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Fingerprint-Matching Algorithms 

 

Abstract: 

This publication describes a fingerprint-matching algorithm that uses a fusion of minutiae 

and pattern-correlation matching.  Instead of extracting minutiae points, the algorithm extracts 

small patches from the fingerprint image and transforms them into rotationally-invariant vectors.  

The algorithm divides each image to be evaluated, herein called an “enrolled” image, into “M” 

number of patches with a sliding distance of one (1) pixel.  The algorithm also extracts “N” number 

of random patches from a stored image, herein called a “verify” image, and calculates the similarity 

between the “verify” rotationally-invariant vectors and the “enrolled” rotationally-invariant 

vectors.  At this stage, the algorithm merges vectors from the “enrolled” images using a rotation 

and translation matrix and drops redundant vectors based on a quality score.  The outcome of 

matching is the number or matching blocks that show similar translation and rotation.  Finally, the 

algorithm generates a “Yes-or-No” outcome based on a predetermined threshold number of 

matching blocks. 

 

Keywords: 

 Fingerprint, iris scan, palmprint, infant footprint, biometric, authentication, matching, 

cartesian coordinates, Fast Fourier Transform, FFT, Absolute-value Fast Fourier Transform, 

AFFT, rotational invariant vector, minutiae, feature, pattern, batch, image block, correlation, area 

sensor, sample image, verify image, enrolled image. 
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Background: 

 Since antiquity, various civilizations have used fingerprinting to identify individuals 

because human fingerprints are detailed, nearly unique, difficult to alter, and durable over the life 

of an individual, making them suitable as long-term markers of human identity.  In modern times, 

virtually all countries use fingerprinting in some form or another to some of their citizens.  

Nevertheless, fingerprinting is more than a government or a legal tool for identifying alive or 

deceased individuals — many user equipment (UE) give a user a choice to use fingerprinting to 

gain access to a user device, door entrance, vault, application software, and other physical locations 

or virtual activities that the user wants guarded.  Figure 1 illustrates an example of a fingerprint 

image. 

 

Figure 1 

 The analysis of fingerprints for matching purposes generally requires the comparison of 

patterns and minutiae features.  The three main patterns of the fingerprint ridges are the arch, the 

loop, and the whorl.  An arch is a fingerprint ridge that enters from one side of the finger, rises in 

the center forming an arc, and then exits the other side of the finger.  A loop is a fingerprint ridge 

that enters from one side of the finger, forms a curve, and then exits on that same side of the finger.  

A whorl is a fingerprint ridge that is circular around a central point.  On the other hand, the minutiae 

3

Defensive Publications Series, Art. 2228 [2019]

https://www.tdcommons.org/dpubs_series/2228



are features of fingerprint ridges, such as ridge ending, bifurcation, double bifurcation, trifurcation, 

short or independent ridge, island, lake or ridge enclosure, spur, bridge, delta, core, and so forth, 

as illustrated in Figure 2. 

 

Figure 2 

 The UE may use a fingerprint sensor to capture a fingerprint image.  When the UE uses a 

large fingerprint sensor, minutia matching is achieved with high success.  Nevertheless, some UE, 

such as smartphones, use small fingerprint sensors, which decreases the number of minutiae being 

scanned.  The UE struggles to make a positive minutiae matching when it can only scan a few 

number of minutiae (refer to Figure 2).   

 The small fingerprint sensor is one of the reasons why many UE manufacturers use pattern-

correlation matching, and they often try to correlate the full fingerprint.  First, the UE tries to match 

the alignment and the orientation of the fingerprint, then the UE correlates the full fingerprint 

image.  This technique, however, cannot easily support 1000 Dots-Per-Inch (DPI) resolution 

fingerprint images.  A higher-resolution image can increase the fingerprint-matching success rate.   

It is desirable to use more than one type of matching to increase the image resolution and 

the fingerprint-matching success rate.  To this end, this publication discusses a technique that fuses 

minutiae matching and pattern-correlation matching. 
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Description 

This publication describes a fingerprint-matching algorithm that uses a fusion of minutiae 

and pattern-correlation matching.  Instead of extracting minutiae points, the algorithm extracts 

small patches from the fingerprint image and transforms them into rotationally-invariant vectors.  

Rotationally-invariant vectors allow the algorithm to rotate a patch in any direction.  The outcome 

of these vectors’ transformation will be the same and mapped to the same vectors regardless of the 

orientation.  Essentially, this algorithm replaces the minutiae with a pattern, treats the pattern like 

a minutiae, assigns a location and an orientation to the pattern, and proceeds with the minutiae-

matching technique.  To some, this algorithm may appear like a pattern-correlation technique, but 

this pattern-matching technique works as an instance’s correlation-based matching.  That is, this 

algorithm does not take an image and converts it to another form of that image.  This algorithm 

can work with the raw image data, and it is more hardware-friendly. 

The algorithm divides each image to be evaluated, herein called an “enrolled” image, into 

“M” number of patches with a sliding distance of one (1) pixel.  For an incomplete image, one 

may alter the algorithm to extract a less than “M” number of patches with a sliding distance greater 

than one (1).  Therefore, one may modify the algorithm to increase the computation speed by 

evaluating only part of the full image.   

The algorithm extracts vectors from each patch by including the following:  

 Rotationally invariant Absolute-value Fast Fourier Transforms (AFFTs) of each block; 

 The patches’ x-position and y-position — the Cartesian coordinates; 

 The patches’ polar representation of the Cartesian coordinates; and 

 The patches’ Fast Fourier Transforms (FFTs) of the polar representation with a high 

resolution in the theta (Ѳ) direction. 
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Figure 3 helps demonstrate the relation between an image-block in Cartesian coordinates, 

the image-block’s polar coordiantes representation, and the image-block’s AFFT in polar 

coordinates. 

NxN image-block in 
Cartesian coordinates

Center of rotation

Ѳ 1 Ѳ 2

The image-block in 
polar coordinates

The image-block rotated  

Ѳ 2- Ѳ 1 in polar by

coordiantes

The AFFT of the image-
block in polar coordinates

 

Figure 3 

Figure 3 illustrates the polar representation of an “NxN” image-block.  The angular rotation 

around the center point in the Cartesian coordinates transforms into translation along the theta (Ѳ) 

direction in the polar coordinate representation — this is called “phase shifting.”  The FFT assumes 

periodic boundary conditions.  As such, the AFFT of the “NxN” image-block represented in polar 

coordinates is rotationally invariant, and the rotation angle is the location where the maximum 

correlation between the FFT of two (2) image-blocks represented in polar coordinates occurs. 

The algorithm uses rotational and translation matrices, where the rotation and translation 

matrix between two (2) images, herein referred to as “image 1” and “image 2,” can be defined as: 

� cos (�) sin (�) −�−sin (�) cos (�) −��0 0 1 � 

where “φ” represents the angle between the two (2) images, “Tx” represents the translation along 

the x-axis between the two (2) images, and “Ty” represents the translation along the y-axis between 

the two (2) images.   
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 The x-coordinates and the y-coordinates of “image 2” can be transformed into the 

coordinate system of “image 1” using Equation 1. 

��′�′1 � = � cos (�) sin (�) −�−sin (�) cos (�) −��0 0 1 � ���1�     (Equation 1) 

 Furthermore, the rotation matrix between “image 1” and “image 2,” herein called RM12, is 

the inverse of the rotation matrix between “image 2” and “image 1,” herein called RM21, as shown 

in Equation 2. 

���� = (����)��     (Equation 2) 

 Considering another property of the rotation matrix, RM12 can be determined from the 

rotation of a third image, herein called “image 3,” with “image 1” and “image 2,” as shown in 

Equation 3. 

���� = ���� ∗ ����     (Equation 3) 

where RM12 represents the rotation matrix between “image 1” and “image 2,” RM32 represents the 

rotation matrix between “image 3” and “image 2,” RM13 represents the rotation matrix between 

“image 1” and “image 3,” and * denotes the mathematical operation of the convolution between 

RM32 and RM13. 

 Rotation matrices can also be used to “stitch” images.  For example, one may generate a 

“stitched image” of “image 1” and “image 2” by performing the following computations: 

 Calculate the rotation matrices RM12 and RM21; 

 Form the x-vectors, y-vectors, and z-vectors of “image 1” and “image 2;” 

 Transform the x-coordinates, the y-coordinates, and the z-coordinates of “image 2” into 

the coordinates of “image 1;” 
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 Concatenate the x-vectors, the y-vectors, and the z-vectors of “image 1” and the 

transformed “image 2;” 

 Define a new mesh grid, which is limited by the maximum and the minimum of “image 

1” and the transformed “image 2;” 

 Interpolate the z-vector on the new mesh grid; and 

 Generate the stitched image, as demonstrated in Figure 4. 

“image 1” “image 2” “stitched image”

 

Figure 4 

In addition to dividing each “enrolled” image to “M” number of patches, the algorithm 

extracts “N” number of random patches from a stored image, herein called a “verify” image.  The 

algorithm calculates the similarity between the “verify” patch vectors and the “enrolled” image 

vectors along with the angle of rotation and the correlation.  The algorithm, then, outlines the x-

coordinate, the y-coordinate, and the angle correspondence between the “verify” blocks and their 

matching blocks in the “enrolled” image and calculates the translation in the x-direction and y-

direction for each “verify” block.  At this stage, the algorithm merges vectors from the “enrolled” 

images using a rotation and translation matrix and drops redundant vectors based on a quality-

score.  The algorithm drops redundant vectors using this quality-score to rank the top-ten 
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translation and rotation vectors.  This algorithm, however, may rank a different number of 

translation and rotation vectors that are used in “voting” the most-likely translation and rotation 

vector.   

Furthermore, the algorithm may be modified to “stitch” down-sampled images.  For 

example, the algorithm may down-sample “verify” images by decreasing the number of patches 

(e.g., from N=31 to N=23).  This in turn, reduces the resolution of the “stitched” images, but it 

also reduces the processing time.  Figure 5 demonstrates the effect of down-sampling “stitched” 

images. 

Block-size image with N=23 Block-size image with N=31
 

Figure 5 

 Lowering the number of patches (e.g., from N=31 to N=23) reduces the resolution, but also 

reduces the matching time (e.g., from 0.58 seconds to 0.28 seconds).  As demonstrated in Figure 

5, the algorithm that produces a “stitched” image with a slightly lower resolution reduces the 

matching time by almost fifty percent (50%).  Therefore, the algorithm may easily be modified in 

the interest of reducing the matching time with little sacrifice to the matching success-rate. 

The outcome of the matching is the number of matching blocks that show similar 

translation and rotation.  To increase the robustness of fingerprint matching, a small error is 

allowed in the translation and rotation to account for variations due to skin-plasticity distortions.  
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Finally, the algorithm generates a “Yes-or-No” outcome based on the threshold number of 

matching blocks (e.g., 9 out of “N” blocks).  

This algorithm can be scaled to handle higher than 1000-DPI images and large area 

fingerprint images.  Furthermore, this algorithm can be used for other forms of biometric matching, 

such as iris, palmprint, and baby footprint.  In that aspect, this algorithm is versatile.  One limitation 

of this algorithm is matching a perfect pattern (e.g., a perfect zebra pattern) because in that case 

each block is identical.  This limitation, however, becomes irrelevant because biometric patterns 

are not perfect.  It is that imperfection and uniqueness that gives the biometric pattern its value. 

To test the matching success rate of this algorithm, a biometric experiment was conducted,  

where four fingers from 50 users were evaluated.  All “verify” and “enrolled” images were stitched 

for visualization purposes.  For each “enrolled” image, a template vector was built.  Then, each 

template vector was matched against all other finger images.  Figure 6 demonstrates the success 

rate of the biometric experiment. 

 

Figure 6 
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Figure 6 displays a receiver operating characteristic (ROC) curve, which is a graphical plot 

that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is 

varied.  Biometric security uses false acceptance rate (FAR) for the proportion of times a system 

grants access to an unauthorized person, and false rejection rate (FRR) for the proportion of times 

a biometric system fails to grant access to an authorized person.  The enlarged area of Figure 6 

demonstrates that the experimental event rate (EER) of this biometric experiment is approximately 

0.01 (or 1%). 

In addition, a template update algorithm was used, which updates an existing template 

vector using the vectors of a matching image.  The template update decreases the EER, as 

demonstrated in Figure 7. 

 

Figure 7 
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The enlarged area of Figure 7 demonstrates that using the template update the experimental 

event rate (EER) of this biometric experiment is approximately 0.006 (or 0.6%). 

This algorithm increases the matching success-rate even in instances when a person may 

have cuts on their finger-pads.  To show how this algorithm accomplishes this, consider Figure 8. 

 

Figure 8 Legend 

The two (2) solid-line squares are poor patches for matching 

The seven (7) dash-line square are acceptable patches for matching 

Figure 8 

Figure 8 uses fingerprint images with a logo.  In the Figure 8 example, the solid-line patches 

represent poor patches for matching, while the dash-line patches represent acceptable patches for 

matching.  The logo on the image to the right may represent a recent cut on the person’s finger-

pad.  For matching fingerprint images with a logo, the algorithm avoids patches that interfere with 

that logo.  It does so by avoiding patches that interfere with the logo during the extraction of the 

“enrolled” images and avoids selecting the patches that interfere with the logo in the “verify” 

images.  To increase the success-rate in matching the fingerprints of finger-pads with cuts, the logo 
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design may be optimized, such that it allows for the largest number of valid patches.  This matching 

technique is advantageous over traditional minutiae matching or pattern-correlation matching 

because the logo can corrupt the directionality map. 

Further to the descriptions above, a user may be provided with controls allowing the user 

to make an election as to both if and when systems, programs, or features described herein may 

enable collection of user information (e.g., a user's preferences or a user’s current location), and if 

the user is sent content or communications from a server.  In addition, certain data may be treated 

in one or more ways before it is stored or used, so that personally identifiable information is 

removed.  For example, a user’s identity may be treated so that no personally identifiable 

information can be determined for the user, or a user’s geographic location may be generalized 

where location information is obtained (such as to a city, ZIP code, or state level), so that a 

particular location of a user cannot be determined.  Thus, the user may have control over what 

information is collected about the user, how that information is used, and what information is 

provided to the user.  The user may also choose to disable the fingerprint-matching algorithms 

from their device. 

In summary, the described fingerprint-matching algorithm, which uses a fusion of minutiae 

and pattern-correlation matching techniques is superior over minutiae matching or pattern-

correlation matching.   
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