
Technical Disclosure Commons

Defensive Publications Series

April 10, 2019

Stateful metadata for big data
Nagaraju Pothineni

Nitin Raut

Nikhil J. Joshi

Nikhil Menon

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Pothineni, Nagaraju; Raut, Nitin; Joshi, Nikhil J.; and Menon, Nikhil, "Stateful metadata for big data", Technical Disclosure Commons,
(April 10, 2019)
https://www.tdcommons.org/dpubs_series/2134

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F2134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2134?utm_source=www.tdcommons.org%2Fdpubs_series%2F2134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Stateful metadata for big data

ABSTRACT

 Large volumes of data, characterized by large variety and high update velocities,

pose challenges in terms of storage, application of concurrently occurring frequent updates,

and serving processes that require the most accurate version of the data simultaneously. In

most current schemes, it is not possible to guarantee all of these characteristics and a

relaxing one or more requirements is necessary. The present disclosure describes a scalable,

easy-to-maintain metadata mechanism that is fast and efficient to update, and can provide all

the above guarantees on data. The metadata maintains lightweight validity markers, and

simple algebra is performed thereof to surface the most up to date and accurate data while

enabling constant updates to the data in a non-blocking fashion.

KEYWORDS

● Big data

● Stateful metadata

● Concurrent update

● Non-blocking update

● Validity marker

BACKGROUND

 Most big data (BD) systems exhibit extremely large volumes of incoming data with

immense variation, usually collected at enormous velocities. BD systems often have associated

serving pipelines - such as e-commerce, advertising, and analytics or machine learning modeling

- that utilize this data as input. Since the incoming data is received asynchronously from multiple

uncorrelated sources, the data as received is not in a structured format that is readily suitable for

2

Pothineni et al.: Stateful metadata for big data

Published by Technical Disclosure Commons, 2019

serving and often requires separate offline data preprocessing. As a result, most functional data

is usually stored in a structured format, which can make further mutations to the data

computationally expensive and time consuming. On the other hand, the data-preprocessing logic

may need frequent upgrades to mitigate issues and bugs encountered in the past, and may require

some or all of the data previously processed to be reprocessed and be corrected. In addition,

there can exist data removal processes - such as regulations that require that the users have

control over their data - requiring BD systems to remove portions of stored data. Data mutation

is a time consuming, and computationally expensive process in most BD systems, while serving

pipelines, such as e-commerce and real-time bidding, require instantaneous provision of the most

up to date and accurate data at all times. Fig. 1 illustrates the issue at hand.

In the presence of such conflicting operations concurrently mutating the same data, it is non-

trivial to maintain, at all times, the qualities of (a) completeness or provision of all the relevant

3

Defensive Publications Series, Art. 2134 [2019]

https://www.tdcommons.org/dpubs_series/2134

data; (b) correctness or provision of only the relevant data; and (c) consistency or provision of

causally connected copies of the data. The most commonly applied solutions involve performing

modification to the data in a blocking manner, where one of the conflicting operations is allowed

to proceed while other operations wait for their turn, thus artificially breaking concurrency. The

only options available in such cases are to serve either incomplete but accurate data, with

temporary hiding of the data being mutated, or complete but stale and inaccurate data, where

older copies of data are provided for a period of time until the replacement is available. Another

commonly applied solution is to allow these operations to proceed concurrently in a non-

blocking fashion, but selecting only one of the copies in case of conflicting updates, rerunning

operations on the new version of the data. This however causes a lot of throw-away data that

needs to be rejected in order to incorporate recent changes, thus incurring significant costs in

processing time and resources usage.

DESCRIPTION

The present disclosure describes a metadata mechanism that preserves correctness,

consistency, and completeness guarantees in the surfaced data, while simultaneously permitting

frequent and concurrent mutations to large volumes of the underlying data. This mechanism

enables applying the data mutations in a non-blocking fashion, effectively saving significant time

and processing power, which otherwise is not possible in most current systems. The disclosed

metadata mechanism is efficient, fast to update, and cheap to maintain. It acts as an index over

the data and provides an effective view of the most updated, complete, correct, and consistent

data by way of incorporating data-invalidity-markers (masks here onwards) with a commutative

manipulation algebra defined on the masks. This removes the need for blocking conflicting data

updates,, since every update operation can independently introduce some locally latest version of

4

Pothineni et al.: Stateful metadata for big data

Published by Technical Disclosure Commons, 2019

the data by updating the metadata with new masks. The new masks carry the onus of presenting

the most updated, complete, and concise view of the current data. The metadata being cheaper to

modify and maintain can significantly reduce resource usage by avoiding throw-away work or

artificial update latencies due to blocking. By incorporating a simple marker-addition-timestamp,

an implicit versioning of the data is achieved, thereby providing rollback facilities in case need

arises.

 Metadata in its ordinary manifestation is an index over the data. It can include indicators

or accessors for the data based on identifiers used to categorize data in a file. For example, if the

data is organized by the ascending order of uniquely assigned user identifiers, say user_ids, and is

spread across multiple files and directories, the corresponding metadata can simply specify paths

to all the files for a given user. Such accessors are known collectively as references to data.

 A mask m can be a combination of data attributes identifying the slice of the data (which

needs masking and filtering before serving) from the reference on which it has been applied, or it

may simply be a flag rendering the reference invalid.

In a simple form, a data mutation that results in metadata masking is as illustrated in Fig. 2.

5

Defensive Publications Series, Art. 2134 [2019]

https://www.tdcommons.org/dpubs_series/2134

For brevity, all the data files are denoted by blue colored boxes, while references to these data

files in metadata are shown in green boxes next to the data files. Only those metadata references

are shown that receive updates in an operation. In the update shown in Fig. 2, a new version f2
new

of some of the data in file f2 was added to the system. Consequently, a mask m2 was added to all

the metadata references to the older version f2. For any metadata query made until t1 the

reference to f2 is returned if relevant, while those immediately after t1 surface f2
new and the

relevant part of f2 after filtering out by m2.

 The addition of a mask re-establishes correctness and consistency by enabling the

addition of updated data asynchronously while serving query responses that include the latest

version of data at all times. A separate process can be used to consolidate f2 modulo m2.

 While placing a mask to hide now-stale data solves the immediate problem of output

invalidation, this process is insufficient for input invalidation: what if some newly added data

6

Pothineni et al.: Stateful metadata for big data

Published by Technical Disclosure Commons, 2019

invalidates an existing data that is being used in another as input? For example, a process p1

initiated at time t0, but at a later time t1 before it finishes another process p2 adds an alteration to

data that results in invalidating inputs of p1.

 As shown in Fig. 3 (left panel), the simple addition of mask on the input file f2 at the

arrival of process p2 at time t1 resolves only the local conflicts. However if the file f2 was being

used as an input to a separate process p1 initiated before t1 the output of p1 needs to be

abandoned, and p1 needs to be restarted to consume the updated state of the data as input.

 It should be noted that this throw-away-and-restart mechanism does not provide a

failsafe solution, since in most cases it cannot be guaranteed that another update would not be

applied until the restarted p1 finishes, unless the system is blocked for p1.

7

Defensive Publications Series, Art. 2134 [2019]

https://www.tdcommons.org/dpubs_series/2134

 To circumvent this, two concepts, metadata versioning and masks manipulation algebra,

are introduced. Fig. 3 (right panel) demonstrates metadata versioning and a simple mask

manipulation in action. If a process p1 was associated with the state of the metadata versioned at

the time of initiation, i.e. when its inputs were materialized, say , where is the

set of references in input of p1, and similarly, versioned at its completion, then the

difference

can be used to determine any new masks applied to inputs of p1 that can consequently be ported

over to outputs of p1.

 The metadata versioning in combination with masks manipulation algebra generates the

same effect that is achieved by designing a blocking mechanism to allow only one of the

mutations at any given time. Fig. 3 shows scenarios where either of p1 or p2 is blocked for

completion of the other. The left panel shows the metadata states if p1 was completed before p2.

The metadata state after t2 is exactly the same as the one in Fig. 3 right panel in presence of

metadata versioning and mask algebra, but without explicit process blocking. On the other hand

if p1 was initiated after p2 updates were applied, the state of the data and metadata individually

looks different. However, when viewed in combination the effective state of the system is

equivalent to that in the right panel in Fig. 3, i.e. with metadata versioning and masks algebra. In

the former, the file Fnew explicitly contains the updated data from p2 while invalidating f2
new,

which would be represented as the file F with some data masked as per m and complemented

with yet valid file f2
new in the latter case.

8

Pothineni et al.: Stateful metadata for big data

Published by Technical Disclosure Commons, 2019

 Again, by way of metadata versioning and masks manipulation algebra, the need for

explicit blocking of the processes or occasional throw-away-and-restart of processes is

eliminated. Also eliminated are artificial latencies and servings from stale or incorrect data. More

importantly, because metadata only contains references and is usually significantly smaller in

size compared to the data, metadata modifications are computationally cheaper and can be done

instantaneously, making the latest data available for serving at all times, which is not possible

otherwise in any of the scenarios discussed in Fig. 4.

 A more involved example of masks manipulation algebra is shown in Fig. 5. At its

completion the process p2 adds a new mask m2
1 to the existing set of masks on f2 respecting the

existing masks. This is done by computing the difference between two metadata versions, one

taken at the initiation and the other at the completion of p2. At the completion of p1 this change in

9

Defensive Publications Series, Art. 2134 [2019]

https://www.tdcommons.org/dpubs_series/2134

the metadata for inputs of p1 is determined by computing yet another difference between

metadata versioned at p1’s initiation at tn-1 and that at tn+1 and is moved to the output of p1, that is

to the references of the file F.

 Throughout the discussion so far, it is assumed that the metadata update is a

computationally inexpensive and efficient operation when compared to the actual data mutations,

offering near instantaneous updates. This is a reasonable assumption, given that in most cases,

metadata is simply a specialized index over the data, responsible for surfacing relevant parts of

the data to be processed for information queried. For example, metadata can be maintained in

SQL-like relational databases with searchable data attributes as index and data references as

value columns.

10

Pothineni et al.: Stateful metadata for big data

Published by Technical Disclosure Commons, 2019

 Metadata versioning can be implemented in numerous ways. Per the techniques described

herein, two such methods that are relatively easy to implement are as follows: (a) Explicit

snapshotting, and (b) Timestamping masks. In the former, a metadata snapshot is explicitly

included along with inputs to any data mutation process p. The process then upon completion can

obtain the latest snapshot and determine the changes with respect to the one in input. In

timestamping masks of implicit metadata versioning, a timestamp is included with every mask

applied to the metadata references, enhancing the information of when that specific mask was

added to the set of masks on a reference. The metadata snapshot at any given time in the past

then contains the set of only those masks that were applied prior to the given time. In this case,

any data mutating process maintains the start and completion times - usually the current time -

and from this, the metadata changes can be derived by calculating the difference between the two

timed versions. The latter technique not only eliminates the need to preserve metadata snapshots

with every process input (thereby reducing input sizes), but also reduces the complexity of taking

explicit metadata snapshot differences. Further, because the versioning information is persisted

within the metadata itself, the latter technique automatically provides means of metadata version

rollback functionality. Limiting the rollback operations to metadata only, one can achieve similar

benefits of fast, efficient, inexpensive mutation to views of the data as in the case of regular

mutations.

 Masks with manipulation algebra can be maintained as a set of combination of data

attributes - that define the filters - with normal set-algebra in its simplest form, although further

compaction by considering each individual mask as a set of attributes is possible.

11

Defensive Publications Series, Art. 2134 [2019]

https://www.tdcommons.org/dpubs_series/2134

 In summary, the disclosed metadata versioning and masks manipulation algebra accrues

the following benefits to BD systems, which otherwise would have been available only in

systems with static immutable data:

1. Access to the consistent, complete, and correct data at all times, irrespective of the

amount or frequency of mutations performed simultaneously on the underlying data,

which otherwise cannot be guaranteed all at the same time;

2. Efficient resource usage, by elimination of the need for either explicit blocking of some

of the data mutations or generating frequent throw-away work. On the contrary metadata

operations are highly efficient. In addition multiple mutations touching the same data can

now be delayed and batched proving further savings on computational resource usage.

3. Fast, efficient, and inexpensive versioning of the data, with rollback facility.

CONCLUSION

 Large volumes of data, characterized by large variety and high update velocities,

pose challenges in terms of storage, application of concurrently occurring frequent updates,

and serving processes that require the most accurate version of the data simultaneously. In

most current schemes, it is not possible to guarantee all of these characteristics and a

relaxing one or more requirements is necessary. The present disclosure describes a scalable,

easy-to-maintain metadata mechanism that is fast and efficient to update, and can provide all

the above guarantees on data. The metadata maintains lightweight validity markers, and

simple algebra is performed thereof to surface the most up to date and accurate data while

enabling constant updates to the data in a non-blocking fashion.

12

Pothineni et al.: Stateful metadata for big data

Published by Technical Disclosure Commons, 2019

	Technical Disclosure Commons
	April 10, 2019

	Stateful metadata for big data
	Nagaraju Pothineni
	Nitin Raut
	Nikhil J. Joshi
	Nikhil Menon
	Recommended Citation

	tmp.1554908997.pdf.aanAH

