.

g. For each 0 <= r< R, follow steps from a to e of Fig. 1 to configure

NSW substream tag NSW_TAG_r. Denote by NSW_Pr the percentage of the

NSW substream user data with respect to TUC.

h. Set R_Pr the percentage of remaining user data capacity with respect

to TUC,

R_Pr = 1.0 - sum(NSW_Pr), where 0<=r<R.

i. Following Fig. 3, set N>=1 categories of data coldness for the

remaining user data capacity.

j. Set the minimum over provision to

M_OP =((

 ((X * Delta)/(Y*EU)) +

 ((K * Y * EU)/TUC)

) * 100) %,

where 0<=r<R, K >= 1 is a pre-configured number to reserve K * Y

blank erase units for flushing write buffer and persistent buffering.

k. Configure the storage overprovisioning rate as C_OP and the total raw

storage capacity TSC as

TSC = TUC * (1 + C_OP), where C_OP >= M_OP.

l. Set the over provisioning rate for performance enhancement as

P_OP = (C_OP - M_OP) / R_Pr.

m. Set a write buffer with size EU for the remaining user data. If Y >

1, the sequence of EU index of the data block is tracked so that the

tail EU of the data block is identifiable.

9

Defensive Publications Series, Art. 2407 [2019]

https://www.tdcommons.org/dpubs_series/2407

n. When a write data block arrives,

i) if it is associated with a complete sequential tag NSW_TAG_r,

follow Fig. 1 to handle the data with additional tag TF_TAG_j.

Otherwise, follow Fig. 3 to handle the data with additional tag

TF_TAG_j.

ii) If the data block is not associated with a complete sequential

tag NSW_TAG_r with 0<=r<R, the padding is performed either

immediately to make the data block size of B, or until the tail

EU is reached to satisfy step c.

o. The E_OP (Effective OP) is given by

E_OP = (P_OP/((1 - sum(NSW_Pr)) - sum (Fi(Alpha_i, Pi))) +

 (1/X + sum(NSW_Pr)) * 100)%, where 0<=r<R.

Fig. 5: Classifying SADC streams using data coldness

 As is seen from Fig. 5, the effective overprovisioning (E_OP) is greater than the

conventional storage overprovisioning rate (C_OP), enabling higher SSD capacity utilization,

improving SSD IO throughput performance, and extending SSD life.

Classifying data streams using NSW, SADC, and data coldness

The techniques classify data streams and perform a garbage collection scheme to

optimize the utilization, throughput, and life of an SSD.

a. For an allocated data storage persistent media with capacity TSC,

configure C_OP to support user data capacity TUC where,

TSC = TUC * (1 + C_OP).

b. Classify data IO traffic, which can be characterized as in Fig. 2,

into M categories and denote each category as TF_TAG_j where 0 <= j <

M.

c. For each category TF_TAG_j (0 <= j < M), set Nj to the number of

coldness categories and Rj to the number of complete sequential

streams in Fig. 5.

d. Follow the steps in Fig. 4 to classify remaining user data.

e. When a user data block arrives,

a. if the data is associated with a tag TF_TAG_j, follow Fig. 2 to

handle the data block;

b. otherwise, follow Fig. 4 to handle the data block.

10

Tan et al.: Classifying SSD input-output streams to optimize storage overprov

Published by Technical Disclosure Commons, 2019

f. Follow both Fig. 2 and Fig. 4 to perform garbage collection to

programmed EUs.

Fig. 6: Classifying data streams using NSW, SADC, and data coldness

 Fig. 6 illustrates classifying data streams based on NSW, SADC, and data coldness.

CONCLUSION

This disclosure describes techniques to classify the input-output streams of an SSD into

various types, e.g., non-overlapped sequential data, chunked data streams of variable length, etc.

Overprovisioning is optimized for each input stream based on its classification. The techniques

thereby reduce both overprovisioning and write amplification overheads, resulting in SSD life

and throughput that is significantly better than conventional techniques.

11

Defensive Publications Series, Art. 2407 [2019]

https://www.tdcommons.org/dpubs_series/2407

	Technical Disclosure Commons
	August 16, 2019

	Classifying SSD input-output streams to optimize storage overprovisioning
	Bin Tan
	Narges Shahidi
	Manuel Benitez
	Recommended Citation

	tmp.1565884516.pdf.6E6RX

