View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Technical Disclosure Common

Technical Disclosure Commons

Defensive Publications Series

June 19,2019

ACK SHAPER WITHOUT BUFFER

Erico Vanini
Rong Pan
Parvin Taheri

Jason Marinshaw

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation

Vanini, Erico; Pan, Rong; Taheri, Parvin; and Marinshaw, Jason, "ACK SHAPER WITHOUT BUFFER", Technical Disclosure
Commons, (June 19, 2019)
https://www.tdcommons.org/dpubs_series/2294

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications

Series by an authorized administrator of Technical Disclosure Commons.

https://core.ac.uk/display/234669411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2294?utm_source=www.tdcommons.org%2Fdpubs_series%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Vanini et al.: ACK SHAPER WITHOUT BUFFER

ACK SHAPER WITHOUT BUFFER

AUTHORS:
Erico Vanini
Rong Pan
Parvin Taheri
Jason Marinshaw

ABSTRACT
Techniques are described herein to shape Transmission Control Protocol (TCP)
traffic by pacing ACK messages artificially. This may enable the sender to conform to a

desired rate. TCP flow rates may thereby be effectively controlled without a large and

costly packet buffer.

DETAILED DESCRIPTION

In today’s networks, the ability to meter and limit network resources is becoming
increasingly important. This concept can be found everywhere, from the mobile network
perspective to video streaming to the cloud and data center. The infrastructure owner wants
to optimize network resources by limiting or prioritizing specific types of traffic, limiting
speed for specific users, etc. Typically this is achieved using a shaper which delays packets
to ensure a uniform (or shaped) traffic pattern. The typical way to shape is to delay packets
by buffering them and releasing them in an orderly (or shaped) pattern.

Techniques are described herein to shape a Transmission Control Protocol (TCP)
flow rate without the need for a buffer. Briefly, the acknowledgement of packets (i.e., the
ACK packets) is slowed, giving the sender the impression of transmitting on a lower rate
link. The TCP congestion control mechanism (REQ/ACK) at the source will adapt to this
condition and lower the speed of the transfers.

The typical approach to slow the ACK messages is to buffer all ACK packets
belonging to the flow in question at the switch wishing to slow the traffic, and release them
at a specific rate. The issue with this approach is that the switch may need to store a
significant number of ACK packets, and potentially a large buffer is required.

To slow down ACK messages without buffering, the switch tracks only the last

ACK number sent and the last ACK number received by that switch (and one packet of the

1 5833

Published by Technical Disclosure Commons, 2019

Defensive Publications Series, Art. 2294 [2019]

flow, depending on the implementation). Now the shaper only needs to shape the ACK
number and avoid buffering every ACK message.

Once these two ACK numbers and a target rate for the flow are acquired, the switch
can artificially generate valid ACK messages. The time between two subsequently
generated ACK messages and bytes acknowledged (the difference between the ACK field
value) may trigger TCP congestion control at the transmission to reduce its rate to a
maximum of the target rate when in congestion avoidance mode and by two when in slow
start mode. In order to avoid doubling the target rate, these techniques provide a mechanism
to detect the slow start phase in order to limit the rate to the target rate. When TCP is in
this phase, this detector simply monitors the real rate of incoming ACKs and compares it
to the target rate. If these two rates differ by a large amount, the TCP is sending faster than
desired, possibly because of the slow start phase.

The ACK messages may be generated using the following formula:

target rate = ACK bytes / period between two artificially generated ACK messages

where all three variables may be defined as desired, depending on the constraints.

If the goal is to obtain a speed of 100Mbps, any value may be chosen for the two
remaining variables. For example, in order to avoid sending too many packets, the system
may send just one ACK message every 10ms, deriving the ACKed bytes therefrom.

In the presence of duplicate ACKs, the sender may be informed as quickly as
possible about the possibility of a drop. Hence, these ACK message may proceed without
shaping. However, a subsequent ACK may be delayed, as if the duplicate ACK was slowed
down, to guarantee that the average flow rate is still equal to the target rate. Even though
the window is cut in half, adding artificial latency (e.g., on the order of 100ms in a
datacenter) to make the Round-Trip Time (RTT) appear to the TCP to be much larger than
it really is, the real RTT that is exposed to the TCP after the drop can mitigate the effect of
the window cut, reducing the recovery time.

With this mechanism, TCP traffic may be slowed to specific rates, which is highly
desirable in times of congestion without needing to drop packets or Explicit Congestion
Notifications (ECNs). Therefore, this mechanism may be deployed anywhere. The only
functionality that all switches along the path must support is ACK forwarding.

2 5833

https://www.tdcommons.org/dpubs_series/2294

Vanini et al.: ACK SHAPER WITHOUT BUFFER

The move toward utilization of new TCP flavors has always been slow and
therefore well-established TCP flavors are expected to remain in use for the foreseeable
future. Moreover, this mechanism may function in combination with any other modern
congestion avoidance mechanism, in particular with those using ECN marking to adapt the
flow speed. This mechanism need not be turned off for such connections. In fact, it will
only initiate if for any reason the flow cannot avoid causing congestion. One example is
when the detected congestion is larger than what is estimated by the TCP algorithm in use,
or when the TCP congestion notification (e.g., the ECN marks) are lost, for example when
a single switch along the path does not forward the ECN field correctly or ignores it, which
is still very common in the global network. Another example is when the source does not
comply with the other mechanism in place, which could simply be due to a wrong setting
or a bug in the implementation. One advantage of the techniques described herein is that
the ACK mechanism is a very fundamental part of TCP, and using this feature may ensure
that this mechanism will operate as expected and is resilient to any external choice/feature
supported (or not) along the path. These techniques replace ACK buffering with a smarter
and cheaper solution.

Empirical results show the feasibility of this approach implemented for a floodlight
controller. Any SDN controller may be utilized, although in that case the operations
described herein may rely entirely on the Central Processing Unit (CPU) power of the
controller. A hardware implementation may therefore be the optimal way to implement this
functionality directly in the switch.

Figure 1 below illustrates a basic ACK shaper pseudocode algorithm.

3 5833

Published by Technical Disclosure Commons, 2019

Defensive Publications Series, Art. 2294 [2019]

[/supposing timer is fix we vary only the number of bytes we ack each timer interval
setFlowRate | flowlID, speedLimit):

flow = new flow(flowl|D)

flow.ackincrement(speedlimit * timer)

flowsTable.add{flow)

incomingTcpPacket| pkt) :

flow = flowsTable .getFlow|pkt)

flow.lastAckRecived = pkt.ackNO

if(flow.isduplciateAck(pkt)):
send(pkt)

else if [pkt.hasdata):
pkt.AckNO = flow.lastSentick
send(pkt)

else :

drop(ack)

timerTriggerAckScheduler():
foreach flow in flowsTable :
newAckMNO= flow.lastSentack + flow.ackincrement
if (newAcINO <= flow.lastAckReceived) :
newdhckMsg = flow.createAck| newAckNO)
send (newAckMsg)
flow.lastsentAck=newAckNO

Figure 1

Figure 2 below illustrates throughput over time in a first example.

4 5833

https://www.tdcommons.org/dpubs_series/2294

Vanini et al.: ACK SHAPER WITHOUT BUFFER

Omnet, 1ms avg thput, 1 flow 10G limit, 1 flow 5G limit, same destination

Server --> TOR Throughput

0.0 CI.P‘S O‘llﬂ 0'.15 O,IZD IJ.|25 Cl.l30 0.?5 D.|40
12 F12
10 [10
a 1
2
E 8 B8
H
S & L6
3
ﬁ 44 =
2 F2
3cu,tl 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 o
Time (s)
Figure 2
Figure 3 below illustrates throughput over time in a second example.
Omnet, 1ms avg thput, 1 flow 10G limit, 1 flow 5G limit, same destination
link with 0.01% drops
Server --> TOR Throughput i=
0.0 D.PS O.Il.D 0'.15 0..20 0..25 0..30 D.I35 D_Ilm_
12 12
2 WWWh I ‘V“Wﬁ" =T M e
(=%
5, | 1 | || HIT &
B
gﬂ 6 FE
L e o " S oagurtusatn, Sy
g M Y 11 TY GO s e I
=4 La
24 r2
%0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 040
Time (s)
Figure 3
Figure 4 below illustrates throughput over time in a third example.
5 5833

Published by Technical Disclosure Commons, 2019

Defensive Publications Series, Art. 2294 [2019]

Omnet, 1ms avg thput, 1x5G, slow start issue:
till reach winmax speed potentially 2x the set limit

Chart: Sever --> TOR Throughput Time Series
Server --> TOR Throughput

0.0 0.08 0.10 0.15 0.20 0.25 0.20 0.35 0.40
12 F12
10 10

5.

=3

=)

9 = ‘ r8

=

=

a

& s | s

2 |

g

£

- a M4
2 F2
o o

0.0 0.05 0.10 015 0.20 0.25 0.30 0.35 0.40
Time (s)

Figure 4

Figure 5 below illustrates ACK shaper pseudocode with slow start detection.

Change in timerTriggerAckScheduler function:

timerTriggerAckScheduler():
foreach flow in flowsTable :

flow.MovingAvgBytesSent = (0.7 * flow.MovingAvgBytesSent) + (0.3 * flow.lastAckReceived - flow.lastsentick)

if (flow.MovingAvgBytesSent / flow.ackincrement > 2): //we are in slowstart
flow.isinSlowstartmode = true

else if (flow.MovingAvgBytesSent / flow.ackincrement < 0.5): //slowstart is finish
flow.isinSlowstartmode = false

if (low.isinSlowstartmode):
newAckNO= flow.lastsentAck + (flow.ackincrement / 2)

else:
newAckNO= flow.lastsentAck + flow.ackincrement

if (newAcINO <= flow.lastAckReceived) :
newAckMsg = flow.createAck(newackNO)
send (newAckMsg)
flow.lastsentAck=newAckNO

Figure 5
Figure 6 below illustrates throughput over time in a fourth example. Because the
time in this example is less than two microseconds, less than one packet per ACK is
released. As a result, there is not a new incoming ACK for each timer trigger. Instead, a

moving average is employed.

6 5833

https://www.tdcommons.org/dpubs_series/2294

Vanini et al.: ACK SHAPER WITHOUT BUFFER

Omnet, 1ms avg thput, 1x5G, slow start issue:
detect slow start, cut limit speed by half if in slow start,
loose throughput when reach winmax till limit is reset to default

Chart: Sever --> TOR Throughput Time Series
Server --> TOR Throughput i)
0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
6.0 +6.0
5.0 '] [5.0
w
o
o
O 10 4.0
=
=
g
S 2.0 3.0
=
]
=
F=
F 204 2.0
1.0 1.0
[} - - T t t T T =0
0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time (s)
Figure 6

Figure 7 below illustrates throughput over time in a fifth example.

Omnet, 10us avg thput, 1x5G, slow start issue:
detect slow start, zoom in on change of state

Chart: Sever -> TOR Throughput Time Series

Server --> TOR Throughput
0.02590 0. 02595 0. 02600 0.02605 0. 02610 0. 02615 0.02620 0.02625 0. 02630 0.02635 0.02640 O. 02645 0. 02650 0.02655 0. 025'6

7.04 k7.0
— 6.0+ l6.0
[1:])
o
£
Qo
5 5.0 ls.0
o
=)
[=:]
3
2 4.0 la.0
£
'—
3.0 l3.0
2.0 l2.0
0.02590 0.02595 0.02600 0.02605 0.02610 0.02615 0.02620 0.02625 0.02630 0.02635 0.02640 0.02645 0.02650 0.02655 0.02660
Time (s)
Figure 7

Figures 8-12 below illustrate results for various flows.

7 5833

Published by Technical Disclosure Commons, 2019

Defensive Publications Series, Art. 2294 [2019]

Mininet iperf results, 1x10M, 1x100M, 400ms RTT:
without slow start detec

10M flow 100M flow

. [ID] Interval Transfer Bandwidth . [1D] Interval Transfer Bandwidth

. [15] 00-10.0s5ec 150 MBytes 126 Mbits/sec . [15] 0.0-10.0 sec 134 MBytes 112 Mbits/sec
. [15] 10.0-20.0 sec 19.5 MBytes 16.4 Mbits/sec . [15] 10.0-20.0 sec 120 MBytes 100 Mbits/sec
. [15] 20.0-30.0 sec 12.2 MBytes 10.3 Mbits,sec . [15] 20.0-30.0 sec 119 MBytes 100 Mbits/sec
. [15] 30.0-40.0 sec 12.2 MBytes 10.3 Mbits/sec . [15] 30.0-40.0 sec 116 MBytes 97.1 Mbits/sec
. [15] 40.0-50.0 sec 12.2 MBytes 10.3 Mbits,sec . [15] 40.0-50.0 sec 118 MBytes 93 1 Mbits/sec
. [15] 50.0-60.0 sec 12.4 MBytes 10.4 Mbits/sec . [15] 50.0-60.0 sec 119 MBytes 100 Mbits/sec
. [15] 60.0-70.0 sec 8.12 MBytes 6.82 Mbits,sec . [15] 50.0-70.0 sec 119 MBytes 100 Mbits/sec
. [15] 70.0-80.0 sec 12.2 MBytes 10.3 Mbits/sec . [15] 70.0-80.0 sec 119 MBytes 100 Mbits/sec
. [15] 80.0-90.0 sec 12 4 MBytes 10.4 Mbits,sec . [15] 80.0-90.0 sec 119 MBytes 100 Mbits/sec
. [15] 90.0-100.0 sec 12.2 MBytes 10.3 Mbits,sec . [15] 90.0-100.0 sec 119 MBytes 100 Mbits/sec
. [15] 0.0-101.0 sec 129 MBytes 10.7 Mbits/sec . [15] 0.0-100.1 sec 1.18 GBytes 101 Mbits/sec

Figure 8

Mininet iperf results, 1x20M, 1x100M, 400ms RTT:

20M flow 100M flow

. [ID] Interval Transfer Bandwidth . [1D] Interval Transfer Bandwidth

. [15]) 0.0-10.0 sec 29.2 MBytes 24.5 Mbits/sec . [15] 0.0-10.0 sec 129 MBytes 108 Mbits/sec
. [15] 10.0-20.0 sec 29.1 MBytes 24 4 Mbits/sec . [15] 10.0-20.0 sec 120 MBytes 100 Mbits/sec
. [15] 20.0-30.0 sec 24.5 MBytes 20.6 Mbits/sec . [15] 20.0-30.0 sec 119 MBytes 100 Mbits/sec
. [15] 30.0-40.0 sec 24.6 MBytes 20.7 Mbits/sec . [15] 30.0-40.0 sec 120 MBytes 100 Mbits/sec
. [15] 40.0-50.0 sec 20.5 MBytes 17.2 Mbits/sec . [15] 40.0-50.0 sec 119 MBytes 100 Mbits/sec
. [15] 50.0-60.0 sec 24.5 MBytes 20.6 Mbits/sec . [15] 50.0-60.0 sec 119 MBytes 100 Mbits/sec
. [15] 60.0-70.0 sec 24.6 MBytes 20.7 Mbits/sec . [15] 60.0-70.0 sec 119 MBytes 100 Mbits/sec
. [15] 70.0-80.0 sec 246 MBytes 20.7 Mbits/sec . [15] 70.0-80.0 sec 119 MBytes 100 Mbits/sec
. [15] BO.0-90.0 sec 245 MBytes 20.6 Mbits/sec . [15] B0.0-90.0 sec 120 MBytes 100 Mbits/sec
. [15] 90.0-100.0 sec 20.5 MBytes 17.2 Mbits/sec . [15] 90.0-100.0 sec 119 MBytes 100 Mbits/sec
. [15] 0.0-100.0 sec 247 MBytes 20.7 Mbits/sec . [15] 0.0-100.2 sec 1.18 GBytes 101 Mbits/sec

Figure 9
8 5833

https://www.tdcommons.org/dpubs_series/2294

Vanini et al.: ACK SHAPER WITHOUT BUFFER

Mininet iperf results, 1x50M, 1x100M, 400ms RTT:

50M flow 100M flow

. [ID] Interval Transfer Bandwidth . [1D] Interval Transfer Bandwidth

. [15] 0.0-10.0sec 686 MBytes 57.6 Mbits/sec . [15] 0.0-10.05ec 131 MBytes 110 Mhbits/sec
] [15] 10.0-20.0 sec 64.1 MBytes 538 Mbits/sec . [15] 10.0-20.0 sec 119 MBytes 100 Mbits/sec
. [15] 20.0-30.0 sec 55.8 MBytes 46.8 Mbits/sec . [15] 20.0-30.0 sec 119 MBytes 100 Mbits/sec
. [15] 30.0-40.0 sec 60.2 MBytes 50.5 Mbits,sec . [15] 30.0-40.0 sec 120 MBytes 100 Mbits/sec
. [15] 40.0-50.0 sec 60.2 MBytes 50.5 Mbits/sec . [15] 40.0-50.0 sec 119 MBytes 100 Mbits/sec
. [15] 50.0-60.0 sec 60.2 MBytes 50.5 Mbits/sec . [15] 50.0-60.0 sec 119 MBytes 100 Mbits/sec
. [15] 60.0-70.0 sec 60.4 MBytes 50.6 Mbits,/sec . [15] 60.0-70.0 sec 119 MBytes 100 Mbits/sec
. [15] 70.0-80.0 sec 60.2 MBytes 50.5 Mbits,sec . [15] 70.0-80.0 sec 119 MBytes 100 Mbits/sec
. [15] 80.0-90.0 sec 60.2 MBytes 50.5 Mbits/sec . [15] 80.0-20.0 sec 119 MBytes 100 Mbits/sec
* [15] 90.0-100.0 sec55.6 MBytes 46.7 Mbits,sec N [15] 90.0-100.0 sec 120 MBytes 100 Mbits/sec
. [15] 0.0-100.1 sec 606 MBytes 50.8 Mbits/sec . [15] 0.0-100.4 sec 1.18 GBytes 101 Mbits/sec

Figure 10

Mininet iperf results, 1x50M, 1x100M, 400msRTT,
ack timer 10ms:

10M flow 100M flow

. [ID] Interval Transfer Bandwidth . [1D] Interval Transfer Bandwidth
. [15] 0.0-10.0sec 121 MBytes 10.2 Mbits/sec . [15]0.0-100 sec 119 MBytes 99.5 Mbits/sec
. [15] 10.0-20.0 sec 11.9 MBytes 9.96 Mbits/sec . [15] 10.0-20.0 sec 118 MBytes 99.3 Mbits/sec
. [15] 20.0-30.0 sec 11.9 MBytes 9.96 Mbits/sec . [15] 20.0-30.0 sec 119 MBytes 99.8 Mbits/sec
. [15] 30.0-40.0 sec 12.0 MBytes 10.1 Mbits/sec . [15] 30.0-40.0 sec 119 MBytes 99.5 Mbits/sec
. [15] 40.0-50.0 sec 11.9 MBytes 9.96 Mbits/sec . [15] 40.0-50.0 sec 118 MBytes 99.4 Mbits/sec
. [15] 50.0-60.0 sec 119 MBytes 9 96 Mbits/sec . [15] 50.0-60.0 sec 119 MBytes 99.5 Mbits/sec
. [15] 60.0-70.0 sec 12.0 MBytes 10.1 Mbits/sec . [15] 50.0-70.0 sec 119 MBytes 99.7 Mbits/sec
. [15] 70.0-80.0 sec 11.9 MBytes 9.96 Mbits/sec . [15] 70.0-80.0 sec 119 MBytes 99.9 Mbits/sec
. [15] 80.0-20.0 sec 119 MBytes 9 96 Mbits/sec . [15] 80.0-20.0 sec 119 MBytes 997 Mbits/sec
. [15] 90.0-100.0 sec12.0 MBytes 10.1 Mbits/sec . [15] 90.0-100.0 sec 118 MBytes 99.3 Mbits/sec
. [15] 0.0-100.2 sec 120 MBytes 10.0 Mbits/sec . [15] 0.0-100.0 sec 1.16 GBytes 99.6 Mbits/sec
Figure 11
9 5833

Published by Technical Disclosure Commons, 2019

Defensive Publications Series, Art. 2294 [2019]

Mininet iperf results, 8x5M, 8x10M, 4msRTT, ack timer 10ms:

10M flow 5M flow 16 flows overall avg

1 10 Interval Traester Bandwisth . 110 initenvad Transter BamSwidth
[&3] 00. 20ser 262 MBytes 110Mbitstsec [43] 0.0-205ec 138 WBytes 577 Mblts/sec . [1D] Interval Transfer Bandwidth
[&3] 20- 40sec 236 MBytes 995 Mbitgfsec - 143] 20 4.0sec 112 MBytes 472 Mbitsfse:
[&3] 40 E0sec 238 MBytes 9096 Mbitsfsec " [43) 40 G.0sec 125 Miytes 5.34 Mbits/sec . [44] 0.0-100.3 sec 59.9 MBytes 5.01 Mbits/sec
| 43] B.0- &0sec 250 MBytes 105 Mbitsfsec - [&3] 60-B.0sec 112 MBytes 472 Mbitsfsec .
| &3] B0-10058c 250 MBytes 105 Mbitsfsec © [&3] B0:10.0 sec 1.25 Miytes 5.24 Mbits/sec - [45] 0.0-100.2 sec 121 MBytes 10.1 Mbits/sec
| &3] 10.0-12.05ec2 38 MBytes 5.95 Mbitsfsec * 1 43] $0.0-12.05ec. 12 Mirytes. 472 Mbsits/ e)
[43]12.0-14.0 5602 38 MBytes 9.95 Mbitgfsec © | £3] 12.0-14.0 sec]. 25 Mliytes. 5,34 Mbitsfsec - [46] 0.0-100.4 sec 59.9 MBytes 5.01 Mbits/sec
| £3] 14.0-16.050c2 50 MBytes 205 Mbitgfsec - | &3] 18.0-16.0sec 12 Mirytes 472 Mbitsfaec)
| &3] 16.0-18.0sec? 38 MBytes 5.95 Mbitsfsec © | 43] 16.0-18 0 sec] 25 MBytes. 5,34 Mbitsfsec - [47] 0.0-100.2 sec 121 MBytes 10.1 Mbits/sec
| &3] 18.0-2005ec2 50 MBytes 105 Mbitsfsec * | 43] 18.0-20.056c1. 25 MEtes 5.24 MUits/sec)
| 431 20.0-22.056c2 38 MBytes 9.96 Mbitsfsec * | 43] 20022 0secl 12 Mbytes. 472 Mbitsfsec . [48] 0.0-100.3 sec 59.9 MBytes 5.01 Mbits/sec
| &3] 22.0-24.05ec2 50 MBytes 105 Mbitsfsec " | 43] 22.0-24.056c1. 25 MBTes. 534 Mbits/sec
| £3] 74.0-25.05ec? 25 MBytes 984 Mbitgfsec " | £3] 24,036 Dsecd 13 MiEytes. 473 hibiisfoee - [49] 0.0-100.1 sec 121 MBytes 10.1 Mbits,sec
| &3] 36.0-28.05ec2 25 MBytes .84 Mbitsfsec * | 3] 26.0-28.056c1.25 Mirytes. 5.34 Mbsits/fsec)
| 431 28.0-20.056c2.00 MBytes .39 Mbitsfsec © | &3] 28030056112 Miytes 472 Mbits/sec - [50] 0.0-100.3 sec 59.9 MBytes 5.01 Mbits,sec
| £3] 30.0-3%.05ec2 38 MBytes 5.95 Mbitsfsec " | 43] 30.03205ec]. 25 MEytes 5.34 Mbits/sec)
[£3]32.0-34 0 sec2 50 MBytes 105 Mbitsfsec * 143] 320340560112 MBiytes. 472 Mbitsfsec . [51] 0.0-100.1 sec 121 MBytes 10.1 Mbits/sec
| £3]34.0-38.05ec 50 MBytes 105 Mbitsfsec * | &3] 34036.0 5601 25 Mirtes. 5,34 Mbsits/fsee)
| £3]36.0-38.056c2 38 MBytes 9.96 Mbitsfsec © | &3] 35038 0sec] 12 Miliytes 472 Mbitsfsec - [52] 0.0-100.4 sec 59.9 MBytes 5.00 Mbits/sec
| £3]38.0-80. 05602 38 MBytes 9.96 Mbitsfsec * | 43] 38.0-40.050c1. 25 Mytes. 5.34 Mbits/sec)
| £3]40.0-82.056c2 50 MBytes 105 Mbitsfsec " |43 400420 5ecl. 12 Miytes 472 Mbitsfsec . [53] 0.0-100.1 sec 121 MBytes 10.1 Mbits/sec
[£3]42.0-84. Dsec? 38 MBytes 995 Mbitfsec " [43] 42.0-44.0 56 1. 25 Miliytes. 5.24 Mbitsfsec
| 431 44.0-56.05602 50 MBytes 005 Mbitsfsec © | &3] 42045 0 5ec] 12 Mliytes 472 Mbits/sec - [54] 0.0-100.3 sec 59.9 MBytes 5.01 Mbits/sec
| 83146.0-58.05ec2 38 MBytes 9.96 Mbitsfsec * | 43] 46.0-48.050c 1. 25 Mytes. 5.34 Mbits/sec)
| £3]48.0-50.056c2 50 MBytes 105 Mbitsfsec © | &3] 48.050.05ec] 12 Miliytes 472 Mbitsfsec - [55] 0.0-100.2 sec 121 MBytes 10.1 Mbits/sec
| &3] 50.0-52.0 5ec? 36 MBytes 9:95 Mbitsfsec " [£3] 500520 sec] 25 Mliytes. .34 Mbits e .
| &3] 52.0-54.0pec? 50 MBytes 105 Mbitsfsec - | 43] 52054056112 MEytes 472 Mbitsfsec . [56] 0.0-100.4 sec 59.9 MBytes 5.01 Mbrtsfsrﬂ:
| £3134.0-56.05ec2 38 MBytes 5.95 Mbitsfsec * | 3] EA056.056c1.05 Mirtes 5,34 Mibsits/ e)
| £3]56.0-58.05ec2 38 MBytes .95 Mbitsfsec © | 43] 56.055.056c1.25 Mitytes 5.24 Mbits/ ez - [57] 0.0-100.1 sec 121 MBytes 10.1 Mbits/sec
| 3] 58.0450.0 562 50 MBytes 105 Mbitsfsec - | 83| 5B0E0 0 ec] 12 Milytes 472 Mbitsfoec B
| &3] B0.0-62 0 wec? 36 MBytes 9.95 Mbitsfsec - | £3] BO.OER0 $6c1. 25 MEytes 534 Mbits e . [58] 0.0-100.4 sec 59.9 MBytes 5.00 Mbr[sfsrﬂ:
| 43] 6206402407 50 MBytes 105 Mbitsfsec - [43 620640380112 MBytes. 472 Mbitsfsec
| £3]64.0-65.056c2 38 MBytes 8.95 Mbitgfssc © | &3] B4066.05601.25 MEytes 5.24 Mbits/sec - [59] 0.0-100.1 sec 121 MBytes 10.1 Mbits/sec
| £3] S6.0-65. 0342 50 MBytes 105 Mbitsfsec - | 83| BE0EE Doecl 12 Miytes 472 Mbitsfoec
| &3] E2.0-TL0secD 38 MBytes 5.95 Mbitsfsec * | &3] BB.0-T0.0 5601 25 Mirytes. 534 Mibsits/fsee
[53] T0.0-7L0 362 50 MBytes 205 Mbitsfsec " [&3] 70072056113 Mlytes. 872 Mbitsfec
| 831 T20-T4 0560 38 MBytes 9.96 Mbitsfsec * | 43] 72.0-T4.050c1. 25 Mytes. 5.34 Mbits/sec
| 831 74.0-76.056c2 50 MBytes 205 Mbitgfsec * | 43] T0TE O sec] 12 MBytes 472 Mbitsfsec
| &3] TEO-TE.OsecD 38 MBytes 5.95 Mbitsfsec * | &3] 76.0-TE.05er . 25 Mirytes. 5,34 Mbsits/fsee
| £3] 7R.0-80. 05607 38 MByes .95 Mbitgfsec " | &3] TR 0E005ec] 12 Miytes 472 Mbitsfaec
| &3] 80.0-B2.05602 50 MBytes 305 Mbitsfsec = | 43] BO.0ER.05ec]. 25 MBytes 5.34 Mbits/sec
| £3] £2.0-84. 0542 38 MByles 9.95 Mbitsfsec - | &3] 82.084.05ec]. 35 Miiytes. 5.24 Mbitsfsec
| £3] 84.0-B5.05ec 50 MBytes 105 Mbitsfsec " | 43] B4.0-EE.05ec 12 METes 472 MUits/sec
| £3] #6.0-BE. 0342 38 MByles 9.95 Mbitsfsec - | &3] 86,082 05625 Miiytes. 5.24 Mbitsfsec
| £3]88.0-00.05ec2 50 MBytes 105 Mbitsfsec * | 43] BE050.056c . 12 Mirtes 472 Mbsits/sec
| 43]90.0-92.0 9ec2 38 MBytes 9.95 Mbitsfsec " [£3] 90.052.0 360125 Milytes. 5.24 Mbitsfied
| £3] 92.0-94. 0542 50 MBytes 105 Mbitsfsec - [43] 92054 0 ec] 12 Miytes 477 Mbitsfoec
| £3]94.0-06.05ec 38 MBytes 9.96 Mbitgfsec © | &3] 54.0-56.05ec . 25 MEiytes. 5,24 Mbitsfsec
| &3] 36.0-98.05ec2 50 MBytes 105 Mbitsfsec * | 43] 96.058.056c. 12 Mirytes 472 Mbits/ e
| 43] 58.0-100.0 sec2. 35 MEyies 9.95 Mbitsfsec " [£3] 98.0-100.0 560135 MExlEs 5.24 Mbits el

Figure 12

These techniques may be implemented as a policer or shaper, or as an in-switch
reaction mechanism in combination with early congestion detection to avoid congestion
and buffer buildup and ultimately drops. This improves on current approaches by reducing
the overhead/cost of the implementation.

In summary, techniques are described herein to shape TCP traffic by pacing ACK
messages artificially. This may enable the sender to conform to a desired rate. TCP flow

rates may thereby be effectively controlled without a large and costly packet buffer.

10 5833

https://www.tdcommons.org/dpubs_series/2294

	Technical Disclosure Commons
	June 19, 2019

	ACK SHAPER WITHOUT BUFFER
	Erico Vanini
	Rong Pan
	Parvin Taheri
	Jason Marinshaw
	Recommended Citation

	Microsoft Word - 1001029_1

